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1 Introduction

Non-zero small masses and mixings of the neutrinos have been confirmed by neutrino oscilla-
tion experiments such as solar, atmospheric, accelerator, and reactor neutrino experiments.
All the data have been gathered together and the global fit of neutrino parameters has been
done in ref. [1]. However the generation mechanism of neutrino masses is not known yet.
It could be the canonical seesaw mechanism [2–4] in which the masses are derived with
superheavy right-handed neutrinos, but verifying this experimentally is difficult.

On the other hand, the evidence for Dark Matter (DM) has been inferred from many
observations, such as the rotation curves of spiral galaxies [5], the Cosmic Microwave Back-
ground [6] and the collision of the bullet cluster [7]. However, properties of the DM particle
like its mass and interactions are not known. One of the most promising DM candidates is
a Weakly Interacting Massive Particle (WIMP), which is thermally produced by decoupling
from the thermal bath in the early universe. To reveal the nature of DM, various experiments
including direct, indirect and collider searches are being operated.

Radiative seesaw models are one interesting possibility that address both of the issues
above. Owing to the loop suppression, in these models the small neutrino masses are nat-
urally obtained from TeV scale physics. In such models, the neutrino phenomenology often
correlates with DM physics since a discrete symmetry like Z2 parity forbids tree-level neu-
trino mass terms and also stabilizes the DM candidate. In addition to the representatives of
well-known radiative models [8–12], many different models have been proposed and analyzed,
see for example [13–35]. Although the Z2 symmetry is introduced to stabilize the DM candi-
date in most of the models, other symmetries are possible. The second simplest symmetry is
Z3 and the properties have been studied [36–41]. In these models, semi-annihilation of DM
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such as χχ→ χ†X plays an important role in evaluating the DM relic density, where χ is Z3

charged DM and X is a Standard Model (SM) particle.1

In this paper, we consider a simple Z3 symmetric model with the radiative neutrino
masses at the two-loop level, which has been proposed in ref. [48]. The DM candidate in
the model is either a Dirac fermion or a complex scalar. However, in ref. [48], it has been
mentioned that both of them are unsuitable as DM candidate owing to the inconsistency with
the experimental data of direct detection or Lepton Flavor Violation (LFV). Nevertheless,
we will show that this conclusion changes when semi-annihilation processes are taken into
account, which are specific properties of the Z3 symmetric model. In the next section,
the model is introduced and the two-loop induced neutrino masses are evaluated. Some
experimental constraints are also discussed. In section 3, the DM properties are investigated
in detail for the Dirac fermion DM and the complex scalar DM, respectively. We discuss two
cases for new Yukawa coupling with charged leptons yν ; small yν without any specific flavor
structure and large yν with a specific flavor structure. In the calculation of the DM relic
density, the semi-annihilation processes will give considerable effects. In particular for the
Dirac DM, the severe constraints from LFV and the relic density of DM can be consistent due
to the effects of semi-annihilations. Detectability of DM is also discussed from the view of
direct, indirect and collider searches. The last two searches are especially interesting as they
may infer the presence of semi-annihilation processes and therefore may distinguish between
a Z2 or Z3 symmetry. Finally we summarize and conclude this work in section 4.

2 The model

The model considered here is quite simple. It was proposed and discussed briefly in ref. [48].
We introduce two Dirac fermions ψi (i = 1, 2), and two scalar bosons η and χ to the SM with
Z3 symmetry and lepton number as shown in table 1.2 The new scalars η and χ are SU(2)L
doublet and singlet, respectively. Note that more than two Dirac fermions are required to
generate at least two non-zero neutrino mass eigenvalues.3 Here we add only two Dirac
fermions for minimal particle content. The Lagrangian of the new particles is

LN = ψi
(
i/∂ −mi

)
ψi + (Dµη)† (Dµη) + ∂µχ

†∂µχ

+
∑
i,j

(
yνiαηψiPLLα +

yLij
2
χψ c

i PLψj +
yRij
2
χψ c

i PRψj + h.c.

)
, (2.1)

where i, j = 1, 2, α = e, µ, τ is the flavor index and Lα = (να, `α)T is the left-handed lepton
doublet. We can take ψi in the diagonal base without loss of generality. The gauge and Z3

invariant renormalizable scalar potential V is given by

V = µ2
φφ
†φ+ µ2

ηη
†η + µ2

χχ
†χ+

λ1

4

(
φ†φ
)2

+
λ2

4

(
η†η
)2

+
λχ
4

(
χ†χ

)2

+λ3

(
φ†φ
)(

η†η
)

+ λ4

(
φ†η
)(

η†φ
)

+ λφχ

(
φ†φ
)(

χ†χ
)

+ ληχ

(
η†η
)(

χ†χ
)

+

(
µ′χ
(
φ†η
)
χ† +

µ′′χ
3!
χ3 + h.c.

)
, (2.2)

1Semi-annihilation of DM in models without a Z3 symmetry have been discussed in the framework of vector
boson DM [42–45], and in multi-component DM scenarios [41, 46, 47].

2The Z3 symmetry could be interpreted as a remnant symmetry of an extra U(1) symmetry as ref. [40].
3Several components of scalar χ may be added to be consistent with neutrino masses instead of introducing

multi-fermions [48].
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ψi η χ

SU(2) 1 2 1

U(1)Y 0 1/2 0

Z3 1 1 1

L number 1/3 −2/3 −2/3

Table 1. Charges of new particles where ψi (i = 1, 2) are Dirac fermions, η and χ are scalar bosons.
For the other particles in the SM, zero charge of Z3 is assigned.

where φ is the SM Higgs doublet. The second term in the third line softly breaks the lepton
number conservation and is interpreted as the origin of neutrino masses. The phases of µ′χ
and µ′′χ are absorbed by the field redefinitions of η and χ. This scalar potential is basically

the same as that in the Z3 DM model in ref. [37] except the term (φ†η)χ2. This term
is forbidden in our case due to the lepton number non-conservation. We assume that the
new scalar bosons do not have vacuum expectation value: 〈η〉 = 〈χ〉 = 0, otherwise the
Z3 symmetry which stabilizes the DM candidates breaks down. The sufficient conditions in
order to get such a vacuum are given by [37],

λ1, λ2, λχ, λφχ, ληχ > 0, (2.3)

λ3 + λ4 > 0, (2.4)

µ′′2χ
9λχ

+
µ′2χ

(λ3 + λ4)
< µ2

χ. (2.5)

The parameters µ2
φ and λ1 are determined by the vacuum expectation value and the mass

of the SM Higgs boson, 〈φ〉 (≈ 174 GeV) and mh, as µ2
φ = −m2

h/2 ≈ −(89 GeV)2 and

λ1 = m2
h/〈φ〉2 ≈ 0.5.

After the electroweak symmetry breaking, the neutral component of the SM Higgs boson
φ can be rewritten as φ0 = 〈φ〉+h/

√
2, and the neutral scalars η0 and χ mix with each other.

A mass splitting between their real and imaginary parts does not occur so they remain as
complex scalar particles. The mass matrix composed by η0 and χ is given by

m2
ηχ ≡

(
m2

11 |m12|2
|m12|2 m2

22

)
=

(
µ2
η + (λ3 + λ4) 〈φ〉2 µ′χ〈φ〉

µ′χ〈φ〉 µ2
χ + λφχ〈φ〉2

)
. (2.6)

Then the mass matrix is diagonalized by the rotation matrix(
η0

χ

)
=

(
cosα sinα
− sinα cosα

)(
ϕH
ϕL

)
, (2.7)

with

tan 2α =
2|m2

12|2

m2
22 −m2

11

=
2µ′χ〈φ〉

µ2
χ − µ2

η + (λφχ − λ3 − λ4) 〈φ〉2
, (2.8)

where ϕH and ϕL are respectively the mass eigenstates with the masses mH and mL (mH >
mL).
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Figure 1. Diagram of neutrino mass generation at the two-loop level.

There are the following relationships among the parameters:

µ′χ = −2
(
m2
H −m2

L

) cosα sinα

〈φ〉
, (2.9)

µ2
χ = m2

H sin2 α+m2
L cos2 α− λφχ〈φ〉2, (2.10)

m2
η+ = m2

L sin2 α+m2
H cos2 α− λ4〈φ〉2, (2.11)

µ2
η = m2

L sin2 α+m2
H cos2 α− (λ3 + λ4) 〈φ〉2, (2.12)

where mη+ is the mass of the electromagnetic charged scalar η+. Thus we can take m2
L,

m2
H , sinα, λ2, λ3, λ4, λχ, λφχ, ληχ, µ′′χ as the new independent parameter set in the scalar

potential.

2.1 Neutrino mass matrix

In the model, the neutrino masses are induced at the two-loop level as shown in figure 1 [48].
The neutrino mass matrix is calculated as

(mν)αβ =
∑
i,j

yνiαy
ν
jβ sin2 2α

16(4π)4
µ′′χ

[
yLij (IL)ij + yRij (IR)ij

]
, (2.13)

where the loop function IR is given below:

(IR)ij = sin2 α
(
IHHHRij − IHHLRij − ILHHRij + ILHLRij

)
+ cos2 α

(
IHLHRij − IHLLRij − ILLHRij + ILLLRij

)
, (2.14)

and the function IL is obtained by substituting R → L. The functions IabcLij and IabcRij are
given by

IabcLij =
mj

mi

∫ 1

0
dxdydz

δ(x+ y + z − 1)

y(1− y)

[
ξai log ξai

(1− ξai )(ξai − ξbcij )
−

ξbcij log ξbcij

(1− ξbcij )(ξbcij − ξai )

]
, (2.15)

IabcRij =

∫ 1

0
dxdydz

δ(x+ y + z − 1)

1− y

[
ξai

2 log ξai
(1− ξai )(ξai − ξbcij )

−
ξbcij

2
log ξbcij

(1− ξbcij )(ξbcij − ξai )

]
, (2.16)

with the parameters ξaij and ξbcij defined as

ξai ≡
m2
a

m2
i

, ξbcij ≡
xm2

j + ym2
b + zm2

c

y(1− y)m2
i

, a, b, c = H,L, i, j = 1, 2. (2.17)

– 4 –
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Figure 2. Feynman diagram of LFV process `α → `βγ.

As will be discussed later, the Yukawa coupling yν should be naively yνiα . 10−2 to
avoid the constraint of LFV. If we take yνiα ∼ 0.01, sinα ∼ 0.1 and (IL)ij ∼ (IR)ij ∼ 0.1
for example, the required strength of the other couplings are estimated as µ′′χ ∼ 10 GeV

and yLij ∼ yRij ∼ 1 in order to obtain the appropriate neutrino mass scale mν ∼ 0.1 eV.
The neutrino mass matrix should be diagonalized by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix. Although we do not analyze the flavor structure here, it would be possible
to obtain the observed values in the PMNS matrix because of many parameters in the formula
of the neutrino mass matrix.

2.2 Experimental constraints

The LFV process `α → `βγ is depicted in figure 2. The branching ratio for this process is

Br (`α → `βγ) =
3αem

64πG2
F

∣∣∣∣∣∑
i

yν∗iβ y
ν
iα

m2
i

F loop
i

∣∣∣∣∣
2

Br (`α → `βνανβ) , (2.18)

where GF is Fermi constant and the loop function F loop
i is given by

F loop
i = cos4 αF ′2

(
ξHi , ξ

H
i

)
+ 2 cos2 α sin2 αF ′2

(
ξHi , ξ

L
i

)
+ sin4 αF ′2

(
ξLi , ξ

L
i

)
, (2.19)

and F ′2(x, y) is defined as

F ′2 (x, y) =
f(x)− f(y)

x− y
with f(x) = −5− 27x+ 27x2 − 5x3 + 6x2(x− 3) log x

36(1− x)3
. (2.20)

In particular when we take the limit of y → x, the function x−1F ′2
(
x−1, x−1

)
corresponds

to the function F2(x) defined in ref. [49]. The most stringent constraint comes from the
µ → eγ whose upper bound of the branting ratio is Br(µ → eγ) ≤ 5.7 × 10−13 [50], and it

will be improved to 6 × 10−14 in future [51]. Choosing F loop
i ∼ 0.1 with ξHi ∼ ξLi ∼ 1, the

requirement for the constraint is roughly written as∣∣yν∗ie yνiµ∣∣ ( mi

100 GeV

)−2
. 5× 10−5. (2.21)

Hence for example when mi = 200 GeV, the Yukawa coupling is restricted to yνiα . 10−2 if
we do not assume a certain flavor structure. Another solution to escape the LFV constraint
is to assume a specific flavor structure or a diagonal form for the Yukawa matrix.4 In this

4One may confuse the meaning of “diagonal” here since the Yukawa matrix yν is not a square matrix. In
our case, “diagonal” means at least yν1µ = yν2e = yν1τ = yν2τ = 0.
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case, yν does not contribute to LFV and we can take O(1) coupling in some elements of yν .
Then the neutrino mixing is derived from the other Yukawa couplings yL and yR. As we will
discuss later, this solution is interesting because larger Z3 DM may be more easily detected.
The constraint from another LFV process µ → 3e might be taken into account depending
on the parameter space. This process would be enhanced compared to the µ → eγ process
by the box diagrams when the Yukawa coupling yν is large enough, as has been discussed in
ref. [52, 53].

The mass difference between the charged scalar η+ and the neutral scalars ϕH,L is
constrained by ElectroWeak Precision Tests (EWPT). Basically, the calculation for our model
is the same with the inert doublet model. The new contribution to T-parameter, ∆T is
calculated as [54]

αem∆T =
1

2(4π)2〈φ〉2

[
cos2 αF (m2

η+ ,m
2
H) + sin2 αF (m2

η+ ,m
2
L)

]
, (2.22)

where the function F (x, y) is

F (x, y) =
x+ y

2
− xy

x− y
log

(
x

y

)
. (2.23)

From these formulae, the constraint on the mass difference between η+ and ϕH,L is approxi-
mately given by [54, 55]

cos2 α
(
mη+ −mH

)2
+ sin2 α

(
mη+ −mL

)2
. (140 GeV)2. (2.24)

3 Dark Matter properties

There are two DM candidates in this model, the lightest Dirac fermion ψ1 or the lightest
mass eigenstate of the scalar boson ϕL. Since the decay process ψ1 → ϕLνα or ϕL → ψ1να
is possible in the model depending on the mass spectrum, either of them can be DM. We
rename hereafter the Dirac fermion DM as ψ with the mass mψ and the scalar one as ϕ with
the mass mϕ, and discuss the DM properties in the following.

3.1 Dirac fermion Dark Matter

For the Dirac fermion DM ψ, in addition to the annihilation channels, we have some semi-
annihilation channels like ψψ → νψ, hϕ†, Zϕ† as shown in figure 3. The evolution of the
number density of Dirac DM is determined by the Boltzmann equation:

dnψ
dt

+ 3Hnψ = −〈σvψψ〉
(
n2
ψ − n

eq
ψ

2
)
− 1

2
〈σvψψ〉

(
n2
ψ − nψn

eq
ψ

)
, (3.1)

where the number densities of ψ and ψ are assumed to be the same nψ = nψ. This assumption
is valid as long as CP invariance is considered. The first term in the right-hand side of
eq. (3.1) implies the standard annihilation processes and the second term corresponds to
the semi-annihilation processes. The factor 1/2 in the second term comes from taking into
account the processes ψψ → Xψ and ψψ → Xψ both where X is any set of the SM particles.
The contribution of the decay processes such as ϕL → ψνα is negligible unless the decaying
particle has an extremely long lifetime, considered since the DM is still in the thermal bath

– 6 –
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Figure 3. Diagrams of (semi-)annihilation processes of Dirac DM ψ. The t-channel diagram of the
top right one also exists.

when the decay process decouples. We construct our own model with LanHEP [56],5 and
then micrOMEGAs is used to solve the Boltzmann equation numerically [58]. In general,

off-shell annihilation processes such as ψψ → Z∗ϕ†H,L are also included in our numerical
analysis.

If any semi-annihilation channels are not significant, only annihilation processes ψψ →
``, νν affect the thermal relic density of the Dirac DM. The cross section is proportional to∣∣∣yν∗1αy

ν
1β

∣∣∣2, and the required order of the Yukawa coupling is roughly yν1α ∼ O(0.1 − 1) to be

compatible with the observed relic density Ωh2 ≈ 0.12 [6]. However the Yukawa coupling is
severely constrained by the LFV processes as have discussed in the previous section. One
needs roughly yνiα . 0.01 to avoid the µ → eγ constraint. Thus it seems to be difficult to
satisfy the correct thermal relic density only with the annihilation channel. The effect of
semi-annihilation is important to give consistency to both the DM relic density and LFV as
will be discussed in section 3.1.1. Another solution is the consideration of mass degeneration
with the other new particles [59, 60], then the relic density is reduced by co-annihilation with
the degenerated particles. In particular co-annihilation with η gives a large contribution to
the effective cross section since it has gauge interactions.

Meanwhile, taking a larger Yukawa coupling yν can be possible if a special flavor texture
to suppress the LFV processes is assumed [59, 60]. This possibility will be discussed in
section 3.1.2.

3.1.1 Small Yukawa coupling

The DM mass dependence of the relic density is illustrated in figure 4 for the small Yukawa
couplings. The masses of the Z3 charged scalars and the other parameters in the model
are fixed to the benchmark sets as shown in table 2. For the parameter sets of BM-F1 and
BM-F3, the masses of scalars are set as mL = 400 GeV and mH = 500 GeV, and the charged
scalar mass is fixed by eq. (2.11). There are two damped regions, around 200 GeV and
250 GeV in the left upper and lower panels of figure 4. The first damped region results from

5Feynrules is useful to construct a model [57].

– 7 –
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λφχ mL [GeV] mH [GeV] yν yL, yR

BM-F1 0.1 400 500 (
0.01 0.01 0.01
0.01 0.01 0.01

)
O(1)

BM-F2 0.1 400 400
BM-F3 1.0 400 500
BM-F4 1.0 400 400

BM-F1′ 0.1 400 500 (
0.5 0 0
0 0.5 0

)
O(0.1)

BM-F2′ 0.1 400 400
BM-F3′ 1.0 400 500
BM-F4′ 1.0 400 400

Table 2. Benchmark parameter sets for figure 4 and 5. The other parameters are fixed to λ2 =
λχ = ληχ = 0.1, λ3 = λ4 = 0.5 and m2 = 1 TeV. The parameter µ′′χ sin2 α is fixed to 100 MeV for
the upper four sets, and 1 MeV for the lower four sets. The mass of η+ is determined by eq. (2.11).
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Figure 4. DM mass dependence of the relic density. The upper panels are for BM-F1 and BM-F2,
and the lower panels are for BM-F3 and BM-F4.

the resonance of ϕL in the semi-annihilation processes ψψ → ϕL → νψ, while the second
one corresponds to the ϕH resonance in mainly ψψ → ϕH → W+η−, Zϕ†L. Thus one can
satisfy the correct relic density of DM without any contradictions thanks to the resonances
of the semi-annihilation channels. The co-annihilation with ϕL is effective around 400 GeV
for BM-F1 and BM-F3. When a large λφχ is taken as BM-F3, the semi-annihilation process

ψψ → ϕL → hϕ†L is enhanced even if the mixing sinα is zero. This process starts to be
effective around mψ = (mh + mϕL)/2 ≈ 260 GeV. As found in the lower left panel in
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Figure 5. DM mass dependence of the relic density for some parameter sets. The upper panels
correspond to BM-F1′ and BM-F2′, and the lower panels are for BM-F3′ and BM-F4′. Details of the
parameter sets are in table 2.

figure 4, the relic abundance of DM is much reduced in the region of mψ & 260 GeV for large
λφχ. The effect of λφχ is significant in particular for small mixing angle.

In the right panels for BM-F2 and BM-F4, the masses of ϕL and ϕH are both fixed to
400 GeV. The behavior is quite different from the former case. The sharp damping around
200 GeV comes from the dominant semi-annihilation ψψ → ϕH,L → νψ, but the second
damped region disappears. Thus the observed relic density is achieved only at the damped
and the co-annihilation region with ϕH,L. Another difference from the left panels is that the
dependence of the mixing angle is extremely small. This is because when the masses are
degenerated, the scalar couplings in the potential have almost no dependence on the mixing
angle as one can see from eq. (2.9)−(2.12). The maximum DM mass is bounded by the
charged scalar mass mη+ ≈ 380 GeV.

3.1.2 Large Yukawa coupling

Suppressing the LFV while having large Yukawa couplings is allowed by choosing a specific
flavor structure for the Yukawa matrix yν . This case is quite interesting from view of the
detectability of the Dirac DM as we will discuss later. In figure 5, we show the DM mass
dependence of the relic density for the benchmark sets BM-F1′, BM-F2′, BM-F3′ and BM-
F4′. These parameter sets are the same as in table 2 for BM-F1, BM-F2, BM-F3 and BM-F4
respectively, but the values of the parameters yν , yL, yR and µ′′χ are different. The Yukawa
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coupling yν is fixed to yν1e = yν2µ = 0.5 and yν1µ = yν2e = 0 to suppress the µ → eγ process.

The other components of yν are also fixed adequately. The Yukawa couplings yL and yR

are taken as yL ∼ yR ∼ O(0.1). Then the known neutrino mass scale can be obtained by
adjusting the cubic coupling µ′′χ to satisfy µ′′χ sin2 α ∼ 1 MeV from eq. (2.13).

Since the Yukawa coupling yν is large, the standard annihilation channels ψψ → ``, νν
give some contribution to the total annihilation cross section throughout figure 5. In these
parameter sets, the cross sections of the annihilation and semi-annihilation processes can be
comparable, and the dependence of the scalar coupling λφχ becomes relatively smaller than
the case of small Yukawa coupling. This can be seen in the figure. The variation of the relic
density in terms of the DM mass for the large Yukawa coupling is much milder than that for
the small Yukawa coupling, as can be seen from figure 4 and figure 5.

3.2 Detectability of Dirac fermion Dark Matter

3.2.1 Direct search

The Dirac DM ψ can interact with quarks at one-loop level via photon and Z exchanges as
depicted in figure 6. Since the one-loop interactions are described by the Yukawa coupling yν ,
yL and yR, the case of large Yukawa coupling discussed above should especially be compared
with experimental limits. When the Yukawa couplings are small, the scattering cross section
is small and will not be detected in the near future. The following relevant interactions are
obtained through the one-loop diagram,

Leff = aψψγ
µψ∂νFµν +

(µψ
2

)
ψσµνψFµν + cψAµψγ

µψ

+Zµψ (Vψγ
µ +Aψγ

µγ5)ψ, (3.2)

where Fµν is the electromagnetic field strength and the couplings aψ, µψ, cψ are given by [60]

aψ = −
∑
α

|yν1α|
2 e

4(4π)2m2
η+
Ia

(
m2
ψ

m2
η+
,
m2
α

m2
η+

)
, (3.3)

µψ = −
∑
α

|yν1α|
2 e

4(4π)2m2
η+

2mψIm

(
m2
ψ

m2
η+
,
m2
α

m2
η+

)
, (3.4)

cψ = +
∑
α

|yν1α|
2 e

4(4π)2m2
η+
q2Ic

(
m2
ψ

m2
η+
,
m2
α

m2
η+

)
, (3.5)

where q2 is the transfer momentum to the gauge boson. The loop functions Ia(x, y), Im(x, y)
and Ic(x, y) are given in ref. [60]. The factor log y is included in the loop function Ia(x, y),
and it leads to some enhancement of the interaction. The interactions with Z boson are
calculated as

Vψ = − g2 sin2 2α

32 (4π)2 cos θW

∑
i

(∣∣yLi1∣∣2 +
∣∣yRi1∣∣2) ∑

a,b=H,L

sgn(a, b)IV 1

(
ξi, ξa, ξb

)
− g2 sin2 2α

32 (4π)2 cos θW

∑
i

(
yLi1y

R
i1
∗

+ yLi1
∗
yRi1

) ∑
a,b=H,L

sgn(a, b)IV 2

(
ξi, ξa, ξb

)
, (3.6)

Aψ = +
g2 sin2 2α

32 (4π)2 cos θW

∑
i

(∣∣yLi1∣∣2 − ∣∣yRi1∣∣2) ∑
a,b=H,L

sgn(a, b)IA

(
ξi, ξa, ξb

)
, (3.7)
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Figure 6. Diagram of primary contributions to spin independent and spin dependent cross section
for Dirac DM ψ.

with

ξi ≡ m2
i

m2
ψ

, ξL ≡
m2
L

m2
ψ

, ξH ≡
m2
H

m2
ψ

. (3.8)

The coefficient g2 is the SU(2)L gauge coupling constant and sin θW is the Weinberg an-
gle. The sign function sgn(a, b) is defined as sgn(H,H) = sgn(L,L) = 1 and sgn(H,L) =
sgn(L,H) = −1, and the loop functions IV 1, IV 2 and IA are

IV 1 (x, y, z) =

∫ 1

0

1− 2u+ 2u2

2 (y − z)
log

(
ux+ (1− u)(y − u)

ux+ (1− u)(z − u)

)
du, (3.9)

IV 2 (x, y, z) =

∫ 1

0

√
x

y − z
log

(
ux+ (1− u)(y − u)

ux+ (1− u)(z − u)

)
du, (3.10)

IA (x, y, z) =

∫ 1

0

1

2 (y − z)
log

(
ux+ (1− u)(y − u)

ux+ (1− u)(z − u)

)
du. (3.11)

The couplings Vψ and Aψ vanish when the Z3 charged bosons ϕL and ϕH are completely de-
generate. Since these interactions are proportional to sin2 2α, one can expect that a moderate
cross section is derived when the mixing angle is large.

In these effective interactions, the couplings aψ, cψ and Vψ contribute to the four Fermi
vector interaction with quarks: bψqγµqψγ

µψ. The contribution via Z boson is small compared
to the photon contribution if the Yukawa couplings yν and yL,R are of the same order.
Neglecting the Z boson contribution, the four Fermi interaction bψ is given by bψ = (aψ +
cψ/q

2)e, namely

bψ = −
∑
α

|yν1α|2e2

4(4π)2m2
η+
Ib

(
m2
ψ

m2
η+
,
m2
α

m2
η+

)
, (3.12)
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where Ib(x, y) = Ia(x, y)− Ic(x, y). The spin independent elastic cross section with nucleus
at zero transfer momentum via the vector interaction is calculated as

σSI = Z2
b2ψ
π

m2
ψm

2
A

(mψ +mA)2 , (3.13)

where Z and mA are atomic number and mass of nucleus. For example, the elastic cross
section to scatter with a proton with the parametrization BM-F1′ is estimated as σSI ∼
10−45 cm2, which is slightly below the upper bound from LUX for mψ & 100 GeV [61]. Thus
it would be detected by near-future direct detection experiments such XENON1T [62]. In fact
there is another contribution to the spin independent cross section via the magnetic moment
of DM µψ. However this contribution diverges at zero recoil energy and we cannot define
adequately the total cross section at zero momentum transfer. Moreover this contribution is
sub-dominant because of the enhancement factor log y of Ia(x, y) in the effective coupling aψ,
as already pointed out above. Thus we do not include this contribution in our discussion. If
more careful treatment is required, this contribution should be taken into account.

The couplings µψ and Aψ contribute to the spin dependent cross section. As with the
the spin independent cross section, the effective interaction via a Z boson is sub-dominant.
Thus the spin dependent cross section at zero momentum transfer is simply given by

σSD =
2µ2

ψµ
2
A

π

m2
ψm

2
A

(mψ +mA)2

(
JA + 1

3JA

)
, (3.14)

where µA and JA are the magnetic moment and the spin of nucleus, respectively. For the large
Yukawa benchmark parameter sets, the order of the cross section with a proton is roughly
estimated as σSD ∼ 10−45 cm2. The present strongest upper bound on the spin dependent
cross section is given as σSD . 10−39 cm2 by COUPP [63] and SIMPLE [64], which is too
weak to constrain the model.

In addition, there are further more severe constraints on the spin dependent cross section
from the search for neutrinos from the Sun by IceCube [65]. These limits hold when the
capture rate and the annihilation rate of DM in the Sun are in equilibrium. As a result,
the capture rate which depends on both the spin independent and dependent cross section is
constrained, depending on annihilation mode of DM.

3.2.2 Indirect search

In general, semi-annihilation processes are present when we consider a larger symmetry
than Z2 for stabilizing DM, such as a Z3 symmetry. A characteristic implication of semi-
annihilation may be observed in indirect searches of DM [36, 38, 47]. In our case, we have two
channels for generating monochromatic neutrinos, ψψ → νν and ψψ → νψ, whose energies
are determined kinematically as Eν = mψ and 3mψ/4 respectively. Thus a double peak may
be detected in the neutrino flux from the galaxy or the Sun as a signature of the model with
the semi-annihilation of DM [36]. A large Yukawa coupling yν with a special flavor structure
is necessary to see the signal of the double peak.

For the large Yukawa parameter sets, the standard annihilation ψψ → νν and the
semi-annihilation ψψ → νψ can be the main channels and comparable each other in some
parameter regions, as shown in the previous section. The present upper bound for the
annihilation cross section into neutrinos from the galactic center is 〈σv〉νν . 10−22 cm3/s [67],
which is far from the canonical annihilation cross section of the thermal DM. The neutrinos
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Figure 7. DM mass dependence of total neutrino flux Φν . The expected neutrino flux in the model
is given by the red solid line where SI and SD cross sections are fixed to σSI = σSD = 10−45 cm2. The
upper bound for the channel `L`L + νLνL obtained from the IceCube data analysis [66] is given by
the green dotted line.

from the Sun give a somewhat stronger bound. Monochromatic neutrino emission from DM
annihilation has been studied in ref. [68–71]. The differential neutrino flux from the Sun is
calculated as

dΦν

dEν
=

1

2

C�
4πd2

[
2Br(ψψ → νν)

dNνν

dEν
+ Br(ψψ → νψ)

dNνψ

dEν

]
, (3.15)

where the factor 2 of the first term in eq. (3.15) comes from two neutrinos in the final state,
d = 1.49 × 108 km is the distance between the Earth and Sun, Br is the branching ratio of
the process, dNνν/dEν and dNνψ/dEν are the energy spectra of neutrino for each channel
and they are simply written by the delta function in our case. The capture rate in the Sun
C� is estimated by using micrOMEGAs [58]. In particular for 100 GeV . mψ . 1 TeV, the
capture rate is simply evaluated as

C� ≈
(

1.2× 1020

s

)[(
100 GeV

mψ

)1.7 ( σSI

10−45 cm2

)
+

(
100 GeV

mψ

)1.9 ( σSD

10−42 cm2

)]
,

(3.16)
where the Maxwell-Boltzmann distribution is assumed for the DM velocity distribution func-
tion with the dispersion v0 = 270 km/s and the local DM density ρ� = 0.3 GeV/cm3. The
total neutrino flux is simply calculated as

Φν =
1

2

C�
4πd2

(
2Br(ψψ → νν) + Br(ψψ → νψ)

)
[km−2y−1]. (3.17)

The DM mass dependence of the total neutrino flux is shown in figure 7 where both σSI

and σSD are fixed to 10−45 cm2, as we evaluated for the large Yukawa parameter sets, and
the sum of the branching ratios in eq. (3.17) is taken as 1. In figure 7, the IceCube upper
bound for `L`L + νLνL annihilation channel is also shown. The IceCube bound is obtained
by converting the upper bound on the elastic cross section, which has been calculated from
the IceCube data [66]. This bound should be understood as a rough reference limit since
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the annihilation channel is not exactly the same as with our monochromatic case. One finds
that the expected neutrino flux in the model is two orders of magnitude smaller than the
upper bound at most. To more thoroughly compare the predicted flux with experiments, the
effects of neutrino oscillation and propagation together with experimental details should be
taken into account.

For the case of small Yukawa coupling, only a single peak of monochromatic neutrino
from the semi-annihilation can be seen. It would be difficult to distinguish this from the
monochromatic neutrino from the annihilation of typical Z2 symmetric DM.

3.2.3 Collider prospects

Generally, DM with a Z3 symmetry will give different collider signatures from Z2 DM [72, 73].
While only one DM is generated in the final state from the decay of the Z2 mother particle,
one or two DM particles are produced in the decay of the Z3 charged particle. Therefore
in the Z3 symmetric model, for instance, if the signals of one DM and two DM in the final
state have the same visible particles and the intermediate particles are off-shell, the double-
kinematic edge would be seen in the invariant mass distribution of the visible particles as a
prospect of Z3 DM. In our model, however, such decay channels are not expected.

On the other hand, if the intermediate particles are on-shell, the invariant mass dis-
tribution will have a different shape in Z2 and Z3 symmetric models [72, 73]. Considering
the decay channel of Z3 charged particle with two visible particles separated by a DM, the
invariant mass distribution for two visible particles has a cusp. Since such a cuspy feature
cannot be present in the decay of Z2 odd particle, it gives one possible way to discriminate
between Z2 and Z3 symmetric models. In our model, we can consider the decay of η± which
can be produced in pairs via the Drell-Yan process of γ and Z exchange or singly produced
via W± exchange at the Large Hadron Collider. A concrete example of above decay channel
is η+ → µ+ψ2 → µ+ψϕ†H → µ+ψZϕ†L, where the intermediate particles are all on-shell by
assuming the mass hierarchy mη+ > m2 > mH > mL and suitable mass differences. The

anti-DM particle ψ produced by the decay of ψ2 separates µ+ and Z, which gives rise to
a cusp in the invariant mass distribution for the µ+Z system. It is noted that the DM
mass in this example has to be smaller than ∼ 70 GeV, otherwise the mass difference be-
tween η+ and ϕH,L becomes inconsistent with the EWPT. For example, taking the following
mass spectrum for the decay channel: mη+ = 300 GeV, m2 = 290 GeV, mH = 220 GeV,
mL = 120 GeV, mψ = 60 GeV, the constraints we have taken into account can be satisfied by
choosing suitable Yukawa couplings, yν , yL and yR. Detailed signal and background analysis
is necessary to estimate detectability of the cuspy feature. However, this is beyond the scope
of this paper.

3.3 Complex scalar Dark Matter

In this section, we discuss the case of complex scalar DM. A similar kind of Z3 scalar DM has
been studied in ref. [37, 39]. First of all, we should take into account the severe constraint
from direct detection of DM. The complex scalar DM ϕ ≡ ϕL with mass mϕ ≡ mL has an
interaction with the Z boson, since ϕ includes a component of SU(2)L doublet η0. Thus, much
of the parameter space of the mixing angle is excluded by the direct detection experiments
like LUX [61] and XENON100 [74]. Here we investigate how small the mixing should be so
as to evade the bound. The contribution to the spin independent elastic cross section with
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Figure 8. Excluded parameter space in mϕ − sinα plane (left panel) and mϕ − λφχ (right panel) by
XENON100 [74] and LUX [61]. The region above each line is excluded.

nucleus comes from the Z boson exchange diagram, which is calculated as

σZSI =
G2
F

2π

m2
ϕm

2
A sin4 α

(mϕ +mA)2

[
(A− Z)− Z(1− 4 sin2 θW )

]2
, (3.18)

where A is the mass number of nucleus. The elastic cross section with a proton is most
stringently constrained by the LUX experiment. The excluded parameter space in mϕ−sinα
plane is shown in the left panel in figure 8. The requirement is roughly sinα . 0.05, and we
take sinα = 0.05 in the following discussion. Note that in the ordinary inert doublet model,
the constraint from the Z boson exchange would be weakened by the existence of the mass
splitting between CP even and odd inert scalars.

In addition, the scalar coupling λφχ is also relevant for direct detection via Higgs boson
exchange. The elastic cross section is calculated as

σhSI =
λ2
φχ

4π

m4
N

(mϕ +mN )2m4
h

[(A− Z)Cn + ZCp]
2 , (3.19)

where the coefficients Cp ≈ Cn ≈ 0.29 are calculated from ref. [75]. The constraint on the
coupling λφχ is shown in the right panel in figure 8. From this figure, we see that the coupling
strength should be λφχ . 0.007 so as not to conflict with the LUX result in all the DM mass
range. Moreover, DM with mass less than 100 GeV tends to be excluded by the vacuum
conditions of eqs. (2.3)−(2.5). Note that the two contributions via Z boson and Higgs boson
exchange should be combined together to do a thorough analysis, the above discussion is
sufficient to set a conservative limit.

Regarding annihilations of the scalar DM, there are many standard annihilation and
semi-annihilation channels such as ϕϕ† → ff , hh, ZZ, W+W− and ϕϕ→ hϕ†, Zϕ†, W+η−

shown in figure 9. Since the mixing angle is strictly constrained in our case, the main
component of the scalar DM is χ, rather than η0. In figure 10 some plots of the DM mass
dependence of the relic density are shown for the parameter values given in table 3. The lower
bounds of the DM mass are obtained from the vacuum condition eq. (2.5) as mϕ & 49 GeV
for the left panels and mϕ & 87 GeV for the right panels. In the upper panels, the region
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Figure 9. Examples of (semi-)annihilation processes of complex scalar DM ϕ. For the s-channels
written here, the corresponding t-channels also exist.

mH −mϕ [GeV] λφχ ληχ λ2 λ3 λ4

BM-S1 200 0.01 1.0 0.1 0.5 0.5

BM-S2 300 0.01 1.0 0.1 0.5 0.5

BM-S3 200 0.1 1.0 0.1 0.5 0.5

BM-S4 300 0.1 1.0 0.1 0.5 0.5

Table 3. Parameter sets of benchmark point for the complex scalar DM. The other parameters are
set to sinα = 0.05, yνiα = 0.01, mi = 1 TeV and µ′′χ(yLij + yRij) = 10 GeV.

of light DM mass 12 GeV . mϕ . 30 GeV is ruled out by the direct detection experiments,
while the excluded mass range is 6 GeV . mϕ . 185 GeV in the lower panels. In all figures,
the relic density of DM is drastically reduced around mϕ = mh/2 ≈ 63 GeV due to the
annihilation channels ϕϕ† → h → bb, W ∗W . Although the most of the (semi-)annihilations
are suppressed for BM-S1 and BM-S2 (upper panels) due to the small λφχ, the damping
around 200 GeV in BM-S1 and 300 GeV in BM-S2 come from the semi-annihilation channels
ϕϕ→ ϕH → Zϕ†, hϕ†. These channels are absent in the minimal singlet Z3 DM model [39]
since there is no second neutral Z3 scalar boson. These semi-annihilation channels have a
significant contribution when the cubic scalar coupling µ′′χ is large. Another notable point
in BM-S1 and BM-S2 is that the relic density of DM is a reduced around mϕ ≈ 1 TeV for
smaller cubic coupling µ′′χ because the co-annihilation ϕψi → ψi → η−` is more effective.

For BM-S3 and BM-S4 (lower panels), while the DM mass is strongly constrained by
direct detection, the contributions of (semi-)annihilations through the coupling λφχ can be
large and the relic density is much reduced. Thus the µ′′χ dependence becomes relatively
smaller than the BM-S1 and BM-S2 cases. Moreover the DM mass scale of several hundred
GeV can be detected by future direct detection experiments like XENON1T.

We have performed an investigation of the case with large Yukawa coupling yν which is
similar to the Dirac DM case. In this case, when yL, yR ∼ O(1) the smaller µ′′χ is required to
derive the known neutrino mass scale. As a result, the damping around mϕ ≈ 200 GeV in
BM-S1 and BM-S3 and 300 GeV in BM-S2 and BM-S4 almost disappear. Instead of that, the
semi-annihilation channel ϕϕ → νψi depicted in the lower right diagram of figure 9 affects
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Figure 10. DM mass dependence of relic density where the parameters are taken as in table 3. Note
that when one changes µ′′χ as in the figures, the parameters yL and yR also should be varied from the
scale of the neutrino masses.

the DM relic density when the DM is heavier than mψ/2.

As already discussed, although much of the parameter space has already been ruled out
by the direct searches for DM, there remains the possibility to detect the complex scalar
DM by XENON1T. However, there are essentially no differences from typical Z2 symmetric
DM. For indirect searches, while the scalar DM basically produces some SM particles such
as W , Z, h, `, ν, it would be difficult to see any characteristic signatures. The annihilation
channel ϕ†ϕ → νν via ψi exchange is suppressed by the small mixing angle sinα and it
is p-wave suppressed, which is different from the Dirac DM case. Thus even if we assume
a large Yukawa coupling yν , the annihilation cross section is too small to observe, and we
have only one monochromatic neutrino emission from the semi-annihilation ϕϕ→ νψi in the
right bottom process in figure 9. However, two monochromatic neutrinos would be seen at
Eν = mϕ

(
1−m2

i /(4m
2
ϕ)
)

from semi-annihilation if the masses of ψ1 and ψ2 are different.
This process does not exist in the similar Z3 scalar DM model of ref. [37].

4 Summary and conclusions

We have considered a model with Z3 symmetry. In this model, the neutrino masses are
generated at the two-loop level and the known neutrino mass scale has been derived with a
reasonable value for the coupling strength. The DM in the model is either a Dirac fermion
or a complex scalar as a result of the exact Z3 symmetry. The semi-annihilation processes
are important to reduce the relic density effectively in the early universe for both of DM
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particles. We have discussed the DM relic density in the two cases of the small and large
Yukawa couplings because of the LFV constraint. In particular for the Dirac DM ψ with
the small Yukawa coupling, although the standard annihilation channel is suppressed, the
DM relic density can be compatible with the observed value due to the semi-annihilation
processes. Direct detection constrains the complex scalar DM ϕ to be dominantly singlet.
The semi-annihilation processes for the scalar DM are controlled by the cubic coupling µ′′χ
and influence the DM relic density.

The Z3 symmetric Dirac DM in this model potentially has some interesting signatures,
which may be detected by indirect detection and colliders. In particular, for the case with
large Yukawa coupling, two monochromatic neutrinos may be observed from the annihilation
ψψ → νν and the semi-annihilation ψψ → νψ since these cross sections can be the same order
of magnitude. The double peak of neutrino flux may be detected by neutrino observatories
such as IceCube. In addition, in the decay of the Z3 charged boson η+, the cusp feature of
the invariant mass distribution may be seen at collider experiments. For the complex scalar
DM, if the masses of ψ1 and ψ2 are different, two monochromatic neutrinos would be emitted
from the semi-annihilation ϕϕ→ νψi.
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