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SUMMARY

Flexibility is often a key determinant of protein func-
tion. To elucidate the link between their molecular
structure and role in an organism, computational
techniques such as molecular dynamics can be
leveraged to characterize their conformational
space. Extensive sampling is, however, required to
obtain reliable results, useful to rationalize experi-
mental data or predict outcomes before experiments
are carried out. We demonstrate that a generative
neural network trained on protein structures pro-
duced bymolecular simulation can be used to obtain
new, plausible conformations complementing pre-
existing ones. To demonstrate this, we show that a
trained neural network can be exploited in a pro-
tein-protein docking scenario to account for broad
hinge motions taking place upon binding. Overall,
this work shows that neural networks can be used
as an exploratory tool for the study of molecular
conformational space.

INTRODUCTION

Function at themolecular level emerges from the arrangement of

individual atoms and their associated dynamics. Specific inter-

actions of simple molecules produce phenomena of increasing

complexity, culminating with the finely tuned biological mecha-

nisms that ultimately make life possible. Proteins are flexible

molecules, and their dynamics are intimately connected to their

function (Chu et al., 2013). The function can be modulated by

conformational rearrangements in response to local environ-

mental changes as diverse as changes in pH, temperature, or

electrostatic potential, as well as binding to specific ligands

such as ions, small molecules, lipids, or other proteins. As

such, proteins should be seen not as a single static structure,

but as a conformational ensemble featuring more or less acces-

sible states.

To gain information about protein molecular functions, a broad

range of techniques have been developed to interrogate their

structure. X-ray crystallography provides precious structural ev-

idence at atomic resolution, but its drawback is that it locks pro-

teins in a single well-defined conformation within a crystal lattice.

Atomic information can also be obtained via nuclear magnetic
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resonance. This technique also informs about dynamics and

can sometimes identify multiple states, given that the molecule

of interest is not too large. Other techniques report near-atomic

or lower-resolution data, describing for instance the shape of the

protein (e.g., electron microscopy, ion mobility-mass spectrom-

etry, or small-angle X-ray scattering), or measuring specific inter-

atomic distances (e.g., chemical crosslinking). Even considering

this broad palette of techniques, studying the structure of a pro-

tein featuring multiple states is usually challenging, and even

when a single conformation is present its thermal fluctuations

may render data interpretation arduous.

Computational methods such as molecular dynamics (MD)

simulations aim at characterizing molecular conformational

space by iteratively generating new structures based on an

initial, known atomic arrangement and a physical model of inter-

atomic interactions. The structural ensemble produced by such

sampling can be used to rationalize results of performed exper-

iments, or help in obtaining information difficult to derive exper-

imentally. Since simulations provide a discretized view of a

continuous space, they will always be subject to the risk of

missing key details owing to undersampling (Nemec and Hoff-

mann, 2017). This risk is usually low and acceptable when study-

ing small or rigid proteins, and can be mitigated by running long

simulations or exploiting enhanced sampling techniques. It be-

comes, however, increasingly severe the larger the molecular

system under study and the slower its dynamics. A common,

and extreme, scenario where MD is (in most cases) unsuitable

is the prediction of the specific docking of multiple proteins

into a complex. To tackle protein-protein docking, other sam-

pling methods are typically exploited instead of relying on MD

alone. These often utilize optimization engines exploring the

roto-translational space of the binding partners, looking for the

arrangements minimizing a specific scoring function (Kastritis

and Bonvin, 2010; Zhang et al., 2016). It is acknowledged that

accounting for molecular flexibility beyond the movement of

amino acid side chains in docking processes is often key to pro-

ducing suitable results (Zacharias, 2010) (Lensink et al., 2017).

To account for conformational changes at backbone level, flex-

ibility is typically accounted for by refining rigidly docked poses

with methods such as energy minimization, MD or Monte Carlo

(Schindler et al., 2015) (Dominguez et al., 2003), or docking pre-

generated alternative conformations (Degiacomi and Dal Peraro,

2013; Marze et al., 2017). Overall, for any modeling scenario,

whether MD simulations or docking, it is critical for conforma-

tional spaces to be extensively sampled.

In this work we examine the use of deep learning, and more

specifically generative neural networks, to enrich the sampling
lished by Elsevier Ltd.
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Figure 1. Autoencoder Structure

The autoencoder is a neural network composed of two parts: an encoder (light gray, with an input layer having a size equal to the degrees of freedomof the protein

provided as input, followed by four hidden layers, with a decreasing amount of neurons noted in white) and a decoder (four dark-gray hidden layers, followed by a

last layer having same size as the input). The first reduces protein atomic coordinates to a position in a low-dimensional space (blue points on the graph rep-

resenting the so-called latent space) while the second converts such coordinates into a protein structure. The autoencoder is trained to encode-decode

structures so that the difference between input (dark-blue proteins) and output (light-blue proteins) is minimized. After training, the decoder can be used to

generate new protein structures (in red) from any coordinate within the latent space.
of molecular conformational space. While the usage of genera-

tive neural networks in image processing is widespread, their

application to 3D point clouds is only a recent addition to thema-

chine learning literature (Achlioptas et al., 2017). Proteins repre-

sent a particularly interesting application case in this area, since

they do not feature a difficulty typical of raw 3D point clouds: as

the position of their constituent atoms is constrained by covalent

interactions, protein conformations can be interpreted as or-

dered sets of points. Generative neural networks have been

recently proposed as a tool for the discovery of collective vari-

ables, useful to extract kinetic information from molecular simu-

lations or to guide the sampling of poorly explored regions (Chen

et al., 2018; Chiavazzo et al., 2017; Hernández et al., 2018;Mardt

et al., 2018; Ribeiro et al., 2018).

Here we use the conformations generated by one or more pro-

tein MD simulations as examples to train an autoencoder (Hinton

and Salakhutdinov, 2006) (Rumelhart et al., 1986). We demon-

strate that autoencoders can generate new, realistic protein con-

formations complementing pre-existing data produced by MD

simulations. We then show that a trained autoencoder coupled

with a protein docking algorithm can be utilized to discover con-

formations closer to the bound state, given an ensemble of struc-

tures sampling the unbound state.

RESULTS

To generate low-dimensional representations of proteins’

conformational space, we exploit an autoencoder (Figure 1).

This is a type of neural network that attempts to first compress

and then decompress a multidimensional input, so that the dif-

ference between input and output is minimized. The network is
first trained with a collection of alternative molecular conforma-

tions. Its performance is then tested with a new set of conforma-

tions not previously used for training. The first part of the

network, called the ‘‘encoder,’’ passes the input signal (flattened

Cartesian coordinates) thorough a series of fully connected hid-

den layers containing a decreasing number of neurons. This ulti-

mately produces a low-dimensional representation of the input

molecular structure, called the ‘‘latent vector.’’ The values of

the latent vector then become the input for a second series of

hidden layers, this time with an increasing number of neurons,

called the ‘‘decoder.’’ The decoder expands the latent vector

into an output that should be as similar as possible to the initial

molecular structures passed through the encoder. In sum, the

encoder allows casting a protein conformational space (possible

atom positions in 3D space) into a non-linear, low-dimensional

representation (latent space), whereas the decoder can convert

the coordinates of such low-dimensional space into specific pro-

tein conformations. The system-specific way whereby data en-

coding and decoding takes place is determined by weights on

connections between neurons, having values optimized during

the training process.

Learning and Assessing Protein Conformational Space
While any coordinate within the latent space is associated with

an atomic arrangement, not every coordinate will correspond

to a plausible molecular structure. On one hand, while in general

selecting values close to regions of the latent space sampled

during the training of the network will usually yield a physically

plausible model, we observed only a low correlation between

the physical plausibility of a model and its distance in the latent

space from points used as training examples. This is because
Structure 27, 1034–1040, June 4, 2019 1035



Table 1. Performance of Learning Algorithms on All Tested Protein Structures

Protein

PDB

ID d.o.f.a
Training

Structures (n)b
MD

RMSD (Å)c
Classifier

Accuracy (%)d
Classifier

Accept. (%)e
Scoring Function

Accept. (%)f
Test Structures

RMSD (Å)g
Test Structures

Sec. Struct.h

Malate

dehydrogenase*

1MLD 7,344 2,811 2.88 100 100 100 1.00 ± 0.13 95.9 ± 1.5

aB crystallin 2WJ7 1,857 2,829 4.79 99.6 99 100 1.12 ± 0.24 93.3 ± 1.9

Phospholipase A2 1POA 1,286 4,690 3.84 98.5 98 94 0.89 ± 0.15 96.4 ± 1.7

Envelope

glycoprotein*

1SVB 4,632 2,191 6.21 97.3 98 99 1.67 ± 0.35 94.0 ± 1.2

MurD, closed* 3UAG 5,124 2,507 3.80 99.6 100 100 1.14 ± 0.22 94.9 ± 1.5

MurD, open 1E0D 5,124 1,813 5.77 100 100 100 1.43 ± 0.50 93.9 ± 1.3

MurD,

closed + open

3UAG

1E0D

5,124 4,320 10.22 100 100 100 0.90 ± 0.16 94.4 ± 2.0

HIV-1 1E6J 2,481 6,142 17.84 99.5 99 92 1.47 ± 0.50 96.0 ± 2.1

All cases were encoded in a 2D latent space. Cases indicated with an asterisk did not reproduce the training set’s diversity.

See also Tables S1 and S2; Figures S2 and S3.
aDegrees of freedom, i.e., 3 times the amount of atoms.
bQuantity of structures used to train the autoencoder.
cMaximal RMSD within all structures in the simulation, reporting on the structural variability in the conformational space.
dRandom Forests classifier accuracy after training.
ePercentage of reconstructed test structures accepted by the Random Forests classifier.
fPercentage of reconstructed test structures with a scoring function penalty equal to zero.
gRMSD of test structures against their reconstructed counterparts.
hPercentage of secondary structure elements in test structures matching those in their reconstructed counterparts.
distances in latent space do not usually linearly correlate with

distances in the 3-dimensional (3D) Cartesian space (Figure S1).

Generally it is difficult to determine what the dimensions in latent

space represent in terms of motion in the 3D space. Given the

difficulty in predicting whether a coordinate in the latent space

will be associated with a physically plausible structure, we

defined two methods to determine whether a model generated

by the autoencoder should be considered as valid or not.

To quickly assess whether structures generated from the latent

space should be considered plausible, we tested their ability to

fool another learning algorithm, trained to determine whether an

atomic arrangement provided as input is protein-like or not. To

do so, we adopted a Random Forests (RF) classifier (Breiman,

2001) trained on two classes of data: structures extracted from

an MD simulation (‘‘correct’’) and structures from the same simu-

lation, with a small amount of noise added to atomic coordinates

(see Supplemental Information and Figure S2). Furthermore, we

also defined two heuristic criteria, seen as necessary conditions,

to assess whether models feature atoms excessively far from all

the others or close to any other (‘‘stretching’’ and ‘‘compression,’’

respectively, see STAR Methods).

We first selected a small pool of proteins of different size and

shape to assess whether the autoencoder would be able to

reconstruct their conformational space, and the RF classifier to

distinguish between good and bad ones. For this test, we

selectedmalate dehydrogenase (a 33-kDa homodimer), aBcrys-

tallin (a rigid 18-kDa homodimer), phospholipase A2 (13 kDa,

featuring two long random coil regions 15 and 25 amino acids

long, respectively) and encephalitis virus envelope glycoprotein

(an elongated 43-kDa protein, approximately a cylinder three

times longer than wide). For all proteins, we ran MD simulations

>200 ns long, and trained the autoencoder to compress their

conformational space (backbone and Cb atoms) down to a
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2-dimensional (2D) space. Since, unlike the general case of 3D

point clouds, proteins are represented by ordered sets of points,

root-mean-square deviation (RMSD) is a usable metric to assess

the similarity between autoencoder-generated models and their

MD-generated counterpart. In all cases, test structures could be

reconstructed with an RMSD<1.5 Å from the original, a deviation

smaller than that observedwithin theMD simulations (Table 1). In

these reconstructions, distributions of bond distances and an-

gles closely matched those observed in input structures, with

no significant difference between rigid and more flexible cases

(Table S1). Furthermore, in each case the secondary structure

of >93% of amino acids matched that of their input structure

counterpart (Table 1). We performed these same analyses on

models generated using principal components analysis (PCA),

whereby each simulation is projected on a 2D eigenspace and

linear combinations of the two eigenvectors are used to regen-

erate a molecular structure. Concerning bonds and angles, we

observed that PCA is more accurate than our autoencoder for

rigid targets, whereas the opposite is true for flexible ones (Table

S1). Concerning secondary structure, we found PCA to perform

equally or marginally better than our autoencoder in all but the

most flexible of test cases (Table S2).

To automatically verify whether the reconstructions of an au-

toencoder could be considered as new plausible protein confor-

mations, we tested them using both our scoring function and the

RF classifier. In all cases >98% of reconstructed structures were

considered valid by the classifier, and all but one case had >97%

structures featuring no stretching or compression (Table 1). This

shows that the autoencoder can produce protein conformations

close to the conformational space provided as input.

In three of our test sets, featuring the most large and rigid pro-

teins (i.e., with structures in the training set having a low average

RMSD), autoencoders learned to associate the same average
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Figure 2. Reconstruction of MurD Closed-to-

Open Transition

(A) For all MurD simulations, we calculated the angle

between the distal ends of domain 2 and domain 3

(formed by the two gray vectors).

(B) The closed bound state (blue) and the open un-

bound one (red) preserve their specific interdomain

orientations, whereas removing ligands from the

closed state leads the protein to convert into the

open state (black).

(C) The palatinate histogram shows the RMSD

of encoded-decoded closed-apo structures with

respect of the original structure.

(D) We trained the autoencoder with frames from

open and closed states and asked it to encode-

decode structures from the closed-apo simulation.

For each reconstruction, we calculated the RMSD

with respect to the input. We report the RMSD

against the domains’ angle. The closed state is

more accurately reconstructed than the open state.

Frames in white regions have an opening angle

different from anything seen in both open (red zone)

and closed (blue zone) simulation. They are never-

theless reconstructed with an RMSD around 2 Å.

See also Figure S1.
protein structure with each input conformation (Table S1; Figures

S2 and S3). Thus, we observe that effective autoencoders are

easier to train with flexible proteins.

Representing a Multistate System
As a more difficult test case, we selected MurD, a 47-kDa ATP-

driven ligase responsible for the biosynthesis of a bacterial

peptidoglycan precursor (UDP-N-acetylmuramoyl-L-alanyl-D-

glutamate). MurD has been crystallized in both open, unbound,

state (PDB: 1E0D [Bertrand et al., 2000]) and closed state

(PDB: 3UAG [Bertrand et al., 1999]), bound to GDP and UDP-N-

acetylmuramoyl-L-alanyl-D-alanine. Comparing these struc-

tures shows that ligand binding causes one of the three globular

domains ofMurD (residues 300–439) to rearrange (Figure 2A).We

performed threeMDsimulations: oneof the open state, oneof the

closed state, and one of the closed statewith its ligands removed

(herein called closed-apo). In 200 ns the first two simulations

maintained their specific domains’ arrangement, while the third

transitioned from the closed to the open state, sampling confor-

mations being observed in neither the closed nor the open simu-

lations (Figure 2B).

We trained the autoencoder with structures from only open

and closed simulations, asking it to compress their 5,124 de-

grees of freedom down to a 2D latent vector. Subsequent testing

with a set of 100 randomly selected structures not used for

training revealed that the RMSD between input and recon-

structed structures was 0.9 ± 0.2 Å, with a best case of 0.7 Å

and a worst case of 1.7 Å. We then tested whether the autoen-

coder trained with only open and closed conformation would
S

be able to correctly reconstruct 1,000

structures from the closed-apo conforma-

tion. Comparison of input and encoded-

decoded structures revealed an average

RMSD of 2.2 ± 0.5 Å, with the best case
of 0.8 Å and the worst case of 3.4 Å. Importantly, we were also

able to obtain structures at the transition between closed and

open state, i.e., different from anything submitted as example

for training. These were reconstructed with an RMSD of 1.9 ±

0.3 Å (Figures 2C and 2D). We also trained the autoencoder

with only structures from the open state and then asking it to

reconstruct closed-state structures. Reconstructed molecules

were of poor quality (RMSD of closed structures >4.2 Å) indi-

cating that, at least in its present form, the neural network is

not capable of extrapolating new states but is instead suitable

to interpolate between collections of known states and only

extrapolate locally, beyond the front of structures sampled by

the MD simulation (Figure S1).

Docking Proteins with Flexibility
As a final test case, we selected the HIV-1 hexameric capsomer,

for which the crystal structure of both hexamer (PDB: 3MGE

[Pornillos et al., 2010]) andmonomer (PDB: 1E6J [Monaco-Malbet

et al., 2000]) have been solved. The RMSD between the mono-

meric structure and each of the subunits part the assembled

state is very large, 10.5 Å. This system has been already used

as a docking test case in our previous work (Degiacomi and Dal

Peraro, 2013). Therein we have shown that when the unbound

state of HIV-1 capsomer is studied by MD, conformations

featuring higher similarity to the bound states are found (3.2 Å

RMSD). These conformations were submitted to a docking algo-

rithm implemented using our POWER optimization environment.

We demonstrated that POWER could automatically select confor-

mations close to the bound state as most suitable candidates to
tructure 27, 1034–1040, June 4, 2019 1037



Figure 3. Protein-Protein Docking Using

Structures Dynamically Generated by the Au-

toencoder

(A) Quality of 100 test set structures generated by the

autoencoder trained with a simulation of HIV-1

capsomer’s monomeric state. The histogram shows

the distribution of RMSD between original and re-

constructed structures. The upper panel shows

three examples of reconstructions are shown (in blue

the original structures, in red the predicted ones).

Only atoms generated by the autoencoder, i.e., Ca,

C, N, and Cb, are shown. Examples show the best

(0.5 Å RMSD), average (1.5 Å RMSD), and worst (3.0

RMSD Å) models produced.

(B) Two-dimensional latent space colored as a

function of the model quality to which each position

is associated, calculated as a sum of our compres-

sion and stretching heuristics. Large regions of the

latent space correspond to plausible structures. Blue

circle represents the encoded position of HIV-1

capsomer’s monomeric crystal structure. Gray circle

represents the position of amonomer extracted from

hexameric HIV-1 capsomer structure (not used for

training). Its associated reconstruction features a

small amount of deformation. Small red circles

represent the positions of structures selected by the

docking algorithm as good candidates of HIV-1

capsomer’s bound state. The red circle shows the

position of the monomer used to build the model of

HIV-1 capsomer with smallest RMSD from the

known crystal structure.

(C) Two-dimensional latent space colored as a

function of the RMSD against HIV-1 capsomer’s

bound state to which each position is associated.

The RMSD between unbound and bound state is large, while a region close to the position of the bound state is associated to models with a small RMSD (<3 Å)

from it.

(D) Superimposition of HIV-1 capsomer’s hexameric crystal structure (in gray) and the best model generated by our docking algorithm (in red) leveraging on

structures generated on demand by the trained autoencoder.
generate hexamericmodels, by augmenting its search spacewith

the conformational space of molecular subunits described as co-

ordinates intoa low-dimensional eigenspace.Althoughpromising,

the limitationof suchanapproach is that the dockingalgorithmwill

provide results only as good as the best structure within the pro-

vided conformational ensemble. Furthermore, the optimization

enginescurrently availablewithinPOWERarenotprofiled tohandle

discretized search space cases,meaning thatwe can expect their

performance to be suboptimal.

We trained an autoencoder with a 2D latent vector on a micro-

second-long simulation of the unbound state. One hundred

randomly selected test structures were subsequently recon-

structed with an RMSD of only 1.5 ± 0.5 Å (Figure 3A) from the

original. We then characterized the whole latent space by gener-

ating all structures on a 2003 200 sampling grid. Within the pro-

duced models we found that several were both acceptable (no

penalty from both scoring function and RF classifier, Figure 3B),

and with an RMSD from the bound state smaller than the best

model available within the simulation (2.7 Å, against 3.2 Å from

the MD simulation, Figure 3C). This shows that the latent space

trained with unbound structures can describe protein conforma-

tions more suitable to form a complex than any of the structures

with which it was trained.

We then assessed whether POWER would be able to identify

such structures in the process of docking six HIV-1 monomers
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into a complex using two distance restraints. For this, we devel-

oped a new POWER module, leveraging on the trained autoen-

coder to generate candidate structures for docking. Thus, the

search space to generate the HIV-1 hexamer according to a cir-

cular symmetry was 6-dimensional: two coordinates within the

2D latent space, three rotation angles to determine the orienta-

tion of each subunit within the complex, and one radius of the cir-

cular assembly (see STAR Methods). The docking protocol pro-

duced 151 models, from which 23 representatives were

clustered. The best model in the top 10 had a Ca RMSD of

3.8 Å from the known complex, and the best model overall

(rank 15) had an RMSD of 3.3 Å (Figure 3D). Interestingly, the

subunits composing this model had an RMSD of 2.8 Å from

the known bound state, lower than the best structure present

in the MD simulation (3.2 Å). This result shows that, in cases

where conformational selection plays a major role, coupling

autoencoders and general optimization algorithms may help in

predicting the structure of a protein assembly with subunits un-

dergoing substantial concerted motions.

DISCUSSION

Herein, we have used autoencoders trained on structures

from MD simulations as a tool for enriching the sampling of

molecular conformational space. We have shown that their



low-dimensional latent space can be used to produce new mo-

lecular structures that are, from a geometric perspective, plau-

sible. The dimensionality reduction capabilities of autoencoders

are connected to the non-linear nature of their latent space. As in

the case of other non-linear dimensionality reduction techniques

(Das et al., 2006; Kim et al., 2015; Tribello et al., 2012), this leads

to an enhanced capability of correctly capturing the complex

movement of covalently bonded atoms as they explore the mo-

lecular conformational space. While our autoencoder appears to

perform equally or slightly worse than PCA against rigid proteins,

it performs better against more flexible ones. This indicates that

the dimensionality reduction of an autoencoder is less affected

than that of PCA by the complexity of protein dynamics (given

a reduction to the same amount of degrees of freedom, here

two). Since it is non-trivial to predict whether a coordinate in

the latent space will be associated with a plausible protein struc-

ture, we adopted quick methods to assess whether a newly

generated protein 3D structure can be considered as geometri-

cally valid. Testing generated models with an RF classifier indi-

cates that the autoencoder can produce protein structures

considered correct by a learning algorithm trained to detect min-

imal discrepancies from ordinary atomic arrangements.

We were able to show that the latent space described by a

trained autoencoder can be leveraged to extract information us-

able in contexts where extensive sampling is critical. In its cur-

rent embodiment, the autoencoder is capable of interpolating

between structures within the training set and to push the front

beyond what has been observed in simulation, although this

extrapolation capability is only local and does not include the dis-

covery of new states. As an application example, we have shown

how the autoencoder can be exploited to identify structures us-

able in a protein-protein docking scenario, implemented here in

the POWER optimization engine. As the autoencoder does better

at describing concerted motions (e.g., hinge motions) than at

capturing subtle local fluctuations, it is most suitable to handle

cases featuring domain-level rearrangements. In this context,

we propose a simple model scoring function that is quick and

effective when used by an optimization engine geared to mini-

mize continuous fitness functions. The core idea behind all

currently presented protein docking applications within POWER

is that to rapidly create a first coarse subunit arrangement, an ac-

curate energy function is not necessary if experimental data can

be used as a guide. Suitable complexes generated in such a

manner can be refined and reranked with more expensive and

accurate computational techniques in a second step. Exploiting

structures generated by neural networks for docking perfectly

fits within this philosophy: as these feature plausible arrange-

ments for backbone and Cb atoms, missing side-chain atoms

can be derived and refined a posteriori on the basis of

standard force-field parameters, as demonstrated in our model

secondary structure analysis. Further applications of our sam-

pling approach lay in areas where experimental data report on

ensemble quantities, such as chemical crosslinking.

In our tests, we have observed that it is easier to obtain an au-

toencoder capable of producing a range of different structures

when the training set features a flexible protein. Although this

shows that autoencoders work appropriately in cases where

they can be most useful, this phenomenon remains undesirable.

Preventing generative neural networks to become incapable of
reproducing the training set’s diversity is a subject of active

research in the machine learning community (Arjovsky et al.,

2017). Collecting further test cases will enable determining

whether there exists a single neural network architecture and

training protocol yielding the best performance, or whether

vice versa custom solutions (i.e., testing multiple possible

network structures and training protocols) are required, on a

per case scenario, to obtain optimal performance. Given a suffi-

ciently large dataset, it may be possible to train a general neural

network for molecular modeling that could be quickly trained via

transfer learning to tackle a specific conformational space sam-

pling problem.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw and analysed data This paper https://doi.org/10.15128/r26w924b81m

Software and Algorithms

POWER Degiacomi and Dal Peraro, 2013 http://lbm.epfl.ch/resources

Autoencoder and data analysis tools This paper https://doi.org/10.15128/r26w924b81m
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for data will be fulfilled by the author, Matteo T. Degiacomi (matteo.t.degiacomi@durham.ac.uk).

METHOD DETAILS

Molecular Dynamics Simulations
Simulations were run with using the Amber ff14SB (Maier et al., 2015) on the NAMD (Phillips et al., 2005) molecular dynamics engine.

For MurD closed state, ligands were parameterized using ANTECHAMBER (Wang et al., 2006). All atom types were found within ex-

isting ffSB14 parameters. Furthermore, the crystal structure of both MurD closed and open state featured two gaps (residues 221 to

224 and 242 to 244 for the closed, and 221, 222 and 183 to 188 in the open). We added all those missing regions using MODELLER

(Eswar et al., 2007). The MurD closed-apo state was produced by removing the ligands from the closed state.

All proteins were solvated with TIP3P water and the resulting boxes neutralized with addition of Na+ and Cl- ions. The resulting

systems energy minimized with 2000 conjugate gradient steps. We then performed 0.5 ns simulation with 2 fs time step (restraining

every covalent bond with SHAKE) in the NPT ensemble, with all protein’s Ca constrained by a harmonic potential. In all simulations

Langevin dynamics were used to impose a temperature of 300 K, using a damping of 1 ps-1. A constant pressure of 1 Atm was

imposed via a Langevin piston having a period of 200 fs, and a decay of 50 fs. The systems were then further equilibrated in the

NVT ensemble for 1 ns, after which production runs of variable length (between 0.1 and 1 ms) in the NPT ensemble were performed.

In all simulation steps, particlemesh Ewaldwas used to treat long range electrostatic interactions, a cutoff distance of 12 Å was set on

van der Waals interactions.

Analysis of MurD Opening Angle
The opening angle of MurD was calculated, in all simulations, between the centre of mass of three selections: residues 120-230 and

230-299 (distal ends of domain 2) and 299-437 (domain 3). The vectors connecting these three centres of mass are shown graphically

with two gray arrows in Figure 2.

Autoencoder Design
The autoencoder was developed in Python 3.5 using the Keras package (Chollet, 2015), with Tensorflow backend (Abadi et al., 2016).

In order to identify a suitable autoencoder structure and training protocol, we performed a systematic test using training and test sets

generated from our MD simulations. From each simulation, one frame every 100 ps was extracted, selecting only Ca, C, N, and Cb

atoms to represent the proteins’ backbone and sidechains directions. In the case of MurD, we combined 1913 structures from the

open state and 2607 for the closed one. The coordinates of each dataset were first preprocessed: each simulation was aligned

(by minimizing the RMSD from the first structure) and shifted so that atoms would only have positive coordinates. Finally,

coordinates were normalizing between zero and one. The first and last layer of the autoencoder were N-dimensional, i.e. one dimen-

sion per protein degree of freedom. We tested two different networks, one featuring 3 encoding and 3 decoding layers (hereon

‘‘3-layer autoencoder’’), and one featuring 5 encoding and 5 decoding layers (hereon ‘‘5-layer autoencoder’’), all with 20% dropout.

In both cases, we used a RELU activation function for each layer but the last one that was set as sigmoid, and used a binary cross-

entropy loss function.

Random Forests Classifier
Determining whether an arrangement of atoms corresponds to a plausible protein conformation or not can be interpreted as a clas-

sification problem. A protein with N atoms can be represented as a single point in a 3xN dimensional space. The classifier divides this

space into two regions, corresponding to plausible and not plausible protein conformations, respectively. To tackle this problem, we
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adopted aRandomForests (RF) classifier. In short, RF is composed of an ensemble of decision trees (‘‘weak learners’’), trained based

on examples of known class. After training, RF classifies an input structure based on the most voted within all its decision trees.

Preliminary tests indicated that using more than 50 estimators did not improve the classifier’s performance. We therefore set 50

as number of learners, while maximal tree depth was left unbound. For every test case described in Main Text, we generated exam-

ples of unsuitable protein conformations by altering the coordinates of each MD-generated protein conformation with random noise

(i.e. applying small displacements to each atom them, see Figure S2). 95%ofMD-generated structures and 95%of altered structures

were united and used as training set (structures selected at regular intervals), the remainder as test set. For each simulation, as for the

autoencoder, only Ca, C, N, and Cb were considered.

Protein Docking
To dock six HIV-1 subunits into a complex with POWER, we adopted a docking protocol previously described (Degiacomi and Dal

Peraro, 2013). In summary, in order to build a circular hexamer, the search space was defined as three rotation angles defining

the orientation of each monomer, the radius of the circle, and two dimensions defining coordinates in the latent space described

by the autoencoder. To assemble a specific model, POWER would first require the autoencoder to generate the structure associated

to a specific coordinate in the latent space, and then assemble the model according to desired rotations and radius values. Docking

accounted only for atoms generated by the autoencoder, i.e. Ca, C, N and Cb. The fitness function to beminimized featured a sum of

terms including a 9-6 Lennard Jones potential to avoid steric clashes of backbone atoms, an error function assessing the matching

with experimental data, as well as two terms, Sstretch and Scompress, assessing the quality of the subunit generated by the autoencoder

(‘‘stretching’’ and ‘‘compression’’, as defined in main text). These two latter components were designed to be continuous, in order to

drive the optimization algorithm towards regions of the conformational space yielding plausible models. Let d the N dimensional

vector reporting, for each atom, the distance to the closest neighbor.

SstretchðdÞ=
�

0 if maxðdsÞ < 2
maxðdÞ � 2 otherwise

(Equation 1)
ScompressðdÞ=
�

0 if minðdÞ > 0:1
5�minðdÞ � 50 otherwise

(Equation 2)

Data used to guide the docking process was based on two loose distance restraints, i.e. a disulfide bridge (between Cys42 and

Cys54) and a salt bridge (between Glu212 and Lys140) between neighbouring dimers. These had to be both plausible, i.e. have their

respective amino acids at <5 Å. All models generated by POWER with fitness function smaller than zero (no clash, matching exper-

imental data, plausible subunits) were accepted and clustered via a UPGMA hierarchical clustering, using a 2 Å cutoff. All reported

RMSDs were calculated using the coordinates of all backbone and Cb atoms. The model shown in Figure 3D had the positions of all

missing atoms reconstructed by Amber’s tleap tool.

QUANTIFICATION AND STATISTICAL ANALYSIS

Random Forests Benchmarking
To assess how accurately the RF classifier could discriminate between perturbed and unperturbed structures, we performedmultiple

training runs with variable levels of random noise (see Figure S2). We found that in all cases the classifier can discriminate with >99%

accuracy a true structure from an altered one when noise level as low as 0.5 Å are applied (i.e., every degree of freedom altered with a

random number uniformly distributed between 0 and 0.5 Å).

Autoencoder Benchmarking
For protein modelling test cases, we assessed the performance of both the 3-layer and 5-layer autoencoder using different sizes of

the latent vector (2, 3, 4 neurons) and optimizer (Adam, SGD). We also tested the effect of training using different batch sizes (50, 100,

200, 300 examples per batch), whereby at every epoch the training set is randomly subdivided, and the neural network’s weights

updated based on the combined performance against each item of a batch. This approach has been shown to be useful to escape

local minima and improves the network’s generalization performance (Ge et al., 2015). Autoencoders performance was assessed in

terms of RMSD of reconstructed test structures against original ones. For each combination of these parameter and network, we

trained the resulting autoencoder three times for 500 epochs, for a total of 144 independent training runs per case (see Data S1).

At every run, 100 randomly selected structures were separated and used for testing. We found that the Adam optimizer outperforms

SGD, that 2 encoding neurons are in most cases enough to yield good performance, that 5 layers-deep networks performmarginally

better, and that batch size does not have a significant effect on the overall performance. Inmain text we report the performance of the

best 5-layers encoder and decoder trained with Adam, with a 2-dimensional latent vector, i.e. the highest data compression level we

tested. For each run, we also calculated the pairwise RMSD of all structures used as test set, and that of the resulting reconstructed

protein structure, to determine whether the autoencoder can reproduce the diversity in examples provided as input (see Figure S3).
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Finally, we compared the secondary structure of encoded-decoded structures with their input counterparts. To do so, we assigned

all missing atoms using Amber’s tleap tool, and calculated the resulting model’s secondary structure using DSSP (Kabsch and

Sander, 1983). DSSP assigns secondary structure of each amino acid to one of eight different categories (seven kinds of structure,

plus random coil).

DATA AND SOFTWARE AVAILABILITY

Data and software presented in this work is freely available for download in Durham University repository DRO-DATA.
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