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ABSTRACT
We present a method to invert a given density and find the Kohn–Sham (KS) potential in Density Functional Theory (DFT) that
shares the density. Our method employs the concept of screening density, which is naturally constrained by the inversion procedure
and thus ensures that the density being inverted leads to a smooth KS potential with correct asymptotic behavior. We demonstrate the
applicability of our method by inverting both local and non-local (Hartree–Fock and coupled cluster) densities; we also show how the
method can be used to mitigate the effects of self-interactions in common DFT potentials with appropriate constraints on the screening
density.
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I. INTRODUCTION
Density functional theory (DFT) is the most widely used

method in electronic structure theory calculations, with many tens
of thousands of publications using it every year.1 Despite the many
successes of the Kohn–Sham (KS) formalism in DFT, the most com-
monly used functionals do not correctly describe various physical
situations, such as molecular dissociation and charge transfer pro-
cesses.2,3 Developing methods to overcome these difficulties is an
active area of research.4–9

In order to judge the quality of new approaches in KS the-
ory, it is important to have an accurate reference against which
to benchmark results. Often, we can compare with an experiment
or a higher level calculation; however, it is also valuable to know
what an “exact” KS result is. This is commonly done by invert-
ing an accurate density to find the corresponding KS potential.
Various methods have been developed to accurately obtain the KS
potential from a given density. Early attempts typically focused on
small atomic systems;10–17 more generally applicable methods,18–24

including the time-dependent case,25–27 have subsequently been

developed. However, the problem remains interesting due to its
associated difficulties.28

In this paper, we present a method29 to invert a known target
density ρt of a system of N interacting electrons in a known external
potential ven, in order to obtain the Hartree-exchange and correla-
tion (Hxc) potential of the KS system with density ρt . Our method is
based on minimizing the Coulomb energy U[ρv − ρt] of the density
difference ρv − ρt ,

U[ρv − ρt] =
1
2∬

drdr′
[ρv(r) − ρt(r)][ρv(r′) − ρt(r′)]

∣r − r′∣
, (1)

where ρv is the density of another noninteracting N-electron system
with KS potential ven + v. Obviously, the effective potential v simu-
lates the electronic repulsion, and at the minimum of the Coulomb
energy U, when ρv = ρt , this effective potential becomes equal to the
Hxc potential we seek.30

The Coulomb energy U is clearly positive and tends to zero as
the two densities become close to each other. As will be explained
in Sec. II, minimizing U also minimizes the energy difference
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from Ref. 31,

TΨ[v] = ⟨Ψ∣Hv ∣Ψ⟩ − Ev , (2)

where Ψ is a state with density ρt , and Hv is the many-body KS
Hamiltonian,

Hv =
N

∑
i=1
[−
∇

2
i

2
+ ven(ri) + v(ri)], (3)

of the KS system with density ρv . When Ψ is the (exact or approxi-
mate) ground state of the interacting system in the external potential
ven, the minimizing potential of Eqs. (1) and (2) will be (exactly or
approximately) equal to the Hxc potential of the KS system with
density ρt .

Central to our method is the concept of screening density,32

or electron repulsion density,6 in the KS scheme. It can be thought
of as the effective electron density that screens the nuclear charge
from a KS electron (i.e., electron in a KS orbital). Alternatively, it
is the effective charge density that repels each KS electron, mimick-
ing the electron–electron repulsion and underpinning the Hartree,
exchange and correlation (Hxc) potential. Specifically, using Pois-
son’s equation, the screening density can be obtained from the
Laplacian of the Hxc potential, ρscr(r) = −(1/4π) ∇2vHxc(r).6,32 Gör-
ling33 and Liu, Ayers, and Parr34 had previously considered the
xc-only screening density, obtained from the Laplacian of the xc-
potential.

In our algorithm for density inversion, the screening charge
(the integral of the screening density over all space) is fixed; this sta-
bilizes the minimization procedure and means we can constrain our
potentials to be smooth and have the correct asymptotic behavior,
as we shall see that multiple potentials can arise from the inver-
sion of the same density. Inverting DFT densities under appro-
priate constraints for the screening charge also provides a reliable
procedure for alleviating self-interaction errors35 in common DFT
functionals.

The paper is structured as follows: In Sec. II, we demonstrate
the algorithm used to minimize (1). In Sec. III, we first demonstrate
the accuracy and applicability of our method by inverting local-
density approximation (LDA) densities for several molecules. We
also show how inverting LDA densities under a constraint for the
screening charge yields LDA potentials with self-interaction errors
largely corrected. We then demonstrate how it can be applied to
Hartree–Fock (HF) and coupled cluster densities to obtain accu-
rate exchange-only and xc-potentials. Finally, we draw a brief com-
parison with the density inversion method of Zhao, Morrison, and
Parr,19 which uses the objective functional in Eq. (1) in a different
manner.

II. METHOD
In order to minimize the objective functional in (1), we split the

KS potential into the electron-nuclear part and an effective poten-
tial v(r). At the minimum, the effective potential will coincide with
the Hxc potential we seek, for the KS system with density ρt(r). We
represent the effective potential v(r) using a screening density as
follows:32

vs(r) = ven(r) + v(r), (4)

v(r) = ∫ dr′
ρscr(r′)
∣r − r′∣

. (5)

This is always a valid representation for the potential due to
Poisson’s law.33 The screening density integrates to a screening
charge Qscr,

∫ drρscr(r) = Qscr, (6)

with
N − 1 ≤ Qscr ≤ N. (7)

We argue that the value of Qscr is a measure of self-interactions
(SIs):32 Qscr = N − 1 is a necessary condition for a method to be
fully self-interaction free; otherwise, the method is contaminated
with self-interactions. As the value of Qscr does not change in the
implementation of the method that we will describe, it is important
to start with a screening density that is consistent with the screening
charge of the target density.

When we vary v(r) as v(r) → v(r) + ϵ δv(r), with δv(r)
= ∫dr′δρscr(r′)/|r − r′|, the change in the Coulomb energy U (func-
tional of v) is given by

δU[v] = ϵ∬ drdr′δρscr(r)χ̃v(r, r′)δρ(r′) + O(ϵ2
), (8)

with
δρ(r) = ρv(r) − ρt(r) (9)

and

χ̃v(r, r′) =∬ dxdy
χv(x, y)
∣r − x∣∣r′ − y∣

, (10)

where χv(r, r′) is the density–density response function for the KS
system,

χv(r, r′) =
occ

∑
i

unocc

∑
a

ϕv,i(r)ϕ∗v,a(r)ϕ∗v,i(r′)ϕv,a(r′)
ϵv,i − ϵv,a

+ c.c., (11)

where ϕv ,i, ϕv ,a and ϵv ,i, ϵv ,a are the occupied and unoccupied KS
orbitals and their KS eigenvalues in the KS determinant with density
ρv [the ground state of Hv in (3)].

Since χv(r, r′) is a negative-semidefinite operator, if we vary
ρscr(r) in the direction

ρscr(r)→ ρscr(r) + ϵδρ(r), with ϵ > 0, (12)

then U will decrease. We can therefore use a gradient-descent
method to minimize U. This minimization will also ensure that the
quantity TΨ[v] in (2) is minimized, since the functional derivative of
TΨ[v]31 is equal to −δρ(r), when ρt(r) is the density of Ψ.

We note that during the minimization procedure, the screening
charge Qscr remains equal to the value of the initial guess for ρscr(r),
since ∫dr δρ(r) = 0.

A. Algorithm
The method has been implemented in the Gaussian basis

set code HIPPO,36 with one- and two-electron integrals for the
Cartesian Gaussian basis elements calculated using the Gamess
code.61,62 The algorithm is described below.

1. Initialize the screening density as follows:

ρ(0)scr (r) =
N − α
N

ρ(0)(r), (13)

J. Chem. Phys. 152, 164114 (2020); doi: 10.1063/5.0005781 152, 164114-2

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

where α ∈ [0, 1] depends on the target density, and thus,
Qscr = N − α. ρ0(r) can be any density for the N-electron
system.

ρscr(r) is expanded in an auxiliary basis set as follows:

ρscr(r) =∑
k
ρs
kθk(r). (14)

For our auxiliary basis, we employed the density-fitted basis
set37 corresponding to the orbital basis. Justification for this
choice of auxiliary set is given in Appendix A.

2. Solve the single-particle KS equations

[−
∇

2

2
+ ven(r) + v(r)]ϕv,i(r) = ϵv,i ϕv,i(r) (15)

to update the density ρv(r).
3. Update the screening density of the ith iteration in the

direction

δρ(i)scr (r) = ϵ [ρ
(i)
v (r) − ρt(r)], (16)

where ϵ is chosen with a quadratic line search to minimize U.
At this step, it is convenient for the target density to be

expanded in the same basis set as the KS density ρv(r), since
the density difference is thus directly obtained.

4. Repeat steps 2 and 3 until either
i. U and δU are converged to within some chosen tolerances,

or
ii. the amount and rate of increase in negative screening charge

Qneg ≥ 0 exceeds a chosen amount, where

Qneg =
1
2
[∫ dr∣ρscr(r)∣ −Qscr]. (17)

Condition 4.ii. is a kind of regularization.28,38 Due to both
numerical issues (such as the effect of finite basis sets39–41) and possi-
ble theoretical constraints (non-interacting v-representability42–47),
converging U to within the above tolerances can lead to spurious
oscillations in the potential. This behavior frequently coincides with
a large build-up of negative screening charge, and thus, a simple cri-
terion to avoid these scenarios is to stop the procedure when this
occurs. Details of the convergence criteria used can be found in
Appendix B.

III. RESULTS
A. Inversion of LDA densities

To demonstrate the applicability of our method, we first present
results for the inversion of LDA densities for a few atomic and
molecular systems. As previously discussed, it is important to begin
with the correct Qscr for the system under consideration. As can be
seen in Fig. 1, minimizing U[ρv − ρt] for the same target density
yields a unique potential for every value of Qscr. Obviously, only
the potential with the correct Qscr will yield the target density ρt
exactly.

Since LDA potentials are contaminated with self-interactions,
we would expect physically that Qscr = N in this case. However, this
turns out not to be true when we transform from a grid represen-
tation for the LDA xc-potential (as is typical in most codes) to the
representation given by Eqs. (5) and (14). We observe that, in this

FIG. 1. The inverted xc-potentials from the LDA density of neon (cc-pVTZ), for
different values of Qscr. Each value of Qscr produces a unique xc-potential.

representation, Qscr ≠ N and is basis-set dependent. To determine
the value of Qscr, we solve the equation

ρxc
k =∑

l
⟨θ̃k∣θl⟩

−1
⟨θl∣vxc⟩ (18)

with

ρxc(r) =∑
k
ρxc
k θk(r), θ̃k(r) = ∫ dr′

θk(r′)
∣r − r′∣

. (19)

Here, ρxc(r) is the effective xc-screening density, with ∫dr ρxc(r) =−α.
Table I shows some values of Qscr for helium and beryllium with an
increase in the basis set size.

If desired, it is possible to approach Qscr = N by adding diffuse
s-functions to the auxiliary basis set. As this affects the potential only
by a small amount in the asymptotic tail, we choose not to modify the
established basis sets in this work.

With a method to calculate the appropriate value of Qscr for
LDA densities, we now demonstrate the accuracy of our method
when applied to LDA densities and the convergence with an increase
in the basis set size. In Fig. 2, we see the qualitative similarities
between the xc-potential from the inverted LDA density, and the
actual LDA xc-potential. The region of biggest difference is observed
near the nuclei; if accuracy in this region is desired, it is important
to use a large basis set.

We can also use the HOMO energy as an indicator of the qual-
ity of the inversion procedure. In Table II, we present results for
the percentage difference between the actual and inverted HOMO
energy for some atoms and molecules. These results demonstrate

TABLE I. Values of α, where Qscr = N − α, and ionization potentials (IPs) as the
negative of the HOMO energies, for He and Be with an increase in the basis set size.
Basis sets are from Ref. 48.

He Be

α IP (eV) α IP (eV)

cc-pVDZ 0.479 15.15 0.207 4.50
cc-pVTZ 0.214 14.82 0.148 4.81
cc-pVQZ 0.301 15.41 0.185 5.29
cc-pV5Z 0.256 15.89 0.165 5.41
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FIG. 2. Comparison of xc-potentials for the inverted LDA density and the exact
LDA result.

the improved accuracy with respect to the basis set size, as well as
a rough indication of how accurate we can expect our potentials to
be with a given basis set.

B. Constrained LDA results
In Subsection III A, we demonstrated the importance of choos-

ing the right screening charge when inverting LDA densities. How-
ever, the flexibility we have in choosing the screening charge can
be used to our advantage, to remove the effects of self-interactions
(SIs) from LDA and other SI contaminated densities by setting

TABLE III. Comparison of IPs (from HOMO energies) for constrained-LDA using the
inversion of density and our previous CLDA method.32 All basis sets are cc-pVTZ.

LDA CLDA (inv.) CLDA32 Expt.50

He 15.47 23.12 23.82 24.59
Be 5.60 8.48 8.65 9.32
Ne 13.17 18.85 18.89 21.56
HF 9.38 14.08 14.17 16.03
H2O 6.83 11.10 11.04 12.62
H2 10.25 15.15 15.64 15.43
CO 8.97 12.50 12.84 14.01

Qscr = N − 1. The success of this “constrained DFT” approach
has already been demonstrated,6,32 but using a different method in
which the energy is minimized under the following constraints:

Qscr = N − 1, (20)

and
ρscr(r) ≥ 0. (21)

The second constraint (21) is an approximation, which in the
aforementioned method is required to prevent a negative screen-
ing charge “hole” localizing at infinity. In our density inversion
approach, we have employed the weaker condition 4.ii. (17) instead
of (21).

In Table III, we see a comparison of the ionization potentials
(IPs), taken to be the negative of the HOMO orbital energies.49 We
see that inverting the density under the constraint Qscr = N − 1 and
our previous constrained-LDA (CLDA) method32 with the positiv-
ity constraint both yield very similar results for the IPs. As discussed
in earlier work and seen here, this constrained method yields consis-
tently better IPs than normal LDA, but preserves the energetics from
the LDA calculation. Further analysis of the tendency for ρscr(r) to be
positive can be found in Appendix A.

C. Inversion of “non-local” densities
The principal application of the density inversion scheme is

to invert densities obtained with non-DFT methods to find the
KS potential that shares the same density. We have applied our

TABLE II. Comparison of IPs (from HOMO energies) of the inverted LDA densities with the actual LDA IPs.

cc-pVDZ cc-pVTZ cc-pVQZ

IP (eV) Inverse LDA % err. Inverse LDA % err. Inverse LDA % err.

He 15.15 15.14 0.1 14.82 15.47 4.2 15.41 15.37 0.6
Be 4.50 5.62 19.9 4.81 5.60 14.1 5.29 5.60 5.5
Ne 6.69 12.24 45.3 10.56 13.17 19.8 11.75 13.40 12.3
HF 7.18 8.45 15.0 8.91 9.38 5.0 9.37 9.64 2.8
H2O 5.71 6.23 8.3 6.67 7.00 4.7 6.86 7.21 4.4
H2 9.53 10.12 5.8 10.00 10.25 2.4 10.02 10.26 2.3
CO 6.16 8.71 29.3 7.73 9.07 14.8 8.82 9.11 3.2
Avg % err. . . . . . . 17.7 . . . . . . 9.3 . . . . . . 4.5
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TABLE IV. Comparison of IPs for the local potential of an HF density with the actual HF IPs.

cc-pVDZ cc-pVTZ cc-pVQZ

IP (eV) Inverse HF % err. Inverse HF % err. Inverse HF % err.

He 25.23 24.88 1.4 24.97 24.97 0.0 24.98 24.98 0.0
Be 8.96 8.41 6.5 8.42 8.42 0.0 8.37 8.42 0.6
Ne 17.57 22.65 22.4 22.19 23.01 3.6 24.40 23.10 5.6
HF 14.21 17.12 17.0 16.57 17.52 5.4 17.23 17.64 2.3
H2O 12.03 13.44 10.5 12.99 13.76 5.6 13.40 13.85 3.2
H2 16.13 16.10 0.2 16.16 16.16 0.0 16.17 16.17 0.0
CO 11.65 14.96 22.1 13.74 15.09 8.9 14.03 15.11 7.1
Avg % err. . . . . . . 11.5 . . . . . . 3.4 . . . . . . 2.7

scheme to two densities calculated with Hartree–Fock (HF) and
Coupled Cluster Singles Doubles (Triples) [CCSD(T)] theories, with
target CCSD(T) densities obtained from the PSI4 code.51,52 We
focus on these because the inversion of an HF density gives us an
exchange-only local potential in DFT [local Fock exchange (LFX)29],
which is a close approximation to the exact-exchange poten-
tial.29,53 CCSD(T) calculations yield highly accurate densities,54

which give us an idea of what the “exact” xc-potential in KS theory
should be.

Just as for the LDA case, it is important to choose the correct
value for the screening charge. As both HF and CCSD(T) are self-
interaction free, we expect Qscr = N − 1. Unlike in the LDA case,
there is no way of determining if this is the exact numeric value;
however, our results strongly suggest that this is a good choice. We
again focus on the IPs obtained from the HOMO orbital energies to
judge the quality of our inversion procedure. For HF-inverted den-
sities, by Koopmans’ theorem55 and its analogue in DFT relating the
HOMO energy to the IP,49 we expect the inverted ϵH to equal ϵH
from HF. Meanwhile, for the densities inverted from CCSD(T), the
difference in the IP compared to experiment should offer insight into
the reliability of the procedure.

In Table IV, we see how the IPs taken from the HOMO ener-
gies of the inverted local potential compared with the IPs from HF
theory. These results indicate what level of accuracy can be expected
with a given basis set: it appears we should use at least cc-pVTZ basis

TABLE V. Comparison of IPs for the local potential of a CCSD(T) density with
experimental IPs.

cc-pVDZ cc-pVTZ

IP (ev) Inverse % err. Inverse % err. Expt.50

He 24.94 1.4 24.57 0.1 24.59
Be 9.13 2.0 9.12 2.0 9.32
Ne 12.09 43.9 20.41 5.3 21.56
HF 11.34 29.3 15.43 3.7 16.03
H2O 10.01 20.7 12.28 2.7 12.62
H2 15.91 3.1 16.45 6.6 15.43
CO 10.01 28.6 13.18 5.9 14.01
Avg % err. . . . 18.4 . . . 3.8 . . .

sets to obtain an accurate potential, with an average difference of
3.4% between the inverted and actual IPs. More accurate results can
be obtained if desired by increasing the basis set size. A similar pic-
ture emerges for the inverted CCSD(T) densities, as seen in Table V;
in this case, cc-pVQZ results are not computed at the expense of
obtaining the coupled cluster density matrix for these densities, but
we see a very similar result for the average error in cc-pVTZ basis
sets.

Besides these IP comparisons, we demonstrate the applicability
of our method by plotting some xc-potentials. In Fig. 3, we see that

FIG. 3. xc-Potentials for (a) the inverted HF density of CO and (b) the inverted
CCSD(T) density of H2 for various basis sets.

J. Chem. Phys. 152, 164114 (2020); doi: 10.1063/5.0005781 152, 164114-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Top: Ar (cc-pvTZ) xc-potentials from inverted HF and CCSD(T) densities,
and PBE; bottom: correlation potentials from the difference of CCSD(T) and HF
inverted xc-potentials, and PBE.

the xc-potentials converge with the basis set and produce smooth
potentials. As in the LDA case, the inversion procedure struggles
most in the regions very close to the nuclei. However, the inverted
potentials appear to converge well for the purposes of qualitative
analysis outside of these regions.

We can also obtain approximate correlation potentials by tak-
ing the difference between the (almost) fully correlated inverted
CCSD(T) potential and the exchange-only inverted HF potential.
We can expect this to yield accurate correlation potentials when
the system under consideration is weakly correlated, as in this case
the inverted HF potential is close to the exact-exchange poten-
tial.29,53 In Fig. 4, we have plotted this correlation potential and the
xc-potential for argon, along with a comparison with the Perdew-
Burke-Ernzerhof (PBE) potential.56

IV. COMPARISON WITH THE METHOD BY ZHAO,
MORRISON, AND PARR

Zhao, Morrison, and Parr (ZMP), in their well-known density-
inversion method,19 impose the constraint that the Coulomb energy
U[ρ − ρt] (1) actually vanishes, rather than be minimized. The KS
potential in their method

vΛs (r) = ven(r) + (1 −
1
N
)vH[ρ](r) + Λ∫ dr′

ρ(r′) − ρt(r′)
∣r − r′∣

(22)

consists of the external potential ven(r), the Fermi–Amaldi poten-
tial (1 − 1/N) vH[ρ](r), with vH[ρ](r) the Hartree potential, and
finally, an effective potential to satisfy the constraint of zero
U[ρ − ρt], in the limit of the diverging Lagrange multiplier Λ→∞.
ZMP argue that inclusion of the Fermi–Amaldi potential in their
KS potential is auxiliary, to aid convergence and relieve the bur-
den of the xc-potential when Λ is finite. However, at any finite Λ,
inclusion of the Fermi–Amaldi potential in (22) is crucial since it
is the term that provides the correct screening charge required by
the target density. Its omission would imply that in the asymptotic
region, a KS electron would be attracted by the full, unscreened

nuclear charge. See also the discussion by Liu, Ayers, and Parr
in Ref. 34.

The connection and similarity between the method by ZMP
and ours is analogous to the connection between the direct mini-
mization of a total energy density functional and its indirect mini-
mization using the optimized effective potential (OEP) method.57,58

The ZMP KS equations can be derived by the direct minimization of
the standard DFT total energy expression (as a density functional),
using EZMP

xc [ρ] = ΛU[ρ − ρt] − (1/N)U[ρ] in place of the “xc”
energy density functional. The total energy minimization must then
be carried out for various values of Λ and the results extrapolated to
Λ → ∞. The analogy with our method is that we work only with
Λ = ∞ and rather than the whole total energy, we minimize just
U[ρ − ρt]. Only then, U[ρ − ρt] becomes a functional of the effective
potential ven + v that yields ρ, i.e., ρ = ρv , and U[ρv − ρt] must be
minimized with the OEP method.

V. DISCUSSION
We have presented a reliable inversion method to find the local

KS potential corresponding to the given target density. This method
utilizes the concept of a screening density, which offers controlling
the minimization procedure to yield physical potentials and also aids
our understanding of self-interactions in DFT.

The steepest descent method presented here is a stable method
to invert the density and works well for large enough basis sets for
atoms and molecules at their equilibrium geometries. Work is in
progress to improve convergence for more complicated input den-
sities (such as for stretched molecules) and will be presented in a
future publication.
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APPENDIX A: CHOICE OF BASIS SET
REPRESENTATION FOR ρscr

As discussed in Sec. II A, we expand the screening density in
an auxiliary basis set, which is the density-fitted set corresponding
to the orbital basis. This is an intuitive choice because we repre-
sent an effective density with a basis set designed for densities; it is
also a convenient choice because density-fitted sets are frequently
used anyway to accelerate the computation of integrals in quantum
chemistry codes.59,60

To justify this choice quantitatively, we recall that we can
directly obtain the Gaussian representation of the LDA grid

J. Chem. Phys. 152, 164114 (2020); doi: 10.1063/5.0005781 152, 164114-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE VI. Values of U[ρga − ρgr] for LDA potentials in different Gaussian basis sets.
All bases are cc-pVTZ.

U[ρga − ρgr] Orbital Uncontracted ρ-fitted

He 2.3× 10−7 2.1× 10−7 1.2× 10−8

Be 7.0× 10−4 5.5× 10−9 4.2× 10−10

Ne 9.0× 10−5 1.8× 10−6 3.4× 10−10

HF 9.0× 10−5 2.9× 10−7 7.5× 10−9

H2O 1.2× 10−4 2.2× 10−7 8.5× 10−9

H2 7.0× 10−8 1.6× 10−7 6.0× 10−8

CO 3.5× 10−4 2.7× 10−7 1.6× 10−9

FIG. 5. Comparison of the LDA xc-potential on a grid, against various Gaussian
basis set representations. Lower images show the differences between the grid
and Gaussian representation.

potential using Eq. (18). As a measure to gauge the quality of defin-
ing the potential in a given basis set, we use the Coulomb energy
U[ρga − ρgr] (1), where ρga and ρgr are the densities arising from
defining the potential in a Gaussian basis set and on the grid respec-
tively. The smaller the value of U[ρga − ρgr], the better one might
expect the Gaussian representation to be. In Table VI, we compare
the values of U[ρga − ρgr] for three choices of basis functions for the
screening density: the orbital basis, the density-fitted basis, and the
uncontracted orbital basis, which is a common choice for the poten-
tial.6,33 We observe that the density-fitted sets give the closest fit to
the grid representation based on this criterion.

In Fig. 5, we plot the LDA xc-potentials for these basis set
choices. In contrast to the above-mentioned analysis, the uncon-
tracted sets seem to give the best fit to the grid potential, but we
note that the density-fitted sets give a close fit everywhere except
the nuclear positions. In our experience, the algorithm works more
smoothly for the density-fitted sets than the uncontracted ones.
Given that we minimize U[ρv − ρt], it makes sense to choose a repre-
sentation that also minimizes this expression. The gradient-descent
algorithm also struggles to reproduce the target density near the
nuclei regardless of the auxiliary basis chosen, so the lack of accu-
racy of the density-fitted sets in this region is not so important in
our method.

APPENDIX B: CONVERGENCE CRITERIA
The convergence criteria for the objective functional U and the

change in objective functional δU were set to 5 × 10−9 hartree and
5 × 10−11 hartree per electron, respectively. If both of these condi-
tions are satisfied, U is taken to be converged.

In general, satisfying the above criteria is not a problem
when inverting a DFT density (e.g. LDA). However, when invert-
ing non-local densities, the problem of spurious oscillations tends
to emerge and thus it is necessary to use a regularization cri-
terion. As mentioned in Sec. II A, we monitor the amount of
negative screening charge to indicate the onset of these spurious
oscillations.

The onset of negative screening charge is dependent on several
factors, including

i. the number of electrons N,
ii. the size of the basis set, and

iii. the target density,

and other (hard to quantify) factors relating to the system under con-
sideration. To guide our intuition, we use the procedure outlined in
Sec. III A to determine the behavior of the “exact” ρs(r) for LDA
densities.

In Table VII, we see that a small amount of negative screening
charge is typically present for the LDA effective screening density. In
Fig. 6, we see this negative screening density has a tendency to build
up near the nuclei. There is no reason to expect a dramatically dis-
similar behavior for different target densities, and therefore, it seems
judicious to allow a small amount of negative screening charge to
manifest itself in the inversion procedure. However, as previously
discussed, if Qneg is permitted to increase too fast or become too
large, then we observe the onset of undesirable oscillations in the
potential.
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TABLE VII. Amount of negative screening charge, Qneg, for exact LDA screening
densities.

Qneg cc-pVDZ cc-pVTZ

He 0.0 9.88× 10−3

Be 5.81× 10−2 7.65× 10−2

Ne 0.0 3.3× 10−4

HF 4.5× 10−2 8.18× 10−2

H2O 3.03× 10−2 1.15× 10−1

H2 6.55× 10−3 6.35× 10−2

CO 1.09× 10−2 3.51× 10−4

With the above-mentioned arguments in mind, we monitor the
following variables during the inversion procedure:

i. soft limit, Qsoft
neg ;

ii. change in Qneg, δQneg between iterations;
iii. hard limit, Qhard

neg .

If both conditions (i) and (ii) are satisfied, or if just condition
(iii) is satisfied, the calculation stops. For all the results published in
this paper, we use the same values, which are equal to

FIG. 6. Effective screening densities, ρs(r), for LDA densities, with the actual den-
sities for comparison. We observe the tendency for a small amount of negative
screening charge near the nuclei.

i. Qsoft
neg = 0.01,

ii. δQneg = 0.005, and
iii. Qhard

neg = 0.05,

where all the above values are quoted per electron. These values give
reasonable results for the systems presented in this paper, which are
all atoms or molecules at their equilibrium geometries. However, we
have observed that for molecules stretched beyond their equilibrium
geometries, a large build-up of negative screening charge develops. A
more sophisticated procedure would be required for these and other
difficult cases.
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