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Abstract 10 

Phanerozoic growth of continental crust on our planet is one of the important 11 

research themes in Earth Science. Here, we present the results of a systematic study of 12 

newly found and previously reported Mesozoic igneous rocks, including diorite 13 

cumulate, granodiorite cumulate, mafic magmatic enclaves (MME) and host 14 

granitoids in the central Lhasa terrane, southern Tibet. These igneous rocks give 15 

zircon U-Pb crystallization ages of 199−189 Ma. Based on constituent mineral and 16 

bulk-rock compositions, the cumulates are best understood as resulting from 17 

amphibole, plagioclase and titanite crystallization from a mafic andesitic magma. The 18 

host granitoids also show compositional systematics consistent with 19 

amphibole-plagioclase fractional crystallization from andesitic magma. The MMEs 20 

share many characteristics with their host granitoids in common, including identical 21 

crystallization age, similar mineralogy, mineral chemistry and zircon isotopic 22 Lit
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compositions, representing earlier cumulate derived from the same magmatic system 23 

as their host rocks. The magma parental to the studied Early Jurassic igneous rocks is 24 

best explained as resulting from partial melting of hydrated ocean crust together with 25 

varying continental material. The increasing zircon εHf(t) values of multiple plutons in 26 

the central Lhasa terrane with time during ~215−170 Ma indicate its gradual depleted 27 

process of crustal evolution. 28 

 29 
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 33 

1. Introduction 34 

The Earth is the only planet in the solar system with oceans and continents with 35 

the continental crust standing above the sea level (e.g., Rudnick, 1995). The 36 

significance of the continental crust on which we live is self-evident, yet our 37 

knowledge remains limited on its origin and growth (Niu et al., 2013). Arc 38 

magmatism is widely accepted to be a fundamental process responsible for 39 

post-Archean continental crust growth (e.g., Rudnick and Gao, 2003; Taylor and 40 

McLennan, 1985). Therefore, understanding the origin and nature of arc crusts is 41 

critical for understanding the formation and evolution of continental crust (e.g., 42 

Jagoutz and Kelemen, 2015). 43 

Unlike the oceanic arc (e.g., Kohistan arc in western Himalaya), the Gangdese 44 Lit
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arc resulting from the subduction of the Neo-Tethyan seafloor and subsequent 45 

India-Asia collision is a prominent continental arc along the southern margin of Asia, 46 

and thus has more complex petrological architecture and geochemical composition 47 

due to ancient basement assimilation. The most noteworthy feature of this magmatic 48 

arc is its predominantly zircon εHf(t) > 0 in the southern Lhasa terrane, and mostly 49 

zircon εHf(t) < 0 in the central Lhasa terrane (e.g., Chu et al., 2006; Hou et al., 2015; Ji 50 

et al., 2009; Zhu et al., 2011). Although there have been many advances in the study 51 

of the Gangdese arc magmatism, the processes how magmatic arc is actually 52 

developed and what may have caused the across-arc zircon-Hf isotope systematics 53 

remain unclear. Moreover, the pre-Cenozoic crustal evolution of the Lhasa terrane is 54 

also crucial for understanding the India-Asian continental collision and Tibetan uplift 55 

during the Cenozoic. 56 

In this paper, we present bulk-rock major and trace element compositions, 57 

mineral chemistry, zircon geochronology, bulk-rock Sr-Nd and zircon Hf isotopic data 58 

on the igneous rocks, including Bascong Tso cumulate plutons (<100 km2) and 59 

Mamba MME-bearing granitoid batholith (>100 km2) of ~200 Ma in the central Lhasa 60 

terrane in southern Tibet. Our results suggest that the amphibole-dominated 61 

assimilation–fractional crystallization (AFC) is the effective process for the 62 

generation of these Early Jurassic igneous rocks. This new understanding details a 63 

gradual depleted evolution of crust in the central Lhasa terrane during the Mesozoic. 64 

 65 

2. Geological background 66 Lit
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The Tibetan Plateau, from north to south, comprises the Songpan-Ganzi flysch 67 

complex, Qiangtang and Lhasa terranes, and the Himalaya, separated by the Jinsha, 68 

Bangong-Nujiang and Indus-Yarlung Zangbo Suture zones, respectively (Fig. 1a) (e.g., 69 

Dewey et al., 1988; Yin and Harrison, 2000; Zhu et al., 2013). As a main tectonic 70 

component, the Lhasa terrane in southern Tibet is interpreted to have been rifted from 71 

the northern margin of Gondwana in the Triassic and drifted northward to collide with 72 

the Qiangtang terrane in the Cretaceous (e.g., Zhu et al., 2013). An Andean-type 73 

active continental margin has been proposed in the southern part of the terrane prior to 74 

its collision with the northward moving Indian continent in the Cenozoic (e.g., Dewey 75 

et al., 1988; Mo et al., 2008; Yin and Harrison, 2000; Zhu et al., 2011, 2013). The 76 

Lhasa terrane is subdivided into northern, central, and southern subterranes separated 77 

by the Shiquanhe-Nam Tso Mélange zone and the Luobadui-Mila Mountain fault, 78 

respectively (Fig. 1b) (e.g., Pan et al., 2004; Zhu et al., 2011). 79 

The southern Lhasa subterrane (SLT) is characterized by the existence of 80 

juvenile crust with a Precambrian metamorphic basement locally exposed (e.g., Dong 81 

et al., 2020; Ji et al., 2009; Mo et al., 2008; Zhu et al., 2011, 2013). This subterrane is 82 

dominated by the Cretaceous–Tertiary batholiths and the Paleogene Linzizong 83 

volcanic succession, with minor Triassic–Cretaceous volcano-intrusive rocks (Pan et 84 

al., 2004; Zhu et al., 2008, 2013). Several Early Paleozoic and Late Devonian granites 85 

have been reported in the eastern SLT (Dong et al., 2010, 2014; Ji et al., 2012; Ma et 86 

al., 2019). The central Lhasa subterrane (CLT) was once a microcontinent with 87 

Precambrian crystalline basement widespread (Dong et al., 2011a; Harris et al., 1988a; 88 Lit
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Li, 1955; Zhang et al., 2012), covered by Permo–Carboniferous metasedimentary 89 

rocks and Upper Jurassic–Lower Cretaceous strata with abundant volcanic-intrusive 90 

rocks, as well as minor Ordovician–Devonian, and Triassic strata (Pan et al., 2004; 91 

Zhu et al., 2009, 2011, 2013). The Mesozoic plutonic rocks occur as batholiths of 92 

varying age (cf. Zhu et al., 2011 and references therein). The volcanic rocks are 93 

mostly early Cretaceous in age with minor being Permian. Cambrian–Ordovician 94 

volcanic rocks and an angular unconformity have been documented (e.g., Li et al., 95 

2010; Zhu et al., 2012). The Late Permian high-pressure Sumdo eclogite and Late 96 

Triassic–Early Jurassic metamorphic rocks in the middle and eastern CLT indicate 97 

subduction of the Sumdo Tethyan seafloor (e.g., Cheng et al., 2015; Dong et al., 98 

2011b; Lin et al., 2013; Weller et al., 2015; Yang et al., 2009; Zeng et al., 2009). The 99 

northern Lhasa subterrane (NLT) contains juvenile crust and is covered by Middle 100 

Triassic-Cretaceous sedimentary rocks with abundant early Cretaceous volcanic rocks 101 

and associated granitoids (Pan et al., 2004; Zhu et al., 2011, 2013). 102 

The Gangdese arc along the southern Lhasa terrane extends E-W for > 1500 km 103 

with varying width (~ 20 to 60 km; e.g., Zhu et al., 2011). Abundant age data indicate 104 

that these magmatic arc rocks were emplaced from the Late Triassic to the Late 105 

Miocene (e.g., Zhu et al., 2011), occurring as plutons with two main episodes of 106 

magmatic activity in the Late Triassic–Early Jurassic (220–170 Ma) and the Early 107 

Cretaceous (95–85 Ma) (e.g., Ji et al., 2009; Zhu et al., 2011). Except for those in the 108 

CLT, most plutonic rocks in the SLT have depleted zircon Hf and bulk-rock Sr-Nd 109 

isotopic compositions, indicative of significant mantle contributions or a juvenile 110 Lit
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crust in their petrogenesis (e.g., Mo et al., 2008; Zhu et al., 2011, 2013). The Early 111 

Mesozoic Gangdese arc formed in response to the northward subduction of the 112 

Neo-Tethyan seafloor to the south (e.g., Chu et al., 2006; Ji et al., 2009; Zhang et al, 113 

2007b) or to the southward subduction of the Bangong–Nujiang Tethyan seafloor to 114 

the north (e.g., Sui et al., 2018; Zhu et al., 2011, 2013). 115 

The samples of this study were collected in the Basong Tso and Mamba areas of 116 

the CLT (Fig. 1c–d). In the Basong Tso area, the Early Jurassic and Oligocene plutons 117 

intrude the Ordovician strata and the Late Triassic−Early Jurassic metamorphic rocks 118 

(Figs. 1c and 2a). The latter metamorphic rocks experienced peak medium-pressure 119 

amphibolite-facies metamorphism at ca. 204–192 Ma (Lin et al., 2013; Weller et al., 120 

2015). The Early Jurassic Basong Tso plutons (about 6 km2) include diorite and 121 

granodiorite cumulates, with the former intruding the latter (Fig. 2b–d). In the Mamba 122 

area, the Late Triassic−Early Jurassic batholith is about 130 km2 in outcrop located 123 

northwest of the Sumdo eclogite (Fig. 1b–d), and intrudes the Ordovician strata (Figs. 124 

1d and 3a) and has been intruded by the Late Cretaceous granitoids (Meng et al., 2014) 125 

(Fig. 1d). The Late Triassic−Early Jurassic Mamba batholith includes host granite, 126 

granodiorite and quartz monzodiorte (MME). MMEs widely occur as dark blobs of 127 

varying shape (ellipsoidal or elongate) and size (centimeters to decimeters) without 128 

chilled margins (Fig. 3b–d). 129 

 130 

3. Petrography 131 

This study focuses on the diorite and granodiorite cumulates from the Basong 132 Lit
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Tso area, and the MMEs and their host granites and granodiorite from the Mamba area. 133 

Sample details, including locations, lithology (based on mineral assemblages and 134 

modes), zircon U-Pb ages and εHf(t), bulk-rock εNd(t), are given in Table 1. 135 

3.1 Basong Tso cumulates 136 

The diorite cumulates display adcumulate texture, dominated by coarse-grained 137 

amphibole and plagioclase plus minor intercumulus material of titanite, apatite and 138 

biotite (Fig. 2e–f). Sample TD17-9-3 has similar mineral assemblage to other diorite 139 

cumulate samples with much less titanite. The granodiorite cumulates display 140 

porphyritic texture, including plagioclase and amphibole interlocked with quartz plus 141 

interstitial biotite, titanite and apatite (Fig. 2g). Within both types of cumulates, most 142 

minerals are partially altered with plagioclase replaced by sericite, amphibole by 143 

epidote and biotite by chlorite (Fig. 2e–g). 144 

3.2 Mamba granitoids 145 

The host rocks of the Mamba batholith include granite and granodiorite, showing 146 

medium-grained equigranular texture. The granites mainly consist of quartz, 147 

K-feldspar and plagioclase with minor biotite, amphibole and Fe-oxides (Fig. 3e). The 148 

granodiorite has similar mineral assemblage to the granite with less quartz and more 149 

amphibole (Fig. 3f–g). Quartz monzodiorte MMEs share the same mineralogy as the 150 

host granodiorite but have less quartz and finer grain size (Fig. 3h). The MMEs show 151 

heteradcumulate texture with higher modal amphibole poikilitically enclosed in 152 

plagioclase and K-feldspar plus minor interstitial quartz, biotite, titanite, apatite and 153 

Fe-oxides (Fig. 3i). 154 Lit
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 155 

4. Analytical methods and data 156 

Analytical methods are given in Supplementary Text 1, including 157 

Cathodoluminescence (CL) images, mineral major elements, bulk-rock major and 158 

trace elements, Sr-Nd isotopes, zircon U-Pb dating and Hf isotopes. 159 

4.1 Mineral compositions 160 

Major element compositions for plagioclase and amphibole are given in 161 

Supplementary Table 1 and 2, respectively. 162 

Plagioclase in the Basong Tso diorite and granodiorite cumulates has An = 28–49 163 

(Fig. 4a). Plagioclase in the Mamba host rocks has varying composition with An = 164 

13–46 (Fig. 4a), which is similar to that of the MMEs with An = 23–47 (Fig. 4a). 165 

Amphibole is the dominant mafic mineral in all samples except for Mamba host 166 

sample T12-1-1. All amphibole is calcic with CaBsite = 1.742–1.971 (Leake et al., 167 

1997), but shows additional compositional variation, seeing Fig. 4b. 168 

4.2 Bulk-rock major and trace element and Sr-Nd isotope data 169 

Bulk-rock major element, trace element and Sr-Nd isotopic compositions of the 170 

studied samples are given in Supplementary Table 3. 171 

Basong Tso cumulates 172 

The diorite cumulates with low SiO2 (47.6–51.2 wt.%) show linear trends 173 

(except for TiO2) on SiO2-variation diagrams (Figs. 5 and 6). The granodiorite 174 

cumulates have higher SiO2 (59.8–60.7 wt.%) and limited range for other oxides (Fig. 175 

6). The diorite cumulates are enriched in light rare earth elements (LREEs) relative to 176 Lit
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heavy REEs (HREEs) with fractionated REE patterns and weak negative Eu 177 

anomalies (Fig. 7a). Most samples display positive Nb and Ta anomalies without 178 

negative Ti anomaly (except for sample TD17-9-3 with negative Nb, Ta and Ti 179 

anomalies in Fig. 7b, probably due to less titanite modes seeing 3.1 above). The 180 

granodiorite cumulates have similar REE patterns (Fig. 7c), but show negative U, Nb, 181 

Ta and Ti anomalies (Fig. 7d). Both types of cumulates have varying Nb/Ta of 12.43–182 

24.12. 183 

For diorite and granodiorite cumulates, their initial 87Sr/86Sr isotopic ratios and 184 

εNd(t) values are calculated at 190 and 200 Ma, respectively (using the zircon age data, 185 

see 4.3 below). The diorite cumulates have (87Sr/86Sr)i of 0.7059–0.7088 and εNd(t) of 186 

-1.69 to +1.97 (Fig. 8). The granodiorite cumulates have (87Sr/86Sr)i of 0.7061–0.7067 187 

and lower εNd(t) of -5.95 to -4.90 (Fig. 8). 188 

Mamba granitoids 189 

The Mamba host rocks have varying SiO2 (64.4–75.3 wt.%), equivalent to 190 

granodiorite and granite (Fig. 5a) and belonging to high-K calc-alkaline series with 191 

metaluminous characteristics (Fig. 5b–d). Their other major elements show variations 192 

inversely correlated with SiO2 (Fig. 6a–e) (except for Na2O, Fig. 6f). The MME has 193 

low SiO2 (54.5 wt.%) with major element composition similar to that of the Basong 194 

Tso cumulates (Figs. 5b–d and 6). 195 

The host rocks have enriched LREEs relative to HREEs with fractionated REE 196 

patterns (the most depleted HREEs are Ho and its neighbors with [Dy/Lu]n = 0.6–1.1) 197 

and weak negative Eu anomalies (Fig. 7e), and show significant negative Ba, Nb, Sr, 198 Lit
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P and Ti anomalies (Fig. 7f). The MME has relatively higher middle and heavy REEs 199 

than the host rocks, similar to the Basong Tso granodiorite cumulates (Fig. 7e–f). 200 

 201 

4.3 Zircon U-Pb age and Hf isotope 202 

LA-ICP-MS zircon U-Pb dating on nine samples and Hf isotope compositions of 203 

eight samples are given in Supplementary Tables 4 and 5, respectively. 204 

Basong Tso cumulates 205 

Zircons from one diorite cumulate sample are euhedral short-prismatic with 206 

varying size (~50–100 μm), exhibiting weak magmatic oscillatory zonation (Fig. 9a). 207 

Analyzed spots give weighted mean 206Pb/238U age of 190±0.7 Ma (Fig. 10a). Their 208 

thirteen Hf isotopic analyses give εHf(t) > 0, ranging from +1.0 to +6.2 (Fig. 11). 209 

Zircons from two granodiorite cumulate samples are euhedral prismatic with 210 

varying size (~200–300 μm) and oscillatory zoning of magmatic origin (Fig. 9b and c). 211 

Analyzed spots give weighted mean 206Pb/238U ages of 198±0.8 and 199±1 Ma (Fig. 212 

10b and c). Their thirty-five Hf isotopic analyses give εHf(t) < 0, ranging from -14.1 to 213 

-3.8 (Fig. 11). 214 

Mamba granitoids 215 

Zircons from five host granite samples are similar to those of the Basong Tso 216 

granodiorite cumulates (Fig. 9d–h). Analyzed spots give weighted mean 206Pb/238U 217 

ages of 194–189 Ma (Fig. 10d–h). Their sixty-two Hf isotopic analyses give varying 218 

εHf(t) from -8.9 to +1.7 (Fig. 11). 219 

Zircons from the MME sample are also of magmatic origin with varying size 220 Lit
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(~50–200 μm) (Fig. 9i). Analyzed spots give weighted mean 206Pb/238U age of 190±2 221 

Ma (Fig. 10i). Thirty-eight Hf isotopic analyses give varying εHf(t) from -3.0 to +3.7 222 

(Fig. 11). 223 

 224 

5. Discussion 225 

5.1 Petrogenesis of the Early Jurassic igneous rocks in the central Lhasa 226 

subterrane 227 

The age data on magmatic zircons from our samples indicate that the Basong Tso 228 

diorite and granodiorite cumulates crystallized at ca. 190 and 199–198 Ma, 229 

respectively; the Mamba MMEs formed coevally with their host rocks at ca. 190 and 230 

194–189 Ma. We discuss the petrogenesis of these Early Jurassic igneous rocks 231 

respectively below. 232 

5.1.1 Basong Tso cumulates 233 

The Basong Tso rocks with typical cumulate textures (e.g., Schaen et al., 2018; 234 

Wager et al., 1960) are most consistent with an origin by crystal accumulation of 235 

amphibole, plagioclase and titanite from mafic andesitic magmas. Bulk-rock 236 

compositions of cumulate rocks are controlled by both compositions and modes of the 237 

constituent minerals (Niu et al., 2002a). Indeed, most major element oxides define 238 

trends between average compositions of plagioclase and amphibole, except for TiO2 as 239 

the result of heterogeneous distribution of titanite (Fig. 6). Fig. 6a shows that the 240 

bulk-rock composition lies in space defined by titanite-plagioclase-amphibole 241 

assemblage. Moreover, the high Nb and Ta (Supplementary Table 3) and their 242 Lit
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significant positive anomalies in Fig. 7 are consistent with high amphibole modes 243 

(e.g., Tiepolo, et al., 2000). The high Nb/Ta (up to 24.12, Supplementary Table 3) is 244 

also consistent with amphibole control because of KdAmp
Nb/Ta

=1.40 (e.g., Foley et al., 245 

2002). Importantly, the major mineralogy of amphibole + plagioclase indicates that 246 

their parental melts must be mafic andesitic magmas (e.g., Alonso-Perez et al., 2009; 247 

Niu et al., 2013). Due to high viscosity, the crystal-melt separation is likely 248 

incomplete. Thus, the Basong Tso granodiorite cumulates are likely crystal-rich 249 

mixtures with trapped melt, but more samples and work are needed for a more 250 

quantitative analysis. 251 

5.1.2 Mamba granitoids 252 

Mamba host rocks 253 

With increasing viscosity in high-SiO2 melt, crystal separation becomes more 254 

ineffective. We suggest that the Mamba host rocks are melt-rich mixtures with 255 

incompletely segregated crystals, which explain their major element compositional 256 

systematics as a function of SiO2 (Fig. 6a–e). These geochemical characteristics are 257 

consistent with melt compositions of equilibrium crystallization experiment results of 258 

hydrous andesite related to amphibole fractionation (Fig. 6, Alonso-Perez et al., 2009). 259 

The amphibole fractional crystallization leads to reduction of TFeO, MgO and Dy/Yb 260 

with increasing SiO2 in the residual melt  (Figs. 6c, d and 12a), and also results in 261 

spoon-shaped REE patterns with variable and lower Tb, Dy, Ho and Er (Fig. 7e) 262 

(amphibole preferentially incorporates middle REEs over heavy REEs; Davidson et 263 

al., 2007). Meanwhile, fractional crystallization of plagioclase can effectively deplete 264 Lit
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Al2O3, CaO, Eu (Figs. 6b, e and 12b) and Ba and Sr in the evolving magma (Fig. 7f). 265 

Therefore, the Mamba host rock compositional systematics are consistent with 266 

andesitic magmas that have undergone amphibole-plagioclase fractional 267 

crystallization. 268 

Mamba MME 269 

Controversy exists on the MME petrogenesis, including foreign xenoliths (e.g., 270 

Vernon, 1983), partial melting residues of the source rocks (e.g., Chappell et al., 1987), 271 

magma mixing between mantle-derived basaltic magma and crust-derived felsic 272 

magma (e.g., Didier, 1987), and earlier cumulate crystallized from the same magmatic 273 

system (e.g., Donaire et al., 2005). In this study, the Mamba MME sample has typical 274 

magmatic textures in both field and petrographic observations without peraluminous 275 

minerals (Fig. 3d, h, i) and formed coevally with their host rocks (Table 1), ruling out  276 

the foreign xenolith and restite origins. For MMEs formed by magma mixing, there 277 

are some common characteristics, (1) distinguishable isotopic contrast between the 278 

MMEs and the host rocks; (2) disequilibrium textures of the MMEs, e.g., complex 279 

zoning of clinopyroxene (e.g., Wang et al., 2013) or reversed zoning of plagioclase 280 

(e.g., Shcherbakov et al., 2011). However, none of the above typical evidence for 281 

magma mixing is observed. Instead, the MMEs have cumulate textures, and their 282 

bulk-rock compositions are mainly controlled by those of amphibole-plagioclase (Figs. 283 

6). Moreover, the MMEs and their host rocks have the same mineral assemblage, 284 

similar mineral (plagioclase and amphibole) compositions and overlapping zircon 285 

εHf(t) values (Figs. 3h, 4 and 11). Therefore, the MMEs represent earlier cumulate 286 Lit
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derived from cogenetic magma with their host rocks. 287 

5.2 Constraints on the source 288 

The Early Jurassic cumulates (Basong Tso cumulates and Mamba MME) in 289 

the CLT comprise dominantly amphibole and plagioclase that are common cumulate 290 

crystals of andesitic melts, whereas the typical cumulate from evolved basaltic melt 291 

would be gabbro dominated by clinopyroxene and plagioclase (Niu et al., 2013). 292 

Moreover, the compositions of the Mamba host granitoids are consistent with melt 293 

compositions of equilibrium crystallization experiment results of hydrous andesite 294 

(Fig. 6, Alonso-Perez et al., 2009). Thus, the primary magmas parental to the studied 295 

Early Jurassic igneous rocks are mafic andesite. In addition, our bulk-rock εNd(t) 296 

(-5.95 to +1.97) and zircon εHf(t) (-14.1 to +6.2) isotopic data indicate significant 297 

mantle or juvenile mafic crust contribution to the granitoid magmatism. Moreover, the 298 

positive correlation of La/Sm with SiO2 (Fig. 12c) further indicates crustal 299 

assimilation to be important, which is understood to be inevitable in terms of crustal 300 

melting or magma chamber processes. Generally, the source for the andesitic parental 301 

magmas with mantle isotopic signature could be (1) evolved mantle-derived basaltic 302 

magmas; (2) juvenile mafic continental crust derived from the mantle in no distant 303 

past; and possibly (3) the underplated ocean crust. Firstly, it is inadequate to produce 304 

huge granitoid batholiths, such as the Mamba batholith, through basaltic magma 305 

evolution. Moreover, no related juvenile mafic continental rocks have been reported 306 

so far, except for ca. 492 Ma basalts with negative bulk-rock εNd(t) in the CLT (Zhu et 307 

al., 2012). Therefore, we suggest, until now, the most likely source for the andesitic 308 Lit
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magma parental to the studied Early Jurassic igneous rocks is partial melting of the 309 

remaining Late Paleozoic Sumdo Tethyan ocean crust represented by the Sumdo 310 

eclogite that had exhumated to the middle-lower crust at ca. 200 Ma (e.g., Cheng et al., 311 

2015). The remaining ocean crust could undergo partial melting to produce andesitic 312 

melt under amphibolite-facies conditions (cf. Niu et al., 2013 and references therein). 313 

Moreover, the coeval metamorphic conditions (9 kbar at ca. 204–192 Ma, Weller et al., 314 

2015) of the country rocks indicated that the magmas parental to the Basong Tso 315 

cumulates were formed at the middle-lower crustal depths. This possibility has also 316 

been suggested by Zhu et al. (2011). 317 

The model of partial melting of the remaining ocean crust and the recycled 318 

terrigenous sediments has been proposed and tested by Niu and co-workers in many 319 

orogenic belts (e.g., Chen et al., 2016; Huang et al., 2014; Mo et al., 2008; Niu et al., 320 

2013). As we known, the very geodynamic trigger for the Early Mesozoic magmatism 321 

of the Lhasa terrane is the northward subduction of the Neo-Tethyan seafloor beneath 322 

the Lhasa terrane (e.g., Chu et al., 2006; Ji et al., 2009; Zhang et al, 2007b). During 323 

seafloor subduction, mantle wedge flow supplies heat and maintains to heat the 324 

underplated hydrated ocean crust and related continental material that would melt 325 

together to generate the andesitic magmas parental to the studied Early Jurassic 326 

igneous rocks with inherited mantle isotopic signatures. 327 

5.3 Late Triassic–Early Jurassic magmatism of the Lhasa terrane 328 

The Late Triassic–Early Jurassic magmatic rocks are widely scattered in the 329 

entire SLT and central–eastern CLT (Fig. 1b). In the SLT, the Early Mesozoic 330 Lit
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magmatic rocks include plutonic and volcanic rocks. The plutonic rocks mainly 331 

consist of diorite, tonalite, granodiorite and granite with minor hornblende gabbro, 332 

and their bulk-rock geochemical data are characterized by medium-K calc-alkaline 333 

and metaluminous, typical of I-type granitoids with zircon εHf(t) > 0 (e.g., Guo et al., 334 

2013; Meng et al., 2016a, b; Shui et al., 2018; Xu et al., 2019; Zhu et al., 2011). In the 335 

CLT, the Early Mesozoic magmatic rocks occur as batholiths in the eastern CLT and 336 

plutons in the central CLT (Fig. 1b). The batholiths near Mamba, Sumdo and Jinda 337 

areas are I-type granodiorite and granite with MMEs, compositionally medium- to 338 

high-K calc-alkaline and metaluminous, with variable zircon εHf(t) values (He et al., 339 

2005, 2006; Yu et al., 2018; Zhu et al., 2011; this study). By comparison, the plutons 340 

near Luoza and Ningzhong areas mainly consist of peraluminous S-type granite with 341 

zircon εHf(t) < 0 (Chu et al., 2006; Liu et al., 2006; Zhang et al., 2007b). 342 

5.4 Crustal evolution of the Lhasa terrane 343 

The crust in the Lhasa terrane has been considered to be dominated by ancient 344 

crust in the CLT, but dominated by younger juvenile crust in the SLT and NLT as 345 

manifested by zircon Hf and bulk-rock Nd isotope compositions of the granitoids (e.g., 346 

Hou et al., 2015; Zhu et al., 2011). Zircon Hf isotope has been used as a useful tool 347 

for understanding continental crust formation and evolution (e.g., Kinny and Mass, 348 

2003). Here we show zircon εHf(t) values from the Early Mesozoic plutonic rocks 349 

(~215–170 Ma) in the SLT and CLT. Fig. 11 shows that granitoids from the SLT have 350 

zircon εHf(t) > 0, whereas granitoids in the CLT have zircon εHf(t) varying 351 

systematically from εHf(t) < 0 at ca. 210 Ma towards εHf(t) > 0 at ca. 195 Ma. Spatially, 352 Lit
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from north to south, zircon εHf(t) values gradually increase, i.e., from εHf(t) < 0 in the 353 

CLT to εHf(t) > 0 southward in Fig. 13. It is well understood that crust–mantle 354 

interaction is inevitable during source melting (e.g., melting of subducted sediments) 355 

and magma emplacement (e.g., crustal assimilation). 356 

Here, we suggest that although mantle material contribution (juvenile or 357 

remelting of mantle-derived rocks) is important, significant melt assimilation with 358 

ancient crustal material results in the signature of εHf(t) < 0 in the northernmost CLT 359 

in the Late Triassic, then melting of abundant recycled terrigenous sediments of upper 360 

continental crust and remaining of the Sumdo Tethyan ocean crust in the melting 361 

region generates the andesitic magma parental to the ca. 200 Ma granodiorite 362 

cumulates (Fig. 14a). With the CLT magmatism getting younger and southward, 363 

melting of much more Sumdo Tethyan ocean crust with adjacent ancient lower crust 364 

forms the parental magmas of the ca. 190 Ma diorite cumulates and MME-bearing 365 

granitoid, when the zircon εHf(t) gradually increases towards positive values, 366 

reflecting increasing mantle contribution (Fig. 14b). Notedly, zircon εHf(t) of the 367 

granitoids from the CLT are all negative at longitude 88.6−90.6° E (Fig. 13b), which 368 

is consistent with S-type granitoids of crustal re-working origin (see above 5.3). For 369 

the coeval plutonic rocks of the SLT, zircon Hf isotope also shows signatures of the 370 

crustal assimilation, representing the wide range of zircon εHf(t) at ca. 205−200 Ma 371 

(Fig. 11) and values around zero at latitude ca. 29.7° N (Fig. 13a and c). Our study 372 

supports Zhu et al. (2011) that granitoids from the SLT are dominated by mantle 373 

contributions up to 50–90%, but those from the CLT has much less mantle 374 Lit
ho

s a
cc

ep
te

d 
m

an
us

cr
ipt

 2
02

00
42

8



 

18 

 

contribution (0–60 %) (Fig. 8). Ma et al. (2019) recently showed that the SLT already 375 

experienced growth process of juvenile crust during the Paleozoic and was once a 376 

microcontinent with Precambrian basement but transformed into juvenile terrane over 377 

time. We suggest that the crustal evolution is a multi-episode and gradual process. For 378 

the CLT, the multiple plutonic rocks record the Early Mesozoic crustal evolution with 379 

increasing mantle contribution with time as manifested by increasing zircon εHf(t) 380 

values. 381 

 382 

6. Conclusion 383 

(1) The Early Jurassic igneous rocks in the CLT include the Basong Tso plutons of 384 

diorite cumulate (ca. 190 Ma), granodiorite cumulate (ca. 200 Ma) and the 385 

Mamba batholith of host granitoids and MMEs with the same crystallization age 386 

(~190 Ma ). 387 

(2) The Basong Tso plutons are formed by crystal accumulation of amphibole, 388 

plagioclase and titanite from a mafic andesitic magma. The Mamba host 389 

granitoids are formed through amphibole-plagioclase fractional crystallization of 390 

an andesitic magma. The MMEs share the same mineralogy and indistinguishable 391 

isotopic compositions with their host granitoids, indicating earlier cumulate from 392 

the same magmatic system as their host rocks. 393 

(3) The parental magma for the Early Jurassic igneous rocks with inherited mantle 394 

isotopic signatures is best understood as resulting from partial melting of the 395 

hydrated ocean crust together with varying continental material. 396 Lit
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(4) The multiple plutonic rocks (~215–170 Ma) in the CLT record the Early 397 

Mesozoic crustal evolution of the Lhasa terrane, characterized by increasing 398 

mantle contribution reflected by gradual increase of zircon εHf(t) with time. The 399 

SLT had already experienced juvenile crustal growth in the Paleozoic. 400 

 401 
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 730 

Figure captions: 731 

Figure 1 (a) Tectonic framework of the Tibetan Plateau showing its major 732 

subdivisions (Zhu et al., 2013). (b) Schematic geological map of the central and 733 

eastern section of the Lhasa terrane modified from Pan et al. (2004), showing the 734 

study area, and the spatial and temporal distributions of the Late Triassic−Early 735 

Jurassic intrusive-volcano rocks in the central and southern Lhasa subterranes. (c) 736 

Geological map of the Basong Tso area. (d) Geological map of the Mamba area. 737 

Abbreviations: NLT = Northern Lhasa subterrane; CLT = Central Lhasa subterrane; 738 

SLT = Southern Lhasa subterrane; JSSZ = Jinsha Suture zone; BNSZ = 739 

Bangong-Nujiang Suture zone; IYZSZ = Indus-Yarlung Zangbo Suture zone; SNMZ 740 

= Shiquanhe-Nam Tso Mélange Zone; LMF = Luobadui-Mila Mountain Fault. 741 

Date sources: Zircon U-Pb ages in CLT (Luoza: 217−202 Ma, Chu et al., 2006; Zhang 742 

et al., 2007a; Ningzhong: 213−190 Ma, Kapp et al., 2005; Liu et al., 2006; Mamba: 743 

210−195 Ma, He et al., 2006; Zhu et al., 2011; Sumdo: 201−190 Ma, Li et al., 2009; 744 

Yu et al., 2018; Jinda: 193−183 Ma, Zhu et al., 2011), Zircon U-Pb ages in SLT 745 

(Xiongcun: 195−172 Ma, Lang et al., 2014a, b; Qu et al., 2007; Tafti et al., 2009, 746 

2014; Tang et al., 2010; Wang et al., 2017a; Xu et al., 2017a; Zou et al., 2015; Dongga: 747 

192−172 Ma, Guo et al., 2013; Tan, 2012; Wang et al., 2017b; Xu et al., 2017b; 748 Lit
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Namling: 212−207 Ma: Ma et al., 2017; Dazhuka: 205−170 Ma, Chu et al., 2006; Guo 749 

et al., 2013; Ji et al., 2009; Meng et al., 2016b; Nyemo: 180−178 Ma, Guo et al., 2013; 750 

Meng et al., 2016b; Zhang et al., 2007b; Quxu: 220−210 Ma, Ma et al., 2018; Meng et 751 

al., 2016a; Qulong: 182 Ma, Yang et al., 2008; Sangri: 190−179 Ma, Dong and Zhang, 752 

2013; Shui et al., 2018; Gyaca: 201−197 Ma, Dong and Zhang, 2013; Shui et al., 2018; 753 

Xu et al., 2019; Zhongsa: 203−192 Ma, Zhu et al., 2011). 754 

 755 

Figure 2 Field photos and photomicrographs of representative diorite and granodiorite 756 

cumulates from the Basong Tso area. (a) The Early Jurassic (J1) diorite cumulate 757 

intruding the Late Triassic−Early Jurassic (T3-J1) metamorphic rocks. (b) The Early 758 

Jurassic diorite cumulate intruding the granodiorite cumulate. (c) Outcrop of the Early 759 

Jurassic diorite cumulate. (d) Outcrop of the Early Jurassic granodiorite cumulate. (e) 760 

and (f) The mineral assemblage of diorite cumulate (under PPL). (g) The mineral 761 

assemblage of granodiorite cumulate (under XPL). Amp, amphibole; Ap, apatite; Bt, 762 

biotite; Ep, epidote; Pl, plagioclase; Qz, quartz; Ttn, titanite. 763 

 764 

Figure 3 Field photos and photomicrographs of granitoids from the Mamba area. (a) 765 

The Late Triassic−Early Jurassic granitoids intruding the Ordovician strata. (b) 766 

Outcrop of the Mamba granitoids. (c) and (d) Outcrop showing the contact of MMEs 767 

of varying size within their host granitoids. (e) The mineral assemblage of the host 768 

granite (under XPL). (f) and (g) The mineral assemblage of the host granodiorite 769 

(under PPL). (h) The sharp contact between MME and their host rocks, showing 770 Lit
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MME being more fine-grained than the host rocks (under PPL). (i) The mineral 771 

assemblage of quartz monzodiorte MME (under XPL). Amp, amphibole; Ap, apatite; 772 

Bt, biotite; Ep, epidote; Kfs, K-feldspar; Pl, plagioclase; Qz, quartz; Ttn, titanite. 773 

 774 

Figure 4 Representative compositions of plagioclase and amphibole from the Early 775 

Jurassic intrusions in the central Lhasa subterrane. (a) Feldspar (anorthite (An)-albite 776 

(Ab)-orthoclase (Or)) compositional diagram from Deer et al. (1992). (b) 777 

Classification of amphiboles according to Leake et al. (1997). 778 

 779 

Figure 5 Classification diagrams of the Early Jurassic intrusions in the central Lhasa 780 

subterrane. (a) Classification of the plutonic rocks using CIPW norms (Le Bas and 781 

Streckeisen, 1991). (b) AFM diagram after Wager and Deer (1939) with 782 

discriminatory lines of Irvine and Baragar (1971) dividing the calc-alkaline and 783 

tholeiitic magma series. (c) SiO2 (wt.%) vs K2O (wt.%) diagram (Peccerillo and 784 

Taylor, 1976). (d) SiO2 (wt.%) vs A/CNK diagram. Literature Data for the Late 785 

Triassic-Early Jurassic Mamba host rocks are from He et al. (2005, 2006). 786 

 787 

Figure 6 SiO2 variation diagrams of TiO2, Al2O3, TFeO, MgO, CaO and Na2O (wt.%) 788 

for the Early Jurassic intrusions in the central Lhasa subterrane. Bulk-rock: bulk-rock 789 

major element compositions; av. Pl: average plagioclase major element compositions; 790 

av. Amp: average amphibole major element compositions; Bulk-rock of start material: 791 

bulk-rock major element compositions of experimental starting material; Melt: 792 Lit
ho

s a
cc

ep
te

d 
m

an
us

cr
ipt

 2
02

00
42

8



 

37 

 

experimentally determined major element compositions of equilibrium crystallization 793 

melt. 794 

 795 

Figure 7 Chondrite-normalized REE and primitive-mantle-normalized multi-element 796 

patterns for the Early Jurassic intrusions in the central Lhasa subterrane. (a) and (b) 797 

Diorite cumulate from the Basong Tso area. (c) and (d) Granodiorite cumulate from 798 

the Basong Tso area. (e) and (f) Host granitoids and MME from the Mamba area. 799 

Literature data for the Late Triassic-Early Jurassic Mamba host rocks are from He et 800 

al. (2005, 2006); Average ocean crust composition are from Niu and O’Hara (2003); 801 

Data of upper, middle and lower crust are from Rudnick and Gao (2003). 802 

 803 

Figure 8 Bulk-rock SiO2 (wt.%) vs εNd(t) for the Early Jurassic diorite and 804 

granodiorite cumulates from the Basong Tso area in the central Lhasa subterrane. The 805 

data of the Sumdo eclogite are from Li ZL et al. (2009) and Zeng et al. (2009). Binary 806 

mixing calculations are between N-MORB (average composition: εNd(t) = 10.04, SiO2 807 

= 50.46 wt.%, Nd = 11.32 ppm are from Niu et al. (2002b)) and lower crust (average 808 

composition of εNd(t) = -18.52 is from Ben et al. (1984), SiO2 = 53.4 wt.% and Nd = 809 

11 ppm are from Rudnick and Gao (2003)), and upper crust (average composition: 810 

εNd(t) = -12.40 is from Harris et al. (1988b), SiO2 = 66.6 wt.% and Nd = 27 ppm are 811 

from Rudnick and Gao (2003)). The mixing lines are calculated after Faure (1977) 812 

with 10 % intervals shown. 813 
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Figure 9 Cathodoluminescence images of the representative zircons of the Early 815 

Jurassic intrusions in the central Lhasa subterrane. The circles are the analytical spots 816 

with ages in Ma. 817 

 818 

Figure 10 Zircon U-Pb concordia diagrams for the Early Jurassic intrusions in the 819 

central Lhasa subterrane. 820 

 821 

Figure 11 Zircon U-Pb ages vs εHf(t) diagram for the Late Triassic–Early Jurassic 822 

intrusions from the central and southern Lhasa subterranes. 823 

Data sources: Plutonic rocks (SiO2 ≥ 55%) in the CLT are from Zhang et al. (2007a), 824 

Zhu et al. (2011) and Yu et al. (2018); Plutonic rocks (SiO2 ≥ 55 %) in the SLT are 825 

from Chu et al. (2006), Dong and Zhang (2013), Guo et al. (2013), Ji et al. (2009), 826 

Meng et al. (2016b), Shui et al. (2016, 2018), Xu et al. (2019), Yang et al. (2011), 827 

Zhang et al. (2007b), Zhu et al. (2011),; Plutonic rocks (55 % > SiO2 > 45 %) in SLT 828 

are from Meng et al. (2016a), Shui et al. (2018), Xu et al. (2019). 829 

 830 

Figure 12 SiO2 (wt.%) variation diagrams of Dy/Yb, Eu (ppm) and La/Sm for the 831 

Early Jurassic intrusions from the Mamba area in the central Lhasa subterrane. 832 

Literature data for the Late Triassic−Early Jurassic Mamba host rocks are from He et 833 

al. (2005, 2006). 834 

 835 

Figure 13 The range and spatial distribution of zircon εHf(t) from the Late 836 Lit
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Triassic−Early Jurassic (~215−170 Ma) intrusions in the central and southern Lhasa 837 

subterranes. (a) Zircon εHf(t) plotted against sample latitude of 29.1º−30.2ºN at the 838 

longitude of 88.6-93.9°E. (b) Zircon εHf(t) plotted against sample latitude of 839 

29.1º−30.2ºN at longitude of 88.6−90.6°E. (c) Zircon εHf(t) plotted against sample 840 

latitude of 29.1º−30.2ºN at longitude of 91.6−93.9°E. Data sources are the same as in 841 

Figure 11. 842 

 843 

Figure 14 Cartoons showing the Late Triassic−Early Jurassic magmatism and crustal 844 

evolution in the central and southern Lhasa subterranes. (a) During 215−196 Ma, 845 

magmas in the SLT are derived from mantle with minor ancient crustal assimilation at 846 

the northernmost; magmas in the CLT are derived from hydrated ocean crust together 847 

with much subducted sediments. (b) During 195−175 Ma, magmas in the SLT are 848 

derived from mantle with much less ancient crustal assimilation; magmas in the CLT 849 

are derived from much more hydrated ocean crust together with ancient crust. Zircon 850 

εHf(t) data sources are the same as in Figure 11. Black dashed line shows the 851 

subterrane bounding between the SLT and the CLT, i.e., Luobadui-Mila Mountain 852 

Fault zone in Figure 1b. Abbreviations: SCLM = subcontinental lithospheric mantle; 853 

MASH = melting-assimilation-storage-homogenization zone. 854 
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