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ABSTRACT
We present a new galaxy cluster lens modelling approach, hybrid-LENSTOOL, that is imple-
mented in the publicly available modelling software LENSTOOL. hybrid-LENSTOOL combines
a parametric approach to model the core of the cluster, and a non-parametric (free-form)
approach to model the outskirts. hybrid-LENSTOOL optimizes both strong- and weak-lensing
constraints simultaneously (Joint-Fit), providing a self-consistent reconstruction of the cluster
mass distribution on all scales. In order to demonstrate the capabilities of the new algorithm,
we tested it on a simulated cluster. hybrid-LENSTOOL yields more accurate reconstructed
mass distributions than the former Sequential-Fit approach where the parametric and the non-
parametric models are optimized successively. Indeed, we show with the simulated cluster that
the mass density profile reconstructed with a Sequential-Fit deviates from the input by 2–3σ

at all scales while the Joint-Fit gives a profile that is within 1–1.5σ of the true value. This
gain in accuracy is consequential for recovering mass distributions exploiting cluster lensing
and therefore for all applications of clusters as cosmological probes. Finally we found that the
Joint-Fit approach yields shallower slope of the inner density profile than the Sequential-Fit
approach, thus revealing possible biases in previous lensing studies.

Key words: gravitational lensing: strong – gravitational lensing: weak – galaxies: clusters:
general.

1 IN T RO D U C T I O N

Gravitational lensing is the bending of the light emitted by a
background source as it grazes past the gravitational potential of a
foreground object called the lens (for reviews see Kneib & Natarajan
2011; Hoekstra et al. 2013; Bartelmann & Maturi 2017). The lens
can be any type of objects with masses ranging from a planet
to a massive galaxy cluster. Here, we focus on the lensing of a
background galaxy population by a massive, foreground cluster of
galaxies. Gravitational lensing is observed in two regimes defined by
the intensity of the distortions created by the gravitational potential
of the lens: the strong-lensing regime where background galaxies
are highly distorted into gravitational arcs and multiple images;
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and the weak-lensing regime wherein the distortions of background
galaxies are small and need to be treated statistically.

While gravitational lensing generated by a galaxy lens was first
observed in 1979 by Walsh, Carswell & Weymann (1979) with the
multiply imaged quasar Q0957+561A-B, astronomers had to wait
until the late 1980s to confirm the first observation of a gravitational
arc in a galaxy cluster (Lynds & Petrosian 1986; Soucail et al.
1987, 1988). Since then, gravitational lensing by galaxy clusters
has emerged as a powerful tool to study the Universe. Indeed,
gravitational lensing is a unique tool to map the mass distribution
of the lenses as it is independent of their dynamical state, thereby
providing crucial in situ information on the physics of these objects.
In the case of cluster lenses, a lot of work has been done from
gravitational lensing mass maps and multiwavelength analyses to
constrain cluster physics (e.g. Natarajan, Kneib & Smail 2002;
Kneib et al. 2003; Clowe, Gonzalez & Markevitch 2004; Bradač
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et al. 2006; Merten et al. 2011; Jauzac et al. 2012, 2015; Diego et al.
2015; Eckert et al. 2015; Sharon et al. 2015, 2020; Mahler et al.
2018), and dark matter properties (e.g. Natarajan et al. 2002, 2017;
Bradač et al. 2008; Harvey et al. 2015; Massey et al. 2015, 2018;
Harvey, Kneib & Jauzac 2016; Jauzac et al. 2016a, 2018; Harvey
et al. 2017, 2019). Moreover, lensing can give us hints on galaxy
evolution (e.g. Natarajan et al. 1998; Limousin et al. 2007; Natarajan
et al. 2009; Leauthaud et al. 2012, 2015; Sifón et al. 2015; Li et al.
2016; Niemiec et al. 2017), and on the distant Universe as lenses
behave as cosmic telescopes and thus allow us to observe high-
redshift galaxies (e.g. D’Aloisio, Natarajan & Shapiro 2014; Atek
et al. 2015, 2018; Alavi et al. 2016; Bouwens et al. 2017; Ishigaki
et al. 2018; Kawamata et al. 2018), study highly magnified galaxies
at intermediate redshifts (e.g. Teplitz et al. 2000; Bayliss et al. 2014;
Johnson et al. 2017; Rigby et al. 2018; Bayliss et al. 2020; Chisholm
et al. 2019; Rivera-Thorsen et al. 2019; Sharon et al. 2020), and/or
lensed transients (e.g. Kelly et al. 2015, 2018; Rodney et al. 2015,
2018; Diego et al. 2016, 2018, 2019; Jauzac et al. 2016b; Treu et al.
2016; Goobar et al. 2017; Smith et al. 2018, 2019). Gravitational
lensing can even be used to constrain cosmological parameters, as
it is sensitive to the geometry of the Universe itself (Jullo et al.
2010; D’Aloisio & Natarajan 2011; Caminha et al. 2016; Acebron
et al. 2017; Suyu et al. 2018; Birrer et al. 2019; Wong et al. 2019).
However, to exploit gravitational lensing fully, the mass distribution
of the lenses themselves requires to be modelled with high precision
and accuracy.

There are currently two classes of lens modelling algorithms.
The first one is based on parametric mass models: the total mass
distribution of the cluster is decomposed into a finite number of
mass components divided into: (i) the large-scale components,
representing the mass contribution of the cluster dark matter haloes
and gas in the intra-cluster medium (ICM), and (ii) the galaxy-scale
components, representing the mass contribution of cluster galaxies.
Dark matter haloes are associated with individual cluster galaxies
as smaller scale contributions to the overall mass distribution.
The mass distribution of each component is then described by an
analytical density profile, the most commonly employed ones being
the Singular Isothermal Sphere potentials (SIS, see e.g. Binney
& Tremaine 1987), the Navarro–Frenk–White potentials (NFW,
Navarro, Frenk & White 1996), and the Pseudo Isothermal Ellip-
soidal Mass Distribution potentials (PIEMD, Elı́asdóttir et al. 2007).
Current parametric mass modelling algorithms include LENSTOOL

(Jullo et al. 2007), GLAFIC (Oguri 2010), and LTM (Zitrin et al.
2012, 2013).

The second class of algorithms relies on the so-called free-
form (or non-parametric) models. In this case, the cluster mass
distribution is subdivided into a grid of mass ‘pixels’, and the
amplitude (and possibly the shape) of the pixels are optimized
so that the overall mass distribution reproduces best the observed
lensed image constraints. Free-form reconstruction algorithms in-
clude SWUNITED (Bradač et al. 2005, 2009), WSLAP+ (Diego
et al. 2005, 2007; Sendra et al. 2014; Diego et al. 2016), GRALE

(Liesenborgs, De Rijcke & Dejonghe 2006; Liesenborgs et al.
2009), LENSPERFECT (Coe et al. 2008, 2010), LENSTOOL (for weak-
lensing mass reconstruction, see Jauzac et al. 2012; Jullo et al.
2014), SAWLENS (Merten et al. 2009, 2011). We refer the reader to
Kneib & Natarajan (2011) for a review on cluster lensing and mass
modelling.

The two approaches appear to be complementary to model the
different regions of the cluster: in the core, the sparse distribution
of the strong-lensing constraints calls for a small number of
free parameters, while the geometry of the constraints and the

light distribution can give strong priors on the mass distribution,
therefore favouring a parametric modelling approach. In the cluster
outskirts, the density of constraints is high, and a more flexible
free-form model with many mass ‘pixels’ would allow a better
tracing of the potentially irregular matter distribution, as well as
the detection of the presence of (lower density than the cluster)
infalling substructures (see for example Meneghetti et al. 2017;
Remolina González, Sharon & Mahler 2018, for a comparison
between the different types of models). Combining these approaches
is the obvious next step, and with this in mind, we have developed
a new version of the LENSTOOL software, hybrid-LENSTOOL, that
combines the parametric modelling approach in the cluster core,
with a free-form grid model in the outskirts.

A key challenge when modelling galaxy clusters over an extended
spatial scale is the nature of the different lensing constraints
depending on the cluster region considered. In cluster cores, where
the projected surface mass density is high, gravitational lensing
is non-linear. This is the strong-lensing regime. Here background
galaxies can be multiply imaged in addition to being extremely
distorted. In this case, the positions of the different multiple images
of a same background galaxy are used to constrain the projected
mass distribution of the lens. In the outskirts of clusters, the surface
mass density is lower, images of background galaxies are thus
only weakly distorted/sheared. There, gravitational lensing is on
average mostly linear, this is the weak-lensing regime. A statistical
approach is necessary to infer the projected mass distribution. The
combination of the two types of constraints permits self-consistent
modelling of the overall cluster mass density distribution.

In this paper, we present the new hybrid-LENSTOOL algorithm that
we developed in light of the large-scale weak-lensing data that are
collected via the Beyond Ultra-deep Frontier Fields And Legacy
Observations (BUFFALO) survey (GO-15117, PIs: Steinhardt &
Jauzac, Steinhardt et al. 2020). With the availability of these
high resolution Hubble Space Telescope (HST) observations of the
outskirts of clusters, we developed a self-consistent model for the
mass distribution of galaxy clusters that includes all scales, using
a combination of both strong- and weak-lensing constraints. The
goal of the BUFFALO survey is to extend the HST coverage of the
six Hubble Frontier Field (HFF, Lotz et al. 2018) clusters up to
∼3/4 × Rvir, thus allowing us to extend the HFF high-resolution
lens models beyond the cluster cores. Furthermore, we note that
the current most up-to-date LENSTOOL strong-lensing model for
Abell 370, the first cluster fully observed in BUFFALO, requires a
relatively strong external shear component in order to minimize the
χ2 as described in Lagattuta et al. (2019). This strongly motivates
the need for improvement of the lens modelling algorithm beyond
the parametric version of LENSTOOL. Here, we present this new
algorithm, hybrid-LENSTOOL, and test the mass reconstruction with
a simulated cluster, similar to the BUFFALO clusters.

In Niemiec et al. (in preparation), we apply our newly formu-
lated hybrid-LENSTOOL to the extended observations of Abell 370
obtained as part of BUFFALO, and show that the simultaneous
modelling of both strong and weak lensing allows us to reduce
the external shear component necessary in the parametric strong-
lensing only mass model. This demonstrates the power of such an
algorithm, and the mandatory need to model clusters consistently
incorporating data from all scales comprehensively.

The outline of this paper is as follows: in Section 2, we describe
the method used to develop hybrid-LENSTOOL, combining the
parametric model used in the cluster core and the grid in the
outskirts, and how these two modelling frameworks are optimized
with both strong- and weak-lensing constraints simultaneously. In
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Section 3, we test the algorithm on a simulated cluster, and quantify
the improvement in mass modelling compared to the previous
versions. We summarize the results and conclude with a discussion
in Section 4. Throughout this paper, we use a flat � cold dark matter
cosmology with �m = 0.27 and h0 = 0.7.

2 ME T H O D

2.1 Lensing formalism

Gravitational lensing formalism is based on the lens equation:

β = θ − ∇ψ(θ ), (1)

which relates the angular positions of the image and the source, θ

and β, respectively, through the gradient of the so-called lensing
potential, ψ , computed at the image position. The lensing potential
is defined as

ψ(θ ) = 2

c2

DLDLS

DS
φ(θ ), (2)

where DL, DS, and DLS represent the observer–lens, observer–
source, and lens–source angular diameter distances respectively,
and φ(θ ) is the projected Newtonian potential of the lens. The
Laplacian of the lensing potential is an indicator of the strength
of the lens, and it can be linked using the Poisson equation to the
projected surface mass density of the lens, 
(θ ), as

�ψ(θ ) = 2

(θ )


crit
, (3)

where the critical surface density of the Universe, 
crit, is defined
as


crit = c2

4πG

DS

DLDLS
. (4)

The strength of a lens can thus be determined by comparing its
surface mass density with the value of the critical surface density,

crit, at the corresponding source and lens redshifts. For a cluster
at DL = 1 Gpc, and sources at DS = 2 Gpc from the observer,
the critical surface density is 
crit ∼ 0.3 g cm−2. For a typical
cluster, the core extends up to 0.5 Mpc with a central mass density
ρ0 ∼ 2 × 10−25 g cm−3 (Bahcall 1977). That gives a surface mass
density, 
cluster ∼ 0.3 g cm−2 ∼ 
crit. This quick estimation shows
that the centre of clusters, where the density is the highest, can
present overcritical strong-lensing regions where multiple images
and gravitational arcs can be produced. In this regime, the observed
position of multiple images relates to the source position through
the lens equation (equation 1), which is degenerated in this case as
for a given source position, β, multiple solutions, θ , can exist.

In the regions of the cluster where the density is lower,

cluster � 
crit, i.e. in the weak-lensing regime, both the shape
distortion and magnification of the source are very small. These
very weak distortions in the subcritical regions require a statistical
approach to measure the lensing signal. The mapping from the
unlensed to the lensed coordinates can be described by the Jacobian
matrix, A, also called the amplification matrix:

Aij = ∂βi

∂θj

. (5)

This matrix can be rewritten as

A =
⎡
⎣1 − κ 0

0 1 − κ

⎤
⎦ +

⎡
⎣−γ1 −γ2

−γ2 γ1

⎤
⎦, (6)

where we introduce the convergence, κ , that describes the magni-
fication of the images, and the complex shear, γ = γ 1 + iγ 2, that
describes the stretching of the images. These parameters are derived
from the lensing potential, ψ(θ ) (Kneib & Natarajan 2011):

κ(θ ) = 1

2

(
∂2

1 + ∂2
2

)
ψ(θ ) (7)

and

γ1(θ ) = 1

2

(
∂2

1 − ∂2
2

)
ψ(θ )

γ2(θ ) = ∂1∂2ψ(θ ), (8)

where ∂ i represents the partial derivative with respect to θ i. We
note that equation (3) shows that the convergence is related to the
projected surface mass density as κ(θ ) = 
(θ )/
crit.

2.2 Parametric modelling of the cluster core

In the central regions of galaxy clusters, i.e. in the strong-lensing
regime, the geometry of multiple image systems and the distribution
of cluster galaxies provide information on the priors for the matter
distribution. It is therefore more appropriate to use so-called
parametric models, which are described by physical quantities that
allow a direct interpretation of the results. As described earlier, the
matter distribution in this regime with this approach is then typically
decomposed into cluster-scale and galaxy-scale haloes Natarajan &
Kneib (1997). The way these haloes are modelled in LENSTOOL

is described in detail in Jullo et al. (2007). Briefly, each halo is
parametrized by its position in the sky (x, y), projected ellipticity, e,
and angle position, θ . A number of parametric profiles are available
to describe the distribution of dark matter within each halo, such
as PIEMD (Elı́asdóttir et al. 2007), NFW (Navarro et al. 1996), or
SIS. Each profile has a different set of parameters to describe the
density slope.

Since the number of strong-lensing constraints is small compared
to the number of galaxy-scale haloes, the radial profile of each
single galaxy-scale subhaloes cannot be individually constrained.
Therefore, to decrease the number of free parameters, the mass of
each subhalo is coupled to the luminosity of the galaxy it hosts
using a global parametric mass-to-light relation. In practice, as
initially proposed by Natarajan & Kneib (1997), subhaloes are
described with PIEMD profiles, in which free parameters are
the core radius, rcore, the cut-off radius, rcut, and the velocity
dispersion σ 0. These parameters are in turn related to the galaxy
luminosity, L:
⎧⎪⎪⎨
⎪⎪⎩

σ0 = σ �
0

(
L
L�

)1/4
,

rcore = r�
core

(
L
L�

)1/2
,

rcut = r�
cut

(
L
L�

)α

(9)

where L� is the typical luminosity of a galaxy at the cluster redshift,
and r�

cut, r�
core, and σ �

0 are its PIEMD parameters. These are the free
parameters used to describe the mass of galaxy-scale subhaloes.
The total mass of one subhalo can then be written as

M = (π/G)
(
σ �

0

)2
r�

cut(L/L�)1/2+α. (10)

We fix α = 1/2, following e.g. Jullo & Kneib (2009) and Richard
et al. (2010). In the rest of this paper we denote by � the
vector containing the set of free parameters corresponding to the
parametric part of the model.
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2.3 Grid modelling

In the cluster outskirts a more flexible approach is necessary to
account for the potentially irregular shape of the cluster, and to allow
for effective substructure detection. This can be best achieved using
a non-parametric model where the mass distribution is reconstructed
using a grid of ‘mass pixels’. As described in Jullo & Kneib (2009)
and Jullo et al. (2014), the projected density (or convergence) field
is decomposed into a grid of radial basis functions (RBFs). More
precisely, a grid covering the field to be modelled is set up, and an
RBF is then fixed at each node, described by a truncated isothermal
mass distribution (TIMD, the circularized version of a PIEMD).

The true convergence field, κ(θ ), is therefore approximated as

κ(θ ) = 1


crit

∑
i

v2
i f (||θi − θ ||, si , ti), (11)

where the RBF on grid node θ i is defined as

f (R, s, t) = 1

2G

t

t − s

(
1√

s2 + R2
− 1√

t2 + R2

)
. (12)

For a TIMD profile, the weight of the RBF, v2, is the velocity
dispersion at the centre of the gravitational potential,1 and the RBF
parameters, s and t, represent the core and cut radii of the profile,
respectively. The core radius, s, is typically fixed to the distance
between two nodes of the grid, and the cut radius to s = 3t.

The shear field can now be approximated by the RBFs as

γ1(θ ) =
∑

i

v2
i �1(||θi − θ ||, si , ti)

γ2(θ ) =
∑

i

v2
i �2(||θi − θ ||, si , ti), (13)

where analytical expressions for �1 and �2 can also be derived (see
equation A8 in Elı́asdóttir et al. 2007).

We denote by w the vector containing all the RBF weights,
v2

i , which corresponds to the set of free parameters for the grid
model. We set as a prior that the RBF weights, v2

i , are positive,
and following Jullo et al. (2014), that they are also described by a
Poisson probability distribution function (PDF):

P
(
v2

i

) = exp
(−v2

i /q
)
/q, (14)

where q is a nuisance parameter, described by the PDF:

P(q) = q2
0q exp (−q/q0), (15)

where the parameter q0 is fixed to 10 following Jullo et al. (2014).

2.4 Likelihood definitions

In the combined mass modelling, the two types of modelling frame-
works described above (parametric + grid) are optimized jointly.
To perform the optimization, two different types of constraints are
used: the strong-lensing regions are constrained by the positions
of the multiple images of a same background source, while the
weak-lensing regions are constrained by the shapes of the distorted
images of the background sources producing the shear field.

In order to consolidate these two approaches to produce a
combined mass model, we take the following approach. The free
parameters of the parametric part of the model (cluster-scale and
galaxy-scale haloes) are arranged in a vector �, and the grid model

1The velocity distribution is usually noted σ 2
0 , but we choose the notation

v2 to avoid confusion with the variance σ that appears later in the text.

composed of N RBFs with weight v2
i , are ordered in a vector

w = [v2
1, ..., v

2
N ]. This allows us to combine and derive the total

likelihood describing our model, which is written as

L(�, w) = LSL(�, w) × LWL(�, w). (16)

We describe further in this section how we compute the strong- and
weak-lensing likelihoods, LSL, and LWL, respectively.

2.4.1 Computing the strong-lensing likelihood

We consider a set of MSL background sources strongly lensed so that
each source i has ni multiple images. Considering that the noise in
the image position measurement of different images is uncorrelated,
the noise covariance matrix is diagonal, and the likelihood can be
written as

LSL =
MSL∏
i=1

1∏
j σij

√
2π

exp− χ2
i
2 , (17)

where σ ij is the error on the position of image j of the source i. The
contribution of a multiple image system i to the total χ2 can then
be expressed as

χ2
i =

ni∑
j=1

∣∣∣∣xj

obs − xj (�, w)
∣∣∣∣2

σ 2
ij

, (18)

where x
j

obs is the measured position of the multiple image j, and
xj (�, w) is the position of the image j predicted by the model, in
which the free parameters are � for the parametric part, and w for
the grid.

In the case of the combined model, we compute the χ2 in the
source plane (for a discussion on the pros and cons of computing
the χ2 in the image or source plane, see Jullo et al. 2007), which
gives for one system:

χ2
S,i =

ni∑
j=1

∣∣∣∣xj

S(�,w)− < x
j

S(�, w) >
∣∣∣∣2

μ−2
j σ 2

ij

, (19)

where x
j

S(�, w) is the position of the source galaxy corresponding
to the image j projected to the source plane by the lens equation,
< x

j

S(�; w) > is the barycentre of the positions of the source cor-
responding to all the images in system i, and μj is the magnification
for image j. The source position x

j

S(�, w) can be calculated from
the measured position of the image, x

j

obs, by linearly adding the
deflection angle of the parametric model and the RBFs, as

x
j

S(�, w) = x
j

obs − α
(
x

j

obs, �
)

−
∑

i

v2
i A

(∣∣∣∣xj

obs − xi

∣∣∣∣, si , ti

)
,

(20)

where α(xj

obs, �) is the deflection angle produced at the observed
image position by the mass distribution included in the parametric
model, and v2

i A(||xj

obs − xi ||, si , ti) is the deflection angle produced
at the image location by the RBF located at position xi (see
Elı́asdóttir et al. 2007, for an analytical expression of A(r, s, t)).

2.4.2 Computing the weak-lensing likelihood

We now consider a set of λ background galaxies, each with a
measured ellipticity, ei = [ei

1, e
i
2], ordered in a vector of size 2λ,

e = [e1, e2]� = [e1
1, ..., e

λ
1 , e

1
2, ..., e

λ
2 ]�. We denote γ i = [γ i

1 , γ i
2 ],

the shear produced on the image of the galaxy i by the
grid model. The full shear vector of size 2λ, γ = [γ1, γ2]� =
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[γ 1
1 , ..., γ λ

1 , γ 1
2 , ..., γ λ

2 ], computed on the locations of the λ back-
ground galaxies is then

γ = Mγww, (21)

where w are the weights of the N RBFs, and Mγw = [�1, �2]� is
a 2λ × N matrix. Its elements represent the contributions of each
unweighted RBF j to the shear of image i:

�
(i,j )
1 = DLSi

DOSi
�i

1(||θj − θi ||, sj , tj ),

�
(i,j )
2 = DLSi

DOSi
�i

2(||θj − θi ||, sj , tj ). (22)

In the case of the combined model, part of the lens mass distribu-
tion is described by the parametric model, and the contribution to the
total shear of this mass component must also be taken into account.
We denote this shear component with γ ′(�), and we remind the
reader that � comprises the free parameters of the parametric part
of the model.

In the linear weak-lensing approximation:

e = 2γ + 2γ ′ + n, (23)

where n represents the intrinsic shapes of the galaxies in the
source plane, described by a Gaussian distribution with mean 0
and standard deviation σ n. We note that the factor 2 comes from the
complex ellipticity definition used in LENSTOOL, where its amplitude
is expressed using the axial ratio, r, as |e| = (1 − r2)(1 + r2)−1

(corresponding to the χ notation in Bartelmann & Schneider 2001).
As the intrinsic galaxy ellipticity distribution is considered to be

well described by a Gaussian, the weak-lensing likelihood can be
expressed as

LWL = 1

ZL

exp− χ2
WL
2 , (24)

where

χ2
WL = (e − 2Mγww − 2γ ′(�))�N−1

ee (e − 2Mγww − 2γ ′(�)),

(25)

where Nee =< ee� > is the covariance matrix of the measured
ellipticities. Following Jullo et al. (2014), the matrix is considered
diagonal, and its diagonal elements are expressed as

N (i,i)
ee = σ 2

m + σ 2
int, (26)

where σ m is the measurement uncertainty, and σ int, the galaxy shape
noise, which is defined as the scatter in the galaxy intrinsic shape
distribution.

The normalization factor is written as ZL =
√

(2π )2λ det Nee.

2.5 Implementing the MCMC sampling

The PDFs of the lens model-free parameters are sampled using the
Monte Carlo Markov chain (MCMC) algorithm BAYESYS (Skilling
2004) implemented in LENSTOOL, as described in detail in Jullo et al.
(2007). In short, the free parameters are sampled with 10 Markov
Chains that explore the parameter space following a variant of the
Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings
1970). The selective annealing variant used in BAYESYS ensures a
progressive convergence of the chains from the prior to the posterior
distribution without being trapped in any local minima.

As described in Jauzac et al. (2012) and Jullo et al. (2014),
hybrid-LENSTOOL also includes the BAYESYS extension MASSINF.
This extension is useful when some of the free parameters have

a linear contribution to the mass model. It allows us to find their
values at each step of the MCMC through a Gibbs sampling, thus
drastically decreasing the convergence time compared to a pure
BAYESYS sampling (for details see Jauzac et al. 2012). In our
case, these linear parameters are the weights of the RBFs (see
equation 13).

Throughout the sampling, BAYESYS + MASSINF does not assume
that all the RBFs are necessary to reconstruct the mass distribution
of the lens, but will rather use a number n of them at each step. This
effective number of RBFs is described with a geometric probability
distribution:

P(n) = (1 − c)cn−1 , with c = α

α + 1
. (27)

Following Jullo et al. (2014), the parameter α is fixed at 2 per cent
of the total number of RBFs.

We implement a block-wise sampling in the BAYESYS algorithm,
and sample the parametric model and the grid model parameters
alternately. In a regular Metropolis–Hasting sampling algorithm,
at each step of the MCMC new values for all free parameters are
drawn, and then accepted or rejected based on the values of the
likelihood function. Given the large number of free parameters, it
can become quite difficult, and onerous computing-wise, to find a
new acceptable set of parameters. Instead, we here use component-
wise sampling, i.e. we split the ensemble of parameters into two
blocks, � and w, and update the blocks alternately. A more formal
description of component-wise sampling in general can be found
for instance in Johnson, Jones & Neath (2009).

3 TESTS OF hybr i d- L E N S TO O L O N A
SIMULATED CLUSTER

3.1 The simulation

We test hybrid-LENSTOOL on a simulated cluster which replicates the
mass distribution of the cluster Abell 2744, as described in Jauzac
et al. (2016a). This simulated cluster is composed of

(i) two central large-scale potentials in the cluster core – these
potentials are modelled with PIEMDs, which parameters are sum-
marized in Table 1; the total mass of the PIEMDs is given by

Mtot = 2πρ0
r2
corer

2
cut

rcore+rcut
(Elı́asdóttir et al. 2007), where ρ0 = (1.46σ0)2

2πGr2
core

(Jullo et al. 2007). This gives MC1 = 1.03 × 1013 M�, MC2 =
8.80 × 1012 M�;

(ii) six large-scale potentials to model surrounding substructures,
located within 1 Mpc of the cluster centre. The substructures are also
modelled with PIEMDs, with masses MN = 2.41 × 1012 M�, MNW

= 2.85 × 1012 M�, MS1 = 7.82 × 1011 M�, MS2 = 6.83 × 1011 M�,
MS3 = 1.99 × 1012 M� and MS4 = 8.98 × 1011 M�;

(iii) a catalogue of 246 galaxy-scale potentials, with parameters
r∗

cut = 14 kpc, r∗
core = 0.15 kpc, and σ ∗

0 = 155 km s−1. We note that
positions and shapes of these potentials correspond to the true galaxy
distribution in Abell 2744 as measured in Mahler et al. (2018), and
covers only the core region of the simulated cluster.

We use LENSTOOL to compute the deflection and shear maps
corresponding to this mass distribution, and create the strong- and
weak-lensing constraints by tracing back the positions and shapes
of the background sources from the source to the image planes. We
thus obtain

(i) 15 multiple image systems in the strong-lensing region cov-
ering the redshift range 1.5 < z < 5, which roughly corresponds to
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Table 1. Parameters of the large-scale potentials for the simulated cluster used in this analysis. Potentials are modelled with PIEMDs: input (left), best fit from
the Sequential-Fit (middle) and the Joint-Fit (right). The simulated cluster is located at redshift z = 0.308.

Input Sequential-Fit Joint-Fit
C1 C2 N NW S1 S2 S3 S4 C1 C2 C1 C2

x (arcsec) −2.1 −17.7 29.8 103.0 −55.5 −39.4 139.0 191.1 − 3.1 ± 2.4 − 16.6 ± 1.5 − 0.2 ± 0.9 − 17.3 ± 0.7
y (arcsec) 1.4 −15.7 153.3 84.3 91.9 155.7 95.0 110.1 1.8 ± 2.9 − 15.4 ± 1.0 − 0.1 ± 1.1 − 15.7 ± 0.6
e 0.82 0.51 0.40 0.60 0.20 0.40 0.30 0.60 0.64 ± 0.11 0.38 ± 0.08 0.63 ± 0.06 0.41 ± 0.05
θ (deg) 90 45 85 30 140 110 40 0 77 ± 8 39 ± 9 94 ± 4 54 ± 3
rcore (arcsec) 18.8 10.7 8.4 8.3 7.1 6.2 6.5 6.7 23.3 ± 1.59 13.8 ± 2.5 18.4 ± 1.3 12 ± 1
rcut (arcsec) 221 221 110 221 221 221 221 221 [221] [221] [221] [221]
σ 0 (km s−1) 607 743 439 480 272 292 454 300 759 ± 111 754 ± 102 641 ± 38 762 ± 38

the redshift range of multiple images with measured spectroscopic
redshifts in A2744;

(ii) a catalogue of weakly lensed background sources with a
density of 45 sources arcmin−2, and covering the redshift range
0.5 < z < 1.5. This source density and redshift range correspond
to the expected depth of the BUFFALO survey. We draw the two
components of the intrinsic ellipticities of the galaxies in a Gaussian
PDF of width σ int = 0.27, while the size is considered constant.
The sources are uniformly distributed in the source plane, and we
remove the sources located in the strong-lensing region. To estimate
the impact of the background source density, we perform a second
mass reconstruction, with a weak-lensing source density Ns = 100
sources arcmin−2, which corresponds to a typical source density
that can be obtained with deep HST observations (see for example
Jauzac et al. 2015).

The projected mass distribution of the simulated cluster is
presented in the left-hand panel of Fig. 1, along with the large-
scale potentials as white ellipses in the top panel, with substructures
named as in Jauzac et al. (2016a). Positions of the grid potentials
are shown as white circles in the bottom panel, where the size of
the circles is set to the potential core radii of these clumps.

3.2 LENSTOOL mass reconstructions

We perform two mass reconstructions of this simulated cluster:
(1) the Sequential-Fit – we model the strong- and weak-lensing
regions successively by first optimizing the parametric model in
the cluster core with strong-lensing constraints; then we fix this
part to its best-fitting values, and optimize the grid model with
weak-lensing constraints; (2) the Joint-Fit – we simultaneously
optimize the parametric+grid models including both strong- and
weak-lensing constraints, following the method presented in this
paper.

We note that for both models presented in this section the
parameters describing the galaxy-scale potentials are fixed to the
input values. To test the implications of such choice, we perform
a fit with these parameters set as free, and the Joint-Fit does not
show any improvement on the recovered values compared to the
Sequential-Fit.

3.2.1 Sequential-Fit

Strong-lensing modelling. We first reconstruct the cluster mass
distribution following the method described in Jauzac et al. (2015),
i.e by modelling successively strong- and weak-lensing regions.
Therefore we start by modelling the core of the cluster using
strong-lensing constraints only, as if we had no knowledge on the
presence of substructures in the outskirts. We reconstruct the mass

distribution by optimizing the parameters describing the potentials
C1 and C2. As is often done in similar analyses wherein the
modelling is focused on the central region of the cluster, we keep
the cut radius fixed to rcut = 1000 kpc.

To be able to compare between the two methods we perform this
strong-lensing optimization in the source plane. The best-fit values
of the model parameters are presented in the middle part of Table 1.

Weak-lensing component modelling. As a second step, we
add a set of 353 RBFs to model the outskirts of the cluster.
They are located at the nodes of a multiscale grid. The resolution
of the grid traces the mass distribution of the simulated cluster,
with higher resolution in the densest region (for more details on
the multiscale grid, see for instance Jullo & Kneib 2009; Jauzac
et al. 2012). The resulting grid potentials have core radii varying
between s = 11 and 87 arcsec (i.e. 50–400 kpc). We remove the
RBFs covering the cluster core, and model this central region
with the best-fitting values of the parametric model described in
the previous paragraph (see Table 1). The grid of RBFs is created
in a LENSTOOL input format using our set of publicly available
scripts.2

We present the projected mass distribution maps resulting from
these two successive models in the middle panel of Fig. 1, and refer
to it as the Sequential-Fit. The presented mass maps are the mean
maps computed as the average of 1000 MCMC realizations.

3.2.2 Joint-Fit

We now reconstruct the cluster mass distribution by optimizing
jointly the parametric and the grid models, with both strong-
and weak-lensing constraints. We use the same priors on the free
parameters as for the Sequential-Fit, and the same multiscale grid.
The best-fitting parameters of the large-scale potentials are given
in the right-hand panel of Table 1, and the resulting mass map is
presented in the right-hand panel of Fig. 1. We refer to this mass
reconstruction as the Joint-Fit.

3.3 Convergence diagnostics

As we modified the MCMC sampling algorithm for hybrid-
LENSTOOL, we provide in this section a few diagnostics on the
convergence of the chains. We use the 10 chains from the Joint-Fit
with Ns = 45 sources arcmin−2, where each chain was evolved for
100 steps after the burn-in phase.

We first verify the chains have converged by inspecting them
visually. We then measure the serial correlation of the chains, and
plot the autocorrelation functions for each of them, i.e the amount

2https://github.com/AnnaNiemiec/grid lenstool
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Figure 1. Projected mass maps. Left column: Input simulation, with the large-scale potentials shown as white ellipses (top panel), and the potentials of the
multiscale grid shown as white circles, which sizes are set to the core radii, s, of the potential (bottom panel). Middle column: Sequential-Fit, with source
density Ns = 45 sources arcmin−2 (top) and Ns = 100 sources arcmin−2 (bottom). Right column: Joint-Fit, with source density Ns = 45 sources arcmin−2 (top)
and Ns = 100 sources arcmin−2 (bottom). The Sequential- and Joint-Fit mass maps are means over a 1000 MCMC samples.

of autocorrelation between the terms of the chain as a function of
the lag, and verify that they rapidly decrease, and become consistent
with 0 starting at lag ∼5. Finally, we perform a Geweke diagnostic
on each chain to check that they have reached a stationary state.

3.4 Comparison of the Sequential-Fit and the Joint-Fit mass
reconstructions

To compare the reconstructed mass maps obtained with the different
models, we compute the normalized residual maps, defined as
(Mmodel − Minput)/Minput. We present the resulting maps in Fig. 2 for
the Sequential (left-hand panel) and Joint-Fit (right-hand panel),
and for source densities Ns = 45 sources arcmin−2 (top), and Ns

= 100 sources arcmin−2 (bottom). The two models appear to well
reproduce the simulated cluster, both in the core and the outskirts.
As expected, mass reconstructions with a higher source density
are closer to the input, i.e. they are better at detecting lower mass
substructures such as S4 and S2, and trace better the true shape
of substructures. For the two source densities, the Joint-Fit mass
reconstructions have a lower overall bias than the Sequential-Fit
reconstructions.

Indeed, the best-fitting parameters presented in Table 1 indicate
that the combined modelling allows us to decrease the bias in the
parametric model. When the core of the cluster is first modelled
alone as in the Sequential-Fit, the mass in the centre can often

be overestimated to compensate for the mass missing in the
outskirts. This is reflected in the best-fitting values of the parameters
rcore and/or σ 0 for both C1 and C2 clumps. This gives MC1 =
(2.00 ± 1.13) × 1013 M�, and MC2 = (1.17 ± 1.16) × 1013 M� for
the Sequential-Fit, and MC1 = (1.13 ± 0.45) × 1013 M�, and MC2

= (1.04 ± 0.45) × 1012 M� for the Joint-Fit.
To quantify the model deviations from the input simulation, we

measure the projected density profiles for each of the models.
For each of the 1000 model realizations corresponding to the
MCMC samples, we compute a radial density profile by azimuthally
averaging the reconstructed mass maps, taking the cluster centre
close to the centre of the mass clump, C1. We then average the 1000
profiles, and compute error bars by taking the standard deviation
over all 1000 measurements. Figs 3 and 4 show the density profiles
for source densities N = 45, and 100 sources arcmin−2, respectively.
In both figures, the top panel shows the density profiles, while the
bottom panel shows the relative deviations of models as lines and
relative errors as shaded areas.

For the two background source number densities, the Sequential-
Fit deviates from the simulation by ∼2–3σ on all scales and
consistently predicts a higher mass density. As explained before,
this is due to the overestimation of the parameters which define the
amplitude and size of the central clumps, as this impacts the mass
distribution over all scales. Fitting the distribution in the core and
in the outskirts self-consistently allows us to avoid this systematic
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Figure 2. Normalized residual maps for the Sequential-Fit (left) and Joint-
Fit (right), and for source density Ns = 45 sources arcmin−2 (top) and Ns =
100 sources arcmin−2 (bottom).

effect. Indeed, Figs 3 and 4 show that the Joint-Fit gives a density
profile within 1–1.5σ of the true value over all scales. Finally, the
mass density profiles confirm that increasing the source number
density allows a better recovery of the shapes of substructures, and
produces a smoother mass distribution.

We also compute the integrated mass profiles, and derive the
total mass within 1 Mpc, for each model. The mass of the simulated
cluster is M(< 1 Mpc) = 9.02 × 1014 M�. As can be inferred
from the density profiles, the Sequential-Fit overestimates the
total enclosed mass, i.e. M(< 1 Mpc) = (11.52 ± 0.68) × 1014M�
[(12.43 ± 1.45) × 1014 M�] for N = 45 (100) sources arcmin−2.
The Joint-Fit shows a reduced bias on the total mass estimate,
and gives values consistent with the true mass: M(< 1 Mpc) =
(9.43 ± 0.92) × 1014 M� ((9.70 ± 0.82) × 1014 M�) for N = 45
(100) sources arcmin−2.

A commonly used indicator to quantify the goodness of fit for
a strong-lensing model is the root mean square, noted as rms, i.e.
the distance between the observed positions of multiple images and
the ones predicted by the best-fitting model. We compute the best-
fit rms values for the different models, and find that the combined
modelling with Ns = 45 sources arcmin−2 indeed decreases the rms
to 0.57 arcsec, compared to 0.63 arcsec for the strong-lensing only
model of the cluster core. The rms value is further slightly decreased
to 0.54 arcsec for the Joint-Fit with Ns = 100, which points that
improving the modelling of substructures impacts the quality of fit
in the cluster core, in agreement with conclusions from Acebron
et al. (2017) analysis. We note that the decrease in rms value can
only be considered as a significant estimator of the goodness of fit
when comparing between different models of the same cluster, as
is the case with our analysis.

The last point we would like to address is the speed of the al-
gorithm. The Joint-Fit mass reconstruction performed with hybrid-

Figure 3. Top panel: Projected mass density profiles of the input simulation
(black line), the Sequential-Fit (solid blue line), and the Joint-Fit (dashed
orange line) for the source density Ns = 45 sources arcmin−2. Bottom
panel: Relative deviation for the Sequential-Fit (solid blue line) and Joint-Fit
(orange dashed line). The shaded regions represent the relative errors for
both models. The radial range shown by the grey shaded area corresponds
to the strong-lensing region of the simulated cluster.

Figure 4. Same as Fig. 3 for source density Ns = 100 sources arcmin−2.

LENSTOOL is significantly slower than the one performed with the
regular version of LENSTOOL. For instance, on a standard laptop, for
the models presented here with the source density Ns = 45, the Joint-
Fit can be obtained in 15 mn, and the Sequential-Fit in 5 mn (3 mn
for the parametric model and 2 mn for the grid). While this result
could be expected and is not particularly problematic in this case,
this time difference could become more of an issue when modelling
very complex systems. In addition, keeping the parameters of the
galaxy-scale potentials free further slows down the modelling, and
in a larger proportion in the case of the Joint-Fit compared to the
Sequential-Fit. Indeed at each step of the optimization, it requires to
compute the shear produced by each of the cluster galaxies (which
can be hundreds) at the position of each weakly lensed galaxies
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(which can be thousands). This can be made faster by implementing
parallelization in the computation of the weak-lensing likelihood,
as already done for the strong-lensing one.

4 SU M M A RY A N D C O N C L U S I O N S

In this paper, we present hybrid-LENSTOOL, a new method im-
plemented in the publicly available lens reconstruction algorithm
LENSTOOL. It combines strong- and weak-lensing constraints to self-
consistently reconstruct the cluster mass distribution at all scales.
hybrid-LENSTOOL combines a parametric model in the cluster core
with a free-form grid model in the outskirts. It takes advantage
of the complementary strengths of the two types of modelling to
recover the shape and amplitude of the mass distribution with high
precision.

We tested this new method on a simulated cluster composed of a
bi-modal mass distribution in the core and six massive substructures
in the outskirts. We found that the Joint-Fit modelling recovers
well the shape and position of the substructures, and gives a more
accurate reconstructed mass density profile for the cluster compared
to a Sequential-Fit, where the core and the outskirts of the cluster are
modelled separately (method that was used in the past). In addition,
the Joint-Fit performs better at predicting the position of multiple
images in the cluster core, reducing the rms from 0.63 to 0.57 arcsec.

After demonstrating the power of this new algorithm with simu-
lated data in this method paper, we will present the first application
of hybrid-LENSTOOL to real observations in a forthcoming paper
(Niemiec et al., in preparation). As mentioned before, the ongoing
BUFFALO survey (GO-15117, PIs: Steinhardt & Jauzac, Steinhardt
et al. 2020) is extending the HST coverage of the six HFF clusters
(PI: Lotz, Lotz et al. 2018), and will complement the strong-
lensing constraints in the core of these clusters with high resolution
weak-lensing data. Combining these datasets, i.e. high resolution
constraints both in the strong- and weak-lensing regions of the
clusters, with hybrid-LENSTOOL will produce high-precision models
of the mass distribution of the HFF clusters up to ∼ 3/4 Rvir.
Higher fidelity mass distributions for cluster lenses are important for
utilizing the full potential of clusters to probe dark matter properties
and cluster physics, study the distant Universe that they magnify,
and be used as cosmological probes, as observed lensing effects are
not impacted by the dynamical complexity of clusters.
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