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Discrete Curvature Representations for Noise
Robust Image Corner Detection
Weichuan Zhang, Changming Sun, Toby Breckon, Naif Alshammari

Abstract—Image corner detection is very important in the
fields of image analysis and computer vision. Curvature
calculation techniques are used in many contour-based corner
detectors. We identify that existing calculation of curvature is
sensitive to local variation and noise in the discrete domain and
does not perform well when corners are closely located. In this
paper, discrete curvature representations of single and double
corner models are investigated and obtained. A number of model
properties have been discovered which help us detect corners
on contours. It is shown that the proposed method has a high
corner resolution (the ability to accurately detect neighbouring
corners) and a corresponding corner resolution constant is also
derived. Meanwhile, this method is less sensitive to any local
variations and noise on the contour; and false corner detection
is less likely to occur. The proposed detector is compared with
seven state-of-the-art detectors. Three test images with ground
truths are used to assess the detection capability and localization
accuracy of these methods in noise-free and cases with different
noise levels. Twenty-four images with various scenes without
ground truths are used to evaluate their repeatability under affine
transformation, JPEG compression, and noise degradations. The
experimental results show that our proposed detector attains a
better overall performance.

Index Terms—Discrete curvature representations, corner
detection, corner resolution, noise robustness.

I. INTRODUCTION

IMAGE corner detection is an extremely important task in
image analysis and computer vision. Applications include

motion tracking, object recognition, and stereo matching [1],
[2]. A corner can be defined as a point with low self-
similarity or a location where variations of the image intensity
in all directions are significant [3]. Alternatively, a corner
may be defined as a location on an edge contour where the
contour changes direction sharply or where a point has a high
curvature [4].

A. Related works

In general, most existing corner detection algorithms can be
divided into three categories [5]: intensity-based methods [3],
[6]–[16], model-based methods [5], [17]–[25], and contour-
based methods [4], [26]–[42].
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Intensity-based methods extract corners directly from the
input images by measuring image pixel values. One of the
earliest methods [3] considers corners as points which have
low self-similarity in all directions. The self-similarity of a
point can be measured by using the sum of squared differences
(SSD) between their associated image patches. This is the
basis for a large number of corner detectors. Harris and
Stephens [6] proposed to approximate the SSD by the local
autocorrelation matrix. The corner measure is constructed from
the two eigenvalues of the matrix. The Harris detector was
shown to be optimal only for L-junctions [7]. More recently,
the Harris detector was extended with searches over scale
and space in [8]–[16], which detect corners by identifying the
characteristic scale of a corner.

Model-based methods find corners by fitting a small patch
of image with predefined models. Deriche and Giraudon [17]
analyzed the characterization of wedge and Y-type corners by
using the Gaussian filter. In [18] and its variants [22], corners
are defined as the smallest univalue segment assimilating
nucleus points. In [19], [20], junctions are defined as points
in an image where two or more piecewise constant wedges
meet at the central point. Shui and Zhang [5] applied the
anisotropic Gaussian directional derivative filters [43] to derive
the representations of L-type, Y-type, X-type, and star-type
corners and detect corners. Xia et al. [24] introduced a junction
detection method based on the contrario detection theory [44],
called a contrario junction detection. Pham et al. [25] presented
a junction detection method where junctions are computed by
searching for optimal meeting points of median lines in line-
drawing images.

Contour-based methods first extract digital curves from the
input image using some edge detectors and then analyse the
contour shapes to detect corners. The curvature scale space
(CSS) [26] is widely used in the contour-based methods [28]–
[33]. The authors in these methods first smooth the curves
with single- or multi-scale Gaussian filters. Subsequently, they
compute the curvature at each point of the smoothed curves.
The absolute maximal curvature points at single- or multi-
scales are combined for corner detection. It is indicated [34]–
[38] that the existing CSS corner detectors suffer from
two main problems. On the one hand, the CSS curvature
estimation technique is sensitive to local variation and noise
on the curve. On the other hand, it is a difficult task to
select an appropriate Gaussian scale to smooth the curve. To
alleviate the aforementioned problems, many novel techniques,
including multi-scale curvature product (MSCP) [29], direct
curvature scale space [30], adaptive local threshold based on
region of support [31], chord-to-point distance accumulation
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(CPDA) [34], affine-length parametrizations instead of the
arc-length [35], gradient correlation matrices (GCM) of
planar curves [36], multi-direction Gabor filters [37], angle
difference of principal directions [38], triangular theory [39],
Laplacian scale-space [40], and corner detection [42] based on
approximation discrete curvature calculation (ADCC) [45] are
proposed to extract corners from the edge contours.

B. Contributions and outline

In this work, our interest lies in the contour-based
corner detection algorithms. The existing contour-based
methods [26], [28], [29], [31], [33], [41] usually first extract
planar curves from the input image using some edge detectors
and then search for local curvature maximal points along those
curves. The afore-mentioned methods detect corners based
on existing discrete curvature techniques. Our research shows
that the existing discrete curvature techniques suffer from
two main problems: (1) Errors in curvature calculation; (2)
Sensitive to local variation and noise. Inspired by the multi-
scale theory [46] that an object contains local features at
many different scales, three typical corner models [26] (the
END, STAIR, and L models) are used to construct the scale
space map [26], [28], [30], [33], [40], [41] and to analyse
the tracks of extreme points in scale space. The scale space
map consists of the extreme points of curvature at a full range
of smoothing scales [37], [36], [47] or at many significant
scales [28], [33]. Multi-scale methods were mentioned to
suffer from at least two defects [5], [31], [34], [37], [38].
The multi-scale curvature estimation technique is sensitive to
local variations and noises on the contour. It is a difficult
task to select appropriate Gaussian scales to smooth the
contour. Large-scale Gaussian filters suppress noise well but
degrade corner localization while small-scale filters preserve
high precision in localization but are highly noise sensitive.
Meanwhile, there are no existing work which deals explicitly
with corner resolution which represents the ability to exactly
detect adjacent corners. Corner resolution has a great effect
on the detection and localization for neighbouring corners.
Furthermore, our investigation revealed that in the existing
contour-based corner detectors the corner detection accuracy,
corner resolution, and noise robustness issues have not been
considered simultaneously.

In this paper, discrete curvature representations of the
three typical corner models [26] are derived. The properties
of the representations are investigated and specified, and
these properties enable us to propose a new corner detection
algorithm. It is shown that the proposed method is robust to
local variation and noise on the contour, and the method also
has a high corner resolution. A corner resolution constant
is also derived. This approach is less sensitive to the local
variation and noise on the contour while maintaining the
capabilities of high corner resolution, detection capability,
localization accuracy, and real-time processing. This is
impossible for the existing contour-based corner detectors
[26], [28], [30], [33], [40], [41].

In this paper, the proposed corner detector is compared
with seven state-of-the-art corner detectors (MSCP [29], He &

Yung [31], CPDA [34], ARCSS [35], GCM [36], ANDD [5],
and ADCC [42]) by using two commonly used test images
with ground truths to evaluate the detection capability and
localization accuracy for cases with noise-free and different
noise levels. Twenty-four images with different scenes without
ground truths are used to assess the repeatability under affine
transformations, JPEG compression, and noise degradation
of images. The experimental results show that the proposed
method attains a better overall performance.

The following is the organization of the remainder of
this paper. In Section 2, the existing curvature computation
techniques and its weaknesses are discussed, and a new
discrete curvature calculation is proposed. Discrete curvature
representations of three typical corner models are derived.
Section 3 details the properties of the discrete curvature
representations. In Section 4, a new corner measure and a
novel detection algorithm are presented. Section 5 presents and
discusses the experimental results. Finally, our conclusions are
presented in Section 6.

II. DISCRETE CURVATURE REPRESENTATIONS OF CORNERS

In this section, we first introduce the existing discrete
curvature technique. Subsequently, the weakness of the
technique is identified and analysed. Thirdly, a novel discrete
curvature calculation is formulated and discrete curvature
representations of corners on edge contour are presented.

A. The problem of discrete curvature calculation

To begin with, we quote the definition of curvature κ
from [26], [28]. Let Γ be a regular planar curve which is
parameterized by the arc length u (in mathematics, a planar
curve is a curve in a plane that may be either a Euclidean
planar, an affine planar, or a projective planar),

Γ(u) = (x(u), y(u)), (1)

where x (u) and y (u) are coordinate functions and Γ is a
discrete curve in Z2. The curvature κ (u) of the curve Γ (u)
is defined as follows

κ(u) =
ẋ(u)ÿ(u)− ẍ(u)ẏ(u)

(ẋ2(u) + ẏ2(u))3/2
, (2)

where ẋ(u) and ẏ(u) are first and ẍ(u) and ÿ(u) are second
order derivatives with respect to u. The first and second order
derivatives at a point Pi = (xi, yi) (Pi(xi, yi) ∈ Z2) on a
curve are defined as

Ṗi =
Pi+1 − Pi−1

2
, P̈i =

Ṗi+1 − Ṗi−1
2

. (3)

From Equation (3), it is easy to find that only one
neighbouring point on each side of point Pi is used to estimate
the first order derivative on Pi and only two neighbouring
points on each side of point Pi are used to estimate the
second order derivatives. This makes the estimation technique
susceptible to the local variation on the curve and noise which
may result in false detection.

To alleviate the influence of quantization errors, the
curvature scale space technique [26], [28]–[32] is used for
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corner detection. The single- or multi-scale Gaussian filters
g(u, σ) are used to smooth the curve. The curvature on the
smoothed curve κ(u, σ) is given as follows

κ(u, σ) =
Ẋ(u, σ)Ÿ (u, σ)− Ẍ(u, σ)Ẏ (u, σ)

(Ẋ2(u, σ) + Ẏ 2(u, σ))3/2
, (4)

where Ẋ(u, σ) = x(u) ⊗ ġ(u, σ), Ẏ (u, σ) = y(u) ⊗ ġ(u, σ),
Ẍ(u, σ) = x(u)⊗ g̈(u, σ), Ÿ (u, σ) = y(u)⊗ g̈(u, σ). ġ(u, σ)
is first and g̈(u, σ) is second order derivative of g(u, σ), and
⊗ is the convolution operator. It is indicated [33]–[39] that
the conflict between corner detection and noise-sensitivity is
irreconcilable with Gaussian smoothing.

It was indicated in [48], [49] that the existing discrete
curvature calculation methods cannot accurately depict the
difference between corners and edges. Fig. 1 depicts a corner
model and the local variation of a curve in Fig. 1(a) and (b)
respectively. In terms of Equations (2) and (3), the curvature
at point o is 4/(5

√
5) in Fig. 1(a) and

√
2/2 in Fig. 1(b). As

a result, false corners may be detected based on the existing
discrete curvature calculation.

(b)(a)

Fig. 1 Examples of a corner model and the local variation of
a curve. (a) A corner model, (b) Local variation of a curve.

B. Discrete curvature calculation

Our novel discrete curvature calculation is introduced as
follows. The first and second order derivatives at a point Pi
on a curve are defined as

Ṗi,d =
Pi+d − Pi−d

2d
, P̈i,d =

Ṗi+d − Ṗi−d
2d

, (5)

where d is the neighbouring distance on each side of
point Pi. Consequently, the discrete curvature calculation in
Equation (2) is given as follows

κd(u) =
ẋd(u)ÿd(u)− ẍd(u)ẏd(u)

(ẋ2d(u) + ẏ2d(u))3/2

=
ψ(d)

((xu+d − xu−d)2 + (yu+d − yu−d)2)3/2
,

(6)

where

ψ(d) =(xu+d − xu−d)((yu+2d − yu)− (yu − yu−2d))−
((xu+2d − xu)− (xu − xu−2d))(yu+d − yu−d),

(7)

κd(u) is a curvature function using neighbouring distance d,
ẋd(u) and ẏd(u) are first and ẍd(u) and ÿd(u) are second order
derivatives with respect to u using neighbouring distance d.

C. Discrete curvature representations

In this subsection, we will present the main result of this
paper. The goal is to apply the discrete curvature Equation (6)

on the END model, STAIR model, and L model [26],
[40] (as shown in Fig. 2) to derive the discrete curvature
representations.

A universal END or STAIR corner model [26], which
consists of two corner angles α and β and a distance w,
is shown in Fig. 2(a) and (b) respectively. In terms of
Equation (1), the END model can be written as

x(u) =

 u sinα, u < 0
u, 0 ≤ u < w

(u− w) sinβ, w ≤ u,

y(u) =

 u cosα, u < 0
0, 0 ≤ u < w

−(u− w) cosβ, w ≤ u.

(8)

The two adjacent corners locate at u = 0 and u = w.
The angle α is equal to 0 when the ray with u < 0 lies
on the dashed line. The α (α > 0) increases when the ray
turns clockwise and α (α < 0) decreases when the ray turns
counter-clockwise. For the ray with (u > w), the definition on
β is just the opposite. Without loss of generality, it is assumed
that α ∈ (−π/2, π/2). When β ∈ (−π/2, π/2), it is an END
model as shown in Fig. 2(a). When β ∈ (π/2, 3π/2), it is a
STAIR model as shown in Fig. 2(b). For ease of calculation,
π − β with β ∈ (−π/2, π/2) is used in the STAIR model.
When β = π/2, it is an L model as shown in Fig. 2(c).

From Fig. 2(a) and (b), it can be easily seen that if the
curvatures of the two corners at the positions u = 0 and u = w
are larger than that at the midpoint u = w/2, the two adjacent
corners can be separated and detected. For this reason, we
focus on the discrete curvature representations of the three
positions using Equation (6).

Representation 2.1 For the END corner model, two corners
are separated by w (w > 1) with α ∈ (−π/2, π/2) and β ∈
(−π/2, π/2), and the discrete curvature representations at the
positions u = 0, u = w/2, and u = w are expressed as
follows:

1) When d ∈ [1, w/4), the discrete curvature representations
are

κd(u)|u=0 = −
√

2

d

cosα
(1 + sinα)3/2

,

κd(u)|u=w/2 = 0,

κd(u)|u=w = −
√

2

d

cosβ
(1 + sinβ)3/2

.

(9)

2) When d ∈ [w/4, w/2), the discrete curvature
representations are

κd(u)|u=0 = −
√

2

d

cosα
(1 + sinα)3/2

,

κd(u)|u=w/2 = − (2d− w/2)(cosα+ cosβ)

4d2
,

κd(u)|u=w = −
√

2

d

cosβ
(1 + sinβ)3/2

.

(10)

3) When d ∈ [w/2, w), the discrete curvature representa-
tions are given by Equation (11).

4) When d ∈ [w,+∞), the discrete curvature representa-
tions are given by Equation (12).



4

Fig. 2 Corner models: (a) END model, (b) STAIR model, (c) L model. The angles α and β can vary independently.

Representation 2.2 When π − β is used instead of β with
β ∈ (−π/2, π/2), Equations (9)-(12) are the discrete curvature
representations at the three positions u = 0, u = w/2, and
u = w for the STAIR model.

Representation 2.3 When β = π/2, Equations (9)-(12) are
the discrete curvature representations at the three positions u =
0, u = w/2, and u = w for the L model.

The discrete curvature representations indicate that the
corner resolution of the corner models can be determined
analytically, which allows us to derive properties from their
representations. Meanwhile, we can easily determine from the
discrete curvature representations whether the adjacent corners
located at u = 0 and u = w can be accurately detected
or not. These are checked by the ranges of

∣∣κd(u)|u=0

∣∣,∣∣κd(u)|u=w/2
∣∣, and

∣∣κd(u)|u=w
∣∣ which vary when α, β, w,

and d vary. Then only when the following inequality holds∣∣κd(u)|u=0

∣∣ > ∣∣κd(u)|u=w/2
∣∣ , (13)

the two adjacent corners can be exactly detected. It is
worth to note that the derivation process for

∣∣κd(u)|u=w
∣∣ >∣∣κd(u)|u=w/2

∣∣ is similar.

III. DISCRETE CURVATURE PROPERTIES OF CORNERS

In this subsection, the properties of the discrete curvature
representations are investigated in detail about the effects of
the corner angles α and β on the curvature representations.
Next, the properties of the END, STAIR, and L models are
presented.

A. END model

For the END model with α ∈ (−π/2, π/2) and β ∈
(−π/2, π/2) in Equations (9)-(12), four cases are considered
to investigate the properties of the discrete curvature
representations and the detection of neighbouring corners.

1) When d ∈ [1, w/4), in terms of Equation (9), it can be
easily concluded that

∣∣κd(u)|u=0

∣∣ > ∣∣κd(u)|u=w/2
∣∣. Then, the

two adjacent corners can be easily detected.
2) When d ∈ [w/4, w/2), in terms of Equation (10),

inequality (13) becomes

∣∣∣∣∣
√

2

d

cosα
(1 + sinα)3/2

∣∣∣∣∣ >
∣∣∣∣ (2d− w/2)(cosα+ cosβ)

4d2

∣∣∣∣ , (14)

which can be written as

cosα
(1 + sinα)3/2(cosα+ cosβ)

>
(2d− w/2)

4
√

2d
. (15)

The range of the right-hand side of inequality (15) is
[
0, 1

4
√
2

)
.

As a result, inequality (14) is established if it satisfies

cosα
(1 + sinα)3/2(cosα+ cosβ)

>
1

4
√

2
. (16)

It can be seen that inequality (16) is nonlinear. The ranges on α
and β which satisfy inequality (16) is shown in Fig. 3(a). The
white area indicates that inequality (16) is established. Then
the neighbouring corners can be accurately detected. On the
contrary, the gray area indicates that inequality (16) does not
hold. Subsequently, the adjacent corners cannot be accurately

κd(u)|u=0 = − (2d+ w)cosα+ (2d− w)sin(α+ β) + (2d− w)cosβ
d2(1 + sinα)3/2

,

κd(u)|u=w/2 = − (2d− w/2)((2d− w)sin(α+ β) + w(cosα+ sinβ))

((d− w/2)2(2− 2cos(α+ β)) + w(2d− w)(sinα+ sinβ) + w2)3/2
,

κd(u)|u=w = − (2d+ w)cosβ + (2d− w)sin(α+ β) + (2d− w)cosα
d2(1 + sinβ)3/2

.

(11)

κd(u)|u=0 = − d(3wcosα+ (4d− 3w)sin(α+ β) + wcosβ)

(2d2(1− cos(α+ β)) + 2w2(1− sinβ) + 2dw(sinα+ sinβ + cos(α+ β)− 1))3/2
,

κd(u)|u=w/2 = − (2d− w/2)((2d− w)sin(α+ β) + w(cosα+ sinβ))

((d− w/2)2(2− 2cos(α+ β)) + w(2d− w)(sinα+ sinβ) + w2)3/2
,

κd(u)|u=w = − d(3wcosβ + (4d− 3w)sin(α+ β) + wcosα)

(2d2(1− cos(α+ β)) + 2w2(1− sinα) + 2dw(sinα+ sinβ + cos(α+ β)− 1))3/2
.

(12)
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detected, which may lead to false corner detection.

3) When d ∈ [w/2, w), in terms of Equation (11),
inequality (13) can be rewritten as inequality (17). The
inequality (17) is established if it satisfies

cosα
(

cos(α−β
2 )+sin(α+β

2 )

2cos(α−β
2 )+sin(α+β

2 )
cos(α−β2 )

)1/2
(1 + sinα)3/2cos(α+β2 )

∣∣∣sin−3/2(α−β2 )
∣∣∣ > 3

√
2

4
. (18)

See Appendix A for more details. The ranges on α and β
which satisfy inequality (18) are shown in Fig. 3(b).

4) When d ∈ [w,+∞), in terms of Equation (12),
inequality (13) can be rewritten as inequality (19). It is
worth to note that lim

d→+∞

∣∣κd(u)|u=0

∣∣ = lim
d→+∞

∣∣κd(u)|u=w/2
∣∣.

Therefore, inequality
∣∣κd(u)|u=0

∣∣ > ∣∣κd(u)|u=w/2
∣∣ does not

hold when d → +∞. The same applies to the STAIR and L
models. Then we investigate the discrete curvature properties
in the case d ∈ [w, τw] with τ > 1 and τ � +∞.
Inequality (19) is established when it satisfies the followings:

a) With α+β
2 ∈

(
−π2 , arcsin

(
− w(3cosα+cosβ)

2(4d−3w)cos(α+β
2 )

))
,

−
(4− 3

τ )sin(α+ β) + 3
τ cosα+ 1

τ cosβ(
sin2(α+β2 ) + 1

τ2 sin2(π4 −
β
2 )
)3/2

>
4
√

2τ3/2(2− 1
2τ )cos(α+β2 )∣∣∣(2− 1

τ )sin(α+β2 ) + 1
τ cos(α−β2 )

∣∣∣1/2 ∣∣∣sin
3
2 (α−β2 )

∣∣∣ .
(20)

b) With α+β
2 ∈

(
arcsin

(
− w(3cosα+cosβ)

2(4d−3w)cos(α+β
2 )

)
, 0
)

,

(4− 3
τ )sin(α+ β) + 3

τ cosα+ 1
τ cosβ(

sin2(α+β2 ) + 1
τ2 sin2(π4 −

β
2 )
)3/2

>
4
√

2τ3/2(2− 1
2τ )cos(α+β2 )∣∣∣(2− 1

τ )sin(α+β2 ) + 1
τ cos(α−β2 )

∣∣∣1/2 ∣∣∣sin3/2(α−β2 )
∣∣∣ .

(21)

c) With α+β
2 ∈

[
0, π2

)
,

(4− 3
τ )sin(α+ β) + 3

τ cosα+ 1
τ cosβ(

sin(α+β2 ) + 1
τ sin(π4 −

β
2 )
)3

>
4
√

2τ3/2(2− 1
2τ )cos(α+β2 )(

(2− 1
τ )sin(α+β2 ) + 1

τ cos(α−β2 )
)1/2 ∣∣∣sin3/2(α−β2 )

∣∣∣ .
(22)

See Appendix B for more details. The ranges on α and β
which satisfy inequality (19) for case 4 of the END model
with τ = 1.3 and τ = 2 are shown in Fig. 3(c) and (d)
respectively.

Fig. 3 The ranges on α and β which satisfy inequality (13)
of the END model with different d: (a) d ∈ [w/4, w/2), (b)

d ∈ [w/2, w), (c) τ = 1.3, and (d) τ = 2.

Property 3.1 For the END corner model, two corners are
separated by w (w > 1) with α ∈ (−π/2, π/2) and β ∈
(−π/2, π/2). The region for α and β in which the corners
can be detected becomes smaller as d increases.

B. STAIR model

When π − β is used instead of β with β ∈ (−π/2, π/2),
Equations (9)-(12) are the discrete curvature representations
at the three positions u = 0, u = w/2, and u = w for the
STAIR model. Subsequently, we investigate the properties of
the curvatures at two positions u = 0 and u = w/2. If the

∣∣∣∣ (2d+ w)cosα+ (2d− w)sin(α+ β) + (2d− w)cosβ
d2(2 + 2sinα)3/2

∣∣∣∣
>

∣∣∣∣ (2d− w/2)((2d− w)sin(α+ β) + w(cosα+ cosβ))

((d− w/2)2(2− 2cos(α+ β)) + w(2d− w)(sinα+ sinβ) + w2)3/2

∣∣∣∣ . (17)

∣∣∣∣ d(3wcosα+ (4d− 3w)sin(α+ β) + wcosβ)

(2d2(1− cos(α+ β)) + 2w2(1− sinβ) + 2dw(sinα+ sinβ + cos(α+ β)− 1))3/2

∣∣∣∣
>

∣∣∣∣ (2d− w/2)((2d− w)sin(α+ β) + w(cosα+ cosβ))

((d− w/2)2(2− 2cos(α+ β)) + w(2d− w)(sinα+ sinβ) + w2)3/2

∣∣∣∣ . (19)
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curvature satisfies with inequality (13), the adjacent corners
can be exactly detected. Four cases are considered.

1) When d ∈ [1, w/4), in terms of Equation (9), it can
be easily concluded that

∣∣κd(u)|u=0

∣∣ > ∣∣κd(u)|u=w/2
∣∣. As a

result, the two adjacent corners can be easily detected.

2) When d ∈ [w/4, w/2), in terms of Equation (10),
inequality (13) becomes∣∣∣∣∣

√
2

d

cosα
(1 + sinα)3/2

∣∣∣∣∣ >
∣∣∣∣ (2d− w/2)(cosα− cosβ)

4d2

∣∣∣∣ , (23)

which can be written as
cosα

(1 + sinα)3/2 |cosα− cosβ|
>

(2d− w/2)

4
√

2d
. (24)

The range of the right-hand side of inequality (24) is
[
0, 1

4
√
2

)
.

Then inequality (24) is established if it satisfies

cosα
(1 + sinα)3/2

>
|cosα− cosβ|

4
√

2
. (25)

The ranges on α and β which satisfy inequality (25) is
shown in Fig. 4(a).

3) When d ∈ [w/2, w), in terms of Equation (11),
inequality (13) can be rewritten as inequality (26). The
inequality (26) is established if it satisfies the followings:

a) With β−α
2 ∈

(
−π2 , arctan

(
− w

2darctan(π4 −
β
2 )
))

,

ξ(α, β)

(
cos2

(
β − α

2

)
+ sin2

(
π

4
− β

2

)
sin2

(π
4
− α

2

))
> 4ξ(α, β)cos

(
β − α

2

)
sin
(
π

4
− β

2

)
sin
(π

4
− α

2

)
+

3

4

∣∣∣∣sin
(
β − α

2

)∣∣∣∣ cos2
(π

4
− α

2

)
,

(27)

where

ξ(α, β) =

∣∣∣∣sin
(
β − α

2

)∣∣∣∣ cos
(
π

4
− β

2

)
− cos

(
β − α

2

)
sin
(
π

4
− β

2

)
.

(28)

b) With β−α
2 ∈

(
arctan

(
− w

2darctan(π4 −
β
2 )
)
, π2

)
,

ψ(α, β)

(
cos2

(
β − α

2

)
+ sin2

(
π

4
− β

2

)
sin2

(π
4
− α

2

))
> 4ψ(α, β)cos

(
β − α

2

)
sin
(
π

4
− β

2

)
sin
(π
4
− α

2

)
+

3

2

∣∣∣∣sin
(
β − α

2

)∣∣∣∣ cos2
(π
4
− α

2

)
,

(29)

where

ψ(α, β) =2sin
(
β − α

2

)
cos
(
π

4
− β

2

)
+ cos

(
β − α

2

)
sin
(
π

4
− β

2

)
.

(30)

See Appendix C for more details. The ranges on α and β
which satisfy case 3 of the STAIR model is shown in Fig. 4(b).

4) When d ∈ [w, τw], in terms of Equation (12), inequali-
ty (13) can be rewritten as inequality (31). Inequality (31) is
established when it satisfies the followings:

a) With β−α
2 ∈(

−π2 , arcsin
(

−wcosα
4(d−w)cos( β−α

2 )+2wcos(π
4−

α
2 )cos(π

4−
β
2 )

))
,

−
(4− 3

τ )sin(β − α) + 3
τ cosα− 1

τ cosβ(
4cos2(β−α2 ) + 4

τ2 cos2(π4 + β
2 )
)3/2

>
2(2− 1

2τ )
∣∣∣sin(β−α2 )

∣∣∣(
(2− 1

τ )cos(β−α2 ) + 1
τ sin(α+β2 )

)2 .
(32)

b) With β−α
2 ∈(

arcsin
(

−wcosα
4(d−w)cos( β−α

2 )+2wcos(π
4−

α
2 )cos(π

4−
β
2 )

)
, π2

)
,

(4− 3
τ )sin(β − α) + 3

τ cosα− 1
τ cosβ(

4cos2(β−α2 ) + 4
τ2 cos2(π4 + β

2 )
)3/2

>
2(2− 1

2τ )
∣∣∣sin(β−α2 )

∣∣∣(
(2− 1

τ )cos(β−α2 ) + 1
τ sin(α+β2 )

)2 .
(33)

See Appendix D for more details. The ranges on α and β
which satisfy case 4 of the STAIR model with τ = 1.3 and
τ = 2 are shown in Fig. 4(c) and (d) respectively.

∣∣∣∣ (2d− w)(cosα− cosβ + sin(β − α)) + 2wcosα
d2(2 + 2sinα)3/2

∣∣∣∣
>

∣∣∣∣ (2d− w/2)((2d− w)sin(β − α) + w(cosα− cosβ))

((d− w/2)2(2 + 2cos(β − α)) + w(2d− w)(sinα+ sinβ) + w2)3/2

∣∣∣∣ . (26)

∣∣∣∣ d(3wcosα+ (4d− 3w)sin(β − α)− wcosβ)

(2d2(1 + cos(β − α)) + 2w2(1− sinβ) + 2dw(sinα+ sinβ − cos(β − α)− 1))3/2

∣∣∣∣
>

∣∣∣∣ (2d− w/2)((2d− w)sin(β − α) + w(cosα− cosβ))

((d− w/2)2(2 + 2cos(β − α)) + w(2d− w)(sinα+ sinβ) + w2)3/2

∣∣∣∣ . (31)
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Fig. 4 The ranges on α and β which satisfy inequality (13)
of the STAIR model with different d: (a) d ∈ [w/4, w/2), (b)

d ∈ [w/2, w), (c) τ = 1.3, and (d) τ = 2.

Property 3.2 For the STAIR corner model, two corners are
separated by w (w > 1) with α ∈ (−π/2, π/2) and β ∈
(−π/2, π/2). The region for α and β in which the corners
can be detected becomes smaller as d increases.

C. L model

When α ∈ (−π/2, π/2) and β = π/2, Equations (9)-(12)
are the discrete curvature representations at the three positions
u = 0, u = w/2, and u = w for the L model. It follows that we
only need to investigate the properties for the curvatures at two
positions u = 0 and u = w/2. If the curvature satisfies with
inequality (13), the adjacent corners can be exactly detected.
Four cases are considered.

1) When d ∈ [1, w/4), in terms of Equation (9), it
can be easily concluded that

∣∣κd(u)|u=0

∣∣ > ∣∣κd(u)|u=w/2
∣∣.

Subsequently, the corner at the position u = 0 can be exactly
detected.

2) When d ∈ [w/4, w/2), in terms of Equation (10),
inequality (13) becomes∣∣∣∣∣

√
2

d

cosα
(1 + sinα)3/2

∣∣∣∣∣ >
∣∣∣∣ (2d− w/2)cosα

4d2

∣∣∣∣ , (34)

which can be rewritten as
1

(1 + sinα)3/2
>

(2d− w/2)

4
√

2d
. (35)

The range of the right-hand side of inequality (35) is
[
0, 1

4
√
2

)
.

It is very easy to prove that inequality (35) is established. Then
it can be concluded that the corner at the position u = 0 can
be exactly detected in this case.

3) When d ∈ [w/2, w), in terms of Equation (11),
inequality (13) becomes
√

2cosα
d(1 + sinα)3/2

>
2d(2d− w/2)cosα

((2d2 − w2/2)(1 + sinα) + w2)3/2
, (36)

which can be rewritten as((
2−

(
w√
2d

)2
)

+
(w/d)2

1 + sinα

)3/2

>
√

2
(

2− w

2d

)
. (37)

It is easy to prove that inequality (37) is established. Then it
can be concluded that the corner at the position u = 0 can be
exactly detected in this case.

4) When d ∈ [w, τw], in terms of Equation (12),
inequality (13) can be rewritten as
√

2cosα
d(1 + sinα)3/2

>
2d(2d− w/2)cosα

((2d2 − w2/2)(1 + sinα) + w2)3/2
. (38)

Inequality (38) can be rewritten as(
(2τ2 − 1/2) +

1

1 + sinα

)3/2

>
√

2τ2(2τ − 1/2). (39)

It is easy to prove that inequality (39) is established. Then it
can be concluded that the corner at the position u = 0 can be
exactly detected in this case.

Property 3.3 For the L corner model, the corner with α ∈
(−π/2, π/2) can always be exactly detected as d increases.

IV. NEW CORNER DETECTION METHOD

In this section, the corner resolution based on the proposed
discrete curvature representation is investigated, and its corre-
sponding corner resolution constant is derived. Furthermore,
the properties of the discrete curvature representations are used
to construct a new corner measure and a new corner detection
method is proposed.

A. Corner resolution

Corner resolution is defined as the capability of a corner
measure to differentiate nearby corners. The ability of the
curvature representation technique to detect adjacent corners
depends on whether the curvature maxima of the adjacent
corners can be resolved.

For the END and STAIR models, two corners are separated
by w (w > 1) with α ∈ (−π/2, π/2) and β ∈ (−π/2, π/2).
In terms of discrete curvature representation, only if d is less
than w/4, the adjacent corners can be exactly detected without
considering angle change. It means, given a d, only if the
distance w between the adjacent corners is larger than 4d,
the adjacent corners can be exactly detected. Then the corner
resolution constant λ can be defined as λ = 4d − 1. For
example d = 1, the corresponding corner resolution constant
is λ = 3; with d = 2, λ is 7; and with d = 3, λ is 11.

B. New corner measure

Based on the above analysis, we can conclude that curvature
calculation for a corner measure using a small d has good
corner localization and good ability to resolve adjacent corners
but is noise-sensitive. Taking the existing discrete curvature
calculation technique as an example, d=1 is used to calculate
the curvature and detect corners in [26], [28]. The two
methods [26], [28] have the highest corner resolution (λ = 3)
in the existing contour-based methods [4], [26]–[42]. However,
the two methods [26], [28] are sensitive to local variations and
cannot accurately depict the difference between corners and
edges, as shown in Fig. 1. Curvature calculation for a corner
measure using a large d is noise-robust but it will degrade
corner resolution.
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To obtain better corner detection accuracy with a high corner
resolution and noise robustness simultaneously, a new corner
measure is proposed in this paper with curvature calculation
given as

Λ(u) =
|ẋd1(u)ÿd1(u)− ẍd1(u)ẏd1(u)|

(ẋ2d1(u) + ẏ2d1(u))3/2
×

|ẋd2(u)ÿd2(u)− ẍd2(u)ẏd2(u)|
(ẋ2d2(u) + ẏ2d2(u))3/2

,

(40)

where d1 = 2 and d2 = 3. For the END and STAIR models,
provided that two corners are separated by w = 8 with α ∈
(−π/2, π/2) and β ∈ (−π/2, π/2), it can be easily found
from Equation (40) that the curvature Λ(u)|u=4 is 0. It means
that the two adjacent corners can be exactly detected. From
the above analysis, λ = 7 pixels can be used to represent the
corner resolution of the proposed new corner measure for two
neighbouring corners. This is defined as the corner resolution
constant of the proposed corner measure. In corner detection,
the detection of neighbouring corners is mainly determined by
the corner resolution constant.

In general, the above curvature function has the following
advantages over the existing contour-based corner detection
techniques [26], [28], [29], [31], [34], [36]–[38]. For a
curvature-based corner measure, noise-robustness usually
means poor corner localization because of large scale Gaussian
smoothing. The proposed corner measure has a high corner
resolution using a small d1 while maintaining high noise-
robustness using a large d2, which also enhances the stability
of corner detection and avoids the degradation of corner
localization. This is impossible for the existing contour-based
corner detectors [26], [28]–[31] using the multi-scale curvature
techniques [26]. The proposed corner measure makes corners
more distinguishable and suppresses false corners effectively,
and it also avoids the issue of parameter selection for an
appropriate Gaussian smoothing scale. As a result, false corner
detections are less likely to occur.

C. Comparisons of corner measures

In what follows, we compare our new corner measure with
the MSCP measure [29], the local curvature measure [31],
the CPDA measure [34], the local curvature measure using
Equation (5) (d=2), and the local curvature measure using
Equation (5) (d=3) for the contour-based corner detectors. Fig.
5 illustrates the test image ‘Block’, edge contours extracted
by the Canny edge detector [50], the MSCP measure [29],
the local curvature measure [31], the CPDA measure [34], the
local curvature measure using Equation (5) (d=2), the local
curvature measure using Equation (5) (d=3), and the new
corner measure on the contour. One example edge contour
is extracted from the edge map indicated by the arrow in
Fig. 5(b), which contains 13 corners labelled by the black
squares in Fig. 5(c). The three other corner measures use the
default choices in their original codes and the 13 corners
in the contour match 13 peaks of the four graphs. It can
be observed that the six graphs in Fig. 5(d)-(i) demonstrate
different behaviours. The MSCP measure [31] uses three
different scales to smooth the edge contour, and then the

product of the three corresponding curvatures via Equation (2)
is defined as the corner measure, which has the ability to
suppress local variations. However, the fusion of multi-scale
curvatures from different smoothed edge contours may lead
to the difficulty in extracting some candidate corners from
the edge contour, for example, the sixth and ninth candidate
corners as shown in Fig. 5(d). This implies that the MSCP
detector has a large probability of occurrence for missing
corners. The local curvature measure in [31] uses a single
scale of Gaussian to smooth the edge contour and to calculate
the curvature for corner detection. This measure contains
some maxima with larger magnitudes besides the 13 corners,
meaning that the detector [31] has a slightly large probability
of generating false corners. The CPDA corner measure has
hardly any maximum besides the corners, implying that the
CPDA detector has a small probability of generating false
corners. However, the CPDA detector might potentially miss
obvious corners where two neighbouring candidate corners are
located close to each other, just as the sixth candidate corner
which has the fifth corner nearby, as shown in Fig. 5(f). The
reason is that the chord length with more number of pixels
is used to calculate the chord-to-point distance [38], [39],
which affect the calculation of curvatures. The local curvature
measures using Equation (5) (d=2 or d=3) contain some
maxima with larger magnitudes besides the 13 corners. This
implies that the local curvature measures using Equation (5)
(d=2 or d=3) have a slightly large probability of generating
false corners. Our new corner measure has sharp peaks at
corners and almost no local maxima apart from the 13 corners.
This means that the new corner measure is better in corner
detection and has the ability to resolve adjacent corners on a
contour than the three other detectors [29], [31], [34].

D. Contour-based corner detection using new corner measure

In this section, we describe how our proposed corner
measure described above is used in our proposed detector.
The proposed corner detector first extracts the edge map
from an input image using the Canny edge detector [50].
Consequently, planar curves are extracted from the edge map.
Next, Equation (40) is used to estimate the curvature on the
curves. The local maxima of the curvatures along the curves
are marked as candidate corners. Finally, a single curvature
threshold is used to select corners.

The outline of the proposed corner detection algorithm is
as follows:

1) Detect edges from the input image using Canny or other
edge detectors to obtain a binary edge map.

2) Extract contours from the edge map as in the methods of
[28], [31]:

- Fill in gaps along the edge contours.
- Locate the T-junctions and mark them as T-corners.

3) For each point of the contours, calculate the curvature
following the proposed corner measure as in Equation-
s (40).

4) Find the local maxima of curvature as candidate corners
and remove false corners by comparing with the curvature
threshold Th.
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Fig. 5 Comparison of six corner measures on a contour, (a)
Noise-free ‘Block’ image, (b) Edge map, (c) A closed

contour with 13 corners, (d) The MSCP corner measure
in [29], (e) Local curvature measure in [31], (f) The CPDA

measure in [34], (g) Local curvature measure using
Equation (5) (d=2), (h) Local curvature measure using

Equation (5) (d=3), and (i) Proposed corner measure on the
contour.

V. EXPERIMENTAL RESULTS AND PERFORMANCE
EVALUATION

The full performance evaluation on the proposed corner
detector is reported in this section. Firstly, three images with
ground truths are used to compare the proposed method
with seven state-of-the-art corner detectors (MSCP [29],
He & Yung [31], CPDA [34], ARCSS [35], GCM [36],
ANDD [5], and ADCC [42]) in terms of the numbers of
missed and false corners and localization errors of correctly
detected corners [5], [38]. Secondly, 24 images are used to
evaluate the detectors’ average repeatability under image affine
transformations, JPEG compression, and noise degradation.

The three commonly used test images ‘Block’, ‘Lab’ and
‘Pentagon’ [5], [31] are used in one of the performance
evaluations [5], [31], [39]. The ground truths of the three test
images are shown in Fig. 6(a), (b) and (c). In the three ground
truth images, the image ‘Block’ contains 59 corners, the image
‘Lab’ contains 249 corners, and the image ‘Pentagon’ contains
78 corners. It is worth to note that ‘Block’ and ‘Lab’ are noise
free images, while ‘Pentagon’ is a natural image with noise.

Let DC = {(x̂i, ŷi), i = 1, 2, . . . ,M1} and GT =
{(xj , yj), j = 1, 2, . . . ,M2} be the detected corners by a
corner detector and the true corners in the ground truth images
respectively. For a corner (xj , yj) in set GT , we find its
minimal distance from set DC. If the minimal distance is
not more than the predefined threshold δ (here δ = 4), the
corner (xj , yj) is treated as correctly detected. Consequently,
corner (xj , yj) in set GT and the detected corner in set

Fig. 6 Test images (a) ‘Block’, (b) ‘Lab’, and (c) ‘Pentagon’
and their ground truth corner positions.

DC form a matched pair. Otherwise, the corner (xj , yj) is
counted as a missed corner. Similarly, for a corner (x̂i, ŷi)
in set DC, we find its minimal distance from set GT . If
the minimal distance is larger than threshold δ, then corner
(x̂i, ŷi) is labelled as a false corner. The localization error is
defined as the average distance on all the matched pairs. Let
{(x̂k, ŷk), (xk, yk): k = 1, 2, . . . , N} be the matched corner
pairs in sets GT and DC. As a result, the average localization
error is calculated by

ALe =

√√√√ 1

N

N∑
k=1

((x̂k − xk)2 + (ŷk − yk)2). (41)

It is worth to note that the predefined δ is determined by the
corner resolution constant. In this paper, the corner resolution
constant λ is 7, so it is right to set δ = 4.

The seven other detectors [5], [29], [31], [34]–[36], [42] use
the authors’ original codes. Here, the default values are used
for all the tuneable parameters of the detectors. The parameter
settings for the proposed detector are: two lengths of curvature
calculation d1 = 2 and d2 = 3, the thresholds for Canny edge
detector being low = 0 and high = 0.35, and the curvature
threshold Th = 0.008. The choices for the thresholds of the
Canny edge detector are based on methods in [31], [36], [39].
The parameter settings are taken in the set d1 = 1, 2, 3;

d2 = 2, 3, 4; (d2 > d1)
Th = 0.001, 0.0015, ..., 0.0325

 . (42)

Below we discuss how the parameters (d1, d2, and Th) for the
proposed method are selected.

Assuming that missing a corner and reporting a false corner
incur the same loss for detection performance, we use the
total of missed and false corners to evaluate the detection
performance for the proposed method. For the three test
images, the effect of parameter changes on the proposed corner
detector is shown in Fig. 7. It can be observed that the
proposed detector with d1 = 2, d2 = 3, and Th = 0.008
(marked by ‘◦’) achieves a better detection accuracy than the
proposed detector with other parameter settings.

As the number of test images with ground truths are
limited, it is not sufficient to evaluate the performance of the
corner detectors just based on these images. For important
applications such as feature matching and registration, the
average repeatability under affine transformations, JPEG
compression, and noise degradation was suggested [5], [34],
[38], [39] for the evaluation of corner detectors. Repeatability
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Fig. 7 Effect of parameters changes on the proposed corner
detector.

computation does not require the ground truths of images.
Therefore, a large image dataset can be used for evaluation.

In [34], the average repeatability Ravg explicitly measures
the geometrical stability of the detected corners based on the
original and affine transformed images. It is defined as:

Ravg =
Nr
2

(
1

No
+

1

Nt

)
, (43)

where No and Nt represent the number of detected corners
from the original and transformed images by a detector, and
Nr is the number of corners between them. It is noted that a
corner point Bi = (xi, yi) is detected in the original image and
its corresponding position is point Qj after geometric image
transformation. If a corner point is detected in a geometrically
transformed image, and it is in the neighbourhood of Qj
(say within 4 pixels which is also determined by the corner
resolution constant of the proposed corner measure), then a
repeated corner is achieved. A higher average repeatability
means a better performance.

A. Evaluation of detection performance based on ground truth
images

In the first experiment, we compare the eight detectors using
three images with ground truths. The detection results of the
seven detectors are given in Fig. 8, Fig. 9, and Fig. 10. The
number of missed corners, the number of false corners, and
the localization error for each detector are listed in Table I.

Fig. 8 Detection results on the test image ‘Block’. (a) MSCP
detector [29], (b) He & Yung detector [31], (c) CPDA

detector [34], (d) ARCSS detector [35], (e) GCM
detector [36], (f) ANDD detector [5], (g) ADCC

detector [42], and (h) Proposed detector.

In this experiment, the total numbers of missed and false
corners are used to evaluate the detection performance for

(a)   (b)   (c)   (d)   

(e)   (f)   (g)   (h)   

Fig. 10 Detection results on the test image ‘Pentagon’. (a)
MSCP detector [29], (b) He & Yung detector [31], (c) CPDA

detector [34], (d) ARCSS detector [35], (e) GCM
detector [36], (f) ANDD detector [5], (g) ADCC

detector [42], and (h) Proposed detector.

a corner detector. Furthermore, considering the number of
true corners in the three test images, the ratio of the total
number of missed and false corners to the number of true
corners in the ground truths can be used to quantitatively
evaluate the detection performance. For the three test images,
the ratios for the eight corner detectors, i.e., MSCP [29], He &
Yung [31], CPDA [34], ARCSS [35], GCM [36], ANDD [5],
ADCC [42], and the proposed detector are 237/386, 219/386,
207/386, 276/386, 176/386, 261/386, 176/386, and 171/386
respectively. It can be observed that the proposed detector
attains the best detection performance in the noise-free cases.
Besides, the corner localization accuracy is another important
measure to evaluate detectors. It can be observed that for the
three test images with ground truths the proposed detector
attains the smallest localization error for image ‘Lab’ and
image ‘Pentagon’ and attains the third smallest localization
error for image ‘Block’, while the CPDA [34], ADCC [42],
He & Yung [31], and GCM [36] detectors are moderate, and
the ANDD [5], MSCP [29], and ARCSS [35] detectors are the
poorest in corner localization.

The second experiment is used to compare the noise
robustness of the eight detectors for two noisy test images. The
two test images (‘Block’ and ‘Lab’) are added with zero-mean
Gaussian white noise with variance ε2ω (εω = 1, 2, . . . , 20).
For each noise variance, 300 experiments were carried out
to obtain the average number of missed corners, average
number of false corners, and average localization errors. In
this evaluation criteria, with the increase of the noise variance,
the lower the average slope of the curve, the better the noise
robustness of a detector. The three measures for the two images
are given in Fig. 11(a)-(c) and (d)-(f) respectively. For the eight
detectors (MSCP [29], He & Yung [31], CPDA [34], ARCSS
[35], GCM [36], ANDD [5], ADCC [42], and the proposed
detector), the three measures gradually become worse with
the increase of the noise level. Taking the three measures into
account, the proposed method achieves the best results for the
noisy test images, and the method has the lowest curve average
slope change. The reason is that the proposed method has a
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Fig. 9 Detection results on the test image ‘Lab’. (a) MSCP detector [29], (b) He & Yung detector [31], (c) CPDA
detector [34], (d) ARCSS detector [35], (e) GCM detector [36], (f) ANDD detector [5], (g) ADCC detector [42], and (h)

Proposed detector.

TABLE I Performance comparison of the eight detectors for noise-free test images (the unit is in pixel).

Missed corners False corners Localization error
Detector Test

image
‘Block’

Test
image
‘Lab’

Test image
‘Pentagon’

Test
image

‘Block’

Test
image
‘Lab’

Test image
‘Pentagon’

Test
image

‘Block’

Test
image
‘Lab’

Test image
‘Pentagon’

MSCP 2 45 4 6 88 92 1.379 1.437 1.571
He & Yung 11 45 9 5 77 72 1.024 1.389 1.483

CPDA 27 122 43 0 12 3 0.952 1.313 1.225
ARCSS 36 180 44 0 7 9 1.302 1.429 1.942
GCM 7 95 32 1 32 7 1.209 1.324 1.253

ANDD 4 94 18 1 50 99 1.326 1.455 2.254
ADCC 5 94 6 1 33 37 1.116 1.295 1.523

Proposed 5 75 19 2 48 22 1.111 1.288 1.219

better capability on noise robustness and corner resolution. The
GCM, ADCC, and ANDD detectors are moderate. The He &
Yung, MSCP, and ARCSS detectors perform poorly because
they are more sensitive to local variation and noise on curves.
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Fig. 11 Demonstration of the noise-robustness of the eight
detectors for the test images ‘Block’ and ‘Lab’: (a-c) for
noisy ‘Block’ images, and (d-f) for noisy ‘Lab’ images.

However, there exist some exceptions for the CPDA detector
[34]. From Fig. 11(a) and (e), it can be found that the measures
for the CPDA detector become better with the increase of noise
level. The reason is that the authors of the CPDA detector
[34] raise the threshold only to detect ‘strong’ corners with
large curvatures and neglect some obvious corners, as shown
in Fig. 8(d) and Fig. 9(d). However, the low corner resolution

makes the CPDA detector uncertain for some corner detection
under the influence of different noise levels. Take the sixth
corner in Fig. 5(c) as an example, the CPDA detector cannot
detect it in the noise-free case as shown in Fig. 8(d), while
it can be detected in the noisy case with a standard variance
εω = 20 as shown in Fig. 12(a). The output of the proposed
detector is shown in Fig. 12(b) with the same noise level.
Compared with the noise-free case, as shown in Fig. 8(h), the
change of the result is not obvious. The reason is that the issue
of corner resolution and noise robustness without the loss of
corner detection accuracy has been considered in our corner
measure.

Fig. 12 The effect of corner resolution on corner detectors,
(a) CPDA detector [34], (b) Proposed detector.

B. Evaluation of detection performance based on average
repeatability

In this section, another performance evaluation for corner
detection based on average repeatability [34] is adopted, which
has no human involvement and can be used with any size of
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database. We had a total of 24 different gray-scale images:
one is the ‘Block’ image [5] and the other 23 images are
collected from standard databases [51], [52], which include
many commonly used images such as ‘Lena’, ‘Leaf’, ‘House’,
and ‘Lab’.

We had a total of 8,904 transformed test images, which
were obtained by applying the following six different
transformations on each original image:
• Rotations: The original image was rotated at 18 different

angles within [−π/2, π/2].
• Uniform scaling: The original image was scaled with scale

factors sx = sy in [0.5, 2] with 0.1 apart, excluding 1.
• Non-uniform scaling: The scales sx and sy were chosen

by sampling the ranges [0.7, 1.5] and [0.5, 1.8] with a 0.1
interval respectively.
• Shear transformations: The shear factor c was chosen by

sampling the range [−1, 1] with a 0.1 interval, excluding 0,
with the following formula[

x′

y′

]
=

[
1 c
0 1

] [
x
y

]
.

• Lossy JPEG compression: A JPEG quality factor was
chosen by sampling the range [5, 100] with an interval 5.
• Gaussian noise: Zero mean white Gaussian noise was

added to the original image at 15 standard deviations in [1, 15]
with an interval 1.

In order to have a fair performance comparison in this
experiment, for each input image, the average number of
detected corners of the eight detectors is marked as the
reference corner number for the input image. Then the
threshold for each detector is adjusted so that each detector
extracts about the same number of corners from each
input image. Fig. 13 shows the average repeatability of the
eight detectors under rotation, uniform scaling, non-uniform
scaling, shear transformation, lossy JPEG compression, and
Gaussian noises. Our proposed detector attains the best
average repeatability under rotation, uniform scaling, non-
uniform scaling, lossy JPEG compression, and Gaussian
noises, and achieves the second-best performance with shear
transformation. The reason is that the proposed detector has
a better capability on corner resolution, detection accuracy,
and noise robustness in the discrete domain. The CPDA
detector [34] has the best average repeatability under the shear
transformation, the second-best performance under uniform
scaling, non-uniform scaling, lossy JPEG compression, and
Gaussian noises, and the third-best performance for rotation
changes. The performances of the GCM [36], ADCC [42],
He & Yung [31], ANDD [5], MSCP [29], and ARCSS
[35] detectors are moderate. The reason is that the corner
detection accuracy, corner resolution, and noise robustness are
not considered simultaneously by the seven detectors. The
average repeatability and localization error are summarized in
Table II. Meanwhile, it can be also found that the performance
comparison results on CPDA [34], GCM [36], MSCP [29],
He & Yung [31], and ARCSS [35] detectors in this paper
are consistent with the performance comparison results given
in [53].
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Fig. 13 Average repeatability of the eight detectors under
rotation, uniform scaling, non-uniform scaling, shear

transforms, lossy JPEG compression, and additive white
Gaussian noises.

TABLE II Average repeatability and localization error.
Detector Repeatability Localization error

(percentage) (pixels)

MSCP 0.612 1.974
He & Yung 0.645 1.818

CPDA 0.711 1.577
ARCSS 0.603 2.064
GCM 0.677 1.635

ANDD 0.622 1.719
ADCC 0.671 1.731

Proposed 0.722 1.518

Based on the aspects of missed and false corners and the
localization accuracy for the two commonly used test images
which have ground truths with noise-free and different noise
levels, the average repeatability under affine transformation,
lossy JPEG compression, and noise robustness, the eight
detectors have different performances. Fully comparing the
performances of the detectors over these four aspects, the
proposed detector is the best in overall performance. This is
owing to the fact that the proposed detector is less sensitive
to local variation and noise on curves while maintaining a
high corner resolution, detection capability, and localization
accuracy.

C. Average running time

The proposed corner detector has been implemented in
MATLAB (R2016a) using a 2.81 GHz CPU with 16 GB
of memory. For each test image, the proposed algorithm
was executed 100 times and the mean execution time was
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measured. The average running time of the eight corner
detectors is summarized in Table III. According to Table III,
the ‘Block’ and ‘House’ images required similar times; the
‘Lab’, ‘Lena’, and ‘Parking meter’ images required more
times. Note that the time varies slightly depending on the
number of detected edge pixels in the image. Meanwhile, it
can be easily concluded that the proposed method meets the
requirement of real-time applications.

TABLE III Average running time
(the unit is in second, image size is in pixels).

Methods
Time (s)

Block House Lab Lena Parking
meter

(256×256) (256×256) (512×512) (512×512) (558×495)

MSCP 0.058 0.055 0.173 0.246 0.255
He &
Yung

0.062 0.059 0.183 0.253 0.261

CPDA 0.143 0.124 0.359 0.347 0.363
ARCSS 0.162 0.159 0.383 0.367 0.392
GCM 0.167 0.144 0.381 0.392 0.402

ANDD 0.984 0.941 4.231 4.491 4.682
ADCC 0.136 0.135 0.318 0.356 0.389

Proposed 0.127 0.106 0.285 0.326 0.290

VI. CONCLUSION

The main contribution of the paper is the development of
the discrete curvature representations. The discrete curvature
behavior on three corner models is investigated and a number
of model properties are specified. A new corner measure is
proposed which has high corner resolution and strong ability
for noise robust corner detection. Consequently, the corner
resolution constant is derived and as a result, a noise robust
corner detector is presented. The experimental results show
that the proposed detector outperforms the seven state-of-the-
art corner detectors in terms of missed corners, false corners,
and localization accuracy under different levels of noises,
and in average repeatability under affine transformation, lossy
JPEG compression, and noise robustness.

APPENDIX A
SOLVING INEQUALITY (17)

It is worth to note that when judging which is larger between
two numbers F (u) and H(u), given F (u) > f(u) and h(u) >
H(u), if f(u) > h(u), then F (u) > H(u) is established.

For inequality (17), the left-hand side of the inequality is
|κd(u)|u=0| of Equation (11), the right-hand side of inequality
is |κd(u)|u=w/2| of Equation (11). In terms of Equation (11),

|κd(u)|u=0| =
4(2d− w)cos(α+β2 )cos(π4 −

α
2 )cos(π4 −

β
2 ) + 2wcosα

d2(1 + sinα)3/2

>
2wcosα

d2(1 + sinα)3/2
,

(44)

and

|κd(u)|u=w/2| =

2(2d− w/2)cos(α+β2 )
(

(2d− w)sin(α+β2 ) + wcos(α−β2 )
)

((
(2d− w)sin(α+β2 ) + wcos(α−β2 )

)2
+ w2sin2(α−β2 )

)3/2

(45)

It is easy to prove that

|κd(u)|u=w/2| ≤
√
2
2 (2d− w/2)cos(α+β2 )

w3/2
(

(2d− w)sin(α+β2 ) + wcos(α−β2 )
)1/2

|sin3/2(α−β2 )|
(46)

Inequality (46) can be rewritten as

|κd(u)|u=w/2| ≤
(2d− w/2)cos(α+β2 )

2w2
(

cos(α−β
2 )+sin(α+β

2 )

2cos(α−β
2 )+sin(α+β

2 )
cos(α−β2 )

)1/2
|sin3/2(α−β2 )|

(47)

Then, inequality (17) is established when it satisfies

2wcosα
d2(1 + sinα)3/2

≥

(2d− w/2)cos(α+β2 )

2w2
(

cos(α−β
2 )+sin(α+β

2 )

2cos(α−β
2 )+sin(α+β

2 )
cos(α−β2 )

)1/2
|sin3/2(α−β2 )|

.
(48)

In this case, d ∈ [w/2, w), then inequality (48) can be further
written as inequality (18).

APPENDIX B
SOLVING INEQUALITY (19)

For (19), denote

Ω =2d2(1− cos(α+ β)) + 2w2(1− sinβ)+

2dw(sinα+ sinβ + cos(α+ β)− 1).
(49)

For (49), it can be concluded
With α+β

2 ∈
(
−π2 , 0

)
,

Ω ≤ 4d2sin2(
α+ β

2
) + 4w2sin2(

π

4
− β

2
). (50)

With α+β
2 ∈

[
0, π2

)
,

Ω ≤
(

2dsin(
α+ β

2
) + 2wsin(

π

4
− β

2
)

)2

. (51)

For (19), it can be found that

(4d− 3w)sin(α+ β) + 3wcosα+ wcosβ = 0 (52)

holds when

α+ β

2
= arcsin

(
− w(3cosα+ cosβ)

2(4d− 3w)cos(α+β2 )

)
. (53)

In terms of (46), (49)-(53), inequality (19) with d ∈ [w, τw]
is established when it satisfies
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a) With α+β
2 ∈

(
−π2 , arcsin

(
− w(3cosα+cosβ)

2(4d−3w)(cos(α+β
2 )

))
,

− d((4d− 3w)sin(α+ β) + 3wcosα+ wcosβ)(
4d2sin2(α+β2 ) + 4w2sin2(π4 −

β
2 )
)3/2 >

√
2
2 (2d− w/2)cos(α+β2 )

w3/2|(2d− w)sin(α+β2 ) + wcos(α−β2 )|1/2|sin3/2(α−β2 )|
.

(54)

Inequality (54) can be further written as inequality (20).
b) With α+β

2 ∈
(

arcsin
(
− w(3cosα+cosβ)

2(4d−3w)(cos(α+β
2 )

)
, 0
)

,

d((4d− 3w)sin(α+ β) + 3wcosα+ wcosβ)(
4d2sin2(α+β2 ) + 4w2sin2(π4 −

β
2 )
)3/2 >

√
2
2 (2d− w/2)cos(α+β2 )

w3/2|(2d− w)sin(α+β2 ) + wcos(α−β2 )|1/2|sin3/2(α−β2 )|
.

(55)

Inequality (55) can be further written as inequality (21).
c) With α+β

2 ∈
[
0, π2

)
,

d((4d− 3w)sin(α+ β) + 3wcosα+ wcosβ)(
2dsin(α+β2 ) + 2wsin(π4 −

β
2 )
)3 >

√
2
2 (2d− w/2)cos(α+β2 )

w3/2
(

(2d− w)sin(α+β2 ) + wcos(α−β2 )
)1/2

|sin3/2(α−β2 )|
.

(56)

Inequality (56) can be further written as inequality (22).

APPENDIX C
SOLVING INEQUALITY (26)

For (26), d ∈ [w/2, w), the right-hand side of inequali-
ty (26) is

|κd(u)|u=w/2| =

2(2d− w/2)
∣∣∣sin(β−α2 )

(
(2d− w)cos(β−α2 ) + wsin(α+β2 )

)∣∣∣((
(2d− w)cos(β−α2 ) + wsin(α+β2 )

)2
+ w2cos2(α+β2 )

)3/2

≤
2(2d− w/2)|sin(β−α2 )|(

2dcos(β−α2 )− 2wsin(π4 −
β
2 )sin(π4 −

α
2 )
)2

(57)

For (26), denote

Ψ =(2d− w)(cosα− cosβ + sin(β − α)) + 2wcosα

=8dsin(
β − α

2
)cos(

π

4
− α

2
)cos(

π

4
− β

2
)+

4wcos(
α− β

2
)cos(

π

4
− α

2
)sin(

π

4
− β

2
).

(58)

For (58), it can be found that Ψ = 0 holds when

β − α
2

= arctan
(
− w

2d
tan
(
π

4
− β

2

))
. (59)

Meanwhile, the left-hand side of inequality (26) can be
written as

|κd(u)|u=0|

=
|2dsin(β−α2 )cos(π4 −

β
2 ) + wcos(β−α2 )sin(π4 −

β
2 )|

2d2cos2(π4 −
α
2 )

.
(60)

Then, solving inequality (26) as follows

a) With β−α
2 ∈

(
−π2 , arctan

(
− w

2d tan(π4 −
β
2 )
))

, Equa-
tion (60) can be reduced to

|κd(u)|u=0|

≥
|sin(β−α2 )|cos(π4 −

β
2 )− cos(β−α2 )sin(π4 −

β
2 )

dcos2(π4 −
α
2 )

(61)

In this case, inequality (26) is established when it satisfies

|sin(β−α2 )|cos(π4 −
β
2 )− cos(β−α2 )sin(π4 −

β
2 )

dcos2(π4 −
α
2 )

≥

2(2d− w/2)|sin(β−α2 )|(
2dcos(β−α2 )− 2wsin(π4 −

β
2 )sin(π4 −

α
2 )
)2 . (62)

Inequality (62) can be further written as inequality (27).

b) With β−α
2 ∈

(
arctan

(
− w

2d tan(π4 −
β
2 )
)
, π2

)
, Equa-

tion (60) becomes

|κd(u)|u=0|

≥
2sin(β−α2 )cos(π4 −

β
2 ) + cos(β−α2 )sin(π4 −

β
2 )

2dcos2(π4 −
α
2 )

(63)

In this case, inequality (26) is established when it satisfies

2sin(β−α2 )cos(π4 −
β
2 ) + cos(β−α2 )sin(π4 −

β
2 )

2dcos2(π4 −
α
2 )

≥

2(2d− w
2 )|sin(β−α2 )|(

2dcos(β−α2 )− 2wsin(π4 −
β
2 )sin(π4 −

α
2 )
)2 . (64)

Inequality (64) can be further written as inequality (29).

APPENDIX D
SOLVING INEQUALITY (31)

For (31), denote

Λ = 3wcosα+ (4d− 3w)sin(β − α)− wcosβ. (65)

For (65), it can be found that Λ = 0 holds when
β − α

2
=

arcsin

(
−wcosα

4(d− w)cos(β−α
2

) + 2wcos(π
4
− α

2
)cos(π

4
− β

2
)

)
.

(66)

For (31), denote

Θ = 2d2(1 + cos(β − α)) + 2w2(1− sinβ)+

2dw(sinα+ sinβ − cos(β − α)− 1)

≤ 4d2cos2(
β − α

2
) + 4w2cos2(

π

4
+
β

2
)

(67)
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Meanwhile, the right-hand side of inequality (31) can be
written as

|κd(u)|u=w/2| ≤
2(2d− w/2)

∣∣sin(β−α
2

)
∣∣(

(2d− w)cos(β−α
2

) + wsin(α+β
2

)
)2 (68)

Then inequality (31) is established when it satisfies
a) With β−α

2 ∈(
−π2 , arcsin

(
−wcosα

4(d−w)cos( β−α
2 )+2wcos(π

4−
α
2 )cos(π

4−
β
2 )

))
,

− d ((4d− 3w)sin(β − α) + 3wcosα− wcosβ)(
4d2cos2(β−α2 ) + 4w2cos2(π4 + β

2 )
)3/2

>
2(2d− w/2)

∣∣∣sin(β−α2 )
∣∣∣(

(2d− w)cos(β−α2 ) + wsin(α+β2 )
)2

(69)

Inequality (69) can be further written as inequality (32).
b) With β−α

2 ∈(
arcsin

(
−wcosα

4(d−w)cos( β−α
2 )+2wcos(π

4−
α
2 )cos(π

4−
β
2 )

)
, π2

)
,

d((4d− 3w)sin(β − α) + 3wcosα− wcosβ)(
4d2cos2(β−α2 ) + 4w2cos2(π4 + β

2 )
)3/2

>
2(2d− w/2)

∣∣∣sin(β−α2 )
∣∣∣(

(2d− w)cos(β−α2 ) + wsin(α+β2 )
)2

(70)

Inequality (70) can be further written as inequality (33).
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