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Abstract 

Two major, extended diversifications punctuated the evolution of marine life 

during the Early Palaeozoic. The interregnum, however, between the Cambrian 

Explosion and the Great Ordovician Biodiversification Event, is exemplified by the 

Furongian Gap when there was a marked drop in biodiversity. It is unclear whether the 

gap is apparent, due to sampling failure or lack of rock, or real — associated with unique 
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and fluctuating environments, a distinctive palaeogeography and extreme climates 

during the late Cambrian. Indications suggest that there has been little attention paid to 

this interval compared with those below and above, while some of the classical areas 

for Cambrian research, such as Bohemia, have poor coverage through the Furongian. 

Moreover, based on information available in databases and the literature, together with 

the ghost ranges of many higher taxa through the Furongian, data suggest that 

biodiversity in this stage has been significantly underestimated. Emphasis, to date, has 

been placed on widespread, deeper-water dark shale facies of the interval, with 

generally low diversity faunas, whereas shallow-water communities have often been 

neglected. 

 

Keywords: Cambrian; GOBE; biodiversity; palaeoenvironments; extinctions; 

radiations 

ACCEPTED M
ANUSCRIP

T



 

1. Introduction 

The fossil record is probably more gaps than record, expressed a century ago as 

‘the skimmings of the pot of life’ (Huxley, 1862), and noted some decades ago as poorly 

sampled, with perhaps only 10-15% of genera are known (Boucot, 2000) and poorly 

taxonomically-studied (Boucot, 1983). Some gaps, for example Romer’s Gap in 

tetrapod evolution during the latest Devonian and Early Carboniferous are being filled 

by many new body-fossil discoveries (e.g., Clack et al., 2016), exemplifying previous 

lack of sampling and taxonomic study. The late Cambrian (Furongian) interval is 

another such biodiversity or evolutionary gap that to date has received comparatively 

little attention. Did a lack of rock, fossils or inadequate sampling break the continuity 

between the Cambrian Explosion and the Great Ordovician Biodiversification Event or 

were conditions simply too inhospitable for marine organisms to flourish? 

 

2. Background 

Palaeontologists have long accepted that the fossil record is incomplete but 

nevertheless adequate to describe and understand the history of life on our planet. 

Charles Darwin, in his first edition (Darwin, 1859), devoted two chapters to geology 

and palaeontology in his ‘Origin of Species’, one ‘On the Imperfection of the 

Geological Record’ (chapter nine) and the other ‘On the Geological Succession of 

Organic Beings’ (chapter ten). In the first he noted such imperfections do not preserve 

the entire continuity of life, a ‘finely-graduated organic chain’, providing a serious 

objection to the theory of evolution; we thus lack many intermediate and transitional 

forms. And in the second chapter Darwin highlighted that fossils were generally 

preserved during intervals of subsidence (increased rates of sedimentation), with blank 

intervals occurring when the seabed was either stationary or rising. In his summary of 

the two chapters, Darwin emphasised that only a small portion of the globe had been 

explored, only specific organisms are preserved as fossils, and that museum collections 

are an inadequate proxy for the true diversity of the fossil record (‘absolutely as nothing 

as compared with the number of generations which must have passed away even during 

a single formation’). Nevertheless, old forms were supplanted by new and improved 

forms as a product of variation and natural selection. One year later John Phillips (1860) 

published the first comprehensive inventory of fossil range data in his ‘Life on Earth’. 

In his opus, Phillips used the ranges of fossils to define his Palaeozoic, Mesozoic and 
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Cenozoic eras, portioned by major extinctions and biotic turnovers at the end of the 

Permian and Cretaceous, respectively. In mapping out the diversity of Phanerozoic life, 

Phillips noted that more recent formations hosted more diverse biotas than in ancient 

strata but the abundance of taxa was time-independent. Significantly, and in contrast to 

Darwin, Phillips considered the imperfections in the fossil record were overrated; in his 

opinion there are ample fossils to test any hypothesis on the sequence of marine life. 

Some hundred years after publication of the 1st edition of Darwin’s influential 

work, interest intensified on the adequacy and quality of the fossil record as more 

complex and sophisticated analyses of the evolution of fossil organisms and their 

diversity were developed through deep time. Norman Newell (1959), in his Presidential 

Address to the Paleontological Society, highlighted the difference between published 

data and that which is undiscovered and unpublished but knowable information 

essentially that ‘we don’t know, what we don’t know’. He stressed that lack of data was 

partly due to inadequate collecting and insufficient preparation techniques to extract 

fossil material from rock. These and other themes were expanded by a series of 

influential papers published in the 1970s against a background of debates on the shape 

of the Phanerozoic biodiversity curve; did it indicate that biodiversity was in 

equilibrium throughout geological time (Raup, 1972) or expanding (Valentine, 1973)? 

Raup, in a succession of key papers, developed the concept of time-dependent and time-

independent biases (Raup, 1972, 1976a, 1976b). Clearly, outcrop area, thickness and 

volume of rock has varied throughout geological time with less available for older 

formations (Raup, 1972, 1976a, 1976b). Moreover, diagenesis, metamorphism and the 

effects of tectonism are more prevalent in older rocks that have been through orogenic 

cycles, essentially the primary rocks of Giovanni Arduino (1760). As a result these 

rocks, commonly in the world’s mountain belts, have been less explored for fossils than 

say the younger, more pristine strata. There are a range of biases that are not time 

dependent. There are errors in dating the length of units, biotic turnover rates are 

unpredictable, preservation is variable across the phyla, sedimentary facies are 

unevenly developed through time and their monographic effects (Raup, 1972, 1976a, 

1976b). Sheehan (1977) developed the last argument, noting that there were areas of 

palaeontological interest, where the focus of a specialist or groups of specialists can 

markedly enhance diversity by intensive monographic description. Some of these key 

themes had already been signalled by Raup and Stanley (1971) in their game-changing 

textbook; touched on subsequently in its third edition (Foote and Miller, 2007). 
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Nevertheless Benton et al. (2000), through an analysis of the correspondence of 

phylogenetic trees with the fossil record, demonstrated the fit was equally good whether 

dealing with Palaeozoic groups or taxa in the Cenozoic. 

There is clearly a close relationship between the fossil and rock records. Smith 

(2001) demonstrated that, over the last 600 myr, diversity tracked sea level in general 

terms; preservation of taxa was usually low during regressive intervals and high during 

transgressions. However, McGowan and Smith (2008) noted that global eustatic curves 

may not be a good proxy for outcrop area; actual regional data on rock occurrence may 

provide a better signal. Whereas Peters and Foote (2002) emphasised a correlation 

between named formations and named fossils; rather the appearance and disappearance 

of fossils may be linked to the presence and absence of strata. An implication being that 

geology is actually controlling preserved biodiversity, framing the preservation bias 

hypothesis. It is, however, plausible that the signal is real. Peters’ (2005) common cause 

hypothesis posited that during intervals of high sea level biodiversity is actually high 

and during regression it drops (see also Hannisdal and Peters, 2012). Transgressions 

provide not only increased habitable areas for marine biotas but also an increased 

volume of fossiliferous rock. There remain vast areas of Furongian rocks that have not 

be adequately explored or not explored at all, particularly across eastern parts of 

Gondwana; nearshore environments, the probable origin of many clades, have been 

especially neglected. These key factors may provide some explanation for the current 

dearth of data from this critical interval. 

 

3. The Furongian record 

The Furongian Series consists of three stages, the Paibian, Jiangshanian and Stage 

10, of 3, 4.5 and 4 myr duration, respectively. The Furongian fossil record is poorly 

known (Fig. 1). It is, however, constrained between two segments of the stratigraphical 

column exhibiting prominent levels of biodiversity. The Cambrian Explosion, 

massively enhanced by a number of key Lagerstätten, is a topic of extreme taxonomic 

interest (Erwin and Valentine, 2013; Briggs, 2015), although represented by relatively 

few formations, with restricted areas of outcrop and thickness; moreover, a number of 

the Cambrian Lagerstätten, e.g., Burgess Shale and Sirius Passet, were subject to 

diagenesis, metamorphism and the effects of tectonism. Diversity of higher taxa is 

marked though represented by relatively few taxa at lower taxonomic levels such as 

families, genera and species. By contrast, the Great Ordovician Biodiversification 
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Event (GOBE) is underpinned by a massive increase in diversity at the lower taxonomic 

levels (Harper, 2006; Rong et al., 2007; Harper and Servais, 2018), commonly apparent 

across clastic and limestone facies initially on shallow shelves. The lack of data, if real, 

may firstly serve to partition the rise of diversity during the Cambrian and Ordovician 

into two discrete but ostensibly different events; but if lack of data is apparent, this 

would favour a single trajectory for both events peaking during the Devonian, as 

illustrated for example by Alroy et al. (2008, fig. 4) and Alroy (2010, fig. 3). 

The palaeogeography of the Furongian is also distinctive (Álvaro et al., 2007). 

Faunas are best known from black shale belts and shallow-water carbonates (Fig. 2), 

both hosting more specialised and commonly endemic faunas. The distribution patterns 

of the faunas adds a further restriction on the mapping and understanding of global 

diversity during this epoch and of course provides a further constraint on available 

fossiliferous rock. 

Apart from personal knowledge, we are reliant on three key sources of information, 

Sepkoski’s database (see http://strata.geology.wisc.edu/jack/), the Paleobiology 

Database (PBDB: see https://paleobiodb.org/#/) and the Geobiodiversity Database 

(GBDB: http://www.geobiodiversity.com/). All three databases indicate the record is 

far from complete. 

 

4. Fact or artefact? 

Furongian rocks are known from all major Cambrian palaeocontinents and widely 

distributed in many regions, such as in Laurentia, South China, Siberia and Baltica. In 

other regions, the Furongian Series is sporadically distributed and restricted to a few 

lithofacies belts. This is true for a number of classic areas of Cambrian research from 

western Gondwana, for example the Barrandian area of Bohemia, Spain and Morocco, 

together with parts of the Baltic (e.g., Estonia) where the Furongian is poorly 

represented or consists of shallow-water deposits that are poorly fossiliferous. Thus, the 

lack of continuity of sections in some of the world’s classic, and intensively-

investigated areas for Cambrian rocks has clearly contributed to the gap. 

To test both scenarios, diversity data was plotted together with sampling signals 

and to evaluate the fit between both time series. A comprehensive genus-level dataset 

was downloaded from the Paleobiology Database (PBDB), comprising 206,560 fossil 

occurrences ranging from Cambrian to lowermost Devonian (raw download available 

in supplementary material). Both marine and terrestrial data were included. All 
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lithologies were considered. No filter was used. Data analysis was carried out at the 

stage-level, i.e., 26 time bins. From this, we obtained, as raw parameters, the four 

fundamental categories of taxa for a given stage bin (Foote, 2000, fig. 1), as well as the 

sampled-in-bin (SIB) diversity and the number of occurrences considered in each case. 

Total and boundary-crossing (BC) standing diversity, i.e., the initial diversity of each 

interval, were also calculated. SIB diversity and the occurrence richness were 

considered as proxies of sampling effort. A direct comparison of diversity and sampling 

signal against time show that overall, the apparent observed patterns of PBDB diversity 

is driven by sampling, which is especially significant in the Cambrian, e.g., concerning 

total diversity. In fact, total and SIB diversity follow comparable trajectories, which 

seems to fit to occurrence signal, while BC diversity reflects an independent pattern 

(Fig. 1). As such, we tested the relationship between total and BC diversity patterns and 

the sampling pattern per stage bin. The parametric Pearson (r), and non-parametric 

Spearman (rs) and Kendall (t) correlation tests were used (see Hammer and Harper, 

2006). To avoid inconsistences generated by false positives, we ran a two-time data 

analysis from raw and generalized-differenced (detrended) data for comparisons (see 

http://www.graemetlloyd.com/methgd.html for implementation). Using a significance 

level of 1%, total and SIB diversity provided highly significant results in all cases 

(Table 1). Identical results were obtained between the total and SIB diversity and 

occurrences (Table 1). Despite raw data analysis of BC diversity and sampling signal 

providing slightly significant values (in comparison to previous cases), detrended data 

analysis of BC diversity and sampling signal did not show significant correlated values 

(Table 1). Evidence seems to suggest that, the overall observed diversity (in particular 

total diversity) may be driven by sampling, sampling does not account for the entire 

diversity signal; a biological signal is still legible in the fossil record. 

 

5. Natural causes 

Diversity curves based on the Sepkoski Database indicate a high frequency of 

extinctions during the late Cambrian (Fig. 3). The frequency and magnitude of these 

events, especially when displayed as proportions of extinct genera, are impressive (see 

e.g., Melott and Bambach, 2012; Erlykin et al., 2018). Nevertheless sample sizes are 

relatively small and fluctuations when present may appear disproportionately large. 

The Furongian was an interval of substantial changes in palaeoceanographic 

conditions that may have influenced the patterns of biogeography, evolution, faunal 
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turnovers and extinctions (e.g., Saltzman et al., 2000; Peng et al., 2004; Kouchinsky et 

al., 2008; Ahlberg et al., 2009; Dahl et al., 2014). Although in its infancy, 

palaeoceanography research in the Cambrian has provided evidence for thermally 

stratified oceans and a distinct temperature gradient from higher to lower latitudes, 

dramatic sea-level changes, and time intervals of dysoxia or anoxia during parts of the 

Furongian (e.g., Gill et al., 2011; Babcock et al., 2015; Saltzman et al., 2015 and 

references therein). There are no unambiguous evidence for glaciations during the 

Furongian, but studies that hint at, or provide some evidence, for the possibility of 

extensive Cambrian glaciations were briefly reviewed by Babcock et al. (2015). These 

studies include papers describing the evidence for a permanent thermocline (Taylor and 

Cook, 1976; Cook and Taylor, 1977; Taylor and Forester, 1979) and cold water 

impinging on the shallow tropical seas of Laurentia at the end-biomere extinctions 

(Stitt, 1975; Perfetta et al., 1999; Taylor, 2006; Runkel et al., 2010). 

Two globally significant carbon isotope excursions are recognized in the 

Furongian, the Steptoean Positive carbon Isotope Excursion (SPICE) in the Paibian 

Stage and the HEllnmaria — Red Tops Boundary Event (HERB) or Top of Cambrian 

Excursion (TOCE) in provisional Stage 10 (Zhu et al., 2006; Fig. 3 herein). Both 

excursions are indicative of perturbations in the oceanic carbon cycle, and can be used 

to recognize major physico-chemical and biological changes in the world ocean (e.g., 

Ripperdan et al., 1992; Saltzman et al., 2000, 2004; Miller et al., 2015). The onset of 

the SPICE is associated with the base of the Furongian Series (Peng et al., 2004), 

whereas the HERB event (or TOCE) occurs near the top of the Cambrian (e.g., Miller 

et al., 2014, 2015). The SPICE has an amplitude of up to +5‰ in the δ13Ccarb values 

(Fig. 3) and lasted for 2–4 Ma (Saltzman et al., 2000, 2004; Kouchinsky et al., 2008; 

Woods et al., 2011; Barili et al., 2018). The HERB Event (TOCE) is a high-amplitude 

negative excursion with a net shift of ca. –2 to –5‰ in the δ13Ccarb values (Fig. 3). The 

SPICE and HERB events have also been recognized in δ13Corg curves from shale 

successions (Ahlberg et al., 2009, in press; Saltzman et al., 2011; Woods et al., 2011; 

Terfelt et al., 2014; Hammer and Svensen, 2017). The magnitude of the SPICE and the 

HERB Event in shale successions is, however, subdued compared to the δ13Ccarb 

excursions recorded in carbonate successions, and the δ13Corg signal is commonly half, 

or less than half, of the magnitude the δ13Ccarb signal (see Ahlberg et al., in press and 

references therein). 
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The cause(s) of the major carbon-cycle perturbations evidenced by the SPICE and 

HERB events is not well understood, but can probably be related to sea-level changes, 

the degree of oceanic stratification and oxygen deficiency, and the rate of nutrient 

discharge, biological productivity and/or continental weathering of marine carbonates. 

Organic-rich dark to black shales and dark grey to black limestone-shale 

successions are particularly well-known from many Furongian shelf, slope and basinal 

environments. Some of the best examples of Furongian organic-rich deposits are in 

South China, Baltica (notably Scandinavia) and Avalonia (e.g., southern Britain, New 

England and Atlantic Canada). These deposits reflect enhanced organic matter burial 

and suggest that oxygen deficiency was widespread in subsurface water masses in the 

Furongian (Gill et al., 2011; Saltzman et al., 2015). The SPICE event has been 

characterised as the best anoxic event recorded for pre-Mesozoic oceans and the 

episodic expansion of depleted bottom waters may have had a dominant influence on 

the development of marine animals at a critical time in metazoan evolution (Gill et al., 

2011). The interpretation of the SPICE as a global anoxic event has, however, been 

questioned, because the presence of benthic faunal elements and bioturbation in almost 

all SPICE-related sections excludes widespread and persistent anoxia or euxinia, but 

rather suggest oxic or dysoxic sea floor conditions during most of the SPICE interval 

(Egenhoff et al., 2015; Wotte and Strauss, 2015). Geochemical evidence also indicates 

that there was a major increase in atmospheric oxygen in the Furongian, and that the 

SPICE event was followed by an increase in primary productivity that may relate to 

changes in the abundance of nutrients in increasingly oxic marine environments 

(Saltzman et al., 2011), possibly triggering the ‘Ordovician Plankton Revolution’ 

(Servais et al., 2016). In most regions, the SPICE can be associated with sea-level 

oscillations and it is presumed to have been initially triggered by a sea-level rise that 

brought oxygen-deficient waters onto the shelves (Gill et al., 2011). Most of this δ13C 

excursion, however, including the peak, seems to be in an interval of eustatic fall that 

likely resulted in compression of shelf habitats (e.g., Woods et al., 2011; Babcock et 

al., 2015; Saltzman et al., 2015; Fig. 3 herein). Thus, this low stand may have had an 

intrinsic impact on the preserved record of Furongian evolutionary history. 

The HERB (or TOCE) Event has been identified in a number of regions on widely 

separate palaeocontinents and can be used for global correlation of uppermost 

Cambrian strata. There is, however, no general consensus for the cause of this major 

negative excursion, but it may be linked to eustatic sea-level changes that influenced 
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oceanic redox conditions and hence the primary organic production (Azmy, in press 

and references therein). 

The concept of biomeres was introduced over 50 years ago (see Palmer, 1984 and 

Taylor, 2006 for reviews). These trilobite-based evolutionary units, first recognized in 

Laurentia, included several biozones and are sharply delimited by extinction events. 

Biomere boundaries have subsequently been shown to coincide with major faunal 

turnovers on other palaeocontinents, such as Australia, South China and Baltica 

(Saltzman et al., 2000; Peng et al., 2004; Ahlberg et al., 2009; Babcock et al., 2017 and 

references therein). Palmer (1984) considered the extinction events may be associated 

with a rapid rise in the thermocline or widespread anoxia. The increasing evidence for 

a anoxia/dysoxia (e.g., Gill et al., 2011) apparently supports the latter hypothesis, but, 

as reviewed by Taylor (2006), there is also geological evidence consistent with relative 

sea-level rise and water temperature decline at biomere boundaries (see also Babcock 

et al., 2015). 

Three late Cambrian extinctions have been correlated with biomere boundaries, 

associated with δ13C excursions, sea-level change and the spread of anoxia (for data see 

Saltzman et al., 2015). The combination of positive excursions of δ13C and δ34S 

signalled the spread of anoxia and dysoxia across the shelves invoking invoking 

changes in the habitat structure that contributed extinctions and a decreased diversity 

particularly amongst the benthos; changes in ocean circulation and ventilation impacted 

on the deeper-water ecosystem. 

These observations have formed the basis for hypotheses implicating oxygen as a 

driver for the GOBE. With rising oxygen the ocean cooled and increased oxygen would 

enable the evolution of larger animals with thicker skeletons and provide for an 

enhanced arms race as increased weaponry was matched by increased armour together 

with innovative avoidance and evasive strategies. Cooler surface waters and higher 

oxygen levels were key to these transformations (Edwards et al., 2017). 

Nevertheless these events may not be synchronous or even globally pervasive. 

Schiffbauer et al. (2017) have suggested that the SPICE event is possibly time 

transgressive and potentially facies dependent, and Barili et al. (2018) noted that the 

SPICE may locally reflect superposition of a regional and local carbon isotopic 

signature onto ocean chemistry. 

These events not only affected the macrofauna but trace fossils imply that 

behavioural patterns were also changing. Macroborers are relatively rare through the 
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Furongian although Lee et al. (2018) have recently reported Trypanites and forms 

similar to Gastrochoenolites from flat-pebble conglomerates, marking a recovery in the 

ichnofauna of hard grounds following the demise of the archaeocyathan-microbialite 

reef ecosystem. 

 

6. Conclusions 

Currently there is marked interregnum in biodiversity between the high-profile, 

exceptionally-preserved biotas of the Cambrian Explosion, preserved across a number 

of Lagerstätten, and the four-fold increase in numbers of families, genera and species 

during the Great Ordovician Biodiversification Event. Is the gap real, i.e., is there a 

clear partition between two events, or is this merely apparent? The latter presenting the 

intriguing possibility that the diversification of marine ecosystems was on a single 

trajectory that peaked in the Devonian. Understanding the Furongian Gap is a critical 

test of both hypotheses. 

1. There is limited data available in the key biodiversity and lithological databases, 

particularly the PBDB, that are routinely used for modelling Phanerozoic 

biodiversity. 

2. This may in part be due to a relative lack of adequate fossiliferous strata through 

this key interval, and the disappearance of Konservat-Lagerstätten. 

3. Facies belts largely restricted to black shales or shallow-water carbonate facies, 

generally host more specialised and less widespread faunas. 

4. There are relatively few fossil collections, compared with older and younger 

strata, through this interval coupled with a lack of taxonomic work on its biotas. 

5. Extreme fluctuations are present in Furongian environments, providing a barrier 

to the expansion of the marine ecosystem and its biodiversity. 

In summary, in addition to inadequate sampling, fluctuating conditions, 

particularly between those of anoxia and dysoxia at biomere boundaries would have 

retarded any acceleration in biodiversity. That had to wait until the Early Ordovician. 
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Figure captions 

 

Fig. 1. Comparison of PBDB genus-level diversity (A) with PBDB genus-level 

occurrences (B). 

 

Fig. 2. The palaeogeography of the Furongian Epoch, highlighting the distribution of 

black shale facies and shallow-water carbonates (modified from Álvaro et al., 2007). 
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Fig. 3. Genus-level diversity, proportion of extinction (based on data in the PBDB) 

together with carbon isotope and sea-level data through the Lower Palaeozoic (replotted 

from Zhu et al., 2006, fig. 1; Haq and Schutter, 2008, figs. 1 and 2; Bergström et al., 

2009, fig. 2; Munnecke et al. 2010, fig. 4). 
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Table 1. Correlation analyses of raw and generalised-differenced (detrended) data of genus-level Cambrian–Silurian PBDB diversity. The 

relationship between the (total and the boundary-crossing, BC) observed and the sampled-in-bin (SIB) and the occurrence richness as a measure 

of sampling effort is tested. Both variables are analyzed per time unit. The parametric Pearson (r), and non-parametric Spearman (rs) and Kendall 

(t) correlation tests were implemented. The corresponding correlation coefficients together with their associated probability values of no-

correlation (p) are shown. * Significant values (p < 0.01). ** Highly significant values (p < 0.001). 

Data analysis 
Raw data Detrended data 

Pearson Spearman Kendall Pearson Spearman Kendall 

 
Dependent 

variable 

Independent  

variable 
r p rs p t p r p rs p t p 

1 Total diversity SIB diversity 0.94** 6.80×10-12 0.97** 7.41×10-7 0.87** 

7.28×10-

14 0.97** 1.55×10-14 0.91** 2.62×10-6 0.79** 

5.26×10-

10 

2 Total diversity Nº of occurrences 0.85** 5.43×10-8 0.95** 1.19×10-6 0.83** 

8.60×10-

12 0.91** 7.24×10-10 0.84** 2.06×10-6 0.67** 7.67×10-7 

3 BC diversity SIB diversity 0.62* 1.34×10-3 0.70** 1.22×10-4 0.51 4.68×10-4 0.49 1.75×10-2 0.49 1.82×10-2 0.34 2.19×10-2 

4 BC diversity Nº of occurrences 0.50 1.30×10-2 0.68** 2.90×10-4 0.48* 1.15×10-3 0.43 3.87×10-2 0.39 6.73×10-2 0.26 9.11×10-2 

5 SIB diversity Nº of occurrences 0.94** 2.23×10-12 0.97** 7.41×10-7 0.90** 

2.67×10-

15 0.94** 5.19×10-12 0.94** 2.13×10-6 0.80** 

1.76×10-

10 
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