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Abstract

Temporal graphs abstractly model real-life inherently dynamic networks. Given a graph G,
a temporal graph with G as the underlying graph is a sequence of subgraphs (snapshots) Gt of
G, where t ≥ 1. In this paper we study stochastic temporal graphs, i.e. stochastic processes G
whose random variables are the snapshots of a temporal graph on G. A natural feature observed
in various real-life scenarios is a memory effect in the appearance probabilities of particular edges;
i.e. the probability an edge e ∈ E appears at time step t depends on its appearance (or absence)
at the previous k steps. We study the hierarchy of models of memory-k, k ≥ 0, in an edge-centric
network evolution setting: every edge of G has its own independent probability distribution for
its appearance over time. We thoroughly investigate the complexity of two naturally related, but
fundamentally different, temporal path problems, called Minimum Arrival and Best Policy.

Keywords: Temporal network, stochastic temporal graph, temporal path, #P-hard problem,
polynomial-time approximation scheme.

1 Introduction

Dynamic network analysis, i.e. analysis of networks that change over time, is currently one of the most
active topics of research in network science and theory. A common task in this field is to use our prior
knowledge of the network link dynamics to answer questions about the behavior of the network over
time, e.g. how quickly information can flow through it. Many modern real-life networks are dynamic in
nature, in the sense that the network structure undergoes discrete changes over time [31, 38]. Here we
deal with the discrete-time dynamicity of the network links (edges) over a fixed set of nodes (vertices).
That is, given an underlying static graph G, the network evolution over G is given by the successive
appearance or absence of each edge of G at every time step t = 1, 2, . . .. This concept of dynamic network
evolution is given by temporal graphs [27, 29], which are also known by other names such as evolving
graphs [5, 20], or time-varying graphs [1]. For a recent attempt to integrate existing models, concepts,
and results from the distributed computing perspective, see the survey papers [12, 13] and the references
therein.

Definition 1 (Temporal graph). Given an underlying static graph G = (V,E) on n vertices and m
edges, a temporal graph on G is a sequence G = {Gt = (V,Et) : t ∈ N} of graphs such that Et ⊆ E for
all t ∈ N. Every Gt is the snapshot of G at time step t.

Another way to think about temporal graphs is by assigning time-labels on the edges; for example,
if an edge e appears in the snapshots G3, G5, and G8, then we equivalently assign to e the set of labels
λ(e) = {3, 5, 8}. Due to the vast applicability of temporal graphs, various structural and algorithmic
properties of them have been studied extensively, both via theoretical/algorithmic analysis and via
empirical simulation-based analysis. In many of these works, one of the central temporal notions is that
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of a temporal path. A path in the underlying (static) graph G is a temporal path (or journey) if there
exists an increasing sequence of time-labels as one walks along the edges of the path [27, 29]. Motivated
by the fact that, due to causality, information in temporal graphs can only flow along sequences of edges
that appear in an increasing time order, many temporal graph parameters and optimization problems
that have been studied so far are based on the notion of a temporal path and other related notions,
e.g. temporal analogs of distance, diameter, connectivity, reachability, and exploration [3, 4, 6, 7, 9,
14, 18, 19, 21, 23, 28, 35]. In addition to temporal paths, recently also various temporal non-path
problems have been introduced and algorithmically studied, such as temporal vertex cover [2], temporal
coloring [30], and temporal ∆-cliques [24, 42].

Apart from the focus on the various algorithmic problems that one can study on temporal graphs,
one can also view temporal graphs through several different levels of knowledge about the actual network
evolution. On the one extreme, we may be given the whole temporal graph instance in advance, i.e. the
times of appearance and absence of every edge at all times, as it typically happens e.g. when modeling
transportation networks. On the other extreme, the temporal graph may be created by an adversary who
reveals it to us snapshot-by-snapshot at every time step. Here we focus on the intermediate knowledge
settings, captured by stochastic temporal graphs, where the network evolution is given by a probability
distribution that governs the appearance of each edge over time.

Definition 2 (Stochastic temporal graph). A stochastic temporal graph is a stochastic process G = {Gt :
t ∈ N} whose random variables are snapshots Gt ⊆ G of an underlying graph G. Every instantiation of
G is a temporal graph.

A natural feature of stochastic temporal graphs which can be observed in various real-life scenarios
(and which we address in this paper) is that the appearance probability of a particular edge at a given
time step t depends on the appearance (or absence) of the same edge at the previous k ≥ 1 time steps.
This “memory effect” can often be observed, among others, in faulty network communication and in
mobile, social, and peer-to-peer networks [16, 36, 39]. Several other models of temporal networks which
exhibit some sort of probabilistic behavior have been considered in the past, see e.g. [25].

In this paper, we study a hierarchy of models for stochastic temporal graphs. These models concern
an edge-centric network evolution, i.e. they assign to every edge of the underlying graph G a probability
distribution for its appearance over time, independently of all the other edges. The first and most basic
model (memoryless or memory-0) assigns independently to every edge e a probability pe such that, at
every time step, e appears with probability pe. In the general model (memory-k), at every time step the
appearance probability of every edge is a function of the history of its appearances/absences in the last
k ≥ 1 time steps. Clearly, for every k ≥ 1, the memory-(k − 1) model is a special case of the memory-k
model. However, in this paper we make a clear distinction between the values k = 0 (“no memory”) and
k ≥ 1 (“some memory”), as in some cases these models exhibit a fundamentally different computational
behavior for these values of k, as our results indicate (see Section 4).

Our memory-k model, k ≥ 1, is a direct generalization of the homogeneous version of the memory-1
model that was introduced in a seminal paper by Clementi et al. [15], in which all edges have the same
probability distribution for their appearance, based on their own appearance/absence at the previous
step. In this homogeneous memory-1 model, Clementi et al. gave upper bounds for the flooding time
and they provided tight characterizations of the graphs on which the flooding time is constant [15].
It is worth noting here that Avin et al. [6] studied the completely opposite extreme of our edge-centric
evolution; namely they considered a graph-centric evolution model where a global probability distribution
assigns specific transition probabilities among different snapshots [6]. Between the two extremes of the
edge-centric and the graph-centric network evolution models, there exists a whole hierarchy of locally
interdependent probabilistic patterns, i.e. probability distributions where the appearance probability of
one edge also depends on the appearance of other edges over time; such models remain mostly unexplored.

In both our memoryless and memory-k variations of stochastic temporal graphs, we study two fun-
damental temporal path (i.e. journey) problems that are defined on two designated vertices s and y.
Consider a piece of information that is generated at s at time 1, which we would like to send to y via
an s-y journey. The arrival time of an s-y journey in a realization of a stochastic temporal graph is the
time the information reaches y using this journey. A foremost s-y journey is one with the smallest arrival
time. In the first part of the paper we investigate the complexity of computing the expected arrival time
of a foremost s-y journey. Basu et al. [8] and Nain et al. [32] studied a similar problem but their work
is restricted to the simpler cases where the underlying graph is either a path or a grid.
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In the second part of the paper we investigate the complexity of computing the arrival time of a
best policy for actually choosing a particular s-y journey in the stochastic temporal graph. To illustrate
this notion of a best policy, assume that some piece of information is carried by an entity, say Alice.
Alice is given as input the parameters of the stochastic temporal graph (i.e. the probabilistic rules on
the edges) and, at every time step, she knows the current snapshot and her current location. Based on
this information, Alice has to decide at every step for her next action, while her goal is to reach y as
quickly as possible on expectation, starting at time 1. In a very inspiring paper, Basu et al. [7] consider
this problem in the special case of the memoryless model where all edges have the same probability of
appearance at every time, and give a Dijkstra-like polynomial-time algorithm. Ogier and Rutenburg [34]
consider the memory-1 case and study a slightly different (and harder) problem in which they also allow
arbitrary link delays. They show that their problem is in general #P-hard, by giving a reduction from
the two-terminal reliability problem, and provide some polynomial algorithms for special cases. Special
cases of the memory-1 model were also considered in [10].

To illustrate the difference between the two problems we study, we make the following analogy. In the
first problem (Minimum Arrival) we try to transfer information from s to y using an unbounded number
of messages, i.e. we “flood” the stochastic temporal graph with information. Initially the information is
stored at s at time 1 and then, at every step, every informed vertex informs all its neighbors as soon as
the edge between them becomes available. In the second problem (Best Policy) we try to transfer a
package with a tangible good from s to y. Now, at every step we need to decide for the actual route of
the package through the network: when an edge appears, should we ship the package along it or rather
wait where we currently are? Best Policy is more relevant to real-life applications than Minimum
Arrival, where an actual good journey needs to be found in real time.

Our contribution. In the first part of the paper, in Section 3, we provide our results for the problem
Minimum Arrival, i.e. for computing the expected arrival time of a foremost s-y journey in a stochastic
temporal graph. First we prove in Section 3.1 that Minimum Arrival is #P-hard even for the memo-
ryless model (and thus also for the memory-k model, for every k ≥ 1). The reduction is done from the
problem #PP2DNF which counts the number of satisfying assignments in a positive partitioned 2-DNF
Boolean formula [37].

Second, we provide in Section 3.2 a non-trivial approximation scheme for Minimum Arrival, based
on dynamic programming, for the memoryless model in the case where the underlying graph G is a
series-parallel graph with s and y being its terminals. More specifically, it turns out that this is a Fully
Polynomial-Time Approximation Scheme (FPTAS) whenever the probabilities pe are lower bounded by
1
nc for some c ≥ 1. Let X be the random variable that expresses the arrival time of a foremost s-y
journey. For every ε ∈ (0, 1], our FPTAS gives an algorithm that produces a value µ where E(X)− ε ≤
µ ≤ E(X), and runs in polynomial time in both n and 1

ε . Although our main result of Section 3.2
concerns series-parallel graphs, we actually present a more general FPTAS approach (see Theorem 3)
which is of independent interest and could lead to FPTASs also for more general classes of underlying
graphs G.

Third, we present in Section 3.3 a Fully Polynomial Randomized Approximation Scheme (FPRAS)
for Minimum Arrival in the memory-k model, for every k ≥ 0, under the assumption that every edge
appearance probability is lower bounded by 1

nc for some c ≥ 1 regardless of the history of the edge. Let X
be the random variable that expresses the arrival time of a foremost s-y journey. For every ε ∈ (0, 1), our

FPRAS gives a randomized algorithm that produces an estimate X̃ where (1−ε)E(X) ≤ X̃ ≤ (1+ε)E(X)
with probability tending to 1 as n→∞, and runs in polynomial time in both n and 1

ε .
In the second part of the paper, in Section 4, we provide our results for the problem Best Policy,

i.e. for computing the expected arrival time of a best policy for choosing a particular s-y journey. Initially
we provide in Section 4.1 a dynamic programming algorithm for the memoryless model which runs in
O(n2) time and space. In wide contrast, we prove in Section 4.2 that Best Policy becomes #P-hard
for the memory-k model, where k ≥ 3, again by providing a reduction from the problem #PP2DNF.
Finally, we provide in Section 4.3 a formulation of Best Policy in the memory-k model using the
general Markov Decision Process (MDP) framework which allows us to devise in Section 4.3.2 an exact

doubly exponential-time algorithm with running time O(2(kmn+n logn)·2km).
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2 Preliminaries

In this paper we consider temporal graphs (see Definition 1) in which the underlying (static) graph
G = (V,E) has n vertices and m edges. A subgraph H = (VH , EH) of G, denoted by H ⊆ G, is a
graph where VH ⊆ V and EH ⊆ E. A spanning subgraph H = (V,EH) of G, denoted by H ⊆s G, is
a graph on vertex set V where EH ⊆ E. For every vertex u ∈ V , the neighborhood ΓG(u) of u in G
is the set of adjacent vertices of u in G. The closed neighborhood ΓG[u] also contains vertex u itself,
i.e. ΓG[u] = ΓG(u) ∪ {u}. For simplicity of notation we denote [n] = {1, 2, . . . , n} for every n ∈ N.
Furthermore, sometimes we refer to the discrete time steps t = 1, 2, . . . as days. Throughout the paper
we consider stochastic temporal graphs that exhibit an edge-centric evolution, i.e. every edge e of G is
assigned one probability distribution for its appearance over time, independently of all other edges. We
investigate the case where there is a “memory effect” that governs the probability of appearance of every
edge over time. We distinguish now the cases where the memory is zero or non-zero.

Memoryless (or memory-0) model. Every edge e ∈ E evolves stochastically and independently of
other edges as follows: at every time step t ∈ N, e appears in Gt with probability pe and is
absent with probability 1 − pe, independently of any other time step. The numbers {pe : e ∈ E}
are given parameters of the model. We denote this (memoryless) stochastic temporal graph by
G(0) = (G, {pe : e ∈ E}) or simply G(0) = (G, {pe}).

Memory-k model. This model of temporal graphs exhibits stochastic time-dependency of the edges:
we assume an initial (arbitrary) sequence of k snapshots, G−k+1, . . . , G−1, G0 ⊆ G. At every time
step t ≥ 1, every edge e appears independently of all other edges with probability that depends
only on (the edge and) the history of appearance of e in the k previous snapshots. At every time
step t, this history is a k-bit binary vector, where a 0-entry (resp. 1-entry) on the i-th position
denotes absence (resp. appearance) of e in Et−k+i−1, for i = 1, . . . , k. Therefore the snapshot Gt
is the graph that appears at time t ≥ 1 as the result of the following experiment: given the history

H
(k)
e of the appearance of edge e ∈ E in the last k snapshots, e belongs to Et independently with

probability pe(H
(k)
e ). We denote the memory-k stochastic temporal graph by G(k).

In the particular case where k = 1, the memory-1 stochastic temporal graph G(1) is the sequence
{Gt = (V,Et) : t ∈ N} of snapshots such that Et = {e ∈ E : Xe

t = 1}, where {Xe
t }t∈N is a Markov

chain for the edge e ∈ E with states {0, 1} (corresponding to non-appearance and appearance of
e, respectively) and probability transition matrix:

Me =

 0 1
0 1− pe pe
1 qe 1− qe

 , where 0 ≤ pe, qe ≤ 1.

Using this formalism, pe (resp. qe) is the probability that the edge e changes its current state from
absence to appearance (resp. from appearance to absence) in the next snapshot. Note here that,
setting pe = p and qe = q for every edge e, we obtain exactly the well-established edge-Markovian
evolving graph model introduced by Clementi et al. [15].

2.1 The problems

This work studies two main problems, each under the models of stochastic temporal graphs defined
above. To describe both of these problems, let us first recall that information in temporal graphs flows
via journeys, i.e. temporal paths.

Definition 3 (Time-edge). A time-edge in a temporal graph G = {Gt : t ∈ N} is a pair (e, t) such that
e ∈ Et.

Definition 4 (Journey / temporal path). Let G = {Gt : t ∈ N} be a temporal graph and s, y be two
vertices of G. An s-y journey (or an s-y temporal path) in G is a sequence

(
(e1, t1), . . . , (ex, tx)

)
of

time-edges over a path (e1, . . . , ex) from s to y in G, where t1 < t2 < . . . < tx. The arrival time of the
journey is the time tx of appearance of its last edge.
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Definition 5 (Foremost Journey). A foremost s-y journey in a temporal graph G is an s-y journey with
the minimum arrival time amongst all s-y journeys in G.

Notice that the arrival time of a foremost s-y journey in a stochastic temporal graph is a random
variable, which we henceforth denote by X(s, y). The first problem that we study here is how to compute
the expected value of the latter, namely E[X(s, y)].

Problem 1 (Minimum Arrival). Given a stochastic temporal graph on an underlying graph G = (V,E)
and two distinct vertices s, y ∈ V , compute the expected value of the arrival time of a foremost s-y journey,
i.e. E[X(s, y)].

Now suppose that an individual (say Alice) is at day 0 at vertex s and would like to arrive at vertex
y through a temporal path as quickly as possible. Denote by st the vertex where she is located at time
t; then s0 = s. Every day t Alice “wakes up” in the morning and looks at which edges are available
in today’s snapshot; by only knowing her current position, the history of the last k snapshots, and the
input parameters of the stochastic temporal graph (i.e. the probabilistic rules of edge appearance), Alice
needs to decide whether:

(i) to stay at the vertex st she currently is, or

(ii) to use an edge of Gt to move to a neighboring vertex.

That is, st+1 is either equal to st or equal to some vertex of ΓGt(st).
A natural problem we can study here is to compute the expected arrival time of an s-y journey that

Alice can follow, using a best policy1 possible, i.e. a policy (sequence of actions) that minimizes her
expected arrival time at y. In this context, a policy is a function π : V × 2G → V that maps a pair
u ∈ V, G′ ⊆s G of Alice’s current vertex u ∈ V and the current snapshot G′ to a vertex v ∈ ΓG′ [u],
where 2G denotes the set of all spanning subgraphs of G. Vertex v = π(u,G′) is then the new (current)
location of Alice in her journey towards y. Notice that the arrival time of the journey suggested to Alice
by the best policy is a random variable Y (s, y), whose distribution depends on the specific stochastic
temporal graph. In particular, in the memoryless model, the expectation of Y (s, y) depends only on the
edges’ probabilities of appearance. In the memory-k model, the expectation of Y (s, y) also depends on
the initial snapshots G−k+1, . . . , G−1, G0.

Problem 2 (Best Policy). Given a stochastic temporal graph G(k) on an underlying graph G = (V,E)
and two distinct vertices s, y ∈ V , compute EG(k) [Y (s, y)].

In particular, we will write h(s, y)
def
= EG(0) [Y (s, y)] and h(s, y,G0)

def
= EG(1) [Y (s, y)].

Difference between the two problems. Before we proceed further, we first give an example illus-
trating that the problems Minimum Arrival and Best Policy are different. To demonstrate this,
assume the memoryless model G(0) and consider the 4-cycle a, b, c, d, a as the underlying graph. Let s = a
and y = c and assume that, at any time step, each edge appears independently with probability 1

2 .
Any best policy for Alice will wait until an edge incident to a appears and then cross it; if both

adjacent edges (a, b) and (a, d) appear at the same time, then it does not matter which one she chooses.
The event “some edge adjacent to a appears” occurs with probability 3

4 , hence, the expected time until
such an edge appears is 4

3 . Furthermore, when Alice reaches one of the vertices b or d, an optimal policy
will never suggest going back to a, so Alice will have to wait until the last edge to c appears, which takes
2 steps on expectation. Overall, the optimal policy for Alice will take h(a, c) = 10

3 steps on expectation.
This is the solution to Best Policy (see Problem 2).

On the other hand, Minimum Arrival (see Problem 1) asks for the expectation of the arrival time
X(a, c) of a foremost s-y journey. To compute E[X(a, c)], denote by Tb (resp. Td) the arrival time of a
journey allowed to use only edges (a, b) and (b, c) (resp. (a, d) and (d, c)), when they appear. Then,

X(a, c) > k ⇔ Tb > k and Td > k

1We use the term “policy” here (instead of “strategy”) since, as we will see later, this problem can be formulated using
a Markov Decision Process (MDP).
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But the probability of the event {Tb > k} is equal to the probability that either (a, b) does not appear
until (and including) step k plus the probability that it appears within the first k steps, and (b, c) does
not appear after that until (and including) k. Therefore,

Pr[Tb > k] =
1

2k
+ k

1

2

1

2k−1
= (k + 1)

1

2k
.

By symmetry we have Pr[Tb > k] = Pr[Td > k] and, by independence, for any k ≥ 2:

Pr[X(a, c) > k] = Pr[Tb > k] Pr[Td > k] =
1

22k
+ k

1

22k−1
+ k2 1

22k
.

By using the fact that E[X(a, c)] =
∑∞
k=0 Pr[X(a, c) > k] = 2 +

∑∞
k=2 Pr[X(a, c) > k], it follows that

E[X(a, c)] = 2 + 26
27 = 80

27 , which is strictly smaller than 10
3 .

In fact, the gap between the solution to Minimum Arrival and the solution to Best Policy can
be arbitrarily large: Consider the graph consisting of vertices s and y and n − 2 vertex disjoint paths
of length 2 between s and y. Assume also that, under the memoryless model, every edge incident to s
appears each day with probability 1 and every edge incident to y appears each day independently with
probability n−0.9. Here the expected arrival time of a best policy for Alice is h(s, y) = 1 + n0.9. On the
other hand, the arrival time of the foremost journey from s to y will be equal to the first day after day
1 on which some edge incident to y appears. But the time needed for the latter to happen follows the
geometric distribution with success probability 1 − (1 − n−0.9)n−2 = 1 − o(1). Therefore, the expected
arrival time of the foremost journey will be E[X(s, y)] = 2+o(1), i.e. much smaller than h(s, y) = 1+n0.9.

As a final note, the expected arrival time E[X(s, y)] of the foremost s-y journey is always upper-
bounded by the minimum among the expected values of the arrival times of all s-y journeys in the
temporal graph. This is actually implied by a more general and well-known lemma in Probability
Theory (Fatou’s lemma [17, p. 29]) which establishes that the expected value of the minimum among n
random variables is upper-bounded by the minimum among all the variables’ expectations.

3 Computing the expected minimum arrival time

3.1 Hardness of exact computation in the memoryless model

In this section we show that, even in the memoryless model, Minimum Arrival is #P-hard in both
undirected graphs and directed acyclic graphs (DAGs). In the proof of the following theorem, the edges
can be treated either as oriented, in which case we obtain the result for DAGs, or as non-oriented, in
which case we obtain the result for undirected graphs.

Theorem 1. Minimum Arrival in the memoryless model is #P-hard.

Proof. To prove the theorem we will provide a reduction from the #P-complete problem #PP2DNF
[37]. The latter problem is defined as follows. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be two
disjoint sets of Boolean variables. A positive, partitioned 2-DNF formula is a DNF formula of the form:

Φ =
∨

(i,j)∈E

xiyj ,

for some E ⊆ [n] × [m]. Given a positive, partitioned 2-DNF formula Φ, the problem #PP2DNF asks
for the number of truth assignments satisfying Φ. Let Φ be an instance of #PP2DNF. We define G to
be a graph with the vertex set {s, y} ∪ X ∪ Y and the edge set {(s, xi) | xi ∈ X} ∪ {(xi, yj) | (i, j) ∈
E} ∪ {(yi, y) | yj ∈ Y }, see Figure 1.

First we claim2 that the number ψ of satisfying assignments of Φ is equal to the number of spanning
subgraphs of G which contain all the edges from {(xi, yj) | (i, j) ∈ E} and have a simple path from s
to y of length 3. To see the claim, for every subset S ⊆ {(s, xi) | xi ∈ X} ∪ {(yi, y) | yj ∈ Y } of edges
we define a truth assignment α that assigns xi = 1 iff (s, xi) ∈ S and yj = 1 iff (yj , y) ∈ S. Notice
that every s-y path of length 3 in G is of the form (s, xi, yj , y) for some (i, j) ∈ E. Therefore, if the

2This claim was provided by Antoine Amarilli (https://cstheory.stackexchange.com/q/42239).
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s y

x1

x2

y1

y2

y3

Figure 1: Example construction of G, given the positive, partitioned 2-DNF formula Φ = (x1y1)∨(x1y3)∨
(x2y2).

subgraph spanned by S contains a path (s, xi, yj , y), then α assigns 1 to both xi and yj , and hence α
satisfies Φ. Conversely, given an assignment α satisfying Φ, we define a subgraph of G spanned by the
edge set {(s, xi) | xi is assigned 1 by α} ∪ {(xi, yj) | (i, j) ∈ E} ∪ {(yi, y) | yj is assigned 1 by α}. Since
α is satisfying assignment, there exists (i, j) ∈ E such α assigns 1 to both xi and yj , and therefore the
subgraph contains the s-y path (s, xi, yj , y) of length 3.

Now we define an instance of Minimum Arrival in the memoryless model as follows. Let
H be the graph obtained from G by adding three new vertices v1, v2, v3 and four new edges
(s, v1), (v1, v2), (v2, v3), (v3, y), which all together form a new s-y path of length 4. For every edge
e ∈ {(s, xi) | xi ∈ X} ∪ {(yi, y) | yj ∈ Y } we set pe = 1/2, and for any other edge e of H we set
pe = 1. In this stochastic temporal graph the duration of a foremost journey from s to y is either 3, if
for some (i, j) ∈ E the edge (s, xi) appears in time slot 1, and the edge (yj , y) appears in time slot 3,
or 4 otherwise. In other words, the duration of a foremost s-y journey depends only on the subgraph
of G spanned by the edge set R1 ⊆ {(s, xi) | xi ∈ X} that appears in slot 1, and by the edge set
R3 ⊆ {(yi, y) | yj ∈ Y } that appears in slot 3. The duration is equal to 3 if and only if the subgraph of
G spanned by R1 ∪ {(xi, yj) | (i, j) ∈ E} ∪R3 has an s-y path of length 3. Since every edge in R1 ∪R3

appears independently with probability 1/2, it follows that the probability that this subgraph has a path
of length 3 is equal to p = ψ

2n+m . Consequently,

E[X(s, y)] = 3p+ 4(1− p) = 4− p,

and hence ψ = 2n+m(4 − E[X(s, y)]). Therefore, knowing the expected duration E[X(s, y)] of an s-y
foremost journey, we can efficiently compute the number of satisfying assignments of Φ, which proves
that the computation of E[X(s, y)] is #P-hard.

Corollary 1. For every k ≥ 0, Minimum Arrival in the memory-k model is #P-hard.

3.2 The FPTAS for the memoryless model on series-parallel graphs

3.2.1 The case of paths

In this section we will consider a stochastic temporal graph P(0) = (P = (V,E), {pe}) with the underlying
graph being a path P = (s = v0, v2, . . . , vn = y).

Lemma 1. E[XP(0)(s, y)] =
∑
e∈E

1
pe

.

Proof. Consider a stochastic temporal graph with a single edge e which appears every day independently
with probability pe, and let Xe be a random variable equal to the duration of the foremost journey from
one of the endpoints of e to the other. Then XP(0)(s, y) =

∑
e∈E Xe. Notice that Xe is a geometric

random variable with probability mass function Pr[Xe = i] = (1 − pe)
i−1pe for i = 1, 2, 3, ..., and

expectation E[Xe] = 1
pe

. Therefore E[XP(0)(s, y)] =
∑
e∈E E[Xe] =

∑
e∈E

1
pe

.

Let us denote by µ the expectation µ
def
= E[XP(0)(s, y)] =

∑
e∈E

1
pe

. Note that

µ =

∞∑
i=1

Pr[XP(0)(s, y) ≥ i]. (1)
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In the remainder of this section we will show that the first O(µ lnµ) terms of sum (1) already give a very
good approximation of µ. In our analysis we will use the following bound.

Theorem 2 ([26]). Let X =
∑n
i=1Xi, where n ≥ 1 and Xi, i = 1, . . . , n, are independent geometric

random variables with parameters p1, p2, . . . , pn ∈ (0, 1], respectively. Let µ = E[X] =
∑n
i=1

1
pi

. Then
for any λ ≥ 1,

Pr[X ≥ λµ] ≤ e1−λ.

Lemma 2. Let ε be a number such that 0 < ε ≤ 1. Then

µ−
τ∑
i=1

Pr[XP(0)(s, y) ≥ i] =

∞∑
i=τ+1

Pr[XP(0)(s, y) ≥ i] < ε, (2)

for every τ ≥ µ
(
ln µ

ε + 1
)
, where µ = E[XP(0)(s, y)].

Proof. The equality in (2) follows from (1). In the rest of the proof we show the inequality. Since
τ ≥ µ

(
ln µ

ε + 1
)
≥ µ, using Theorem 2 we have

∞∑
i=τ+1

Pr[XP(0)(s, y) ≥ i] ≤
∞∑

i=τ+1

e1− i
µ =

e1−τ/µ

e1/µ − 1
≤ e1−µ(ln µ

ε+1)/µ

e1/µ − 1
=

=
ε

µ(e1/µ − 1)
≤ ε

µ(1 + 1
µ + 1

2µ2 − 1)
=

ε

1 + 1
2µ

< ε,

where we used the inequality ex ≥ 1 + x+ x2/2 which holds for every x ≥ 0.

3.2.2 A general FPTAS approach

While deriving analytically and computing efficiently the exact solution of Minimum Arrival in a path
is an easy task (cf. Lemma 1), it does not seem to be trivial for a slight generalization of paths, called
parallel compositions of paths. A parallel composition of paths is the graph obtained from a collection of
disjoint paths P1, P2, . . . , P` with end vertices si, yi, i = 1, . . . , `, respectively, by identifying the vertices
s1, s2, . . . , s` in a single vertex s, and by identifying the vertices y1, y2, . . . , y` in a single vertex y.

It is not clear whether there exists an efficient procedure for computing the expected arrival time
from s to y in a parallel composition of paths, even if the parallel paths are of equal length and all the
probabilities of edge appearance are the same. In this section we present a general approach for developing
ε-additive approximation algorithms3 for computing the expected arrival time of a foremost journey in
special classes of stochastic temporal graphs. In Section 3.2.3 we apply this approach to develop an
efficient ε-additive approximation algorithm for the problem on the class of stochastic temporal graphs
with underlying graphs being series-parallel graphs, which generalize parallel compositions of paths and
graphs in which all simple s-y paths are of the same length.

Throughout the section we denote by G(0) = (G = (V,E), {pe}) a memoryless stochastic temporal
graph with n vertices and m edges, and by s, y ∈ V two distinct vertices in G. Furthermore, we denote
by H = (V,E,w) the weighted graph obtained from the underlying graph G by assigning to every edge
e ∈ E the weight w(e) = 1

pe
.

Definition 6. Let G(0) be a memoryless stochastic temporal graph, where G is the underlying graph. A
stochastic temporal subgraph H(0) of G(0) is a stochastic temporal graph which has a subgraph H ⊆ G
as an underlying graph and inherits all edge appearance probabilities from G(0).

Observation 1. Let H(0) be a stochastic temporal subgraph of the stochastic temporal graph G(0). Then
for every natural number i we have Pr[XG(0)(s, y) ≥ i] ≤ Pr[XH(0)(s, y) ≥ i], and hence E[XG(0)(s, y)] ≤
E[XH(0)(s, y)].

The following lemma is a direct consequence of Observation 1 and Lemma 1.

3A feasible solution is ε-additive approximate if it is within ε additive factor from the optimal value. An algorithm is
called an ε-additive approximation algorithm if it returns an ε-additive approximate solution for any instance.
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Lemma 3. Let w∗ be the minimum weight of an s-y path in H. Then E[XG(0)(s, y)] ≤ w∗.

Theorem 3. Let c ∈ N and ε ∈ (0, 1]. Let pe ≥ 1
nc for every e ∈ E and suppose that there exists an

algorithm A that computes in time O (f(`, n,m)) the probabilities Pr[XG(0)(s, y) ≥ i] for all i = 1, . . . , `.
Then there exists an algorithm B that approximates E[XG(0)(s, y)] within the additive factor of ε in time

O
(
f
(
d · nc+1 ln

n

ε
, n,m

)
+ n lnn+m

)
,

for some constant d. Consequently, if f(`, n,m) is a polynomial in variables `, n, and m, then B is an
FPTAS on the instance (G(0), s, y).

Proof. Let P = (s = v0, v1, . . . , vr = y) be a minimum weight s-y path in H, and let P(0) be the stochastic
temporal subgraph of G(0) restricted to the edges of P . For convenience, let us denote ei = vi−1vi for every
i = 1, . . . , r. Then, by definition and Lemma 1, the weight w∗ of P is equal to

∑r
i=1

1
pei

= E[XP(0)(s, y)].

Let τ := w∗
(

ln w∗

ε + 1
)

. Then, by Observation 1 and Lemma 2, we have that

∞∑
i=τ+1

Pr[XG(0)(s, y) ≥ i] ≤
∞∑

i=τ+1

Pr[XP(0)(s, y) ≥ i] < ε,

and hence

τ∑
i=1

Pr[XG(0)(s, y) ≥ i] ≤ E[XG(0)(s, y)] =

∞∑
i=1

Pr[XG(0)(s, y) ≥ i]

<

τ∑
i=1

Pr[XG(0)(s, y) ≥ i] + ε,

that is,
∑τ
i=1 Pr[XG(0)(s, y) ≥ i] approximates E[XG(0)(s, y)] within the additive factor of ε.

Now we define the desired algorithm B as follows:

1. Construct the graph H and compute the minimum weight w∗ of an s-y path in H using Dijkstra’s
algorithm.

2. Using algorithm A, compute the probabilities Pr[XG(0)(s, y) ≥ i] for every i = 1, . . . , τ , where

τ = w∗
(

ln w∗

ε + 1
)

.

3. Output
∑τ
i=1 Pr[XG(0)(s, y) ≥ i].

The above discussion implies that algorithm B correctly computes the declared approximation of
E[XG(0)(s, y)]. It remains to justify the time complexity. First, Dijkstra’s algorithm can be implemented
to work in time O(n lnn + m) [22]. Second, the assumption on pe’s implies that w∗ = O(nc+1), and

hence τ = w∗
(

ln w∗

ε + 1
)

= O
(
nc+1 ln n

ε

)
. Therefore the assumption of the theorem implies that the

last two steps of the algorithm run in time O
(
f
(
d ·nc+1 ln n

ε , n,m
))

, for some constant d, which in turn

implies the complexity bound and completes the proof.

3.2.3 The FPTAS for stochastic temporal series-parallel graphs

In the present section we use the approach from Section 3.2.2 to derive a polynomial-time approximation
scheme for stochastic temporal series-parallel graphs. According to Theorem 3, the development of
such an algorithm reduces to the design of an efficient procedure of computing probabilities of the form
Pr[XG(0)(s, y) ≥ i], which is the main goal of this section.

Let G be a graph and s and y be two distinct vertices in G. The triple (G, s, y) is a two-terminal
series-parallel graph, with terminals s and y, if G can be constructed by a sequence of the following two
operations starting from a set of copies of a single-edge two-terminal series-parallel graph (K2, a, b).

1. Parallel composition: Given a pair of two-terminal series-parallel graphs (H1, s1, y1) and
(H2, s2, y2), form a new two-terminal series-parallel graph (G, s, y) by identifying s = s1 = s2

and y = y1 = y2.
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2. Series composition: Given a pair of two-terminal series-parallel graphs (H1, s1, y1) and (H2, s2, y2),
form a new two-terminal series-parallel graph (G, s, y) by identifying s = s1, y1 = s2, and y = y2.

Finally, a graph G is called series-parallel if (G, s, y) is a two-terminal series-parallel graph for some pair
of distinct vertices s and y of G.

The sequence of parallel and series compositions leading to a two-terminal series-parallel graph (G =
(V,E), s, y) can be conveniently represented by a decomposition tree. A binary tree T = (VT , ET ) with
a labeling function σ : VT → {s,p} ∪ E × {0, 1} is called a decomposition tree of a two-terminal series-
parallel graph (G, s, y) if and only if the leaves of T are labeled with elements of E × {0, 1} such that
every e ∈ E appears in exactly one label, internal nodes are labeled with p or s, and G can be generated
recursively using T as follows: If T is a single node v with σ(v) = (e, α), then G consists of the single
edge e with the source being the vertex with the smallest ID, if α = 0, and with the source being the
vertex with the largest ID, if α = 1. Otherwise, let T1 (resp. T2) be the right (resp. left) subtree of T
and (H1, s1, y1) and (H2, s2, y2) be two-terminal series-parallel graphs with decomposition trees T1 and
T2: if σ(v) = p (resp. s) then G is the parallel (resp. series) composition of (H1, s1, y1) and (H2, s2, y2).

We will make use of tree decompositions of series-parallel graphs in our algorithm. It is known that
a tree decomposition of a series-parallel graph can be constructed in linear time.

Theorem 4 ([41]). Given a two-terminal series-parallel graph with n vertices and m edges, its tree
decomposition can be computed in time O(n+m).

Let G(0) = (G = (V,E), {pe}) be a stochastic temporal graph with the underlying graph G being
series-parallel. Let also s, y ∈ V be two distinct vertices in G such that (G, s, y) is a two-terminal series-
parallel graph. We will present a dynamic programming algorithm which, for a given natural number `,
computes the set of probabilities:

Pr[XG(0)(s, y) ≥ i], i = 1, . . . , `. (3)

For convenience, the algorithm will also support the set of probabilities:

Pr[XG(0)(s, y) = i], i = 1, . . . , `− 1. (4)

Notice that having computed one of the sets of probabilities, the other set can be computed in O(`2)
time.

The algorithm is based on the following recursive equations. Since (G, s, y) is a two-terminal series-
parallel graph, it is either a single-edge graph, or can be obtained from smaller two-terminal series-parallel
graphs (H1, s1, y1), (H2, s2, y2) via one of the two composition operations.

1. In the case of a single-edge graph we have for every i ∈ [`− 1] that:

Pr[XG(0)(s, y) = i] = (1− p)i−1p, (5)

where p is the probability of appearance of the unique edge of the graph.

2. In the case of parallel composition we have for every i ∈ [`] that:

Pr[XG(0)(s, y) ≥ i] = Pr[XH(0)
1

(s1, y1) ≥ i] · Pr[XH(0)
2

(s2, y2) ≥ i], (6)

where H(0)
1 and H(0)

2 are the stochastic temporal subgraphs of G(0) restricted to the vertices of H1

and H2, respectively.

3. In the case of series composition, we have for every i ∈ [`− 1] that:

Pr[XG(0)(s, y) = i] =

i−1∑
j=1

Pr[XH(0)
1

(s1, y1) = j] · Pr[XH(0)
2

(s2, y2) = i− j]. (7)

Theorem 5. Given a stochastic temporal series-parallel graph G(0) = (G = (V,E), {pe}), two vertices
s, y ∈ V such that (G, s, y) is a two-terminal series-parallel graph, and a natural number `, Algorithm 1
correctly computes the probabilities {Pr[XG(0)(s, y) ≥ i] : i ∈ [`]} and {Pr[XG(0)(s, y) = i] : i ∈ [`− 1]} in
time O(m`2), where m = |E|.
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Algorithm 1 Compute SP probabilities

Input: A stochastic temporal graph G(0) = (G, {pe}) on an underlying two-terminal series-parallel graph
(G, s, y) with a tree decomposition TG, and a natural number `.

Output: The sets {Pr[XG(0)(s, y) ≥ i] : i ∈ [`]} and {Pr[XG(0)(s, y) = i] : i ∈ [`− 1]}

1: if G is a single-edge graph with the unique edge e then
2: for i = 1 to `− 1 do
3: Pr[XG(0)(s, y) = i] = (1− pe)i−1pe

4: Compute the set of probabilities {Pr[XG(0)(s, y) ≥ i] : i ∈ [`]}
5: else
6: (G, s, y) is a composition of two series-parallel subgraphs (H1, s1, y1) and (H2, s2, y2)

7: Compute SP probabilities(H(0)
1 , s1, y1, TH1 , `)

8: Compute SP probabilities(H(0)
2 , s2, y2, TH2

, `)

9: if (G, s, y) is the parallel composition of (H1, s1, y1) and (H2, s2, y2) then
10: for i = 1 to ` do
11: Pr[XG(0)(s, y) ≥ i] = Pr[XH(0)

1
(s1, y1) ≥ i] · Pr[XH(0)

2
(s2, y2) ≥ i]

12: Compute the set of probabilities {Pr[XG(0)(s, y) = i] : i ∈ [`− 1]}
13: if (G, s, y) is the series composition of (H1, s1, y1) and (H2, s2, y2) then
14: for i = 1 to `− 1 do
15: Pr[XG(0)(s, y) = i] =

∑i−1
j=1 Pr[XH(0)

1
(s1, y1) = j] · Pr[XH(0)

2
(s2, y2) = i− j]

16: Compute the set of probabilities {Pr[XG(0)(s, y) ≥ i] : i ∈ [`]}

17: return {Pr[XG(0)(s, y) ≥ i] : i ∈ [`]} and {Pr[XG(0)(s, y) = i] : i ∈ [`− 1]}

Proof. We start with the analysis of the correctness of the algorithm. First, if the underlying graph of the
input stochastic temporal graph is a single-edge graph, then the algorithm computes the required sets of
probabilities in lines 2-4 using equations (5). Second, if the underlying graph is not a single-edge graph,
then, by definition, (G, s, y) is either the parallel or the series composition of two two-terminal series-
parallel graphs (H1, s1, y1) and (H2, s2, y2) whose decomposition trees are the subtrees TH1

and TH2
of

TG rooted at the children of the root of TG. In the case of parallel composition, the algorithm computes
the sets of probabilities in lines 10-12 using equations (6). In the case of series composition, the algorithm
computes the sets of probabilities in lines 14-16 using equations (7). In both cases, the computation of
the probabilities uses only the corresponding sets of probabilities for the stochastic temporal subgraphs

H(0)
1 and H(0)

2 , which are computed recursively in lines 7 and 8, respectively.
In order to analyze the complexity of Algorithm 1, we observe that for every node of the decomposition

tree of the underlying graph the algorithm makes exactly one recursive call. In each of the calls, the
algorithm executes either lines 2-4, or lines 10-12, or lines 14-16. It is easy to check that each of these
sets of lines performs O(`2) operations of addition or multiplication. Since TG is a binary tree and has
exactly m leaves, in total TG has 2m− 1 nodes, and therefore the total time complexity of Algorithm 1
is O(m`2).

Finally we present an FPTAS for the expected arrival time of a foremost s-y journey in a stochastic
temporal series-parallel graph.

The following theorem follows from Theorem 3 and Theorem 5.

Theorem 6. Algorithm 2 is an FPTAS for Minimum Arrival, i.e. it approximates E[XG(0)(s, y)]

within the additive factor of ε in time O
(
m ·n2c+2 ln2 n

ε

)
, where n and m are the number of vertices and

the number of edges in the underlying graph, respectively.

3.3 The FPRAS for general graphs in the memory-k model

In this section, we present our FPRAS for Minimum Arrival in the memory-k model, for every k ≥ 0,
under the assumption that the appearance probability of every edge e is lower bounded by 1

nc for some
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Algorithm 2 FPTAS for Minimum Arrival in stochastic temporal series-parallel graphs

Input: A stochastic temporal series-parallel graph G(0) = (G = (V,E), {pe}) such that pe ≥ 1
nc for every

e ∈ E, and a number ε ∈ (0, 1].
Output: Number µ such that E[XG(0)(s, y)]− ε < µ ≤ E[XG(0)(s, y)]

1: Let H = (V,E,w) be the weighted graph obtained from the underlying graph G by assigning to
every edge e ∈ E the weight w(e) = 1

pe
2: Compute the minimum weight w∗ of an s-y path in H

3: Let τ = w∗
(

ln w∗

ε + 1
)

4: Compute a tree decomposition T of (G, s, y)
5: Compute SP probabilities(G(0), s, y,T, τ)

6: return
∑τ
i=1 Pr[XG(0)(s, y) ≥ i]

c ≥ 1 regardless of the history H
(k)
e , i.e. pe(x) ≥ 1

nc holds for all x ∈ {0, 1}k.

Lemma 4. Let c ≥ 1 be a constant and let G(k) = (G = (V,E), {pe(H(k)
e )}) be a memory-k stochastic

temporal graph such that pe(x) ≥ 1
nc holds for all x ∈ {0, 1}k and e ∈ E.Then we have

1. E[X(s, y)] ≤ nc+1.

2. σ2(X(s, y)) ≤ 2n2c+2.

Proof. For any s-y path P of G, let XP denote the random variable of the arrival time of a journey
following path P . We then haveX(s, y) = min{XP : P is an s-y path}. Therefore we haveX(s, y) ≤ XP1

for any fixed path P1 := (s = v0, v1, v2, . . . , v|P1| = y), where e1 = {v0, v1}, e2 = {v1, v2}, . . . , e|P1| =
{v|P1|−1, vP1}. Let Xt

e be the random variable equal to the shortest time required to move from one of the

end vertices of e to the other starting at time t. Then XP1 =
∑|P1|
i=1 X

ti
ei , where t0 = 0 and ti = ti−1+X

ti−1
e

for every i = 1, 2, . . . , |P1|. Since pe(x) ≥ 1
nc , note that each Xti

ei is stochastically dominated by a
geometric random variable Zi with success probability 1

nc . Therefore XP1
is stochastically dominated by∑|P1|

i=1 Zi, where the Zi’s are mutually independent. Thus E[XP1
] ≤ E[

∑|P1|
i=1 Zi] = |P1|nc ≤ nc+1, which

proves part (1) of the lemma.
For part (2) of the lemma, by definition of the variance, we have

σ2(X(s, y)) = E[X2(s, y)]− E2[X(s, y)] ≤ E[X2(s, y)] (8)

≤ E


|P1|∑
i=1

Zi

2
 (9)

=
∑
i,j

E[ZiZj ] (10)

≤ n2E[Z2
1 ] = n2 2− 1

nc

1
n2c

≤ 2n2c+2. (11)

In particular, the second inequality follows by the stochastic domination argument from part (1) and
the fact that X(s, y) is non-negative. The third inequality follows from the independence of Zi, from the
fact that the Zi’s have the same distribution, and from the fact that E[Z2

i ] ≥ E[ZiZj ], for any i, j.

In the following theorem we provide our FPRAS for Minimum Arrival.

Theorem 7. Let ε ∈ (0, 1) and let G(k) = (G = (V,E), {pe(H(k)
e )}) be a memory-k stochastic temporal

graph such that pe(x) ≥ 1
nc holds for all x ∈ {0, 1}k and e ∈ E. Then Minimum Arrival admits an

FPRAS which runs in O
(
mn5c+8

ε4 · log(nε )
)

time with probability of success at least 1− 2
n .
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Proof. Let G(k) be a stochastic temporal graph with two designated vertices s, y. Furthermore let X,
as before, be the arrival time of a foremost s-y journey. We will estimate the expectation E[X] via an
unbiased estimator approach. We perform r times independently the following experiment Exp (see
Algorithm 3); for now let us assume an arbitrary value for r, to be chosen precisely later.

Algorithm 3 Experiment Exp

Input: A stochastic temporal graph G(k) on an underlying graph G with n vertices and m edges and
two designated vertices s, y of G

1: Starting at time t = 0, let G(k) evolve until time t′ = rnc+2; the resulting temporal graph has at
most t′m time-edges

2: Compute a foremost s-y journey in this temporal graph by running the algorithm of [4] (alternatively,
one could run the algorithm of [11])

3: return the arrival time of the computed foremost journey

The probability that Exp fails to connect s to y via a journey is equal to the probability that s is
not connected to y until time t′. Therefore, Lemma 4 implies that the time to connect s to y exceeds the
expectation E[X] of X by a multiplicative factor of at least rn. By Markov’s inequality, this probability
of failure is at most 1

rn . For now, we proceed the analysis of the algorithm assuming that all experiments
succeed, and we will take the probability of failure of some experiment(s) into account later on.

Let Xr denote the mean of the outcomes of r executions of the experiment Exp. We note that

E[Xr] = E[X] meaning that Xr is an unbiased estimator of E[X]. Furthermore, σ(Xr) = σ(X)√
r

, and

hence by Chebyshev’s inequality, for every ε ∈ (0, 1) we have:

Pr [|Xr − E[Xr]| ≥ εE[Xr]] ≤
(
σ(Xr)

εE[Xr]

)2

≤ σ2(X)

rε2E2[X]
≤ σ2(X)

rε2
, (12)

where the latter inequality follows from the fact that E[X] ≥ 1. Now, by Lemma 4,

Pr [|Xr − E[X]| ≥ εE[X]] ≤ 2
n2c+2

ε2r
.

Therefore for r = 2n
2c+3

ε2 we have

Pr [Xr ∈ (1− ε, 1 + ε) · E[X]] ≥ 1− 1

n
,

that is, the mean Xr of the outcomes of r executions of the experiment Exp is within a factor of (1± ε)
from E[X] with probability at least 1− 1

n .
To analyze the probability of success of our FPRAS, let us call the probability that Xr is far from

E[X] “probability of failure of the estimator”. Recall that there is also a chance of failure in our algorithm
if any of the r experiments fails. Therefore, the probability of success is:

1− Pr[failure of FPRAS] ≥ 1− (Pr[failure of some Exp] + Pr[failure of the estimator Xr])

≥ 1−
(
r

1

rn
+

1

n

)
= 1− 2

n
.

Finally, we execute the experiment Exp for r = 2n
2c+3

ε2 times and each execution runs in total for

t′ = 2n
3c+5

ε2 time. A temporal graph generated in every experiment has at most t′m time-edges, and

therefore the algorithm of [4] runs in O(t′m log(t′m)) = O(mn3c+5

ε2 · log(nε )) time. Thus the total running

time is O(mn5c+8

ε4 · log(nε )).

4 Computing the expected arrival time of a best policy

In this section we investigate the computational complexity of our second problem, namely Best Policy.
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4.1 A polynomial-time algorithm for the memoryless model

In this section we focus on the memoryless model and we derive a polynomial-time dynamic-programming

algorithm for Best Policy. We define for every vertex v the expected arrival time h(v, y)
def
=

EG(0) [Y (v, y)] of the v-y journey suggested to Alice by a best policy (i.e. when Alice starts her jour-

ney at vertex v). To simplify notation, throughout Section 4.1 we write h(v)
def
= h(v, y), because the

target vertex y is fixed.
We now argue that a best policy for Best Policy can be defined, provided the values h(v), for all

v ∈ V , are given. To this end, assume that for all v ∈ V , the value h(v) is known; let v1 = y, v2, . . . , vn
be an ordering of vertices of V in non-decreasing values of h (ties broken arbitrarily), namely h(v1) ≤
h(v2) ≤ · · · ≤ h(vn). Clearly, v1 = y and h(v1) = h(y) = 0.

Let at be the vertex that Alice occupied at time t and recall that ΓGt(v) is the neighborhood of vertex
v in the snapshot Gt, for all v ∈ V and all t ∈ N. Intuitively, the best strategy of Alice at time t+ 1 is
to look at all neighboring vertices of at in Gt+1 and to find one with minimum h-value, namely a vertex
u ∈ arg min{h(v) : v ∈ ΓGt+1(at)}. If h(u) ≥ h(at), then Alice has no incentive to change vertex and
thus at+1 = at. Otherwise, if h(u) < h(at), then at+1 = u. We formalize the above in Lemma 5 below.
We note that the proof of optimality is in fact a consequence of Lemma 6, but we present here a short
proof for the sake of completeness.

Lemma 5. Assume the values h(v) are given for all v ∈ V , and let v1 = y, v2, . . . , vn be an ordering
of the vertices of V in a non-decreasing ordering with respect to h (ties broken arbitrarily). Then the
following policy π is optimal: for any a0 ∈ V,G1 ⊆ G,

π(a0, G1)
def
= vmin{j:vj∈ΓG1

[a0]}.

Proof. For an arbitrary policy π′, let hπ
′
(v) denote the expected arrival time of an v-y journey that

Alice can follow using the policy π′. For the sake of contradiction, suppose that there exists a policy
π∗ such that, for some vertex a0 ∈ V and some snapshot G1 ⊆ G, π∗ achieves a better expected
arrival time than π, when starting from a0 in G1. Without loss of generality we can assume that

a1
def
= π(a0, G1) 6= π∗(a0, G1)

def
= a∗1 and also that hπ(a1) > hπ

∗
(a∗1). But this is a contradiction to the

definition of the policy π, since a∗1 ∈ ΓG1
[a0], and h(a1) ≤ h(v) for all v ∈ ΓG1

[a0].

Therefore, to find the best choice for Alice, it suffices to find the values h(v), v ∈ V . In view of the
above, if Alice is on vertex vi at time 0 (i.e. she is on the i-th best vertex in terms of closeness to y),
she will move to the j-th best (with j < i) only if an edge appears between vi and vj in the next step,
and no edge to a vertex better than vj appears (i.e. no edge between vi and v`, 1 ≤ ` ≤ j − 1). This

happens with probability Qi,j = p{vi,vj}
∏j−1
`=1(1− p{vi,v`}), where {vi, v`} denotes the (undirected) edge

between vi and v`. Additionally, with probability Qi =
∏i−1
`=1(1 − p{vi,v`}) no edge to a vertex better

than vi will appear, in which case Alice will stay on vi. Therefore h(vi) can be recursively computed by

h(vi) =
∑i−1
j=1Qi,jh(vj) +Qih(vi) + 1, or equivalently:

h(vi) =

∑i−1
j=1Qi,jh(vj) + 1

1−Qi
, (13)

with initial condition h(v1) = 0. Indeed, the above equation follows by observing that the expected
length of the foremost journey to y when Alice is on vi is equal to 1 +h(v1) with probability Qi,1 (which
is the probability that an edge between vi and v1 = y exists), plus 1 +h(v2) with probability Qi,2 (which
is the probability that an edge between vi and the second best vertex v2 exists, but there is no edge
between vi and v1), and so on. In words, the above recurrence states that there is no incentive to visit
vertices with larger index and also Alice will visit the smallest index vertex vj for which the edge {vi, vj}
is present (otherwise, if no such edge exists, she will stay on vi). Using the above recurrence, we can
compute all values of h(vi) by the following bottom-up dynamic programming algorithm4:

4To avoid trivialities, we assume that the graph induced by the set of edges with non-zero probabilities is connected;
in particular, the set of probabilities can be used to model any connected underlying graph G. We also assume that the
elements of the list L can be accessed using their index, i.e. Li is the i-th element of the list.
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Algorithm 4 Best Policy in memoryless stochastic temporal graphs

Input: A stochastic temporal graph G(0) = (G = (V,E), {pe}).
Output: The values {h(v) : v ∈ V }, stored in the ordered list L.

1: Let L be the empty list
2: Append y to L; h(y)← 0
3: for i = 2 to n do

4: u← arg min

{∑i−1
j=1 p{v,Lj}

∏j−1
`=1(1−p{v,L`})h(Lj)+1

1−
∏i−1
`=1(1−p{v,L`})

: v /∈ L,
∏i−1
`=1(1− p{v,L`}) < 1

}
5: h(u)←

∑i−1
j=1 p{u,Lj}

∏j−1
`=1(1−p{u,L`})h(Lj)+1

1−
∏i−1
`=1(1−p{u,L`})

6: Append u to L

7: return L and h(v), v ∈ V

Algorithm 4 can be efficiently implemented to run in O(n2) time and space. This can be achieved by
carefully storing intermediate sums and products in step 4; indeed, at step i + 1 the only new term in
the numerator is p{v,Li}

∏i−1
`=1(1− p{v,L`})h(Li), and in the product

∏i
`=1(1− p{v,L`}) which appears in

the denominator the only new factor is 1− p{v,Li}. Concluding, we have the following theorem:

Theorem 8. Best Policy can be optimally computed in the memoryless model in O(n2) time and
space.

4.2 Hardness of computation for the memory-k model, k ≥ 3

We now show that Best Policy is #P-hard for memory-3 stochastic temporal graphs on directed acyclic
graphs, and consequently also for memory k ≥ 3.

Theorem 9. When the underlying graph is a Directed Acyclic Graph (DAG), it is #P-hard to compute
the expected arrival time of the best policy journey in the memory-3 model.

Proof. We will provide a reduction from the counting problem #PP2DNF which is known to be #P-
hard [37]. Recall that this problem takes as input a DNF formula Φ =

∨
(i,j)∈E xiyj on the sets of

variables X = {x1, . . . , xn} and Y = {y1, . . . , ym}, for some E ⊆ [n] × [m], and the task is to compute
the number ψ of truth assignments that satisfy Φ. Similarly to our reduction in the proof of Theorem 1,
we create a directed acyclic graph (DAG) H as follows. First, H has one vertex for each of the variables
in X ∪ Y ; then we add two distinct vertices s, y and one other vertex v. For every vertex xi ∈ X and
every vertex yi ∈ Y we add the directed edges (s, xi) and (yj , y). Furthermore we add the edge (xi, yj)
whenever xiyj is a clause in Φ. Finally we add the edges (s, v) and (v, y). The construction of H is
illustrated in Figure 2.

. . . . . .

X Y

s

v

y

Figure 2: The construction of the DAG H.

Denote by M = 5 · 2n+m, and assume that 2n+m ≥ 3 in order to avoid trivialities. All edges (xi, yj)
appear constantly in H, i.e. they appear at every time step i ≥ 1 in a memoryless fashion with probability
1. Both edges (s, v) and (v, y) also appear in a memoryless fashion, each of them with probability 2

M at
every step i ≥ 1. Moreover, each of the edges (s, xi) and (yj , y) appears at each step i ≥ 1 according to
the following table of memory 3. This table has four columns and eight rows. Each column is labeled with
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the sequence of consecutive time steps i− 3, i− 2, i− 1, and i. Each row corresponds to a different triple
of appearances of each of the edges in {(s, xi), (yj , y) : x ∈ X, y ∈ Y } at the time steps i− 3, i− 2, i− 1
(here 1 means “edge exists” and 0 means “edge does not exist”). At the end of each row there is a pair of
numbers (p, 1− p) which denotes that, with the particular history of memory 3, at time step i the edge
appears with probability p and it does not appear with probability 1− p. For simplicity of notation, in
the column of time step i, we write “0” and “1” to denote the entries (0, 1) and (1, 0), respectively.

i− 3 i− 2 i− 1 i
0 0 1 0
0 1 0 ( 1

2 , 1
2 )

1 0 0 0
0 0 0 0
1 0 1 1
0 1 1 1
1 1 1 1
1 1 0 1

To complete the description of our memory-3 instance, we specify that, in the fictitious initialization
snapshots G−2, G−1, G0, each of the edges (s, xi) and (yj , y) appears with probability 0, 0, and 1,
respectively, i.e. according to the first row of the above table.

The intuition of this table for the edges (s, xi) and (yj , y) is as follows. In the snapshot G1, none
of these edges appears (see the first line of the table). Then, to determine whether each of these edges
appears at time step 2 (see the second row of the table), we need to toss an unbiased coin which with
probability 1

2 outputs “appear” and with probability 1
2 outputs “does not appear”. Once this coin has

been tossed at time step 2, the status of the edge does not change any more in any subsequent time step
i ≥ 3. That is, if one of the edges (s, xi) and (yj , y) appears (resp. does not appear) at time 2, then it
appears (resp. does not appear) at all times i ≥ 3 too. This is easy to be verified by observing the rows
3-7 of the table. Note that the last row of the table is included only for the sake of completeness, as it
does not affect the appearance of any edge of H at any time step i.

Let ` be the expected s-y arrival time of the best policy in the memory-3 model. Note that, from
the above construction of the temporal graph instance, each of the edges (s, xi) and (yj , y) appears with
probability 1

2 at all steps i ≥ 2, while it does not appear at any step i ≥ 2 with probability 1
2 . Therefore,

the probability that there exists a directed temporal path (s, xi, yj , y) is equal to g = ψ
2n+m , where ψ is

the number of satisfying truth assignments of the DNF formula Φ. That is, with probability 1− g, there
exists no such temporal path from s to y with 3 edges through some vertices xi and yj . Furthermore,
the expected s-y arrival time through the edges (s, v) and (v, y) is equal to M

2 + M
2 = M . Therefore,

since with probability 1− g any policy (also the best one) needs to travel from s to y through vertex v,
it follows that ` ≥M(1− g).

We now define the following policy: at time step 1 do nothing and just wait for the outcome of the
random coin tosses which occur at time step 2. Subsequently, at time step 2 do the following: if there
exists a directed temporal path (s, xi, yj , y) then follow it, starting at time step 2; otherwise follow the
temporal path (s, v, y) which has an expected travel time M

2 + M
2 = M . The expected arrival time of

this particular policy is equal to 1 + 3g + M(1 − g), and thus it follows that ` ≤ 1 + 3g + M(1 − g).
Summarizing, we have:

M(1− g) ≤ ` ≤ 1 + 3g +M(1− g)⇔

5 · 2n+m − 5ψ ≤ ` ≤ 5 · 2n+m − 5ψ + 3
ψ

2n+m
+ 1.

The first inequality can be written as 2n+m − `
5 ≤ ψ, while the second one can be written as(

1− 3
5·2n+m

)
ψ ≤ 2n+m − `

5 + 1
5 . Therefore:

2n+m − `

5
≤ ψ ≤

(
1 +

3

5 · 2n+m − 3

)(
2n+m − `

5
+

1

5

)
≤ 2n+m − `

5
+

1

5
+

3

4
,

and thus

2n+m − `

5
≤ ψ ≤ 0.95 + 2n+m − `

5
. (14)
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Thus, knowing the expected value ` for the best policy we can derive the exact integer value for ψ in the
counting problem #PP2DNF. This completes the #P-hardness reduction.

4.3 An exact algorithm for the memory-k model, k ≥ 1

In this section we present a doubly exponential-time exact algorithm for computing the best policy for
Alice in the memory-k model, where k ≥ 1. We first give a Markov Decision Process (MDP) formulation
of our problem under the memory-k model that will be useful for the presentation of our results within
the general MDP framework.

4.3.1 An MDP formulation

We follow the notation from chapter 5.4 of [33] to give an MDP formulation. Let k ≥ 1 be a fixed
integer corresponding to the memory of the model. We denote by I = V × (2G)k the set of states,
where 2G denotes the set of spanning subgraphs of the underlying graph G. In particular, each state
(v,H(k)) ∈ I consists of a vertex v which corresponds to the vertex Alice is on and a sequence of k

graphs H(k) corresponding to the k most recent snapshots. For any t ≥ 0, we will say that H
(k)
t

def
=

(Gt−k+1, Gt−k+2, . . . , Gt−1, Gt) occurred at time t, if the snapshots at times t−k+1, t−k+2, . . . , t−1, t
areGt−k+1, Gt−k+2, . . . , Gt−1, Gt, respectively. The set of actions for Alice is the setA = V . A stationary
policy for Alice is a function f : I → A and determines a probability law Prf for a Markov chain (Xt)t≥0

with values in I as follows:

(i) Assuming that at time 0 Alice starts from vertex s and the initial sequence of k snapshots is

H
(k)
0 = (G−k+1, G−k+2, . . . , G−1, G0), the initial distribution of the Markov chain is given by

Prf
[
X0 = (s,H

(k)
0 )

]
= 1, and Prf

[
X0 = (v,H(k))

]
= 0 if v 6= s or H(k) 6= H

(k)
0 .

(ii) For any t ≥ 0, vt ∈ V , vt+1 ∈ V ,

Prf
(
Xt+1 = (vt+1, H

(k)
t+1)|Xt = (vt, H

(k)
t )

)
=

{
Pr[Gt+1 occurs at t+ 1|H(k)

t occurred at t] if f(vt, H
(k)
t+1) = vt+1

0 if f(vt, H
(k)
t+1) 6= vt+1

(15)

Without loss of generality, we will assume that every policy f is legitimate in the sense that the
following conditions hold:

A. f(vt, H
(k)
t+1) = vt+1 only if (vt, vt+1) ∈ E(Gt+1), i.e. Alice may visit vt+1 in the next step only if Gt+1

has an edge that connects vt (the vertex she is currently on) and vt+1 (the vertex she wants to go
to).

B. Recalling that the goal of Alice is to reach y, we assume that f(y,H(k)) = y, for any H(k), i.e. Alice
will never leave her target vertex once she reaches it.

We will denote by at Alice’s t-th action (vertex choice). In particular, a0 = s and

inductively at+1 = f(at, H
(k)
t+1), for any t ≥ 0. Furthermore, let µ(Gt+1|H(k)

t )
def
=

Pr[Gt+1 occurs at t+ 1|H(k)
t occurred at t].

To complete the definition of the Markov Decision Process, we assume that constant cost
c((v,H(k)), a) = 1 is incurred when action a is chosen in state (v,H(k)) with v 6= y, otherwise
c((y,H(k)), a) = 0. Therefore, for a given target y, to every legitimate policy f we can associate an

expected total cost hf (a0, y,H
(k)
0 ) starting from state (a0, H

(k)
0 ), that satisfies: hf (y, y,H(k)) = 0, for
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any H(k) and, for any a0 6= y and any H
(k)
0 ,

hf (a0, y,H
(k)
0 ) = Ef

[ ∞∑
t=0

c((at, H
(k)
t ), at+1)

]
= Ef

[ ∞∑
t=0

c((at, H
(k)
t ), f(at, H

(k)
t+1))

]
(16)

= 1 + Ef
[∑
G1

µ(G1|H(k)
0 )

∞∑
t=1

c((at, H
(k)
t ), at+1)

]
(17)

= 1 +
∑
G1

µ(G1|H(k)
0 )hf (a1, y,H

(k)
1 ). (18)

To be more clear, the expectations in equation (16) are over random variables G1, G2, . . ., while the
expectation in equation (17) is over G2, G3, . . .. Furthermore, equation (17) follows by conditioning on

G1 and equation (18) follows by observing that, by symmetry, Ef
[∑∞

t=1 c((at, H
(k)
t ), at+1)

]
equals the

expected total cost starting from (a1, H
(k)
1 ).

Note also that the values of the variables a1 and H
(k)
1 depend on G1, so they can be different in

different terms of the sum over all possible G1 in equation (18); indeed, H
(k)
1 is obtained from H

(k)
0 by

appending G1, and a1 is equal to f(a0, H
(k)
1 ).

Observation 2. Any policy f guiding Alice from s to y must satisfy recurrence (18), with initial con-
dition hf (y, y,H(k)) = 0, for every H(k).

Our objective is to find a policy that minimizes the expected total cost hf (a0, y,H
(k)
0 ). In particular,

this policy will have the value h∗(a0, y,H
(k)
0 ) = inff h

f (a0, y,H
(k)
0 ) which will be equal to the expected

arrival time of a journey suggested to Alice by an optimal policy. In fact, without loss of generality we

will assume that the h∗-values of an optimal policy satisfy h∗(a0, y,H
(k)
0 ) = inff h

f (a0, y,H
(k)
0 ), for all

a0 ∈ V and all H
(k)
0 = (G−k+1, G−k+2, . . . , G−1, G0), such that Gi ⊆ G, for all −k + 1 ≤ i ≤ 0.

4.3.2 A doubly exponential-time algorithm

We now provide our doubly exponential-time algorithm for Best Policy in the memory-k model, where
k ≥ 1. In order to simplify the notation and presentation of this section, we only provide the proof of
the algorithm for the special case k = 1; the analysis for arbitrary k ≥ 1 carries then easily over, as we
discuss at the end of the section.

Memory-1 case. Following the notation of Section 4.3.1 for memory-1, we denote by µ(G′′|G′) the
probability that the next snapshot is G′′, given that the current snapshot is G′. Furthermore, for a0 ∈ V ,
let h(a0, y,G0) be the expected arrival time of a journey from a0 to y suggested to Alice by an optimal
policy, given that the starting graph instance is equal to G0.

Similarly to the memory-0 case, we first show that we can define an optimal policy provided all
h-values are known in advance. In particular, we define the following policy π: For any time step t ≥ 0,
if at time t Alice was on a vertex at and at time t+ 1 the graph instance is Gt+1, then at time t+ 1 she
will move to a vertex u ∈ ΓGt+1 [at] that has minimum h(u, y,Gt+1), that is,

π(at, Gt+1)
def
= at+1 ∈ arg min

{
h(u, y,Gt+1) : u ∈ ΓGt+1

[at]
}
. (19)

Lemma 6. Policy π is optimal.

Proof. The lemma follows by the definition of the policy π in (19) and by part (ii) of Theorem 5.4.3
of [33].

Notice that in the definition of π, we assumed that the h-values are given. Therefore, to determine
π we need to compute h(a0, y,G0), for every a0 ∈ V and G0 ⊆ G. We start by rewriting recurrence (18)
for policy π:

hπ(a0, y,G0) = 1 +
∑
G1

µ(G1|G0)hπ(π(a0, G1), y,G1). (20)
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Since π is optimal, the left hand side of the above equation is equal to h(a0, y,G0). Furthermore, by
definition of π(a0, G1),

hπ(π(a0, G1), y,G1) = min {h(u, y,G1) : u ∈ ΓG1
[a0]} .

Therefore, recurrence (20) becomes

h(a0, y,G0) = 1 +
∑
G1

µ(G1|G0) min {h(u, y,G1) : u ∈ ΓG1
[a0]} . (21)

The difference of the above recurrence with the one we derived for the memory-0 case in (13) is that
here we need to get rid of the minimum in the right hand side. To this end, suppose that we know an
ordering of the triplets (a0, y,G0), a0 ∈ V,G0 ⊆ G, non-decreasingly according to the values h(a0, y,G0),

breaking ties arbitrarily. Notice that these are n2m
def
= N such values, where m = |E| is the number of

edges of G. Then the minimum in recurrence (21) can be replaced with the corresponding h-value, which
is completely determined by the graph G1 and the vertex a0. Doing this for all different vertices a0 and
graphs G0, we get a linear system with N equations coming from (21) and N variables (the h-values).
To this system, we then add the initial conditions h(y, y,G0) = 0, for all G0 ⊆ G. One solution of this
system (if it exists) can be found in O(N3) time.

Therefore, one approach for computing all the h-values (which however is not necessarily guaranteed
to always work, as we describe below), is the following naive brute-force algorithm: For each of the
(at most) N ! orderings of the triplets (u0, y,G0), a0 ∈ V,G0 ⊆ G, solve the linear system derived by
the recurrence (21) as described above, assuming the ordering is “correct”, namely it corresponds to an
ordering in increasing values of h(a0, y,G0). Then check if the ordering we get from the solution to that
system is the same as the one we assumed. If not, then consider a different ordering.

Notice however the following correctness issue with the above naive brute-force algorithm: suppose
the correct ordering σ∗ is considered and we construct the corresponding linear system of equations (call
it Σ) based on (21). Clearly, Σ has at least one solution, but what happens if there are more than one
solutions, some of which giving an ordering that is not consistent with σ∗? Can we find the correct
solution among all other solutions of Σ? To circumvent this problem, we replace the linear system of
equalities with a linear system of inequalities (constraints). To this end, let uσ

∗

a0,G1
be the vertex such

that uσ
∗

a0,G1
∈ ΓG1

[a0] and the triplet (uσ
∗

a0,G1
, y,G1) appears in σ∗ before all triplets (u, y,G1), for all

u ∈ ΓG1
[a0] \ {uσ∗a0,G1

}. We want to find any solution satisfying the following constraints:

h′(a0, y,G0) = 1 +
∑
G1

µ(G1|G0)h′(uσ
∗

a0,G1
, y,G1) (22)

h′(uσ
∗

a0,G1
, y,G1) ≤ h′(u, y,G1), ∀u ∈ ΓG1

[a0], a0 ∈ V \{y}, G0 ⊆ G (23)

h′(a0, y,G0) ≥ 0 ∀a0 ∈ V,G0 ⊆ G (24)

h′(y, y,G0) = 0 ∀G0 ⊆ G. (25)

By definition of σ∗, the above set of constraints has at least one solution, namely the one corresponding
to the h-values of an optimal policy. In Theorem 11 we prove that this is the only feasible solution. For
the proof, we also need the following Theorem from [33], which we restate here in our notation for
convenience:

Theorem 10 (Policy increment, Theorem 5.4.4, [33]). Given one stationary policy f , let θf denote the
policy that, for every a0, G0 minimizes

∑
G1
µ(G1|G0)hf ((θf)(a0, G1), y,G1). Then, for all a0, G0

lim
k→∞

hθ
kf (a0, y,G0) = h(a0, y,G0), (26)

provided E(a0,G0)h
f (an, y,Gn)→ 0 as n→∞.

In the above, the notation θkf means the application of policy increment k times. Furthermore,
in the expectation E(a0,G0)h

f (an, y,Gn), the state (an, Gn) is a random variable and its distribution is
determined by an optimal policy, given that we start at (a0, G0). We note that, the condition of the
Theorem holds in our case by transience of the underlying Markov chain (i.e. once Alice reaches y she
does not leave and no further cost is incurred after that).

We now prove the following:
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Theorem 11. Let σ∗ be an ordering of the triplets (a0, y,G0), a0 ∈ V,G0 ⊆ G, in increasing order of
h-values. Let (h′∗(a0, y,G0) : a0 ∈ V,G0 ⊆ G) be any feasible solution to the set of constraints (22) to
(25). Then h′∗(a0, y,G0) = h(a0, y,G0), for all a0, G0.

Proof. We define the following policy π∗ (similar to the definition of π earlier, but using the h′∗-values
instead of the h-values): For any time step t ≥ 0, if at time t Alice was on a vertex at and at time t+ 1
the graph instance is Gt+1, then at time t+ 1 she will move to a vertex u ∈ ΓGt+1 [at] that has minimum
h′∗(u, y,Gt+1), that is,

π∗(at, Gt+1)
def
= at+1 ∈ arg min

{
h′∗(u, y,Gt+1) : u ∈ ΓGt+1

[at]
}
. (27)

Since the h′∗-values satisfy constraint (22) and also, by constraint (23), uσ
∗

a0,G1
∈ arg min{h′∗(u, y,G1) :

u ∈ ΓG1
[a0]}, the expected arrival time of a journey from a0 to y when Alice follows policy π∗ is equal

to h′∗(a0, y,G0), for all a0 ∈ V and G0 ⊆ G.
Observe that, if π∗ is not optimal, then we can successively apply policy increments θkπ∗, k → ∞

as in Theorem 10, to eventually reach optimality. Notice also that the sum in the definition of policy
increment for π∗ can be written as∑

G1

µ(G1|G0)hπ
∗
((θπ∗)(a0, G1), y,G1) =

∑
G1

µ(G1|G0)h′∗((θπ∗)(a0, G1), y,G1). (28)

Therefore, by definition, π∗ itself is a policy that minimizes the above sum, and so we can take θπ∗ = π∗.
Consequently, no improvement by increment is possible, implying that π∗ is optimal. In particular,
(h′∗(a0, y,G0) : a0 ∈ V,G0 ⊆ G) is the same as (h(a0, y,G0) : a0 ∈ V,G0 ⊆ G), and the proof is
completed.

In view of the above, our algorithm for the memory-1 case is Algorithm 5.

Algorithm 5 Best Policy in memory-1 stochastic temporal graphs

Input: A stochastic temporal graph G(1).
Output: The values (h(a0, y,G0) : a0 ∈ V,G0 ⊆ G).

1: for all orderings σ∗ of the triplets (a0, y,G0), a0 ∈ V,G0 ⊆ G do
2: find a feasible solution (h′(a0, y,G0) : a0 ∈ V,G0 ⊆ G) to the linear program (22)-(25)

3: if (h′(a0, y,G0) : a0 ∈ V,G0 ⊆ G) is consistent with σ∗ then

4: return (h′(a0, y,G0) : a0 ∈ V,G0 ⊆ G)

The set of constraints (22) to (25) has N = n2m variables, namely {h′(a0, y,G0) : a0 ∈ V,G0 ⊆ G}.
Furthermore, there are (n−1)2m constraints of the form (22), at most n22m constraints of the form (23)
and n2m non-negativity and initialization constraints, i.e.O(nN) constraints in total. Therefore, Vaydia’s
algorithm for linear programming [40] can find an optimum solution in O((nN)2.5) time. Since we need
to solve this set of constraints for every possible ordering of the N different triplets (a0, y,G0), our
brute-force approach runs in O(N ! (nN)2.5) = O(NN ) time.

Memory-k case (k ≥ 1). The above analysis for the memory-1 model directly carries over to the
memory-k model, for any k ≥ 1. Indeed, the correctness proof can be slightly modified by replacing

everywhere the subgraphs Gt of G by the length-k histories H
(k)
t , respectively. Furthermore, the running

time analysis carries over to the case of an arbitrary k ≥ 1 by replacing N = n2m by N ′ = n2km.
Summarizing, we obtain the following theorem.

Theorem 12. Let k ≥ 1 and G(k) be a stochastic temporal graph, where the underlying graph G has n

vertices and m edges. Then Best Policy can be solved on G(k) in O(2(kmn+n logn)·2km) time.

Remark 1. It is easy to see that the running time of the above brute-force algorithm is dominated
by the number of different orderings N ′!, and thus we have a doubly exponential algorithm (recall that
N ′ = n2km). A different approach that can potentially lead to a faster algorithm is to start from an
arbitrary initial policy and successively apply policy increments as in Theorem 10. Even though the
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convergence analysis of such an approach is non-trivial, one could use it to find the optimal ordering σ∗

fast5 and then use σ∗ to find the unique solution to the set of constraints (22)-(25).
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