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1 Introduction

Among the many merits of AdS/CFT correspondence1 is the geometric insight it provides

into strongly coupled field theory. For example, it allows one to analyze the strong coupling

planar limit of a gauge theory by studying the classical gravitational physics of its dual.

An application which has received considerable attention is the dynamics of a heavy quark

which is inserted into N = 4 supersymmetric Yang Mills theory, particularly its behavior

in real-time and out-of-equilibrium situations where direct analytical or numerical tools in

the context of conventional gauge theory are still lacking. In the gauge theory we might

imagine specifying the trajectory of the quark and analyzing, for example, the power that

is required to force the quark to follow its worldline, how much radiation it produces in

response, how this radiation propagates, etc..2

In the gravity dual, the quark is the endpoint of an open string. For simplicity we will

consider the quark propagating through vacuum state of the SYM plasma, corresponding

1For definiteness we’ll consider the prototypical case of AdS/CFT correspondence [1] which relates the

4-dimensional N = 4 Super Yang-Mills (SYM) gauge theory to a IIB string theory on asymptotically

AdS5 × S5 spacetime; in our considerations below, the S5 will not enter the story in any nontrivial way.
2See e.g. [2, 3] for reviews of this AdS/QCD programme.
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to pure AdS geometry in the bulk. The quark itself lives at the asymptotic boundary3 of

AdS while the string hangs into the bulk, and encodes both the gluonic cloud of the quark

as well as its radiation field. The classical geometry of the worldsheet is determined by

extremizing its proper area subject to the boundary condition that it ends on the quark

worldline. However, this specification is incomplete without further input. A fundamental

open string has two endpoints. In global AdS, both endpoints lie on the boundary; due to

the string’s orientation, the second endpoint codifies an anti-quark. One natural way to

complete the specification of the string worldsheet, then, is to impose Dirichlet boundary

conditions for both ends of the worldsheet, which amounts to specifying worldlines of both

the quark and anti-quark. This makes the problem for finding the extremal worldsheet

well posed (albeit computationally nontrivial).

However, we might be interested in just a single quark and its gluonic field without

explicitly specifying the behavior of the anti-quark. There is a very natural boundary

condition, analogous to the familiar one used in determining the electric field of a moving

charge in electrodynamics, which ensures that the quark’s behavior at a given time influ-

ences the worldsheet only along its future lightcone. In particular, any excitation sourced

by the quark is precisely sinked by the anti-quark at the other end, so that no excitation

can propagate back towards the quark. Since in the field theory this corresponds to purely

outgoing gluonic field configuration (as befits any radiation sourced by an accelerating

charge), we will refer to this boundary condition as ‘outgoing’.4

The outgoing boundary condition likewise provides a complete specification of the

problem, allowing us to determine the string worldsheet (in the causal future of the quark’s

specified trajectory). Physically it implements the expectation that as the endpoint is

accelerated, the rest of the string causally trails behind as it hangs into the bulk. This

boundary condition was crucially utilized by Mikhailov [4] to determine the exact solution

for string worldsheet in Poincare-AdS in terms of the quark trajectory on the boundary

Minkowski spacetime. Indeed, since the worldsheet is ruled by null geodesics, the solution

can be compactly written in a closed form for arbitrary quark trajectory, as we review

in section 2.

In global AdS5, whose boundary is the Einstein Static Universe (ESU) S3×R1, we see

the entire string; the field theory lives on a compact space, so that it must satisfy the Gauss

law constraint: it cannot admit a quark without an anti-quark. However, if we restrict

attention to just a single Poincare patch of AdS, whose boundary is the spatially non-

compact Minkowski space, the string could extend through the Poincare horizon, rendering

only one endpoint visible on the Minkowski boundary corresponding to this patch. In

such a case, it should be possible to consider a single quark in isolation. After all, the

3Here for simplicity we assume that we have an infinitely massive quark (corresponding to a bare source

in the fundamental representation of the gauge group); a finite-mass quark could be easily accommodated by

introducing a probe D-brane into AdS5 which caps off at correspondingly large radius, effectively regulating

the string length. However, since the portion of the string ‘below’ the brane is identical in both cases, it

will suffice to consider the simpler infinite mass setup.
4Note that, consistently with the naive UV/IR intuition, the corresponding string excitation is then

purely ingoing in AdS, i.e. propagating along the string into the bulk, away from the boundary.
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conformally symmetric Yang-Mills theory is in a deconfined phase, so individual quarks

should be allowed, and one might expect that the absence of Gauss law constraint on

the non-compact space should indeed allow color charged states, including a quark which

follows any timelike trajectory, without the presence of anti-quark.

Nevertheless, a naive implementation of the outgoing boundary conditions seems to

contradict this expectation. In particular, for sufficient quark acceleration, the correspond-

ing string could whip around and actually reemerge on the boundary within the same

Poincare patch. The simplest and best-known example of this phenomenon occurs for a

uniformly-accelerating quark (as has been studied many times in the past starting with [5]),

which we review in section 3 below. However, this occurrence is far more general: as we

explain in section 2.3, an anti-quark is induced whenever the quark undergoes past-eternal

acceleration so as to approach a light ray.5 Hence for a rather generic class of quark trajec-

tories (for which the acceleration does not vanish too quickly at early time), it seems that

we cannot consider a single quark on Minkowski spacetime, because the bulk string creates

a ‘mirror’ anti-quark. Its existence, which is apparently required by the string theory, then

presents a puzzle on the Yang-Mills side of the duality.

Clearly the subtlety lies with the boundary/initial conditions. This is perhaps not

so surprising, as conundrums involving eternal (as opposed to merely arbitrarily long)

acceleration have long and rich history.6 One possible resolution has recently been explored

by [7], who propose that the correct continuation of the string worldsheet is non-smooth

so as to encode a gluonic shock wave accompanied by the onset of quark’s acceleration

at ‘initial’ time. Part of the string worldsheet (which cannot be causally affected by the

uniformly accelerating quark at any finite time in the past) is null, matching onto a timelike

part of the worldsheet presented by [5]. Here we offer a very different resolution to that

proposed by [7], one which is naturally suggested by the global AdS viewpoint: we can

simply consider a different set of boundary conditions, such as the one mentioned above

invoking Dirichlet conditions on both endpoints, and force the anti-quark end of the string

to pass through the point of the global AdS boundary sphere which is invisible to the

Poincare patch. This allows for a smooth worldsheet; in fact for uniformly accelerating

quark the entire string configuration is globally static.

The crux of our bulk analysis is actually very simple. While the original setup (which

considers a given quark trajectory on flat spacetime) is most naturally explored in Poincare

AdS, it turns out that it is conceptually most convenient to view the problem in global

AdS, restricting attention to the Poincare patch only at the end of the calculation. In this

setting, we can keep track of both string endpoints, and formulate a simple criterion for

obtaining a single quark versus a quark-anti-quark pair. Apart from providing a perhaps

more intuitive picture of how the string responds to the quark’s motion, this visualization

in global AdS also reveals interesting symmetries which are not manifest in the Poincare

5Although perhaps not entirely obvious in the context of the field theory on flat spacetime, such trajec-

tories are in fact generic, as we will become more evident in the global viewpoint.
6In fact, the analogous question in electrodynamics has been studied for over a century; see e.g. [6] for

review of early discussions regarding the field of single uniformly accelerated charge versus a pair of opposite

uniformly accelerated charges.
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patch, such as a global rotation which relates a configuration of a single static quark to

that of the uniformly accelerating quark-anti-quark pair.

At the danger of being pedantic, it may be useful to emphasize the distinction between

the various spacetimes that we will encounter. In order of decreasing dimensionality, we

will describe

• The five-dimensional bulk AdS spacetime. We restrict attention to pure AdS (corre-

sponding to the vacuum state of the YM), but we will consider both the full global

AdS as well as its Poincare patch.

• The four-dimensional boundary of AdS, conformal to the spacetime on which the

field theory ‘lives’. In case of global AdS, we think of the field theory as living on

ESU, while for Poincare AdS we think of the field theory as living on Minkowski

background.

• The two-dimensional open string worldsheet inside AdS, which ends on the AdS

boundary.

All three spacetimes are Lorentzian and causal. Furthermore, the geometry of the first

two is fixed; for our discussion, we don’t need to consider the backreaction of the string

on AdS. The worldsheet spacetime geometry can vary, but this is rather trivial due to the

low dimensionality. The main content, then, will come from global considerations of the

effects of the boundary conditions.

The plan of the paper is as follows. In section 2 we present the general set-up obtain-

ing string worldsheet specified by an arbitrary quark trajectory with outgoing boundary

conditions. We start by explicating the properties of the worldsheet geometry (such as the

presence of worldsheet horizon) in section 2.1. Although most of these results are simple

and appeared in the literature before, we include them for completeness and pedagogical

value. We then show how to view the string in global AdS in section 2.2, and use this to

formulate a criterion on the quark trajectory for which a smooth extension of the string

worldsheet with outgoing boundary conditions induces an anti-quark in section 2.3. To

illustrate this criterion, in section 3 we focus on the most familiar example of uniform

acceleration. In section 4 we discuss how to contrive a scenario admitting a uniformly ac-

celerating quark without accompanying anti-quark; we present our proposal in section 4.1

and then compare it with the previous discussions in section 4.2. We end with closing

remarks in section 5. To keep mathematical clutter to a minimum in the main text, we rel-

egate some of the explicit expressions and generalizations (as well as corresponding figures)

to appendix A.

2 String worldsheet for arbitrary quark worldline

Let us start by considering a quark moving on Minkowski spacetime ds2bdy = ηµν dx
µ dxν .

One can specify the quark’s worldline by xµ(τ), parameterized by proper time τ . This

worldline can be arbitrary provided it is timelike everywhere, and the parameterization

by τ ensures that the four-velocity ẋµ(τ) ≡ dxµ(τ)
dτ is unit-normalized, ẋµ(τ) ẋµ(τ) = −1.
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The quark’s four-acceleration ẍµ(τ), being by definition normal to the 4-velocity, is then

spacelike, so that

a2(τ) ≡ ẍµ(τ) ẍµ(τ) ≥ 0 (2.1)

for any trajectory.

Given a quark following xµ(τ) with outgoing boundary conditions, let us now specify

its gravity dual. Vacuum of SYM on Minkowski spacetime is described by (Poincare) AdS

spacetime,

ds2 =
1

u2
(
ηµν dx

µ dxν + du2
)

(2.2)

where we have WLOG set the AdS radius to unity,
√
λα′ = 1, so all distances are now

measured in AdS units. The quark and its gluonic field is described by a fundamental

string in (2.2) which ends on the boundary quark position xµ(τ) at u = 0. Mikhailov [4]

solved the worldsheet equations of motion for the string with outgoing boundary conditions,

parameterized by the bulk radial coordinate u and a time7 coordinate τ , and found a

remarkably simple expression for the embedding coordinates XM (τ, u) = (Xµ(τ, u), u):

Xµ(τ, u) = u ẋµ(τ) + xµ(τ) . (2.3)

The coordinate patch where this solution applies is specified by u ∈ (0,∞) and τ ∈
(−∞,∞); however as we shall see below, the induced metric on the worldsheet is geodesi-

cally incomplete. In a snapshot at a constant x0 slice of AdS, the string described by (2.3)

typically just ends in ‘mid-air’.

2.1 Worldsheet geometry

To understand how much of the worldsheet is specified by (2.3) let us consider the two-

dimensional worldsheet geometry. The induced metric γab is easily obtained from (2.2)

and (2.3),

ds2γ = −
(

1

u2
− a2(τ)

)
dτ2 − 2

u2
dτ du , (2.4)

where a2(τ) is given in terms of the quark trajectory by (2.1). Lines of constant τ are null,

while those of constant u (given by orbits of ∂τ ) are timelike near the boundary but can

become spacelike deeper in the bulk, depending of a. Note that distinct quark trajectories

xµ(τ) can lead to the same induced metric on the worldsheet, as long as the contracted

acceleration is the same; however, distinct functions a2(τ) will lead to different worldsheets.

In all cases, the string worldsheet is manifestly timelike, since its determinant is negative:

det γab = − 1

u4
< 0 . (2.5)

Furthermore, for any regular quark trajectory xµ(τ), the worldsheet metric (2.4) is man-

ifestly regular for all (τ, u). In fact, since γab has constant curvature R
(γ)
ab = −γab ⇒

R(γ) = −2, it is a piece of AdS2 embedded inside AdS5. This means that as such, the

7More specifically, τ is to the quark’s proper time extended onto the worldsheet along ingoing null

geodesics, thereby specifying the retarded time along the string worldsheet.
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worldsheet geometry doesn’t have any more refined structure. However, when restricted

to the Poincare patch (which itself is geodesically incomplete, being a proper subset of

global AdS), the string worldsheet has several interesting coordinate singularities, namely

at u = 0,∞ and τ = ±∞.

Worldsheet coordinate singularities. There are four potential ‘edges’ to the (τ, u)

chart, we’ll briefly indicate the geometrical meaning of each:

• u = 0: in the full AdSd+1 metric (2.2), u = 0 is the boundary, i.e. any geodesic

takes an infinite affine parameter to reach it. Hence in the induced geometry (2.4) on

the worldsheet, u = 0 likewise corresponds to the boundary (i.e. the set of infinitely

distant endpoints for null and spacelike geodesics).

• u = ∞: in the full geometry this corresponds to the Poincare horizon, so this is the

locus of points (singularity from the 2-dimensional point of view) where the string

exits the Poincare patch through the Poincare horizon.

• τ → −∞: this marks the future lightcone of the initial point along the quark’s trajec-

tory (when specified on Minkowski space, i.e. at x0 → −∞). Since by construction,

no past-directed causal curve on the worldsheet can reach the boundary u = 0 before

that time, the τ = −∞ line represents the worldsheet past event horizon. In special

cases, such as the trivial case of inertial quark with a2(τ) = 0, this past event horizon

coincides with the Poincare horizon; but in general it differs.

• τ → ∞: this is the future lightcone of the future endpoint of the quark trajectory,

however it is cutoff by u =∞ and therefore does not enter in any interesting way.

We can now see that there are two distinct reasons the worldsheet can be geodesically

incomplete: the Poincare horizon at u = ∞ and the past worldsheet horizon at τ =

−∞. The latter one is more interesting, as this set of points (for any positive finite u) is

generically still within the Poincare patch.

To give a simple example, let us consider the case of constant acceleration, i.e. constant

a2(τ) = a2 (we will examine the uniform acceleration subclass in more detail in section 3).

In this case the worldsheet metric (2.4) is static, with ∂/∂τ being the requisite Killing

vector field, which is timelike at the boundary u = 0, but becomes null at u = u0 ≡ 1/a.

In the globally static case of a = 0, the worldsheet metric is precisely the Poincare patch

of AdS2, but in the more general case a2 > 0, the line element (2.4) can be thought of as

a constant-angle slice of BTZ in ingoing Eddington coordinates, as can be verified by the

transformation u = 1
w combined with τ = T − 1

a tanh−1 wa which gives

ds2γ = −
(
w2 − a2

)
dT 2 +

dw2

w2 − a2
. (2.6)

The latter form yields a more familiar context in which to ascertain which geodesics are

incomplete. The causal structure of the worldsheet metric γab is indicated in the Penrose

diagram of figure 1. Since only the shaded part of the Penrose diagram is covered by the

– 6 –
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u = 0

u =∞

u
=
u 0

τ
=
∞

τ
=
−∞

Figure 1. Penrose diagram for the worldsheet metric with constant ẍµ(τ) ẍµ(τ) = 1/u20. The top

and bottom horizontal dotted lines correspond to singularities at u = ∞ (i.e. Poincare horizon in

the full AdS), the left and right vertical solid lines the u = 0 AdS boundaries, and the dashed

diagonal lines the worldsheet horizons. The upper triangular shaded region corresponds to the

full coordinate patch covered by the (τ, u) coordinates in the line element (2.4). The short red

horizontal line is an example of a spacelike geodesic which terminates at finite affine parameter

despite reaching τ = −∞.

coordinates (τ, u), any geodesic which reaches the boundary of this region, while inside

the full Penrose diagram, can be extended further. One example of such a geodesic is the

constant T spacelike geodesic demarcated by the red segment in figure 1 which corresponds

to a snapshot of the string at constant time x0 = 0; another is the null horizon generator

ξa =
(
∂
∂τ

)a
(i.e. the upper portion of the u = u0 curve in figure 1), since the affine parameter

λ along such null geodesic is related to τ by λ = C ea τ , which remains finite (λ → 0) as

τ → −∞.

Worldsheet event horizon. Apart from the past horizon which marks the edge of the

regime of validity of the worldsheet embedding (2.3) and of the (τ, u) coordinate patch,

there is another special place on the string worldsheet, namely its (future) event horizon.

This is a globally-defined construct, signifying the boundary of the region on the worldsheet

from which a signal can causally reach the boundary u = 0 at some finite τ . For any

smooth a2(τ) ≥ 0 there is guaranteed to be a smooth worldsheet horizon, defined by the

last null outgoing ray to reach infinity. If a(τ)2 = a2 is constant, then u0 = 1/a defines

the worldsheet Killing horizon (where ∂
∂τ becomes null), which for this static worldsheet

coincides with the worldsheet event horizon. However, for time-varying a(τ) ≡
√
a(τ)2 the

event horizon is determined more globally, as we now explain.

Since the worldsheet metric is timelike, through any point there are two (i.e. left- and

right-moving) uniquely-specified null curves (which must be null geodesics in the worldsheet

metric, though not necessarily in the full spacetime).8 Let us for convenience use the

coordinates τ and w defined above, in which the metric is simply

ds2γ = −
(
w2 − a(τ)2

)
dτ2 + 2 dτ dw . (2.7)

8When the string satisfies outgoing boundary conditions, ingoing null geodesics on the worldsheet indeed

do coincide with null geodesics of the ambient bulk geometry; however the outgoing ones typically do

not. For more general boundary conditions, generally neither set describes geodesics in the full spacetime,

whereas on the two-dimensional worldsheet any null curve is of course automatically a null geodesic.
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www

τ τ τ

Figure 2. Event horizons for spacetimes (2.7) for various accelerations a(τ) of the quark’s trajec-

tory. The red curve indicates the acceleration a(τ), the thin green curves radial null geodesics, and

the thick dashed blue curve the event horizon. From left to right, we have chosen the acceleration

function a(τ) = 1, a(τ) = 2
1+τ2 , and a(τ) = 1 + sin2 τ + sin τ

2 cos τ3 .

To find the ‘last null geodesic to reach the boundary’ we need to solve

dw

dτ
=

1

2

(
w(τ)2 − a(τ)2

)
(2.8)

for the past-directed null geodesics emanating from large w at late τ .

In figure 2 we plot the event horizons for several 2-dimensional dynamical space-

times (2.7) specified by a given a(τ). For orientation, we have plotted the acceleration

curve a(τ) (red), several radial null geodesics w(τ), and the event horizon (dashed blue)

which can be seen as the accumulation surface of the null geodesics. We can see that

even when the quark accelerates for a short time, the worldsheet has an event horizon.9

In general, the event horizon, being teleological, “anticipates” the acceleration curve. In

other words, when a(τ) is some general function of τ , we need to know it for arbitrarily

late τ before we can solve for the event horizon — that’s what we mean by the worldsheet

event horizon being globally defined.

It is perhaps worthwhile pointing out the following subtlety. Although the teleological

property of an event horizon being globally-defined holds for higher-dimensional black holes

as well, there we can at least recourse to quasi-local notions of horizon such as the apparent

horizon which effectively captures the notion that locally gravity is so strong as to prevent

even light from escaping. In contrast, in two dimensions, there is no quasi-local indicator

of the horizon whatsoever. More precisely, there is no well-defined meaning of an apparent

horizon (usually defined by marginally trapped surfaces, those with zero expansion along

the outgoing null normal congruence), since there is no congruence — the ‘surface’ is a

9This result is not novel; for example, [8] pointed out that the process of energy loss due to quark’s

acceleration is accompanied by the formation of an event horizon on the corresponding worldsheet.
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single point, and the ‘congruence’ would be a single null curve from that point — and

correspondingly no notion of expansion. Looking at (2.4), one might be tempted to think

that the closest analog is the curve given by u = 1/a(τ) (given by the red curve in figure 2),

which coincides with the worldsheet event horizon for constant acceleration, but this locus

of points can be shifted by a mere coordinate transformation: there is nothing globally

special about this curve.10

Another way to see this is the following. Consider again the constant acceleration case.

As pointed out above, when the black hole is static, its event horizon coincides with the

Killing horizon. In higher dimensions, the bifurcation point is the fixed point of the Killing

field, and corresponds to a co-dimension two extremal surface. In two-dimensional static

worldsheet, one could find a Killing field with fixed point anywhere we want; there is no

transverse area which we could extremize. To determine which Killing field is the relevant

one, we need to use the global information of where does the string worldsheet encounter

the Poincare horizon. So a local observer sitting on the worldsheet would have no way of

identifying where the horizon is.

2.2 String in global AdS

Having specified the geometry of a piece of the string worldsheet in the Poincare patch,

we are now ready to discuss the full completion of the string worldsheet in global AdS. Of

course, this task presumes that there is a natural way to globally complete the worldline

of the quark itself. We need to extend this worldline, originally specified on Minkowski

spacetime by xµ(τ), beyond the Minkowski boundary. How we do this influences how the

rest of the worldsheet behaves, which will play an important role later, in section 4.2.

Nevertheless, we’ll see that for the worldlines of interest, such as that of quark undergoing

inertial motion or uniform acceleration, there is a particularly ‘natural’ way to smoothly

extend the worldline to the full boundary ESU. We start by indicating how to describe the

known piece of string (2.3) in global AdS, and then discuss its completion.

Coordinate transformation from Poincare to global AdS. The first task is quite

straightforward and well-known. To go between global and Poincare coordinates, we can

use the embedding description of AdS5 as a ‘hyperboloid’ in R4,2, and choose requisite

embedding coordinates which manifest the different symmetries. Global AdSd+1 can be

written as

ds2 = −(r2 + 1) dt2 +
dr2

r2 + 1
+ r2

[
dϕ2 + sin2 ϕdΩ2

d−2
]

(2.9)

(the last term in square brackets merely expresses the Sd−1 metric dΩ2
d−1 in terms of

the Sd−2 metric dΩ2
d−2 and the angle ϕ specifying the orientation of the Poincare patch).

The corresponding coordinate transformation between the Poincare coordinates {xµ, u}
in which the metric is given by (2.2) and the global coordinates {t, r, ϕ,Ωi} in which the

10Note that in the (τ, u) coordinates it forms a 2-dimensional analog of an ergosurface (indeed, [8] con-

sidered this ‘stationary limit curve’ in the context of energy dissipation); however for generic a(τ) these

coordinates have no geometrically-specified meaning.

– 9 –
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metric is given by (2.9) can then be written as

u =
1

Q(t, r, ϕ)
, x0 =

√
r2 + 1 sin t

Q(t, r, ϕ)
, xi =

r sinϕ

Q(t, r, ϕ)
Ωi , (2.10)

where Ωi denotes a unit vector on the Sd−2 and the denominator Q is given by

Q(t, r, ϕ) =
√
r2 + 1 cos t+ r cosϕ . (2.11)

Note that the locus of points where Q(t, r, ϕ) = 0 marks the edge of the Poincare patch.

While the global coordinates cover the entire AdS spacetime (e.g. r → ∞ only on the

AdS boundary), the Poincare patch of AdS specified by u ∈ (0,∞), and xµ ∈ (−∞,∞)

is geodesically incomplete since geodesics can reach the Poincare horizon u = ∞ in finite

affine parameter.

Static quark example. To orient ourselves to the various sets of coordinates and no-

tation, let us start with the simplest example, namely that of a static quark at the origin,

xµ(τ) = (τ, 0, 0, 0). On the left panel of figure 3, we plot this trajectory on the Penrose

diagram11 of Minkowski spacetime. We also label the various components of boundary of

Minkowski spacetime, namely future and past timelike infinities i±, future and past null

infinities I ±, and spacelike infinity i0, which comprise the endpoints of timelike, null, and

spacelike geodesics, respectively. Note that our static quark trajectory starts at i− and

ends at i+, which is generically the case unless the quark’s acceleration lasts for infinite

time (into the past or future).

The corresponding string worldsheet is given by

XM (τ, u) = (u+ τ , 0 , 0 , 0 , u) , (2.12)

plotted in the middle and right panels of figure 3 in Poincare and global AdS, respectively.

Before discussing the worldsheet, let us briefly discuss the relation between these two

representations.

As is conventional, we plot the radial u coordinate of Poincare AdS as increasing

vertically down, whereas the radial r coordinate of global AdS increases radially outward

(the AdS boundary indicated by the cylinder lies at r = ∞). Note that the Minkowski

Penrose diagram of the left panel, when bent into a cylinder, matches correctly onto the AdS

boundary in the global AdS representation of the right panel. The past/future Poincare

horizons (denoted by the lower/upper diagonal purple planes in global AdS) are then

bounded by (i−,I −, i0) and (i0,I +, i+), respectively, and are generated by bulk null

geodesics from i− and i0, which reconverge at i0 and i+, respectively. In other words,

the Poincare patch of AdS can be defined as the set of bulk points which are spacelike-

separated from i0. The u = ∞ endpoint of the u axis in the middle panel corresponds to

the boundary point i0 in the right panel.

11As always, the Penrose diagram is obtained by a conformal rescaling of the spacetime which keeps

radial null rays at 45 degrees, but contrary to convention we have unfolded the diagram (or equivalently

indicated just a two-dimensional subspace) for ease of comparison with subsequent plots.
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Figure 3. Static quark trajectory (red line, labeled by q) on boundary Minkowski Penrose diagram

(left), with corresponding string worldsheet (red surface) in bulk on Poincare patch of AdS (middle)

and global AdS (right); in the latter the Poincare patch is indicated by the two null (purple) planes.

The string worldsheet coordinates u and τ are shown by the faint (orange and cyan) lines as labeled,

and the components of the (boundary) Minkowski spacetime boundary (i±, i0,I ±) are as indicated.

For the static quark the string worldsheet in Poincare coordinates hangs ‘straight

down’, and in global coordinates stretches ‘straight across’, but the entire infinite string

worldsheet on the Poincare patch is captured by the (vertical triangle) piece in global

AdS as indicated. The rest of the global worldsheet is cutoff by the Poincare horizons,

which the worldsheet intersects along u =∞ (diagonal blue lines). In this case the string

solution (2.3) does not terminate abruptly inside the Poincare patch, because the past

horizon τ = −∞ curve coincides with u = ∞. However, in general (whenever the quark

accelerates), this will no longer be the case; we will see an explicit example in section 3.

Global completion of string worldsheet. As we argued above, the worldsheet met-

ric (2.4) can be further extended. Correspondingly, a physical string does not just end in

‘mid-air’ — it continues beyond the coordinate patch. Since the string is a geometrical

object (defined as the extremal surface with the requisite boundary conditions), it doesn’t

care about which coordinates we describe it in, Poincare or global. The outgoing boundary

conditions thus ensure that the worldsheet continues smoothly through the future Poincare

horizon, because it is uniquely determined there by the quark trajectory. For the case of

static quark discussed above, this gives the top part of the vertical plane bisecting AdS

(indicated by a fainter shading in figure 3; the faint green line through i0 then corresponds

to the trajectory of the induced anti-quark).

However, this only gives twice the extent of the original worldsheet (2.3), not the

infinitely larger extent present in global AdS. In particular, the outgoing boundary condi-
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tions applied to quark trajectory specified by xµ(τ) do not determine the worldsheet in the

past of the τ = −∞ endpoint (i− in this case) or the future of the τ = +∞ endpoint (i+).

To go beyond these, we need to supply further information about the quark trajectory on

ESU.

In the static quark case viewed on global AdS (cf. right panel of figure 3), there is a

very natural way to do this: since the quark trajectory is given by a vertical line at r =∞,

ϕ = 0, and t ∈ (−π, π), we simply need to extend it into the straight line (r =∞, ϕ = 0)

for all t. In the bulk this then naturally extends the string worldsheet into the vertical

strip bisecting the global AdS cylinder. Its intersection with the boundary consists of two

trajectories on ESU, one corresponding to the quark and the other to the anti-quark (in

figure 3 indicated by the red and faint green vertical lines, respectively).

While the static quark case is particularly simple, similar extension will work more

generally; in fact the case of uniform acceleration considered in section 3 is virtually iden-

tical. For a generic quark trajectory described by real analytic functions xµ(t), there will

be a unique analytic continuation extending these to the entire range t ∈ (−∞,∞).12

2.3 Criterion for induced anti-quark

Now that we have established a convenient way for examining the string worldsheet cor-

responding to a quark on arbitrary trajectory in flat space (which as we discussed can be

extended into a trajectory on the ESU boundary of global AdS), we are in a position to

revisit our main puzzle: under which circumstances does the string return to the boundary

so as to induce an anti-quark within a single Poincare patch? The answer to this ques-

tion rests on what knowledge the quark trajectory gives us about the other end of the

corresponding string worldsheet. As discussed above, this is determined by the outgoing

boundary conditions, so we first turn to these.

Since viewing the worldsheet on global AdS has the virtue of allowing us to easily

keep track of both endpoints of the string, let us consider the implication of the outgoing

boundary conditions in this language. As pointed out already in [4], the effect of the

quark’s behavior at a given τ influences the field theory configuration only along the future

lightcone. Null geodesics on the ESU reconverge on the antipodal point of the S3, at

∆t = π (in AdS units) time later, so they imply the presence of the anti-quark at that

point. The bulk analog of this statement is that all bulk null geodesics (one of which will

coincide with the worldsheet ingoing null geodesic) from a given point likewise reconverge

at the antipodal point ∆t = π time later. For example, in the static quark case considered

above, the fact that the quark appeared at i− forces the anti-quark to pass through i0.

This simple observation is actually the crux in formulating the criterion for the presence

of the induced anti-quark. Whenever the quark on Minkowski spacetime starts out at

i−, the anti-quark is forced to pass through i0, on a timelike trajectory (since the quark

is timelike). Causality then implies that it cannot pass through the remainder of the

Poincare patch, the entirety of which is spacelike-separated from i0. In other words, a

12Of course, if we allow non-analytic trajectories for the quark (for example if we abruptly force the quark

in a new direction) then there can be infinitely many extensions.
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quark trajectory of this type cannot induce an anti-quark. Under what conditions would

the quark trajectory not start at i−? This can happen only when the quark is past-eternally

accelerating, so that its ‘initial’ velocity approaches the speed of light. In such a case its

trajectory in Minkowski spacetime will start out at a starting point of a light ray, i.e.

somewhere along I − on the corresponding Penrose diagram. A well-known example of

such a case is the uniform acceleration one, examined in more detail in section 3. It is easy

to see that in this case, the antipodal null-related point to the quark’s starting point must

lie along I + rather than i0. But if the anti-quark passes through I +, then (again by

causality) it must have passed though its past, i.e. through the interior of the Minkowski

spacetime forming the boundary of the same Poincare patch.

We have argued that past-eternal acceleration is a necessary criterion for the trajectory

to start at I −, but is it a sufficient one? Clearly, a circular trajectory for all time such as

considered in [9]13 would not start from I − since it does not approach a light ray. Indeed,

any spatially bounded trajectory, no matter what its acceleration a(τ), necessarily starts at

i− rather than at I −. The circular case corresponds to a constant-magnitude (and hence

‘eternal’ in the sense of not falling off at early/late times) acceleration, but not constant

direction. This example makes it clear that we need to strengthen our criterion to rule

out such cases. Any uni-directional acceleration with magnitude which is bounded from

below would suffice, but it is not necessary: the acceleration could easily change directions

with the quark’s trajectory nevertheless remaining spatially unbounded and beginning

somewhere on I − (which is tantamount approaching a light ray trajectory in the remote

past).14 For lack of more compact convenient phrasing, we will then state our criterion

simply as follows.

Induced anti-quark criterion. A quark following a given trajectory on flat space with

outgoing boundary conditions will induce an anti-quark iff its trajectory approaches that

of a light ray in the past. This means that the quark has a past Rindler horizon, which

simultaneously forms the future Rindler horizon for the anti-quark from the other side.

3 Uniformly accelerating quark-anti-quark pair

Having formulated a criterion for when the presence of a quark in Minkowski spacetime

with outgoing boundary conditions naturally induces a corresponding anti-quark, let us

now turn to the simplest and best-known example of this curious phenomenon, namely

that of the quark undergoing uniform acceleration. Physically, such a scenario may be

achieved by the presence of a constant electric field; we discuss the SYM construction

of this setup and its regime of validity in more detail in [13]; here we simply take the

trajectory as our starting point and focus on the behavior of the corresponding classical

string worldsheet.

13See also e.g. [10–12] for more detailed discussions of the string worldsheet.
14Hence our criterion is actually more general than the criterion specified in e.g. [7] of the trajectory

approaching uniform acceleration in the past.
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Figure 4. Quark (q, red) on uniformly-accelerating trajectory (3.1), and its induced anti-quark (q̃,

green), on Minkowski spacetime, plotted in Cartesian coordinates (left) and on Penrose diagram

(right). The lightcone coordinate axes x± are denoted by the diagonal dashed lines, which form

the Rindler horizons for the quark and anti-quark. Note that the (anti-)quark trajectory can end

on I ± because it is eternally accelerating and therefore not following a geodesic.

For concreteness, consider a quark moving in the x1 direction with constant unit15

acceleration, such that at early/late times it asymptotes to an ingoing/outgoing light ray

through the origin. We can describe the quark’s worldline on Minkowski spacetime by

xµ(τ) = (sinh τ , cosh τ , 0 , 0) (3.1)

which is simply the right branch of the hyperbola −(x0)2 + (x1)2 = 1. Equivalently, one

can express the trajectory more straightforwardly in light cone coordinates (defined by

x± ≡ x1 ± x0) as x±(τ) = e±τ . In figure 4 we indicate the quark trajectory by the red

curve (labeled q) in standard Cartesian coordinates xµ (left) and on the Penrose diagram

(right). Note that in contrast to the static case, now the quark starts form I − and ends

on I + of Minkowski spacetime, and therefore it has Rindler horizons (dashed diagonal

lines figure 4), which are simply the lightcone axes x±. In other words, there is a region

of Minkowski spacetime {x± < 0} which remains causally disconnected from the quark

trajectory {x± > 0}; it can neither influence nor be influenced by the quark. As we will

explain below based on the string worldsheet, this is precisely the region traversed by the

induced anti-quark (green curves labeled q̃ in figure 4).

The string worldsheet corresponding to the quark trajectory (3.1), embedded into

Poincare AdS5 as determined by (2.3), is given by

XM (τ, u) = (u cosh τ + sinh τ , u sinh τ + cosh τ , 0 , 0 , u) . (3.2)

15It is easy to describe any other constant acceleration a as well, which for completeness we do in

appendix A.1, and can in fact be related to any other a by a symmetry of AdS, but a = 1 is particularly

convenient given our choice of coordinates.
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Figure 5. String worldsheet (red surface) for the uniformly-accelerating quark (red curve) and its

global extension (green surface) which induces a ‘mirror’ anti-quark (green curve), plotted both in

Poincare-AdS (left) and in global AdS (right). The quark and anti-quark trajectories are as depicted

in figure 4; the green surface is the completion of the worldsheet, which can be equivalently obtained

by time-reverse of (2.3) applied to the anti-quark. The surface mesh depicts lines of constant τ

(orange) and u (cyan) as in figure 3. The past and future worldsheet event horizons (blue dashed

lines) both lie at u = 1.

This is indicated by the red surface in figure 5, which shows the string worldsheet on

Poincare AdS (left) and global AdS (right), analogously to the middle and right panels of

figure 3. We see that in Poincare AdS, near the boundary the worldsheet ‘hangs down’

from the quark, but because of the acceleration, it also trails behind. In fact, a snapshot

of the string at constant Poincare time x0 shows that for x0 > 0, the string actually bends

back out towards the boundary. Though it remains at u = 1 when x+ = 0, relative to

the overall depth to which the string penetrates, this bending becomes increasingly more

pronounced at late times. But the crucial point is that the worldsheet (3.2) ends abruptly

in the bulk. This occurs as τ → −∞, at the past worldsheet horizon (indicated by the

right-slanting dashed blue line in figure 5).

Note that the worldsheet embedding satisfies the relation

− (x0)2 + (x1)2 = x+ x− = 1− u2 , (3.3)

though (2.3) is valid only for x+ > 0 (corresponding to τ ∈ (−∞,∞)). Nevertheless, the

surface (3.3) is well defined for all x+. This gives a unique analytic extension of the string

worldsheet to negative x+, indicated by the green surface in figure 5. This surface reaches

back out to the boundary at the other branch of the hyperbola, which induces the ‘mirror’

anti-quark, undergoing a unformly accelerated trajectory, but in the opposite direction,

as shown.
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Indeed, the extension is even more manifest in global AdS, where the string worldsheet

is easy to guess. Since the quark trajectory on the Penrose diagram (cf. figure 4) is a straight

vertical line, the corresponding string worldsheet in global AdS must be a flat plane (i.e.

drawn as a vertical strip), just as it was for the static quark of figure 3. (Indeed, the two

cases are related by a global rotation ϕ → ϕ + π/2.) The τ → −∞ curve slices this flat

plane diagonally as indicated in right panel of figure 5, so the obvious extension of the

worldsheet is the continuation of this plane to the other side of AdS.

Despite the global rotational symmetry which relates the worldsheet for uniformly

accelerating quark-anti-quark pair to that of a single static quark, the causal structure of

the worldsheet metric is very different from the static case, since the relative positioning of

the worldsheet with respect to the Poincare patch differs. In particular, the worldsheet now

intersects the Poincare horizons along constant t (given by the thin black horizontal lines

in right panel of figure 5), rather than along a null curve. Correspondingly, the worldsheet

has a nontrivial causal structure, with event horizon (indicated by the diagonal blue lines);

cf. figure 1. The worldsheet completion within the full Poincare patch then has another

asymptotic region (whose boundary describes the other endpoint of the string), as well as

a past singularity (along the past Poincare horizon).

To summarize, this simple example nicely illustrates the criterion formulated in

section 2.3: because the quark undergoes eternal acceleration, the anti-quark induced by

the other endpoint of the corresponding string worldsheet is necessarily present on the

Minkowski spacetime. The worldsheet causal structure then describes an eternal black

hole with two asymptotic boundaries.16

4 Avoidance of induced anti-quark

We have seen that under innocuously natural conditions on the quark trajectory in

Minkowski spacetime (namely whenever its acceleration does not fall off fast enough at

early times or average to zero) and boundary conditions (namely when only outgoing radi-

ation, sourced by the quark’s acceleration, is present), the corresponding bulk dual predicts

a curious effect: the quark’s trajectory induces an accompanying anti-quark! This is true

even in the absence of Gauss law constraint on Minkowski background, where the SYM

a-priori allows color charged states. One may then wonder whether the string theory poses

a nontrivial constraint on the allowed processes in the strongly coupled SYM that have not

yet been understood from the field theory side directly, or whether one can circumvent the

above conclusion by some other means.

As previewed in the Introduction, we propose the latter resolution. In fact, there are

multiple ways of avoiding the presence of the anti-quark, which we revisit in section 4.2;

from the global standpoint the most natural one is to modify the boundary conditions, the

subject of section 4.1.

16This structure was recently noted [14] to support the ‘ER=EPR’ conjecture of [15], since the quark-

anti-quark singlet is entangled (cf. also [16], generalized more substantially in [17]). However, as pointed out

above, the Einstein-Rosen ‘bridge’ in this case is present solely due to the global structure of the worldsheet

— there is no local ‘wormhole neck’ present.
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4.1 Globally static smooth worldsheet

In this section we present the bulk dual to a single eternally accelerating quark on

Minkowski spacetime with no accompanying anti-quark. As argued in section 2.3, this

is not possible if the dual string worldsheet responds only to the quark ‘source’ via the

outgoing boundary conditions. The obvious solution then is to modify our boundary con-

ditions. From the global standpoint, where nothing particularly singles out one endpoint

of the string from the other, it seems most natural to impose Dirichlet boundary conditions

at both endpoints. The worldsheet can then straddle global AdS in a far vaster variety of

ways, specified by two arbitrary timelike boundary trajectories rather than just one.

If we restrict attention to a single Poincare patch of global AdS so as to describe the

boundary configuration on Minkowski background rather than on the full ESU, we can

arrange for the absence of the anti-quark simply by forcing its trajectory on ESU to pass

through the i0 of the Poincare patch. No matter what the rest of the trajectory looks

like, this guarantees that the anti-quark will not appear anywhere within the Minkowski

background corresponding to the boundary of the given Poincare patch of AdS. The disad-

vantage of this construction is that unlike the outgoing boundary condition case reviewed

in section 2, generally there is no closed-form expression for the worldsheet embedding in

AdS in terms of the two endpoint trajectories. In particular, the string worldsheet is no

longer given by the simple expression (2.3). Instead one has to solve the boundary-value

problem on a case-by-case basis, and explicit solutions can be found only for configurations

with sufficient symmetry.

However, for the case of greatest interest, namely that of the uniformly accelerating

quark considered in section 3, there does exist a closed-form solution for the worldsheet

if we take the anti-quark endpoint to follow a globally static trajectory.17 We will now

examine this solution in some detail, as it illustrates the main physical points. Let us

consider the quark trajectory (3.1), smoothly extended to the full ESU. In global AdS

coordinates the quark is static: it sits at constant ϕ = ϕq ≡ π/2 for all t. We can then take

the other endpoint of the string worldsheet to likewise remain static in global coordinates,

i.e. to sit at constant ϕ = ϕq̃ = π so that it passes through i0. With these boundary

conditions, the entire string worldsheet is static, which renders the solution tractable.

Since the worldsheet profile in global AdS coordinates is independent of t, we can

characterize its embedding by a single function ϕ(r) (reflected smoothly and symmetrically

around its deepest point rm such that the endpoints at r → ∞ reach ϕq and ϕq̃). This

solution is already known, but for completeness, in appendix A.2 we construct it explicitly

for arbitrary ϕq by solving the equations of motion obtained from the Nambu-Goto action,

i.e. by extremizing the full classical string worldsheet area. Although the actual expression

for ϕ(r), given in (A.7), (A.8), is unilluminating, its derivative is quite simple:

ϕ′(r)2 =
r2m (r2m + 1)

r2 (r2 + 1) [r2 (r2 + 1)− r2m (r2m + 1)]
, (4.1)

17In fact, since the string worldsheet is globally static and flip-symmetric for a family of uniformly-

accelerating trajectories with unspecified acceleration, we can easily find the solution for this more general

case. For completeness, we present this class of solutions in appendix A.2.
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Figure 6. String worldsheet, plotted in global AdS, for a single uniformly accelerating quark

(red line labeled q). The anti-quark (faint green line labeled q̃) is forced to pass through i0 and

therefore does not appear in the original Minkowski space. Poincare wedge, its intersection with

the worldsheet, and the worldsheet horizons are shown with the same conventions as in the right

panel of figure 3 and figure 5.

where the deepest reach rm is fixed in terms of ϕq; for the case of unit acceleration ϕq ≡ π/2,

we have rm ≈ 0.62.

In figure 6 we plot the string worldsheet in global coordinates (red surface). This is

directly comparable with the right panels of figure 3 and figure 5, except that we have

rotated the plot so as to display the worldsheet better. Instead of bisecting AdS straight

through, the worldsheet is now bent so as to pass through i0. The worldsheet metric γab
is of course static,

ds2γ = −(r2 + 1) dt2 +
r2

r2 (r2 + 1)− r2m (r2m + 1)
dr2 (4.2)

but it is no longer just a piece of AdS2. In particular, although we of course still have

R
(γ)
ab = −γab as before, the Ricci scalar (explicitly computed in (A.13)) now has a mild

dependence on r, being most curved around its deepest reach and asymptoting to the

requisite AdS value at the boundary. It is also evident that the worldsheet is no longer ruled

by null geodesics (since all null geodesics in AdS necessarily reconverge at the antipodal

point of the boundary sphere).

Let us now focus on just the Poincare patch of AdS (bounded by the purple null planes

from i0 in figure 6). Its boundary then corresponds to Minkowski spacetime, where by con-
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struction, only the quark end of the string is visible. Although the worldsheet is globally

static, this is not manifest in the Poincare coordinates (2.2). Indeed, the Poincare horizon

gives rise to two distinguished pairs of curves on the worldsheet: its intersection with the

Poincare horizon (indicated by the black curves in figure 6), and its event horizon (indi-

cated by the blue curves as before). The former are two spacelike curves which meet at i0

and correspond to coordinate singularities (u = ∞). Although there is only one timelike

asymptotic boundary present on the Penrose diagram of this part of the string worldsheet

(unlike the double-sided case in section 3), the fact that these curves are spacelike automat-

ically implies that the worldsheet (restricted to the Poincare patch) has nontrivial causal

structure: it has a black hole.

The worldsheet event horizon is again generated by null curves on the worldsheet which

end at the quark trajectory where it intersects the Poincare horizon. The actual expression

for null geodesics on this background can be written in terms of Elliptic functions, and is

relegated to the appendix, cf. (A.15). It is easy to show that in general the location of

the ‘bifurcation’ point of this event horizon lies beyond the point of flip symmetry at rm;

indeed in the case of vanishingly small acceleration ϕq → 0, the bifurcation point recedes

to i0, thus recovering the causally trivial Poincare patch of AdS2.

To summarize, we have seen that it is easy to engineer a bulk configuration whose

dual, when viewed on the boundary of a single Poincare patch, corresponds to a single

uniformly accelerating quark on Minkowski background with no accompanying anti-quark.

In fact, there are infinitely many such ways — all that is required is for the anti-quark

trajectory to pass through i0 — but here we have chosen a particularly simple one which

renders the solution explicitly tractable. Nevertheless, the resulting configuration is not

as ‘nice’ as the quark-anti-quark pair considered in section 3 (as manifested, for example,

by the worldsheet not being ruled by null geodesics), which is directly related to the fact

that the system no longer satisfies the outgoing boundary conditions. In fact, the SYM

side reflects this as well, as seen e.g. in [13]: the delicate cancellations in the perturbative

calculations found for the quark-anti-quark pair (which allowed us to obtain an exact result

which matches a version of the disc amplitude in the string theory dual), does not occur

in this case, rendering analogous computation intractable.

While modifying the boundary conditions seems to us the most natural means to

achieve the desired end (namely a single quark on any chosen trajectory), in section 4.2 we

contrast this with other possibilities that have previously been proposed in the literature.

4.2 Comparison with previous resolutions

In section 3 and section 4.1 we have presented two physically distinct configurations involv-

ing a uniformly accelerating quark on Minkowski spacetime, with correspondingly distinct

bulk duals. Let us now take stock of the larger set of possibilities, given the quark tra-

jectory (3.1). From the bulk perspective, at best only part of the string worldsheet is

determined by xµ(τ); there are several natural ways to complete the worldsheet, each

having some advantages along with some drawbacks.18

18We thank Alberto Guijosa for useful discussions of these issues.
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To fix terminology, let us consider the following 4 setups, in historical order:

a) Mikhailov [4]: single uniformly accelerating quark, with incomplete string world-

sheet (2.3); given by the red part of the worldsheet depicted in figure 5.

b) Xiao [5]: uniformly-accelerating quark-anti-quark pair given by the natural smooth

completion of (2.3) beyond Mikhailov’s (τ, u) coordinate patch; depicted by the red

plus green parts of the worldsheet in figure 5.

c) Garcia, Guijosa, Pulido [7]: worldsheet satisfying Mikhailov’s boundary conditions

but nevertheless allowing only a single quark on the Minkowski boundary, by modify-

ing quark’s initial conditions; as discussed below, the corresponding string worldsheet

has null parts and is not smooth.

d) Present paper: smooth string worldsheet which does not satisfy Mikhailov’s boundary

conditions as discussed in section 4.1; depicted in figure 6.

Setup a), described by the solution (2.3) found by Mikhailov [4] using outgoing bound-

ary conditions, is all that can be determined within the given Poincare patch of AdS.

Nevertheless, it is clear that this can’t represent the complete bulk dual, since the string

would just end abruptly at a finite distance. In contrast, Xiao’s [5] smooth extention of the

worldsheet everywhere within the Poincare patch (setup b) happilly avoids this unphysical

situation. However, since the worldsheet bends so much that it attains the boundary at

the other end as well, this implies the presence of a mirror anti-quark. That in turn is

surprising and potentially undesirable from the field theory perspective, where we expect

to be able to consider a single accelerating quark in isolation.

It is important to note that the smooth extension used by [5] implicitly assumed the

behaviour of the quark before the beginning of (Poincare x0) time, as well as outgoing

boundary conditions. To avoid the anti-quark’s presence, then, we need to relax one of

these assumptions: either consider different boundary conditions, or use different extension

of the string worldsheet (corresponding to modifying the initial conditions). We have chosen

the former approach (setup d), as described in section 4.1, sacrificing the outgoing boundary

condition.

The authors of [7] (setup c), on the other hand, proposed the latter resolution, further

discussed in [17], tantamount to modifying the initial configuration of the gluonic field.

Instead of modifying the boundary conditions on the string worldsheet away from the

outgoing one, they effectively modify the fact of eternal acceleration. One can consider a

limiting case of trajectories xµ(τ) wherein the quark was moving at a constant velocity v

close to the speed of light initially, and then started uniformly accelerating. In our set-

up, this would require the electric field to be switched on at some finite time approaching

τ → −∞. On the Minkowski spacetime Penrose diagram, such a trajectory would start

from i− and therefore the antipodal trajectory must indeed pass through i0 — so there is

no mirror anti-quark, essentially by construction. The scenario of [7] has this property.

The price that one pays for this is the strangeness of the string worldsheet in the v → c

limit: it is in effect composed of two pieces, one null and the other timelike, joined at a kink,

– 20 –



J
H
E
P
1
0
(
2
0
1
5
)
0
7
1

where the string has a discontinuous normal.19 On the boundary, the limiting null quark

trajectory would require either infinite energy source or a massless quark initially, moving

at the speed of light. Hence while seemingly more innocuous and physically motivated,

we find this ‘resolution’ stranger than the one we advocate in section 4.1. In our case,

the string is smooth everywhere and well-behaved from the global viewpoint, but the price

that we pay is the modification of the (apparently natural) boundary conditions.

To summarize, each of the setups a)-d) mentioned above, involving a quark undergo-

ing eternal acceleration, have some bizarre feature. In case a), the string worldsheet is

incomplete and just ends abruptly. In case b), we’re forced to consider a mirror anti-quark

even in absence of Gauss law constraint. In case c), we have to contend with kinky string

worldsheet corresponding to part of the quark trajectory being genuinely lightlike. Finally,

in our case, d), while avoiding all these drawbacks, we sacrifice the naturalness of the

boundary conditions.

5 Discussion

Innocent as the setup may seem, the story of eternally accelerating quark is a rich and

puzzling one. Specification of the quark trajectory does not fully determine the complete

system: one must supplement the worldline xµ(τ) by boundary conditions on the gluonic

fields as well. Said differently, the entanglement structure of the system plays a crucial

role. From the bulk perspective, only part of the string worldsheet is determined by

xµ(τ); there are several natural ways to complete the worldsheet, as outlined in section 4.2,

each having some advantages along with some drawbacks. In this context, the AdS/CFT

correspondence has a rather remarkable implication: the seemingly innocuous field theory

scenario corresponding to a single eternally accelerating quark on Minkowski background

with purely outgoing gluonic field profile an no shock wave is inconsistent.

We have seen that, for visualization purposes, it is extremely useful to consider the

location of the string in global coordinates, as this demystifies many of the naively bizarre

aspects. For example, the incompleteness of the string worldsheet given by (2.3) mentioned

above is more manifest: in Poincare AdS we only see the incompleteness at the past horizon

(τ = −∞), whereas in global coordinates we also see the incompleteness at the Poincare

horizons (u = ∞). Moreover, assuming the worldsheet is smooth, it is a straightforward

exercise to write the full geodesically complete extension of the string worldsheet in global

AdS. This has suggested a natural generalization of the worldsheet boundary conditions

to describe a single uniformly accelerating quark with no accompanying anti-quark, as

discussed in section 4.1.

19On the other hand, this resolution ameliorates one of puzzles mentioned in [13] (cf. also [7]) related to

what part of the string worldsheet contributes to the quark’s energy: just the part above the event horizon

or everywhere. While the former is well-motivated for situations with well-defined Euclidean continuation

(since the Euclidean ‘black hole’ caps off smoothly at the horizon), in general it seems rather too global

a construct to encode as (temporally) local quantity as the energy. If a part of the worldsheet is null,

it doesn’t contribute to the area, so we can include it or not as convenient. Unfortunately, however, the

worldsheet of [7] remains timelike past the its future event horizon, where this ‘resolution’ does not apply.
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Although we have focused on computationally tractable examples with large amount

of symmetry in order to illustrate the main physical points explicitly, the lessons which

can be gleaned are quite general. Assuming the outgoing boundary conditions for the bulk

string, it is easy to show that for any quark trajectory which is eternally accelerating in

the past so as to approach a light ray, there will be an accompanying anti-quark induced

on the R3,1 boundary spacetime. While we have exemplified this effect in section 3 using

the unique smooth extension of the string worldsheet (2.3), any timelike extension of the

quark trajectory xµ(τ) beyond τ = −∞ would lead to the same conclusion. This is because

the outgoing boundary conditions guarantee that the presence of a quark at I − induces

an anti-quark at the antipodal point on I +, and therefore in the past of I + — i.e. the

interior of the Minkowski spacetime.

If we wish to avoid the presence of the induced anti-quark, we need to either modify

the boundary conditions for the string (i.e. relinquish the outgoing boundary conditions),

or the initial conditions for the quark (i.e. relinquish the quark actually entering the space-

time through I −, on what in global AdS boundary would be a timelike trajectory). In

our discussion in section 4.1, we chose the former: we specified the trajectories for both

string endpoints, forcing the other one to pass through i0 of Poincare patch, and thereby

precluding its appearance in the Minkowski boundary spacetime. For the case of uniform

acceleration, the entire string worldsheet can in fact be made globally static, but for any

quark trajectory whatsoever, there are infinitely many ways (trajectories for anti-quark on

ESU) in which to achieve the absence of anti-quark in flat space.

It is a valid question to what extent modifying the boundary conditions was a phys-

ically natural resolution. Indeed, Mikhailov’s outgoing boundary conditions would seem

more physically relevant, since signals only propagate ‘down’ the string, i.e. away from the

endpoint, which in the boundary corresponds to radiation emanating from the accelerating

quark and none coming in from infinity. However, since these seemingly natural boundary

conditions are at odds with the naive expectation that we should be able to consider a

single quark in isolation on any timelike trajectory, we have to enlarge our considerations.

The proposed Dirichlet boundary conditions pose a well-defined and physically sensible

system, and therefore are in a sense equally valid.

Note added. As this paper was nearing completion, we learned of [18] which has some

overlap with the discussion in section 4.2.
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A String worldsheet for uniformly accelerating quark

In the main text we have considered uniform unit (a(τ) = 1) acceleration for simplicity

in order to illustrate the basic point. However, since it is easy to generalize to unspecified

uniform acceleration a, we present the corresponding string solutions here for completeness.
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A.1 Solution for outgoing boundary conditions

Let us first generalize the setup of section 3 to arbitrary uniform acceleration. This is the

easy case of outgoing boundary conditions, where the full worldsheet in Poincare AdS is

given by (2.3). If the quark is moving in the x1 direction with constant acceleration a, its

worldline on Minkowski spacetime is given by

xµ(τ) =
1

a
(sinh(a τ) , cosh(a τ) , 0 , 0) (A.1)

(or x±(τ) = 1
a e
±a τ in light cone coordinates), which generates the right branch of the

hyperbola −(x0)2 + (x1)2 = 1
a2

.

The string worldsheet corresponding to the quark trajectory (3.1), embedded into

Poincare AdS5 is then given by

XM (τ, u) =

(
u cosh(a τ) +

1

a
sinh(a τ) , u sinh(a τ) +

1

a
cosh(a τ) , 0 , 0 , u

)
. (A.2)

Plotted in global AdS, only the a = 1 case looks like a flat plane bisecting global AdS; in

all other cases the worldsheet looks bent. Nevertheless, the intersection with the Poincare

horizon is fixed for all cases, and the worldsheet Penrose diagrams looks just like for the

a = 1 case.

A.2 Solution for Dirichlet boundary conditions

Now let us turn attention to the generalization of the more interesting solution presented in

section 4.1, corresponding to a single uniformly accelerating quark (with no accompanying

anti-quark) with unspecified acceleration a. Although the string worldsheet is not given

by the simple expression (2.3), we can nevertheless find an explicit solution for the string

profile thanks to the symmetry of the problem. In particular the worldsheet is specified by

a single function ϕ(r) (reflected smoothly and symmetrically around its deepest point rm
such that the endpoints at r →∞ reach φq and π.

Worldsheet profile. Consider global AdSd+1, with one angular direction ϕ singled out,

as given by (2.9). To find the solution for the string worldsheet in this spacetime, we

extremize its area. Let us make the gauge choice for the worldsheet coordinates to be

σa = (t, r). Denoting ′ ≡ ∂
∂r , we calculate the induced metric γab on the worldsheet in terms

of the spacetime metric gµν and coordinates Xµ in the usual way, γab = gµν ∂aX
µ ∂bX

ν ,

finding the determinant −γ ≡ − det γab = 1+r2 (r2+1)ϕ′(r)2. One can extremize the area

of this surface, A =
∫ √
−γ d2σ by solving the corresponding Euler-Lagrange equations with

L(ϕ(r), ϕ′(r); r) =
√

1 + r2 (r2 + 1)ϕ′(r)2 (A.3)

whose solution can be obtained by integration:

∂

∂r

∂L
∂ϕ′

=
∂L
∂ϕ

= 0 ⇒ ∂L
∂ϕ′

=
r2 (r2 + 1)ϕ′(r)√

1 + r2 (r2 + 1)ϕ′(r)2
= C (A.4)
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where C is a constant determined by the boundary conditions: denoting the minimal radius

reached by rm, we note that at the turning point ϕ′(rm) =∞, which sets

C = rm
√
r2m + 1 . (A.5)

This allows us to solve for ϕ′(r),

ϕ′(r)2 =
r2m (r2m + 1)

r2 (r2 + 1) [r2 (r2 + 1)− r2m (r2m + 1)]
(A.6)

and integrate to obtain ϕ(r) as an Elliptic Integral of the Third Kind. Since the worldsheet

is double-valued in r, we get two branches

ϕL(r) = π + <

[
1√

r2m + 1
Π

(
2 r2m + 1

r2m + 1
, sin−1

√
r2 + r2m + 1

2 r2m + 1
, 2 +

1

r2m

)]
(A.7)

and

ϕR(r) = 2π + 2ϕm − ϕL(r) , (A.8)

which corresponds to the reflection around the angle of symmetry,

ϕm =
ϕq + π

2
≡ ϕL(rm) = π + <

[
1√

r2m + 1
Π

(
2 r2m + 1

r2m + 1
, 2 +

1

r2m

)]
. (A.9)

Note that the total separation between the endpoints is given by ∆ϕ = 2 (π − ϕm) =

π − ϕq. In order to have ∆ϕ = π (so that the string stretches straight across), rm = 0 as

expected, whereas in order to have ∆ϕ = π/2 (corresponding to the case of unit-uniformly

accelerating quark with no antiquark in Minkowski boundary spacetime), rm ≈ 0.62451.

Curiously, to within a few percent (and better at large and small rm), ϕq(rm) is very well

approximated by

ϕq(rm) ≈ 2 tan−1
π rm

2
⇔ rm(ϕq) ≈

2

π
tan

ϕq
2
. (A.10)

The string profile, given by ϕ(r) for various values of ϕq, is plotted on Poincare disk

(depicting a constant t slice of global AdS) in the left panel of figure 7, color-coded by ac-

celeration (or equivalently ϕq, or equivalently rm); the right panel shows the corresponding

trajectory of the quark on the boundary Minkowski spacetime Penrose diagram. The full

string worldsheet in global AdS for three specific cases is given in figure 8. For ease of visu-

alization we have flipped the plots in ϕ and indicated the left/right half of the worldsheet

(given by (A.7) and (A.8), respectively) by the green/red surfaces, which touch at rm.

The yellow and blue curves on the worldsheet correspond to event horizons and Poincare

coordinate singularities, further discussed below.

Worldsheet metric. The worldsheet metric γab is given by

ds2γ = −(r2 + 1) dt2 +
1 + r2 (r2 + 1)ϕ′(r)2

r2 + 1
dr2 (A.11)
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Figure 7. (Left): profile of the string worldsheet for various endpoints, plotted on Poincare

disk (constant t slice of global AdS; cf. figure 6 looked at from below), for the single uniformly

accelerating quark, with the anti-quark held at i0. AdS boundary is represented by the thick

black circle and the various worldsheet profiles (color-coded by the proximity of string endpoints,

or relatedly quark acceleration) are given by the thin curves. (Right): the corresponding quark

trajectories on Minkowski spacetime Penrose diagram (cf. right panel of figure 4). The static case

and unit acceleration case discussed above are both special cases in this family, depicted by the

upper/left (red) lines and the middle (green) curves, respectively.

which, using (A.6), can be re-expressed as

ds2γ = −(r2 + 1) dt2 +
r2

r2 (r2 + 1)− r2m (r2m + 1)
dr2 . (A.12)

Evaluating its curvature, we still have R
(γ)
ab = −γab as before, the Ricci scalar now has a

mild dependence on r:

R(γ) = −2
(r2 + 1)2 + r2m (r2m + 1)

(r2 + 1)2
(A.13)

which varies monotonically with r, attaining the (unit-radius) AdS value −2 as r → ∞,

and never exceeding twice this value around its deepest part.

Worldsheet event horizon. In order to characterize the worldsheet event horizon, we

first need to find null curves (which are automatically null geodesics) in the worldsheet

metric (A.12), and then find the specific set of null curves which end at the boundary

points where the worldsheet intersects the Poincare horizon. We have to bear in mind

that to cover the full region of interest, ϕ is double-valued in r. Nevertheless, ignoring this

subtlety for the moment, we can find null trajectories on the worldsheet by solving

dt

dr
=

r√
r2 + 1

1√
r2 (r2 + 1)− r2m (r2m + 1)

(A.14)
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Figure 8. String worldsheet configuration when the endpoints are held fixed. This corresponds

to a single uniformly accelerating quark on Minkowski background with no anti-quark. The blue

surfaces correspond to the Poincare horizons, the string worldsheet is the vertical red and green

surface (the two halves joined at r = rm for ease of visualization), and the red line at ϕ = ϕq
denotes the quark. This is at ϕq = π/4 (left), ϕq = π/2 (middle), and ϕq = 3π/4 (right). The

dark-blue curves are the intersection of the worldsheet with the Poincare horizon, which the dashed

yellow curves (for greater ease of identification) denote the worldsheet event horizon.

which integrates to an expression in terms of elliptic functions:

± t(r) = π − ϕq(rm)− 1√
r2m + 1

F

[
sin−1

√
r2m + 1

r2 + 1
,
−r2m
r2m + 1

]
. (A.15)

Note that the time it takes a null trajectory on the worldsheet to get from r = rm to r =∞
is given by

∆t =
1√

r2m + 1
K

[
−r2m
r2m + 1

]
(A.16)

which has the expected behaviour of monotonically decreasing with rm, with ∆t(rm =

0) = π/2 and ∆t(rm → ∞) → 0. Note that the horizon always reaches past rm. In the

limit of ϕq → π, the bifurcation point approaches rm, while in the opposite limit ϕq → 0,

bifurcation point approaches i0 of the Poincare patch.
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