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Abstract. In this paper we consider ultra-parallel complex hyperbolic trian-

gle groups of type [m1,m2, 0], i.e. groups of isometries of the complex hyper-

bolic plane, generated by complex reflections in three ultra-parallel complex
geodesics two of which intersect on the boundary. We prove some discrete-

ness and non-discreteness results for these groups and discuss the connection

between the discreteness results and ellipticity of certain group elements.

1. Introduction

Complex hyperbolic triangle groups are groups of isometries of the complex
hyperbolic plane H2

C , generated by complex reflections in three complex geodesics.
For groups of complex hyperbolic isometries, the main obstacle to discreteness
is the presence of elliptic elements of infinite order. More precisely, a group of
holomorphic isometries of H2

C without stable proper totally geodesic subspaces and
without elliptic elements of infinite order is discrete (see [CG, Gol, Will]).

For a triple p1, p2, p3, where each of the numbers pk can be either a positive
integer or equal to ∞, we say that a complex hyperbolic (p1, p2, p3)-triangle group
representation is a representation of the group

〈γ1, γ2, γ3
∣∣ γ2k = (γk−1γk+1)pk = 1, k = 1, 2, 3〉

(where γk+3 = γk, and the relation (γk−1γk+1)pk = 1 is to be omitted when pk =
∞) into the group PU(2, 1) of holomorphic isometries of H2

C , given by taking the
generators γ1, γ2, γ3 to complex reflections I1, I2, I3 of order 2 in complex geodesics
C1, C2, C3 in H2

C such that Ck−1 and Ck+1 meet at the angle π/pk when pk is
finite resp. at the angle 0 when pk is equal to ∞. R. Schwartz in his ICM talk
in 2002 [Sch02] conjectured that a complex hyperbolic (p1, p2, p3)-triangle group
representation is discrete and faithful if and only if a group element w is non-
elliptic, where w = wA = I1I2I1I3 or w = wB = I1I2I3 depending on (p1, p2, p3).

In this paper we will consider instead the case of groups generated by complex
reflections in complex geodesics that do not intersect inside H2

C . In this case we will
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show that it is necessary to consider a larger set of elements, in fact infinitely many,

w
(`)
A = I1(I2I1)`I3 for ` ∈ Z and wB = I1I2I3, and we will prove a generalisation of

Schwartz’ conjecture in a special case.

For a triple m1,m2,m3 of non-negative real numbers, we say that a complex
hyperbolic ultra-parallel [m1,m2,m3]-triangle group is a subgroup of PU(2, 1) gen-
erated by complex reflections I1, I2, I3 of order 2 in complex geodesics C1, C2, C3

in H2
C such that the distance between the closures of Ck−1 and Ck+1 in H2

C is
equal to mk. A complex hyperbolic [m1,m2,m3]-triangle group representation is
a representation of the group Γ = 〈γ1, γ2, γ3

∣∣ γ2k = 1, k = 1, 2, 3〉 = (Z/2Z)∗3

into the group PU(2, 1) given by taking the generators γk to the generators Ik of an
[m1,m2,m3]-triangle group. The deformation space of [m1,m2,m3]-triangle groups
for given distances m1,m2,m3 is of real dimension one, such a group is determined
up to an isometry by the angular invariant α ∈ [0, 2π], see section 2.6 for a def-
inition. Some special cases of ultra-parallel triangle groups have been considered
previously, such as [m,m, 0]-groups and [m,m, 2m]-groups in [WG] and [m,m,m]-
groups in [Vas].

Our results on complex hyperbolic [m1,m2, 0]-triangle group representations are
summarized in Figure 1.
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Figure 1. Conditions of Propositions 1 and 2

The upper right quadrant represents all pairs of distances m1 and m2, where
(m1,m2) with m1 > m2 > 0 corresponds to the point with the coordinates

(X,Y ) =

(
cosh2(m1/2)− 1

cosh2(m2/2)− 1
− 1,

1

cosh2(m2/2)− 1

)
.

Consider the piecewise linear curve that consists of segments between the points(
2
k ,

1
k(k+1)

)
, k ∈ Z, k > 1 and the ray starting at the point

(
2, 12
)

with the gradi-

ent 1
2 . Only the points and segments up to k = 5 are shown in the figure, but the

broken line continues to the left. Proposition 1 states that the shaded region below
the broken line corresponds to pairs (m1,m2) such that [m1,m2, 0]-representations
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are discrete and faithful if and only if the element w
(k)
A is non-elliptic, where k = 1

corresponds to the part of the shaded region with X > 2, while each k > 2 cor-
responds to the part of the shaded region with 2

k 6 X 6 2
k−1 . For the unshaded

region above the broken line we expect that the elipticity of the element wB plays a
key role. Proposition 2 says that this region corresponds to pairs (m1,m2) such that
[m1,m2, 0]-representations are discrete and faithful if Re(trace(wB)) 6 −5 which
is a condition sufficient but not necessary for the element wB to be non-elliptic.

Proposition 1. Suppose that m1 > m2 > 0 and for some k ∈ Z, k > 1

max

{
1

k
+

k + 1

r22 − 1
,

2

k

}
6
r21 − 1

r22 − 1
− 1 6

2

k − 1
,

where rj = cosh(mj/2), j = 1, 2 and the second inequality is omitted for k = 1.
Then a complex hyperbolic [m1,m2, 0]-triangle group representation is discrete and

faithful if and only if the element w
(k)
A = I1(I2I1)kI3 is non-elliptic.

Proposition 2. Suppose that either m1 > m2 > 0 and for all k ∈ Z, k > 1,

r21 − 1

r22 − 1
− 1 6

1

k
+

k + 1

r22 − 1

or m1 > m2 = 0 and r1 6
√

3, where rj = cosh(mj/2), j = 1, 2. Then a com-
plex hyperbolic [m1,m2, 0]-triangle group representation is discrete and faithful if
Re(trace(wB)) 6 −5.

We also demonstrate in Proposition 3 that in some cases Proposition 1 can be
used to prove discreteness for all values of the angular invariant. These results
are summarized in Figure 2. The coordinates and the light shading are as in
Figure 1. The regions in Proposition 3 correspond to the darkly shaded regions
under hyperbolae in Figure 2.
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Proposition 3. Any complex hyperbolic ultra-parallel [m1,m2, 0]-triangle group
with m1 > m2 > 0 is discrete if the following condition on rj = cosh(mj/2),
j = 1, 2 is satisfied:

r1 − r2 ∈

( ∞⋃
k=2

[
r2 + 1

k
,
r2 − 1

k − 1

])
∪ [r2 + 1,∞) .

We also show the following discreteness test that is easier to check but less
powerful than Propositions 1 and 2. It was first proved in the PhD thesis of the
first author ([Mo], Theorem 3.3.0.8, p. 113) and generalises the results by J. Wyss-
Gallifent ([WG], Chapter 4) about ultra-parallel [m,m, 0]-triangle groups.

Proposition 4. A complex hyperbolic ultra-parallel [m1,m2, 0]-triangle group with
angular invariant α is discrete if

sin
(α

2

)
>

1

r1 + r2
,

where rj = cosh(mj/2), j = 1, 2.

In contrast to the discreteness results we also prove the following non-discreteness
results obtained using Shimizu’s lemma [Par97]:

Proposition 5. A complex hyperbolic ultra-parallel [m1,m2, 0]-triangle group with
angular invariant α is non-discrete if one of the following conditions on rj =
cosh(mj/2), j = 1, 2 is satisfied:

• 34r21r
2
2 − 15r41 − 15r42 + 2r21 + 2r22 > 0 and

64r1r2 sin2
(α

2

)
< 32r1r2 − 15r21 − 15r22 + 1−

√
34r21r

2
2 − 15r41 − 15r42 + 2r21 + 2r22.

• 34r21r
2
2 − 15r41 − 15r42 + 2r21 + 2r22 < 0 and

64r1r2 sin2
(α

2

)
< 1− 16(r1 − r2)2.

The paper is organised as follows: In section 2 we summarise the necessary
basics in complex hyperbolic and Heisenberg geometry. We introduce the stan-
dard parametrisation for ultra-parallel [m1,m2, 0]-triangle groups in section 3. In
section 4 we use the compression property to derive discreteness conditions for
[m1,m2, 0]-groups and prove Propositions 1, 2 and 4. We use these discreteness
conditions in section 5 to show in some cases the discreteness for all values of the
angular invariant and prove Proposition 3. In section 6 we use a version of Shimizu’s
lemma to show some non-discreteness results and prove Proposition 5. In section 7
we recall the conjecture of R. Schwartz in more detail and put our results in the
context of this general conjecture. In section 8 we summarise all our results in the
case of isosceles triangles m1 = m2.

2. Basics

We will first recall some basic notions of the complex hyperbolic geometry. For
general references on complex hyperbolic geometry and complex hyperbolic triangle
groups see [Gol, Par09, Par10].
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2.1. Complex hyperbolic plane: Let C2,1 denote the vector space C3 equipped
with a Hermitian form of signature (2, 1), for example 〈z, w〉 = z1w̄3 +z2w̄2 +z3w̄1.
We call a vector z ∈ C2,1 negative, null or positive if 〈z, z〉 is negative, zero or
positive respectively. Let P (C2,1) denote the projectivisation of C2,1 − {0}. We
denote the image of z = (z1, z2, z3) ∈ C2,1 under the projectivisation map by
[z] = [z1 : z2 : z3]. The complex hyperbolic plane H2

C is the projectivisation of the

set of negative vectors in C2,1, equipped with the Bergman metric given by

cosh2

(
dist([z], [w])

2

)
=
〈z, w〉〈w, z〉
〈z, z〉〈w,w〉

.

The ideal boundary ∂H2
C of H2

C is defined as the projectivisation of the set of null

vectors in C2,1 − {0}.

2.2. Isometries: The holomorphic isometry group of H2
C is the projectivisation

PU(2, 1) of the group of those complex linear transformations which preserve the
Hermitian form. Isometries can be classified according to their fixed point be-
haviour, an isometry is elliptic if it has at least one fixed point in H2

C , parabolic
if it has one fixed point in ∂H2

C and loxodromic if it has two fixed points in ∂H2
C .

An isometry is called regular elliptic if for the corresponding element in SU(2, 1)
all eigenvalues are distinct. The type of an isometry can be determined from the
position of the trace of the corresponding matrix in the complex plane. The deltoid
curve

∆ = {z ∈ C
∣∣ |z|4 − 8 Re(z3) + 18|z|2 = 27}

has the property that an isometry A in SU(2, 1) is regular elliptic if and only if
trace(A) is inside ∆ and is loxodromic if and only if trace(A) is outside ∆ (see
[Gol], Theorem 6.2.4).

2.3. Complex geodesics: A complex geodesic is a projectivisation of a 2-dimen-
sional complex subspace of C2,1. Any positive vector c ∈ C2,1 determines a complex
geodesic

P ({z ∈ C2,1
∣∣ 〈c, z〉 = 0}).

Conversely, any complex geodesic is of this form for some positive vector c ∈ C2,1,
called a polar vector of the complex geodesic. A polar vector is unique up to
multiplication by a complex scalar. We say that the polar vector c is normalised if
〈c, c〉 = 1.

A typical example is the complex geodesic {[z : 0 : 1] ∈ H2
C} with polar vector

c = (0, 1, 0). Any complex geodesic is isometric to this one.

Let C1 and C2 be complex geodesics with normalised polar vectors c1 and c2
respectively. Then C1 and C2 intersect in ∂H2

C if and only if |〈c1, c2〉| = 1. We
call C1 and C2 ultra-parallel if they have no points of intersection in H2

C ∪ ∂H2
C , in

which case |〈c1, c2〉| > 1 and |〈c1, c2〉| = cosh
(
1
2 · dist(C1, C2)

)
, where dist(C1, C2)

is the distance between C1 and C2.

2.4. Complex reflections: Given a complex geodesic C, there is a unique isom-
etry IC in PU(2, 1) of order 2, whose fixed point set is equal to C. This isometry
is called the complex reflection of order 2 in C (or inversion on C) and is given by

IC(z) = −z + 2
〈z, c〉
〈c, c〉

c,
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where c is a polar vector of C. (Unlike real reflections, complex reflections in
complex geodesics can be of arbitrary order. We will only treat the order 2 case in
this paper.)

2.5. Complex hyperbolic triangle groups: A complex hyperbolic triangle is a
triple (C1, C2, C3) of complex geodesics in H2

C . For a triple (m1,m2,m3), where
each of the numbers mj is non-negative, we say that a triangle (C1, C2, C3) is
a complex hyperbolic ultra-parallel [m1,m2,m3]-triangle if the complex geodesics
Cj−1 and Cj+1 are ultra-parallel at distance mj . A complex hyperbolic ultra-
parallel [m1,m2,m3]-triangle group is a subgroup of PU(2, 1) generated by com-
plex reflections Ij of order 2 in the sides Cj of a complex hyperbolic ultra-parallel
[m1,m2,m3]-triangle (C1, C2, C3).

2.6. The space of complex hyperbolic triangle groups: For a given triple
m1,m2,m3 the space of [m1,m2,m3]-triangles is of real dimension one. We now
describe a parameterisation of the space of complex hyperbolic triangles in H2

C by
means of an angular invariant α (see section 3 in [Pra] for details). Let (C1, C2, C3)
be a complex hyperbolic triangle. Let ck be the normalised polar vector of the
complex geodesic Ck. We define the angular invariant α of the triangle (C1, C2, C3)
as

α = arg

(
3∏
k=1

〈ck−1, ck+1〉

)
.

An ultra-parallel complex hyperbolic triangle in H2
C is determined uniquely up to

isometry by the three distances between the complex geodesics and the angular in-
variant α. For any α ∈ [0, 2π] an [m1,m2,m3]-triangle with the angular invariant α
exists if and only if

cosα <
r21 + r22 + r23 − 1

2r1r2r3
,

where rj = cosh(mj/2). In the case m3 = 0 we have r3 = 1 and therefore

r21 + r22 + r23 − 1

2r1r2r3
=
r21 + r22
2r1r2

> 1,

thus for every α ∈ (0, 2π) there exists an [m1,m2, 0]-triangle with the angular
invariant α.

2.7. Heisenberg group: In the same way that the boundary of the real hyperbolic
space is the one point compactification of the Euclidean space of one dimension
lower, we may identify the boundary ∂H2

C with N = C × R ∪ {∞}, a one point
compactification of the Heisenberg group. One such homeomorphism taking ∂H2

C
to N is given by the stereographic projection:

[z1 : z2 : z3] 7−→
(

z2

z3
√

2
, Im

(
z1
z3

))
if z3 6= 0; [z : 0 : 0] 7−→ ∞.

2.8. Chains: A complex geodesic is homeomorphic to a disc, its intersection with
the boundary of the complex hyperbolic plane is homeomorphic to a circle. Circles
that arise as the boundaries of complex geodesics are called chains. From two
distinct points on a chain we can retrieve the complex geodesic through them, so
there is a bijection between chains and complex geodesics. We now discuss the
representations of the chains in Heisenberg space N , see [Gol], [Par10] for more
details. Chains passing through∞ are represented as vertical straight lines defined
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by ζ = ζ0, such chains are called vertical . The vertical chain defined by ζ = ζ0
consists of all points [z1 :

√
2ζ0z2 : z2] in P (C2,1). It has normalised polar vector

[−
√

2ζ̄0 : 1 : 0]. A chain not containing ∞ is called finite. A finite chain is
represented by an ellipse whose vertical projection C × R → C is a (Euclidean)
circle in C. The finite chain with centre (ζ0, υ0) ∈ N and radius r0 > 0 has polar
vector [

r20 − |ζ0|2 + iv0 :
√

2ζ0 : 1
]

and consists of all (ζ, υ) ∈ N satisfying the equations

|ζ − ζ0| = r0, υ = υ0 − 2 Im(ζζ̄0).

In particular, the finite chain with centre (0, 0) and radius 1 is the unit circle in
the C × {0} plane and has polar vector [1 : 0 : 1], hence it has a normalised polar

vector [1/
√

2 : 0 : 1/
√

2].

2.9. Heisenberg isometries: The Heisenberg group N is equipped with the Cy-
gan metric

ρ0((ζ1, v1), (ζ2, v2)) =
∣∣∣|ζ1 − ζ2|2 − i(v1 − v2)− 2i Im(ζ1ζ̄2)

∣∣∣1/2.
A Heisenberg translation by (τ, t) ∈ N is given by

(ζ, v) 7→ (τ, t) + (ζ, v) = (ζ + τ, v + t+ 2 Im(ζτ̄))

and corresponds to the following matrix in PU(2, 1) (see [Gol], section 4.2):1 −
√

2τ̄ −|τ |2 + it

0 1
√

2τ
0 0 1

 .

There is a bijection between chains and complex geodesics. We can therefore,
without loss of generality, talk about reflections in chains instead of reflections in
complex geodesics. An inversion ICζ0 in a vertical chain Cζ0 which intersects C×{0}
at ζ0 and has the polar vector cζ0 =

[
−
√

2ζ̄0 : 1 : 0
]

corresponds to the following
element in PU(2, 1): −1 −2

√
2ζ̄0 4|ζ0|2

0 1 −2
√

2ζ0
0 0 −1


For an element h = (hij)16i,j63 ∈ SU(2, 1) with h(∞) 6= ∞ we can define the
isometric sphere of h as the sphere with respect to the Cygan metric with cen-
tre h−1(∞) and radius rh = 1/

√
|h31| see [Par97] and section 5.4 in [Gol].

2.10. Products of reflections in chains: What effect does an inversion in a
vertical chain have on another vertical chain? Suppose we have vertical chains Cζ
and Cξ which intersect C × {0} at ζ and ξ and have polar vectors

cζ =
[
−
√

2ζ̄ : 1 : 0
]

and cξ =
[
−
√

2ξ̄ : 1 : 0
]

respectively. What effect does the inversion in Cζ have on Cξ? We calculate

ICζ (z) =

−1 −2
√

2ζ̄0 4|ζ0|2
0 1 −2

√
2ζ0

0 0 −1

−√2ξ̄
1
0

 =

−√2(2ζ̄ − ξ̄)
1
0


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which is a polar vector of the vertical chain that intersects C × {0} at 2ζ − ξ.
Therefore inversion in the vertical chain Cζ rotates the vertical chain Cξ as a set
around Cζ through π.

2.11. Bisectors and spinal spheres: Unlike in the real hyperbolic space, there
are no totally geodesic real hypersurfaces in H2

C . An acceptable substitute is the
collection of metric bisectors: Let z1, z2 ∈ H2

C be two distinct points. The bisector
equidistant from z1 and z2 is defined as

{z ∈ H2
C
∣∣ ρ(z1, z) = ρ(z2, z)}.

A spinal sphere is an intersection of a bisector with the boundary of H2
C . It is a

smooth hypersurface in ∂H2
C , diffeomorphic to a sphere.

An example is the bisector

C =
{

[z1 : z2 : z3] ∈ H2
C
∣∣ |z1| = |z3|}

and its boundary, the unit spinal sphere, which can be described as

U = {(ζ, υ) ∈ N : |ζ|4 + υ2 = 1}.

For more details on bisectors and spinal spheres see [Gol].

2.12. A discreteness criterion: Let I1, I2 and I3 be reflections in the complex
geodesics C1, C2 and C3 respectively. Let Γ be the group generated by I1, I2 and I3.
Let Γ′ be the group generated by I1 and I2. We say that the group Γ is compressing
if there exist subsets U1, U2, V of N with U1 ∩ U2 = ∅ and V  U1 such that

(1) I3(U1) = U2;
(2) g(U2) ( V for all elements g ∈ Γ′\{id}.

We will use the following discreteness criterion used by Schwartz and Wyss-
Gallifent [WG]: If Γ is compressing, then Γ is a discrete subgroup of PU(2, 1).

3. A Parametrisation of [m1,m2, 0]-Triangle Groups

For r1, r2 > 1 and α ∈ (0, 2π) let C1, C2 and C3 be the complex geodesics with
respective normalised polar vectors

c1 =

√2r2e
−iθ

1
0

 , c2 =

−√2r1e
iθ

1
0

 , c3 =

1/
√

2
0

1/
√

2

 .

where θ = (π−α)/2 ∈ (−π/2, π/2). The type of the triangle formed by C1, C2 and
C3 is determined by

|〈c3, c2〉| = r1, |〈c1, c3〉| = r2, |〈c2, c1〉| = 1

and the angular invariant

arg

(
3∏
k=1

〈ck−1, ck+1〉

)
= arg(−r1r2e−2iθ) = π − 2θ = α.

The triangle formed by C1, C2 and C3 is then an ultra-parallel [m1,m2, 0]-triangle
with angular invariant α, where cosh(mj/2) = rj for j = 1, 2.
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Every value of the angular invariant between 0 and 2π and hence each isometry
type of [m1,m2, 0]-triangles is represented among the parametrisations of the form
given above.

Let Ij denote the inversion in the chain Cj , j = 1, 2, 3. Let Γ = 〈I1, I2, I3〉 be
the group generated by I1, I2 and I3 and let Γ′ = 〈I1, I2〉 be the group generated
by just I1 and I2.

We shall now revert from looking at reflections in the geodesics C1, C2 and C3

and instead talk about reflections in the corresponding chains, which we denote by
C1, C2 and C3 as well. If we look at the arrangement of the chains C1, C2 and C3

in N , the finite chain C3 is the (Euclidean) unit circle in C × {0}, whereas C1 and
C2 are vertical lines through r2e

iθ and −r1e−iθ respectively, see Figure 3. Since
r1, r2 > 1, the chains C1 and C2 lie outside the chain C3.
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Figure 3. Chains C1, C2 and C3

Recall that inversion Ij in the vertical chain Cj rotates any vertical chain as a
set around Cj through π. Let J1 and J2 be the rotations of C × {0} around r2e

iθ

and −r1e−iθ through π respectively. Let Λ = 〈J1, J2〉 be the group of isometries
of C × {0} generated by J1 and J2. The rotations J1 and J2 are of order 2, so we
can represent any element of Λ as an alternating product of J1 and J2:

Λ = {(J2J1)`, J1(J2J1)`
∣∣ ` ∈ Z}.

We compute

(J2J1)`(0) = −2`(r2e
iθ + r1e

−iθ),

J1(J2J1)`(0) = 2r2e
iθ + 2`(r2e

iθ + r1e
−iθ).

Note that the projection Γ′ → Λ given by I1 7→ J1 and I2 7→ J2 is injective.
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4. Discreteness Results

We will need the following lemma:

Lemma 1. If |g(0)| > 2 for each g ∈ Λ\{id}, then the group Γ is discrete.

Proof. We will use the discreteness criterion described above. Consider the unit
spinal sphere

U = {(ζ, υ) ∈ N : |ζ|4 + υ2 = 1}.
The inversion I3 in C3 is given by

I3([z1 : z2 : z3]) = [z3 : −z2 : z1] for [z1 : z2 : z3] ∈ H2
C .

The inversion I3 preserves the bisector

C =
{

[z1 : z2 : z3] ∈ H2
C
∣∣ |z1| = |z3|}

and hence preserves the unit spinal sphere U , which is the boundary of C. The
inversion I3 interchanges the points [0 : 0 : 1] and [1 : 0 : 0] in H2

C , which correspond
to the points (0, 0) ∈ C × R and infinity in N . Hence I3 leaves U invariant and
switches the inside of U with the outside.

Let U1 be the part of N r U outside U , containing ∞, and let U2 be the part
inside U , containing the origin. Clearly we have U1 ∩ U2 = ∅ and I3(U1) = U2.
Therefore if we find a subset V  U1 such that g(U2)  V for all elements g ∈
Γ′\{id}, then we have proved that Γ is compressing and hence discrete. Let

W = {(ζ, υ) ∈ N : |ζ| = 1}

be the set of all vertical chains through ζ ∈ C with |ζ| = 1. Let

W1 = {(ζ, υ) ∈ N : |ζ| > 1} and W2 = {(ζ, υ) ∈ N : |ζ| < 1}.

We have U2 ⊂ W2 and so g(U2) ⊂ g(W2) for all elements g ∈ Γ′\{id}. The set W2

is a union of vertical chains. Elements of Γ′ map vertical chains to vertical chains.
Therefore we can simply look at the intersection of the images of W2 with C×{0}.
For each g the image g(W2) of W2 intersects C×{0} in a disc. Elements of Γ′ move
the intersection with C × {0} by rotations J1 and J2 around r2e

iθ and −r1e−iθ
through π. The projection Γ′ → Λ is injective, hence elements of Γ′\{id} move the
intersection with C × {0} by elements of Λ\{id}. Provided that the interior of the
unit circle is mapped completely off itself under all elements in Λ\{id}, then the
same is true for W2 and hence for U2 under Γ′. We can then choose V to be the
union of all the images of U2. We can be sure that V 6= U1 since V is missing all
the images of W2rU2. We are therefore only left to find what is required to be sure
that the interior of the unit circle is mapped off itself by any element in Λ\{id}.
Since the radius of a circle is preserved under rotations, it suffices to show that
the origin is moved to a distance of at least 2 by any element in Λ\{id}. This is
precisely the condition of the lemma. �

Lemma 2. The condition |g(0)| > 2 holds for all elements g ∈ Λ\{id} if and only
if

a(`) > 1 for all ` ∈ Z \ {−1, 0} and b > 1 (∗),
where

a(`) = |r2eiθ + `(r2e
iθ + r1e

−iθ)|, b = |r2eiθ + r1e
−iθ|.
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Proof. Recall that

Λ = {(J2J1)`, J1(J2J1)`
∣∣ ` ∈ Z}

and

(J2J1)`(0) = −2`(r2e
iθ + r1e

−iθ),

J1(J2J1)`(0) = 2r2e
iθ + 2`(r2e

iθ + r1e
−iθ).

We need |g(0)| > 2 for all g ∈ Λ\{id}, i.e.

a(`) = |r2eiθ + `(r2e
iθ + r1e

−iθ)| > 1 for all ` ∈ Z,

|`| · b = |`(r2eiθ + r1e
−iθ)| > 1 for all ` ∈ Z \ {0}.

Note that it is sufficient to check the inequality a(`) > 1 for ` ∈ Z \ {−1, 0} as it
is always satisfied for a(−1) = r1 and a(0) = r2. Also note that it is sufficient to
only check that |`| · b > 1 for ` = 1 as b > 1 implies that the inequality holds for
all ` ∈ Z \ {0}. �

We will start with a rough estimate on a(`) and b obtained by taking |Re(z)| as
a lower bound for |z|:

Lemma 3.

sin
(α

2

)
>

1

r1 + r2

implies conditions (∗).

Proof. Recall that sin(α/2) = cos(θ). Note that θ ∈ (−π/2, π/2) and hence cos θ >
0. Suppose cos θ > 1

r1+r2
. Then

b = |r2eiθ + r1e
−iθ| > |Re(r2e

iθ + r1e
−iθ)| = (r1 + r2) · cos θ > 1,

a(`) = |r2eiθ + `(r2e
iθ + r1e

−iθ)| > |Re(r2e
iθ + `(r2e

iθ + r1e
−iθ))|

= |r2 + `(r1 + r2)| · cos θ = |`r1 + (`+ 1)r2| · cos θ

> (r1 + r2) · cos θ > 1 for ` ∈ Z\{−1, 0}. �

Combining the results of Lemmas 1, 2 and 3 we obtain Proposition 4. We will now
calculate a(`) and b to obtain more refined estimates:

Lemma 4. Conditions (∗) are equivalent to

4r1r2 sin2
(α

2

)
> fB ,

4r1r2 sin2
(α

2

)
> fA(`) for all ` ∈ Z \ {−1, 0},

where

fA(`) =
1− (`r1 − (`+ 1)r2)2

`(`+ 1)
, fB = 1− (r1 − r2)2.
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Proof. Conditions (∗) state that b > 1 and a(`) > 1 for all ` ∈ Z \ {−1, 0}, where

b2 = |r2eiθ + r1e
−iθ|2

= r22 + 2r1r2 cos(2θ) + r21

= (r1 − r2)2 + 4r1r2 cos2(θ),

a2(`) = |r2eiθ + `(r2e
iθ + r1e

−iθ)|2

= (`+ 1)2r22 + 2`(`+ 1)r1r2 cos(2θ) + `2r21

= (`r1 − (`+ 1)r2)2 + 4`(`+ 1)r1r2 cos2(θ).

Rearranging these expressions to give an inequality in cos2(θ) and using cos(θ) =
sin(α/2) gives the result. �

We will now discuss some properties of fA as a function of `:

Lemma 5. Consider the function

fA(`) =
1− (`r1 − (`+ 1)r2)2

`(`+ 1)
for ` ∈ Z \ {−1, 0}.

(a) Suppose that

r21 − 1 >
k + 2

k
(r22 − 1) for some integer k > 1,

then fA(`1) > fA(`2) for all integers `1, `2 with either k 6 `1 < `2 or `2 6 −2,
`1 > k/2.

(b) Suppose that

r21 − 1 6
k + 1

k − 1
(r22 − 1) for some integer k > 2,

then fA(`1) > fA(`2) for all integers `1, `2 with 1 6 `2 < `1 6 k.

Proof. The function fA can be rewritten as

fA(`) =
1− (`r1 − (`+ 1)r2)2

`(`+ 1)
=
r21 − 1

`+ 1
− r22 − 1

`
− (r1 − r2)2.

For any `1, `2 ∈ Z \ {−1, 0} we have

fA(`1)− fA(`2) = (`1 − `2)

(
r22 − 1

`1`2
− r21 − 1

(`1 + 1)(`2 + 1)

)
.

Suppose that r2 = 1, then

fA(`1)− fA(`2) = − (`1 − `2)(r21 − 1)

(`1 + 1)(`2 + 1)
.

In this case the condition

r21 − 1 > 3(r22 − 1)

is satisfied. This corresponds to part (a) with k = 1. Then for 1 6 `1 < `2 we have
fA(`1)− fA(`2) > 0 since

`1 − `2 < 0, `1 + 1, `2 + 1 > 0.

For `2 6 −2, `1 > 1 we have fA(`1)− fA(`2) > 0 since

`1 − `2, `1 + 1 > 0, `2 + 1 < 0.
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Now suppose that r2 6= 1, then we can rewrite fA(`1)− fA(`2) as

fA(`1)− fA(`2) =
(`1 − `2)(r22 − 1)

(`1 + 1)(`2 + 1)

(
1

`1
+

1

`2
+

1

`1`2
− r21 − r22

r22 − 1

)
.

Suppose, for some integer k > 1, that

r21 − 1 >
k + 2

k
(r22 − 1), i.e.

r21 − r22
r22 − 1

>
2

k
.

Then for 1 6 k 6 `1 < `2 we have fA(`1)−fA(`2) > 0 since `1−`2 < 0, `1+1, `2+1 >
0 and

1

`1
+

1

`2
+

1

`1`2
− r21 − r22

r22 − 1
6

1

k
+

1

k + 1
+

1

k(k + 1)
− 2

k
= 0.

For `2 6 −2, `1 > k/2 we have fA(`1) − fA(`2) > 0 since `1 − `2, `1 + 1 > 0,
`2 + 1 < 0 and

1

`1
+

1

`2
+

1

`1`2
− r21 − r22

r22 − 1
6

2

k
− 2

k
6 0.

Suppose, for some integer k > 2, that

r21 − 1 6
k + 1

k − 1
(r22 − 1), i.e.

r21 − r22
r22 − 1

6
2

k − 1
.

Then for 1 6 `2 < `1 6 k we have fA(`1)−fA(`2) > 0 since `1−`2, `1 +1, `2 +1 > 0
and

1

`1
+

1

`2
+

1

`1`2
− r21 − r22

r22 − 1
>

1

k
+

1

k − 1
+

1

k(k − 1)
− 2

k − 1
= 0. �

We will now discuss for which `, depending on r1 and r2, does the inequality

4r1r2 sin2
(α

2

)
> fA(`)

in Lemma 4 give the strongest estimate on sin2(α/2):

Lemma 6. Suppose m1 > m2 > 0. Conditions (∗) hold if one of the following
conditions is satisfied:

(i) 3(r22 − 1) 6 r21 − 1 and 4r1r2 sin2(α/2) > max{fB , fA(1)}.
(ii) For some integer k > 2

k + 2

k
(r22 − 1) 6 r21 − 1 6

k + 1

k − 1
(r22 − 1)

and

4r1r2 sin2(α/2) > max{fB , fA(k)}.

Proof. Note that part (i) is identical to part (ii) with k = 1 except that there is no
upper bound on r21 − 1. Setting `1 = k in Lemma 5 we obtain that fA(k) > fA(`)
for all ` ∈ Z \ {0, −1}. This means that our hypothesis 4r1r2 sin2(α/2) > fA(k)
implies 4r1r2 sin2(α/2) > fA(`) for all ` ∈ Z \ {0, −1}. This proves the result. �

It remains to decide which of fB and fA(k), depending on r1 and r2, is the stronger
estimate on 4r1r2 sin2(α/2):

Lemma 7. Suppose m1 > m2 > 0. Conditions (∗) hold if one of the following
conditions is satisfied:
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(a)
max

{
2r22, 3(r22 − 1)

}
6 r21 − 1 and 4r1r2 sin2(α/2) > fA(1).

(b) For some integer k > 2

max

{
k + 1

k
(r22 − 1) + (k + 1),

k + 2

k
(r22 − 1)

}
6 r21 − 1 6

k + 1

k − 1
(r22 − 1)

and
4r1r2 sin2(α/2) > fA(k).

(c) For all integers ` > 1

r21 − 1 6
`+ 1

`
(r22 − 1) + (`+ 1) and 4r1r2 sin2(α/2) > fB .

Remark. Figure 1 shows the regions in parts (a)–(c) of Lemma 7 in the case r2 6= 1
in the coordinates

(X,Y ) =

(
r21 − r22
r22 − 1

,
1

r22 − 1

)
=

(
cosh2(m1/2)− 1

cosh2(m2/2)− 1
− 1,

1

cosh2(m2/2)− 1

)
.

Part (a) corresponds to the part of the shaded region with X > 2. Part (b) for
k > 2 corresponds to the part of the shaded region with 2

k 6 X 6 2
k−1 . Part (c)

corresponds to the unshaded region above the broken line.

Finally we compute traces of certain elements in the group to rephrase conditions (∗)
in Lemmas 2 and 4 in terms of these traces and in terms of ellipticity of these
elements.

Lemma 8. The traces of the elements

w
(`)
A = I1(I2I1)`I3 and wB = I1I2I3

are

trace(w
(`)
A ) = 4

∣∣`r1eiθ + (`+ 1)r2e
−iθ∣∣2 − 1

= 4(`r1 − (`+ 1)r2)2 − 1 + 16`(`+ 1)r1r2 sin2(α/2),

trace(wB) = −4|r2eiθ + r1e
−iθ|2 − 1 + i · 8r1r2 sin(2θ)

= −(4r21 + 4r22 + 1) + 8r1r2 · eiα

= −4(r1 − r2)2 − 1− 16r1r2 sin2(α/2) + i · 16r1r2 sin(α/2) cos(α/2),

therefore conditions (∗) in Lemmas 2 and 4 are equivalent to

Re(trace(wB)) 6 −5 and trace(w
(`)
A ) > 3 for all ` ∈ Z \ {−1, 0}.

Moreover, trace(w
(`)
A ) > 3 is equivalent to w

(`)
A being not regular elliptic, while

Re(trace(wB)) 6 −5 implies that wB is non-elliptic (but is not equivalent to it).

Proof. The computations of the traces are straightforward. The ellipticity of the

elements w
(`)
A and wB can be determined by looking at the position of their traces in

the complex plane in relation to the deltoid ∆ as explained in section 2. The traces

of the elements w
(`)
A are real. The portion of the real axis within the deltoid ∆ is

(−1, 3). It is easy to see that trace(w
(`)
A ) > −1, hence trace(w

(`)
A ) > 3 is equivalent

to w
(`)
A being not regular elliptic. The condition Re(trace(wB)) 6 −5 implies that

wB is non-elliptic (but is not equivalent to it). �
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Combining the results of Lemmas 1, 2, 4, 7 and 8 we obtain Propositions 1 and 2.

5. Discreteness for all Values of the Angular Invariant

Let Γ(α) be a complex hyperbolic [m1,m2, 0]-triangle groups with the angular in-
variant α. Proposition 3 states that for some choices of m1 and m2 the discreteness
conditions in Lemma 4 allow us to show that Γ(α) is discrete for all values of α.

Proof of Proposition 3: The conditions

r1 − r2 ∈

( ∞⋃
k=2

[
r2 + 1

k
,
r2 − 1

k − 1

])
∪ [r2 + 1,∞)

of Proposition 3 can be rewritten as

r1 > 2r2 + 1, or
(k + 1)r2 + 1

k
6 r1 6

kr2 − 1

k − 1

for some integer k > 2. (Note that the latter condition can only hold for r2 > 2k−1.)
The corresponding regions (in the coordinates x = r1−r2

r2
= r1

r2
− 1, y = 1

r2
) are the

shaded areas in Figure 4.
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Figure 4. Conditions of Proposition 3

First suppose r1 > 2r2 + 1. Then

r1 − r2 > r2 + 1 > 2.

If ` > 1 then

`r1 − (`+ 1)r2 > (`− 1)r2 + ` > 1.

If ` 6 0

`r1 − (`+ 1)r2 6 (`− 1)r2 + ` 6 −1.

Therefore fB , fA(`) 6 0 and the conditions on 4r1r2 sin2(α/2) in Lemma 4 are
always satisfied.



16 ANDREW MONAGHAN, JOHN PARKER, AND ANNA PRATOUSSEVITCH

Now suppose (k+1)r2+1
k 6 r1 6

kr2−1
k−1 for some integer k > 2 and note that

r2 > 2k − 1. Then

r1 − r2 >
r2 + 1

k
> 2.

If ` > k then

`r1 − (`+ 1)r2 >
(`− k)r2 + `

k
> 2(`− k) + 1 > 1.

If 0 6 ` 6 k − 1 then

`r1 − (`+ 1)r2 6
−(k − `− 1)r2 − `

k − 1
6 −2(k − `− 1)− 1 6 −1.

If ` 6 0 then

`r1 − (`+ 1)r2 6
(`− k)r2 + `

k
6 2`− 2(k − 1)− 1 6 −1.

Therefore fB , fA(`) 6 0 and the conditions on 4r1r2 sin2(α/2) in Lemma 4 are
always satisfied. �

We now compare the conditions on r1 and r2 coming from Lemma 7 and from
Proposition 3.

Proposition 6. Suppose m1 > m2 > 0. In the case m2 = 0 any complex hyperbolic
ultra-parallel [m1, 0, 0]-triangle group is discrete if r1 > 3. Now suppose m2 > 0.
For each positive integer k define

Φk(X) =
(k2X − 2k − 1)2

4k(k + 1)(kX − 1)
.

(a) If
r21 − r22
r22 − 1

> 2 and
1

r22 − 1
6 Φ1

(
r21 − r22
r22 − 1

)
then any complex hyperbolic ultra-parallel [m1,m2, 0]-triangle group is dis-
crete.

(b) If there is an integer k > 2 so that

2

k
6
r21 − r22
r22 − 1

6
2

k − 1
and

1

r22 − 1
6 Φk

(
r21 − r22
r22 − 1

)
then any complex hyperbolic ultra-parallel [m1,m2, 0]-triangle group is dis-
crete.

Proof. In the case m2 = 0 we have r2 = 1, so that the conditions of part (b)
of Lemma 7 are never satisfied, while the conditions of parts (a) and (c) can be
rewritten as

r1 >
√

3 and sin2
(α

2

)
>

1− (r1 − 2)2

8r1
or

r1 6
√

3 and sin2
(α

2

)
>

1− (r1 − 1)2

4r1
.

For r1 > 3 we use part (a) of Lemma 7 to see that the conditions are satisfied for
all values of α. Proposition 3 in the case r2 = 1 gives the same condition r1 > 3.

Now suppose m2 > 0, i.e. r2 > 1. Note that the statement in part (a) is the
same as the statement in (b) with k = 1 but where there is no upper bound on
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(r21−r22)/(r22−1). The conditions on r21−1 in part (b) of Lemma 7 can be rewritten
as

max

{
1

k
+

k + 1

r22 − 1
,

2

k

}
6
r21 − r22
r22 − 1

6
2

k − 1

for k > 2 and the same but without the upper bound on (r21−r22)/(r22−1) for k = 1.
Note that the function

Φk(X) =
(k2X − 2k − 1)2

4k(k + 1)(kX − 1)
=

1

4

(
k(kX − 1)

k + 1
+

k + 1

k(kX − 1)

)
− 1

2

defines a hyperbola with vertical asymptote X = 1
k , tangent to the X axis at

X = 2k+1
k2 with values

Φk

(
2

k − 1

)
=

1

4(k − 1)k
, Φk

(
2

k

)
=

1

4k(k + 1)
.

It is not hard to show that when k > 2 and 2
k 6 X 6

2
k−1

Φk(X) 6
kX − 1

4k(k + 1)
<

kX − 1

k(k + 1)
,

hence 1
r22−1

6 Φk(X) implies

1

r22 − 1
6 Φk(X) 6

kX − 1

4k(k + 1)
<

kX − 1

k(k + 1)

and therefore
1

k
+

k + 1

r22 − 1
6 X.

To summarise,

2

k
6
r21 − r22
r22 − 1

6
2

k − 1
and

1

r22 − 1
6 Φk

(
r21 − r22
r22 − 1

)
implies

max

{
1

k
+

k + 1

r22 − 1
,

2

k

}
6
r21 − r22
r22 − 1

6
2

k − 1
.

Thus, using Lemma 7, if we can show that

sin2(α/2) >
1−

(
kr1 − (k + 1)r2

)2
4k(k + 1)r1r2

then conditions (∗) hold, and so the group is discrete.

The condition
1

r22 − 1
6 Φk

(
r21 − r22
r22 − 1

)
is equivalent to

0 6
(
k2(r21 − 1)− (k + 1)2(r22 − 1)

)2
− 4k(k + 1)

(
k(r21 − 1)− (k + 1)(r22 − 1)

)
=

(
k2r21 − (k + 1)2r22

)2 − 2k2r21 − 2(k + 1)2r22 + 1

=
((
kr1 + (k + 1)r2

)2 − 1
)((

kr1 − (k + 1)r2
)2 − 1

)
.

In particular, we have
(
kr1− (k+ 1)r2

)2
> 1. Hence the conditions from Lemma 7

are satisfied for all values of α. �
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Remark. Figure 2 shows the regions in parts (a)–(b) of Proposition 6 in the case
r2 6= 1 in the coordinates

(X,Y ) =

(
r21 − r22
r22 − 1

,
1

r22 − 1

)
=

(
cosh2(m1/2)− 1

cosh2(m2/2)− 1
− 1,

1

cosh2(m2/2)− 1

)
.

The lightly shaded region is as in Figure 1. The values of (m1,m2) in Proposition 6
correspond to the darkly shaded regions under hyperbolae in Figure 2. Only hy-
perbolae Φk for 1 6 k 6 5 are shown, but the dark shaded regions continue to the
left.

6. Non-Discreteness Results

In this section we will use Shimizu’s Lemma to describe those values of the angular
invariant α for which the group is not discrete, compare also with the similar use
of Shimizu’s Lemma for (non ultra-parallel) complex hyperbolic (m,n,∞) groups
in [Sun], Theorem 3.7(2). We will use the following complex hyperbolic version of
Shimizu’s Lemma introduced in [Par97], Theorem 2.1:

Lemma 9. Let G be a discrete subgroup of PU(2, 1). Let g ∈ G be a Heisenberg
translation by (ξ, v) and h ∈ G be an element that satisfies h(∞) 6=∞, then

r2h 6 ρ0(g(h−1(∞)), h−1(∞))ρ0(g(h(∞)), h(∞)) + 4|ξ|2,
where ρ0 is the Cygan metric on N and rh is the radius of the isometric sphere
of h.

Proof of Proposition 5: In an ultra-parallel triangle group 〈I1, I2, I3〉 we will
apply Lemma 9 to the elements g = I2I1 and h = I3. Direct computation shows
that

g = I2I1 =

1 −
√

2ξ̄ −|ξ|2 + iv

0 1
√

2ξ
0 0 1


where ξ = 2(r1e

−iθ + r2e
iθ) and v = 8r1r2 sin(2θ). This is the matrix of the

Heisenberg translation by (ξ, v) ∈ N . The radius of the isometric sphere of the
element

h = I3 =

0 0 1
0 −1 0
1 0 0


is rh = 1. The element h satisfies

h(∞) = h−1(∞) = [0 : 0 : 1], in particular h(∞) 6=∞.
The point [0 : 0 : 1] ∈ ∂H2

C corresponds to the point (0, 0) ∈ N . The translation
length of g at h(∞) = h−1(∞) is

ρ0(g(h(∞)), h(∞)) = ρ0(g(h−1(∞)), h−1(∞)) =
√∣∣ |ξ|2 − iv∣∣.

Substituting these values in the inequality in Lemma 9 we obtain that if the group
is discrete then

1 6 ||ξ|2 − iv|+ 4|ξ|2 =
√
|ξ|4 + v2 + 4|ξ|2.

Finally note that

|ξ|2 = |2(r1e
−iθ + r2e

iθ)|2 = 4(r21 + r22 + 2r1r2 cos(2θ)).
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Using cos(2θ) = − cos(α) = 2 sin2(α2 ) − 1 and sin(2θ) = sin(α) = 2 sin(α2 ) cos(α2 )
we obtain

|ξ|2 = 4(r1 − r2)2 + 16r1r2 sin2
(α

2

)
, v = 16r1r2 sin

(α
2

)
cos
(α

2

)
and hence

√
|ξ|4 + v2 + 4|ξ|2 is equal to

4 ·
√

(r1 − r2)4 + 8r1r2(r21 + r22) sin2
(α

2

)
+ 16(r1 − r2)2 + 64r1r2 sin2

(α
2

)
.

Thus the group is not discrete if the following inequality is satisfied:√
16(r1 − r2)4 + 128r1r2(r21 + r22) sin2

(α
2

)
+ 16(r1 − r2)2 + 64r1r2 sin2

(α
2

)
< 1.

Rearranging and taking squares on both sides, we conclude that X = 64r1r2 sin2(α2 )
satisfies the following inequalities

X2 − 2bX + c > 0, X < d, (1)

where

b = 1− 16(r1 − r2)2 + (r21 + r22), c =
(
1− 16(r1 − r2)2

)2 − 16(r1 − r2)4,

d = 1− 16(r1 − r2)2.

A straightforward computation shows that

d2 − 2bd+ c = −2d(r21 + r22)− 16(r1 − r2)4 < 0.

If b2 − c > 0 then the quadratic polynomial X2 − 2bX + c has real roots and X
satisfies the inequalities (1) if and only if it is less than the smaller root b−

√
b2 − c

of X2 − 2bX + c. That is:

X <1− 16(r1 − r2)2 + (r21 + r22)

−
√

16(r1 − r2)4 + 2
(
1− 16(r1 − r2)2

)
(r21 + r22) + (r21 + r22)2.

If b2 − c < 0 then the polynomial X2 − 2bX + c has no real roots and X satisfies
the inequalities (1) if and only if X < d. That is:

X < 1− 16(r1 − r2)2.

Using X = 64r1r2 sin2(α/2) and rearranging these expressions, we obtain the in-
equalities in Proposition 5. �

7. Schwartz’s conjecture

In this section we will consider our results in the context of the conjecture put
forward by R. Schwartz in his ICM talk in 2002 [Sch02]:

A complex hyperbolic (p1, p2, p3)-triangle group representation is discrete and
faithful if and only if a group element w is non-elliptic, where w = wA = I3I2I3I1
or w = wB = I1I2I3 depending on (p1, p2, p3).

Note that Schwartz assumes p1 6 p2 6 p3 which implies r1 6 r2 6 r3. We
normalise differently so that r1 > r2 > r3 = 1, hence instead of I3I2I3I1 the
relevant element for us is wA = I1I2I1I3.
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Discreteness conditions in Propositions 1 and 2 are trace(w
(`)
A ) > 3 which is

equivalent to w
(`)
A being not regular elliptic and Re(trace(wB)) 6 −5 which implies

that wB is non-elliptic but is not equivalent to it. If we relax the conditions

trace(w
(`)
A ) > 3 for all ` ∈ Z and Re(trace(wB)) 6 −5

so that trace(w
(`)
A ) < 3 for a single value of ` = k then the corresponding group

element w
(k)
A is elliptic:

Proposition 7. Suppose that m1 > m2 > 0 and for some integer k > 2

max

{
1

k
+

k + 1

r22 − 1
,

2

k

}
6
r21 − 1

r22 − 1
− 1 6

2

k − 1
,

where rj = cosh(mj/2), j = 1, 2. If the condition

max{fA(k + 1), fA(k − 1)} 6 4r1r2 sin2
(α

2

)
< fA(k)

is satisfied, then w
(k)
A is elliptic and w

(`)
A for ` ∈ Z \ {−1, 0, k} are all non-elliptic.

Proof. Setting `1 = k + 1 in the first and `1 = k − 1 in the other two cases in
Lemma 5 we obtain that fA(k + 1) > fA(`) for all integers ` > k + 1 and fA(`) >
fA(k− 1) for all integers ` < k− 1, ` 6= −1, 0. This means that our hypothesis that
4r1r2 sin2(α/2) > max{fA(k−1), fA(k+ 1)} implies 4r1r2 sin2(α/2) > fA(`) for all
` ∈ Z \ {−1, 0, k}. Recall that

4r1r2 sin2(α/2) > fA(`) ⇐⇒ trace(w
(`)
A ) > 3 ⇐⇒ w

(`)
A is non-elliptic,

hence the conditions on 4r1r2 sin2(α/2) imply that w
(k)
A is elliptic and w

(`)
A for

` ∈ Z \ {−1, 0, k} are all non-elliptic. �

With the help of this proposition we can choose α so that wB is non-elliptic,

the element w
(k)
A for some k > 2 is elliptic of infinite order and all w

(`)
A for ` ∈

Z \ {−1, 0, k} are non-elliptic, in particular w
(1)
A = wA is non-elliptic. Then the

elements wA and wB are non-elliptic, but w
(k)
A is elliptic of infinite order, hence the

group is not discrete. Therefore, in the ultra-parallel case, Schwartz’s conjecture

should be extended to include elements not only wA and wB but also w
(`)
A with

` 6= 1.

Example. For k > 2 let r1 = k + 1 and r2 = k. The conditions

max

{
1

k
+

k + 1

r22 − 1
,

2

k

}
6
r21 − 1

r22 − 1
− 1 6

2

k − 1

become

max
{

(k + 1)(k2 + k − 1), (k + 2)(k2 − 1)
}
6 k2(k + 2) 6 k(k + 1)2

and are always satisfied. In this case we have

fB = fA(k − 1) = fA(k + 1) = 0, fA(k) =
1

4k2(k + 1)2
.

Proposition 1 says that the group is discrete if

4r1r2 sin2
(α

2

)
> fA(k) =

1

4k2(k + 1)2
.
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Proposition 7 implies that if

4r1r2 sin2
(α

2

)
< fA(k) =

1

4k2(k + 1)2

then w
(k)
A is elliptic while w

(`)
A for all ` 6= k are non-elliptic. The condition

4r1r2 sin2
(α

2

)
> fB = 0

is always satisfied, hence Re(trace(wB) 6 −5 and the element wB is non-elliptic.
Choosing α with

sin
(α

2

)
<

1

2k(k + 1)
, sin

(α
2

)
6= cos(q · π)

2k(k + 1)
for all q ∈ Q,

we obtain [k + 1, k, 0]-groups with non-elliptic wB and w
(`)
A for ` ∈ Z \ {−1, 0, k},

but w
(k)
A is elliptic of infinite order, hence the group is not discrete.

The condition for w
(k)
A to be non-elliptic is given by an explicit inequality on the

angular invariant α. The question of where wB is non-elliptic is more subtle. The
trace

trace(wB) = −(4r21 + 4r22 + 1) + 8r1r2 · eiα

is on the circle with centre −(4r21 + 4r22 + 1) and radius 8r1r2. One has to carefully
study the intersection of this circle and the deltoid ∆.

Proposition 8. The element wB is non-elliptic for all values of α if

7− 4(r21 + r22) + 16(r21 − r22)2 > 0.

Proof. In the case r1 = r2 = r > 1 we have that

7− 4(r21 + r22) + 16(r21 − r22)2 = 7− 8r2

is never positive, hence we only need to consider the case

r1 6= r2.

When does trace(wB) = 8r1r2e
iα − (4r21 + 4r22 + 1) lie outside the deltoid ∆ for all

α? Any point where trace(wB) lies on the deltoid is a solution to

8r1r2e
iα − (4r21 + 4r22 + 1) = 2eiθ + e−2iθ

for some θ. In other words,

(8r1r2)2 =
∣∣4r21 + 4r22 + 1 + 2eiθ + e−2iθ

∣∣2
=
(
4r21 + 4r22 + 1 + 2 cos(θ) + cos(2θ)

)2
+
(
2 sin(θ)− sin(2θ)

)2
=4
(
2r21 + 2r22 + cos(θ) + cos2(θ)

)2
+ 4
(
1− cos(θ)

)2(
1− cos2(θ)

)
.

Dividing by 4 and simplifying means that X = cos(θ) ∈ [−1, 1] is a root of the
cubic polynomial Q(X) given by

Q(X) = 4X3 +X2 − 2X + 1 + 4(r21 + r22)X(1 +X) + 4(r21 − r22)2.

Note that Q(−1) = 4(r21 − r22)2 > 0 and Q(1) = 4 + 8(r21 + r22) + 4(r21 − r22)2) > 0.
We have

Q′(X) = 12X2 + 2X − 2 + 4(r21 + r22)(1 + 2X)

= 2
(
3X + 2(r21 + r22)− 1

)
(1 + 2X),
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hence the critical points of Q are

X1 =
1− 2(r21 + r22)

3
< −1 and X2 = −1

2
.

The polynomial Q satisfies Q(−1), Q(1) > 0 and X2 is the only critical point of Q
in [−1, 1], hence

Q(X2) =
7

4
− (r21 + r22) + 4(r21 − r22)2 > 0

implies that Q has no roots in [−1, 1] and hence trace(wB) is always outside the
deltoid ∆. �

Remark. Analysing the polynomial Q in the proof above, we can understand the
ellipticity of wB in other cases as well. If 7 − 4(r21 + r22) + 16(r21 − r22)2 6 0 and
r1 6= r2 then there exist α1, α2 ∈ (0, π/2) with α1 6 α2 such that wB is hyperbolic
for |α| < α1 and for |α| > α2 and elliptic for α1 < |α| < α2. If r1 = r2 then
there exists α0 ∈ (0, π/2) such that wB is hyperbolic for |α| < α0 and elliptic for
|α| > α0, moreover α0 can be computed explicitly, see next section.

8. Isosceles Case

In this section we will give a summary of the results in the special case of an
isosceles triangle, i.e. m1 = m2 = m and r1 = r2 = r.

In this case the discreteness conditions in both Propositions 2 and 4 become

sin2
(α

2

)
>

1

4r2
=

(
1

2r

)2

,

hence we obtain the same result as in [WG]. (To compare the results, note that
sin2(α/2) = (1 + t2)−1, where t = tan(θ) is the parameter used in [WG].)

On the other hand Proposition 5 says that the group is non-discrete if

sin2
(α

2

)
<

2r2 + 1− 2r
√
r2 + 1

64r2
=

(
r −
√
r2 + 1

8r

)2

.

Now let us discuss the ellipticity of the elements w
(`)
A and wB . For r1 = r2 =

r > 1 we have

4r1r2 sin2
(α

2

)
> 0 >

1− r2

`(`+ 1)
= fA(`) and hence trace(w

(`)
A ) > 3

(with equality in the case α = 0 and r = 1). Therefore w
(`)
A are always non-elliptic.

As was shown in section 12 of [Pra] the element wB is non-elliptic for

sin2
(α

2

)
>

2r2 − 2

r2 ·
(
64r4 − 80r2 + 13 + (8r2 − 7)3/2 · (8r2 + 1)1/2

) .
(To compare the results, note that sin2(α/2) = (1 + t2)−1, where t = (tan(α/2))−1

is the parameter used in [Pra].) Hence under the condition on sin2(α/2) above the

elements w
(`)
A and wB are all non-elliptic.
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Remark. In the case m1 = m2 = 0 conditions (1) and (2) imply that the ideal
triangle group is discrete for sin(α/2) > 0.5. But as conjectured by Goldman and
Parker [GP] and proved by Schwartz [Sch01], the ideal triangle group is still discrete

for smaller values of α, namely if and only if sin(α/2) >
√
6

16 ≈ 0.153.

Acknowledgements: We would like to thank the referee for their helpful com-
ments.
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