
Accepted Manuscript

The isotopic composition and fluxes of particulate organic carbon exported from
the eastern margin of the Tibetan Plateau

Jin Wang, Robert G. Hilton, Zhangdong Jin, Fei Zhang, Alexander L. Densmore,
Darren R. Gröcke, Xiaomei Xu, Gen Li, A. Joshua West

PII: S0016-7037(19)30116-4
DOI: https://doi.org/10.1016/j.gca.2019.02.031
Reference: GCA 11146

To appear in: Geochimica et Cosmochimica Acta

Received Date: 11 September 2018
Revised Date: 15 February 2019
Accepted Date: 15 February 2019

Please cite this article as: Wang, J., Hilton, R.G., Jin, Z., Zhang, F., Densmore, A.L., Gröcke, D.R., Xu, X., Li, G.,
Joshua West, A., The isotopic composition and fluxes of particulate organic carbon exported from the eastern margin
of the Tibetan Plateau, Geochimica et Cosmochimica Acta (2019), doi: https://doi.org/10.1016/j.gca.2019.02.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.gca.2019.02.031
https://doi.org/10.1016/j.gca.2019.02.031


  

1 
 

The isotopic composition and fluxes of particulate organic 

carbon exported from the eastern margin of the Tibetan 

Plateau 

Jin Wanga,b, Robert G. Hiltonb, Zhangdong Jina,c,d,*, Fei Zhanga, Alexander L. 

Densmoreb, Darren R. Gröckee, Xiaomei Xuf, Gen Lig, A. Joshua Westg 

a 
State Key Laboratory of Loess and Quaternary Geology,

 
Institute of Earth Environment, Chinese 

Academy of Sciences, Xi’an, 710061, China  
b 
Department of Geography and Institute of Hazard, Risk and Resilience, Durham University, Durham, 

DH1 3LE, UK  
c
 CAS Center for Excellence in Quaternary Science and Global Change, Xian 710061, China 

d
 Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China 

e 
Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK  

f
 Department of Earth System Science, University of California, Irvine, Irvine, CA 92697-3100, USA 
g
 Department of Earth Sciences, University of Southern California, Los Angeles, California 90089, 

USA 

Corresponding author at: SKLLQG, Institute of Earth Environment, Chinese Academy of 

Sciences, Xi’an, 710061, China 

E-mail address: zhdjin@ieecas.cn (Z. Jin). 

 

Abstract 

Erosion of organic carbon from the terrestrial biosphere and sedimentary rocks plays 

an important role in the global carbon cycle across a range of timescales. Over 

geological timescales (>104 years), erosion and burial of particulate organic carbon 

(POC) from the terrestrial biosphere (POCbiosphere) is an important CO2 sink, while 

oxidation of organic carbon derived from sedimentary rocks (petrogenic, POCpetro) 

releases CO2 to the atmosphere. Over decadal to millennial timescales, the balance 

between POCbiosphere production and degradation affects atmospheric CO2 

concentrations. To better constrain the controls on erosional carbon transfers, here 

we quantify POCbiosphere and POCpetro fluxes in a mountain range with relatively low 

runoff, the Longmen Shan, which drains the eastern margin of the Tibetan Plateau. 

We measure total organic carbon content ([OCtotal]) and the carbon isotopic 

compositions (13C/12C expressed as δ13C; 14C/12C expressed as fraction modern or 

Fmod) of organic matter in suspended sediments collected from six gauging stations 

on the Min Jiang, a tributary of the Yangtze River, from 2005 to 2012. We find that 

POCpetro has a large range of δ13C, from -26.2‰ to -13.2‰. This POCpetro mixes with 
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POCbiosphere to set the δ13C of POC in river sediments. Binary mixing models reveal 

the possibility of aged POCbiosphere at two gauging stations which drain the high 

elevations of the eastern Tibetan Plateau, with modelled Fmod values of 0.82 ± 0.09 

and 0.84 ± 0.08. This is consistent with prior suggestions of aged biospheric carbon 

being eroded from the Plateau.  

The annual POCpetro yields range from 0.04 ± 0.02 tC km-2 yr-1 to 1.69 ± 0.56 tC km-2 

yr-1 across the five study catchments, with basin average yield that appears to be 

linked to catchment average slope as a likely proxy for erosion rate. Here, the 

variability in the petrogenic organic carbon content of rocks masks the signal of the 

weathering and oxidation of this rock-derived organic carbon. The annual 

POCbiosphere yields range from 0.21 ± 0.04 tC km-2 yr-1 to 3.33 ± 0.57 tC km-2 yr-1. 

These values are towards the lower end of those measured in mountain ranges 

around the world, which we suggest not only reflects the relatively low erosion rates 

of the Longman Shan, but also the low annual runoff (<1 m yr-1). Across this region, 

the river POCbiosphere discharge is related to the intensity of runoff events. Our data 

suggest that a wetter (and/or stormier) climate could increase the erosional export of 

POCbiosphere in this tectonically-active mountain range. Depending on the fate of 

POCbiosphere downstream in larger river systems, this could act as carbon-cycle 

climate feedback over geological timescales.  

1. Introduction 

Rivers play an important role in the global carbon cycle, exporting terrestrial carbon 

to the ocean and acting as biogeochemical reactors which can exchange carbon 

dioxide (CO2) with the atmosphere (Mayorga et al., 2005; Battin et al., 2008; Galy et 

al., 2015). Physical erosion in river catchments can mobilize particulate organic 

carbon from the terrestrial biosphere (POCbiosphere) and from sedimentary rocks 

(petrogenic POC or POCpetro) (Blair et al., 2003; Leithold et al., 2006; Galy et al., 

2007; Hilton et al., 2008a). Erosion and transport of POCbiosphere and POCpetro can 

have different impacts on the atmospheric CO2 budget across a range of timescales 

(Galy et al., 2015; Hilton, 2017). Over geological timescales, erosion and burial of 

POCbiosphere is an important CO2 sink (Berner, 1982; France-Lanord and Derry, 

1997), while oxidation of POCpetro will release CO2 into the atmosphere (Petsch et 

al., 2000; Bouchez et al., 2010; Hilton et al., 2014; Hemingway et al., 2018). Over 
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shorter timescales (decades to millennia), the balance between POCbiosphere 

production and degradation may be large enough to influence atmospheric CO2 

concentrations (Berhe et al., 2007; Yue et al., 2016).  

Globally, physical erosion is thought to be the primary control on POC discharge by 

rivers (Galy et al., 2015; Hilton, 2017). Climate and tectonics are the two main 

factors governing the rates and patterns of physical erosion (Milliman and 

Farnsworth, 2011), therefore regulating POC discharge (Hilton, 2017). However, the 

relative roles of tectonic and climatic drivers of POC erosion – and thus the links 

between mountain building, the carbon cycle, and changes in climate – remain 

unresolved in many parts of the world. The India-Eurasia collision zone and high-

elevation Tibetan Plateau are recognized for their important contributions to the 

global fluxes of fluvial sediments and solutes (Galy and France-Lanord, 2001; 

Milliman and Farnsworth, 2011). A large body of prior work has focused on the 

frontal Himalaya (France-Lanord and Derry, 1997; Galy et al., 2007, 2008a; Galy and 

Eglinton, 2011), where the rapid rates of tectonic uplift and associated physical 

erosion result in high POC yields (Galy et al., 2015). It is thought that more than 50% 

of POCbiosphere carried by the Ganges and Brahmaputra Rivers draining from the 

Himalaya is degraded and replaced by lowland-derived POCbiosphere during floodplain 

transit (Galy et al., 2008b), but most of the POC exported from the floodplain is then 

preserved in the Bengal Fan due to the sediment properties and high sedimentation 

rates (Galy et al., 2007). Importantly, the POC carried by the Ganges and 

Brahmaputra Rivers appears to include aged POCbiosphere eroded from the high 

elevations of the Tibetan Plateau (Galy and Eglinton, 2011); oxidation of this pre-

aged POCbiosphere during river transport could represent a source of CO2 to the 

modern atmosphere over decadal to millennial timescales (Galy and Eglinton, 2011).  

In contrast to the frontal Himalaya, the source and yield of POC eroded from the 

eastern margin of the Tibetan Plateau, flanked by the Longmen Shan mountains 

(Densmore et al., 2007) which are drained by the Yangtze River, remains poorly 

constrained. Like the Himalaya, this area is tectonically active and may also host 

pre-aged POCbiosphere at high elevations. But in contrast to the Himalaya and other 

mountainous regions where POC discharge has been quantified, the Longmen Shan 

has moderately low runoff (<1 m yr-1, compared to > 2 m yr-1 in the areas of most 

prior studies reviewed by Hilton, 2017). In addition, the monsoonal climate and the 
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occurrence of the 2008 Mw 7.9 Wenchuan earthquake make this an interesting 

location to assess the relative roles of climate and tectonics in regulating POC 

erosion.  

Using a pair of gauging stations on the Zagunao River (drainage area = 4486 km2), 

upstream and downstream of a region affected by coseismic landslides, Wang et al. 

(2016) showed that fluvial discharge of POCbiosphere more than doubled along this 

reach following the Wenchuan earthquake. Here we combine the published data 

from Wang et al. (2016) with new suspended sediment samples from 4 additional 

hydrological stations which drain an area of the Longmen Shan that is much larger 

than that impacted by the earthquake (Li et al., 2014), covering a total drainage area 

of 14384 km2 (Fig. 1). Samples were collected from 2005 to 2012. To constrain the 

compositional range of POC and its sources, we have measured a combination of 

[OCtotal], Fmod, and δ13C of organic carbon (δ13Corg). We combine the hydrometric and 

geochemical data to quantify the POC discharge from the Longmen Shan. Our 

central aim is to quantify the fluxes of organic carbon and to establish the controls on 

its δ13Corg and Fmod values in rivers across this mountain range, with implications for 

understanding how climate regulates the erosion of carbon from the biosphere. 

2. Materials and Methods  

2.1 Study Area 

The Min Jiang is a principal tributary of the Yangtze River and a major river draining 

the Longmen Shan (Fig. 1). We study three pairs of upstream (U) and downstream 

(D) gauging stations in the upper Min Jiang catchment: i) the Heishui River tributary 

(U1 = Heishui station, D1 = Shaba station); ii) the Zagunao River tributary (U2 = 

Zagunao, D2 = Sangping); and iii) the main stream of the Min Jiang (U3 = 

Zhenjiangguan, D3 = Weizhou), where D3 is downstream of all stations (Fig. 1). The 

catchments drain the steep and high relief terrain of the Longmen Shan (Burchfiel et 

al., 1995; Densmore et al., 2007) with drainage areas ranging from 1720 km2 at 

station U1 to 18870 km2 at station D3 (Table 1). This region has a long, complex 

deformation history resulting from collision of the Songpan–Ganze terrain with the 

Yangtze block (Burchfiel et al., 1995) which developed in the Mesozoic time 

(Burchfiel et al., 1995; Chen and Wilson, 1996) and was reactivated in the Cenozoic 

(Burchfiel et al., 1995), as recently manifested by the 2008 Mw 7.9 Wenchuan 
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earthquake (Burchfiel et al., 2008). The plateau margin comprises Proterozoic 

granitoids and high-grade metamorphic rocks, including Neoproterozoic crystalline 

massifs, overlain by a Paleozoic passive margin sequence and Mesozoic foreland 

basin sediments (Fig. 1b). Our study reaches are underlain by metamorphosed 

Triassic Songpan-Ganze flysch-type sediments intruded by granitic plutons. Thus, a 

striking feature of the Min Jiang drainage area is the wide range of lithologies subject 

to spatially heterogeneous erosion in the Longmen Shan (Liu-Zeng et al., 2011). 

The regional climate is influenced by the East Asian and Indian summer monsoons, 

which lead to a rainy season from May to October that supplies 70% – 80% of the 

annual precipitation. The upper Min Jiang catchment is characterized by an alpine 

climate, with mean annual temperature below 13 °C (Zhang et al., 2005; Zhang, 

2008). The dominant landscape types are forest, shrubland and grassland, which are 

very similar in terms of areal coverage (each comprising ~30% of the land area in the 

Min Jiang; Fig. 1c; Editorial Committee for Vegetation of China, Chinese Academy of 

Sciences, 2007). With the exception of the upstream catchment above the Zagunao 

station (station U2), the original forests were harvested mainly from the 1950s to the 

1970s and replanted since the 1990s (Cui et al., 2012). Due to the high relief, steep 

topography and precipitation gradient, both the forest and soil types vary with altitude. 

Shrub is dominant in the arid river valleys from 1300 m to 2600 m (Zhang, 2008). 

The soils are dominated by Hapli-Udic Cambosols and Hapli-Ustic Cambosols and 

mostly developed on alluvium and colluvial accumulations. Forest appears from 

1800 m to 3900 m, with underlying Mollic- or Umbri-Gelic Cambosols that are deeper 

and are rich in organic carbon (Xian et al., 2009). At higher elevations are shrubland 

and alpine meadow, characterized by Matti-Gelic Cambosols (Zhang, 2008). Soil 

organic carbon stocks range from 9 × 103 tC km-2 to 22 × 103 tC km-2 and vary with 

forest type and elevation (Xian et al., 2009).  

The tectonic setting, topography, and climate combine to set temporal and spatial 

patterns in erosion. The decadal basin-averaged erosion rate calculated from 

sediment fluxes measured at 62 hydrological gauging stations is ~0.5 mm yr-1 along 

the eastern margin of the plateau and decreases towards the Tibetan Plateau, to 

0.05 mm yr-1 (Liu-Zeng et al., 2011). This result is generally comparable to erosion 

rates over millennial timescales derived from cosmogenic 10Be measurements 

(Ouimet et al., 2009; Godard et al., 2010) and Myr-scale erosion rates inferred from 



  

6 
 

thermochronology (Ouimet, 2010). Erosion rates of our studied catchments are 

moderate, ranging from 0.1 to 0.2 mm yr-1 (Liu-Zeng et al., 2011). Mean annual 

precipitation has no clear impact on the spatial patterns of erosion rate (Liu-Zeng et 

al., 2011), but intense runoff events play an important role in evacuating sediment in 

river suspended loads (Wang et al., 2015). Over thousands of years, earthquakes 

and associated landslides are thought to be a major contributor of sediment and a 

main driver of the sediment fluxes and long-term denudation rates (Li et al., 2017). 

2.2 The Wenchuan Earthquake 

The Mw 7.9 Wenchuan earthquake on 12 May 2008 ruptured the Yingxiu-Beichuan 

and Pengguan faults that bound the mountain front. The earthquake triggered tens of 

thousands of landslides (Parker et al., 2011; Li et al., 2014) which increased 

suspended sediment fluxes in the years that followed (Wang et al., 2015) and also 

increased POC discharge in rivers impacted by landslides (Wang et al., 2016). Most 

of the study area here did not experience significant earthquake-triggered landslides 

based on landslide mapping by Li et al. (2014). Stations U1, D1 and U3 were >50 km 

from the fault rupture (Fig. 1a), and the proportion of their catchment areas with 

mapped landslides was <0.01%. Previous work has established that there were no 

significant changes in suspended sediment fluxes following the earthquake at these 

gauging stations (Wang et al., 2015), consistent with the lack of observed landslides.  

The catchments of three of the gauging stations studied here experienced moderate 

numbers of earthquake-triggered landslides: two stations on the Zagunao River 

(station U2 and D2), which were the focus of investigation by Wang et al. (2016), and 

the middle reaches of the Min Jiang (D3). With moderate landslide impact (~0.3% of 

the downstream area), the ratio between POCbiosphere discharge (tC yr-1) at U2 and 

D2 (the “downstream POCbiosphere gain”) doubled in the four years after the 

earthquake (Wang et al., 2016). Our sample stations do not capture the locations 

with the highest amount of coseismic landslides per unit area (Li et al., 2014). For 

these reasons, we do not focus on the impact of the 2008 Wenchuan earthquake in 

our analysis here, instead noting that published work develops interpretations about 

the earthquake effects as far as currently available data allow (Wang et al., 2016). 

2.3 River Sampling 
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The Chinese Bureau of Hydrology (CBH) maintains the gauging stations used in this 

study from the upper Min Jiang; water discharge (Qw, m3 s-1) is measured daily and 

suspended sediment samples are collected and archived at these stations (Fig. 1). 

The CBH collected suspended sediment samples up to 8 times per day during April 

to October from 2005 to 2009 by filtering 2 or 4 L of water through ~1 μm paper 

filters (Ministry of Water Resources of China, 2007). The water was collected with a 

depth-integrated sampler (Ministry of Water Resources of China, 2007; Wang et al., 

2015). In addition, suspended sediment samples from 2009 to 2012 were collected 

weekly for geochemical analysis by CBH staff from stations U1, D2, U3 and D3. For 

those samples, 1 L of water was collected and passed through a 0.7 μm GF/F filter 

which was then dried at 60 °C and stored in a petri dish (Wang et al., 2016).  

The suspended load samples were collected over a wide range of hydrological 

conditions, as illustrated by the range of suspended sediment concentrations (SSC, 

g L-1) sampled at each gauging station (Electronic Annex Table EA1). These ranged 

from: 0.01 g L-1 to 14.33 g L-1 at station U1; 0.03 g L-1 to 12.11 g L-1 at station D1; 

0.08 g L-1 to 25.56 g L-1 at station U2; 0.03 g L-1 to 12.87 g L-1 at station D2; 0.04 g L-

1 to 38.83 g L-1 at station U3; and 0.02 g L-1 to 8.09 g L-1 at station D3.  

To help constrain the composition of POC sources in the landscape, samples of river 

bed material, bedrock, vegetation and soil were sampled from the study area in 2014 

(Fig. 1). River bed materials (n = 37) were collected at the surface of the river bed 

during low water level. Approximately 1 kg of sand- to mud-sized material was 

collected and stored in clean sealed bags. Near these sites, bedrock samples were 

collected (n = 20), with weathered surfaces removed prior to collection. Wood and 

twig fragments were sampled from bars on rivers (n = 54) and are likely to represent 

material eroded and transported during the previous rainy season. At 9 locations, soil 

materials were collected from O to C horizons with a trowel and transferred to sealed 

bags (n = 22). After returning to the laboratory, all samples were dried at 60 °C in the 

oven and stored in sealed bags. 

2.4 Analytical Methods 

Suspended load samples were removed from the filters using gentle agitation with a 

spatula and were homogenized using a mortar and pestle. The bedrock, soil and bed 

material samples were ground to a powder by a vibratory disc mill. The vegetation 
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samples were cleaned of surface decomposed material and were ground in a 

cryogenic grinding machine. All samples apart from the vegetation were subject to a 

carbonate removal protocol using a liquid 4M HCl leach at 80°C for 4 hours (see 

details in Clark et al., 2013; Wang et al., 2016). This is known to remove a labile 

component of the organic matter (Galy et al., 2007) and so here our results reflect 

acid insoluble organic carbon.  

The [OCtotal] was determined by combustion at 1020°C in O2 within a Costech CHN 

elemental analyzer (EA). δ13Corg was determined by continuous flow from the EA 

coupled via CONFLO-III to a Thermo-Delta-V isotope ratio mass spectrometer 

(Hilton et al., 2008b; Clark et al., 2013) in the Stable Isotope Biogeochemistry 

Laboratory at Durham University. Values were normalized based on measured 

values of several standards and reported in δ13C notation relative to Vienna Pee Dee 

Belemnite (VPDB). Duplicates of the samples (n = 42) returned an average standard 

deviation on δ13C of ±0.1‰ and an average relative standard deviation on [OCtotal] 

values of ±2.5%, and we take these as the average precision of the analyses and 

report it as ±1 standard deviation. Radiocarbon (14C) activity of samples was 

measured by accelerator mass spectrometry (AMS) after carbonate removal and 

graphitization at the Keck-Carbon Cycle AMS Facility at the University of California, 

Irvine, USA, and is reported as fraction modern (Fmod). 

The suspended load samples from 2005 – 2009 were collected on paper filters, and 

we quantified the filter blank to correct the contribution of C from the paper to the 

samples. The detailed methods of the blank correction on [OCtotal], δ
13C and Fmod 

values are found in Wang et al. (2016). In summary, the filter blank contributed <10% 

of the mass of carbon in 98% of the samples analysed. [OCtotal] was corrected as a 

linear function of sample mass, and δ13C and Fmod values were corrected by the 

paper contribution and δ13C and Fmod of blank samples (combusted quartz sand; 

Wang et al., 2016). 

2.5 Quantification of POCbiosphere and POCpetro Contributions 

Different approaches have been used to trace the sources of POC and quantify their 

contributions to river suspended loads. Radiocarbon activity has proven to be one of 

the most robust ways to constrain POC sources because of the difference between 

POCpetro (which will have no measurable 14C above analytical background for sample 
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ages of >60 ka) and POCbiosphere which contains 14C derived from atmospheric CO2 

during recent photosynthesis (Blair et al., 2003; Komada et al., 2004; Galy et al., 

2007; Hilton et al., 2008b). Other bulk geochemical analyses, such as elemental 

(e.g., C/N) and stable C isotopic ratios, can also be used to constrain the source of 

POCbiosphere, and can provide complementary evidence for aged POCbiosphere (Hilton 

et al., 2015; Clark et al., 2017). 

Using the measured Fmod and [OCtotal] of river sediments, Galy et al. (2008a) applied 

a binary mixing model (after Blair et al., 2003) to describe the mixing of POCbiosphere 

and POCpetro in river sediments, expressed as:  

                                                                         (1) 

where Fmod, Fmod-bio, and Fmod-petro are the radiocarbon compositions of the total, 

biospheric, and petrogenic POC, respectively; and [OCtotal], [OCbiosphere], and [OCpetro] 

are the contents of POCtotal, POCbiosphere, and POCpetro expressed as % of dry weight. 

If the sediment mixture is well homogenised, then [OCpetro] of the total sediment can 

be written as: 

                                                                             (2) 

Because the rock-derived POC is radiocarbon-dead, we can substitute Fmod-petro = 0 

into equations (1): 

     
                                     

         
                                         (3) 

Fmod of the samples is a hyperbolic function of [OCtotal] with curvature that is defined 

by [OCpetro] (Hemingway et al., 2018). We fit the data from each station and solve 

equation (3) for Fmod-bio and [OCpetro] using non-weighted orthogonal distance 

regression in the software of OriginPro 2017.  

In addition, POCpetro often has a distinct δ13Corg and carbon content when compared 

to POCbiosphere (e.g., Hilton et al., 2010). These bulk measurements can be combined 

to investigate the nature of POC source and quantify the POCpetro and POCbiosphere 

contributions. 

2.6 Quantification of POC Discharge 
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The CBH dataset includes daily, flow-weighted mean SSC measurements, which 

can be combined with daily mean Qw to accurately quantify mean daily suspended 

sediment discharge (Qss, g s-1). These daily data can be summed to quantify annual 

suspended sediment discharge (Wang et al., 2015). The suspended sediment 

sample archive is very large, and it was only possible to measure [OCtotal] on a 

subset of samples from each river basin. As a result, POC concentrations ([POCtotal], 

gC m-3) have a lower temporal resolution compared to SSC. Therefore, to estimate 

POC discharge (QPOC, g s-1) we examine the linear relationship between log-

transformed SSC and [POCtotal] (Fig. 2) for each station and apply this empirical 

model to the daily Qw data.  

To quantify petrogenic and biospheric POC discharge (QPOC-petro and QPOC-bio) we 

used the outputs of the mixing analyses which quantify [OCpetro] for each sub-basin. 

Following the hyperbolic regression, QPOC-petro was calculated by multiplying Qss by 

[OCpetro]. The difference between QPOC and QPOC-petro is the biospheric POC 

discharge (QPOC-bio). Errors were propagated from the uncertainties on [OCtotal] blank 

correction, Qss, [OCpetro], and the relationship between SSC and [POCtotal] (Wang et 

al., 2015). Because SSC measurements are not available at station D3 (Weizhou) 

and gauging station D2 (Sangping) was not in operation in 2012, we calculate the 

Qss and QPOC from 2006 to 2011 for D2 and from 2006 to 2012 for U1, D1, U2, and 

U3. 

3. Results 

The six study sub-catchments have contrasting bedrock geology, elevation ranges 

and vegetation distributions (Fig. 1). Therefore, while plotting the data together can 

illustrate broad patterns across the Longmen Shan mountains (e.g. Fig. 3), it is more 

insightful to examine the catchments individually. Despite the differences between 

catchments, we observe common contrasts between river suspended sediments and 

bed materials for each catchment in several respects (which are expanded on in the 

sections which follow): (1) suspended sediments at all sites have higher [OCtotal] than 

their corresponding bed materials, (2) all bed materials are enriched in 13C compared 

to suspended sediments (Fig. 3), and (3) where 14C measurements are available, the 

Fmod values are much lower in river bed materials than in suspended sediments. 

These broad patterns match observations made in other mountain rivers draining 
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sedimentary bedrock (Blair et al., 2003; Leithold et al., 2006; Galy et al., 2008b; 

Hilton et al., 2010, 2017; Clark et al., 2013) and are consistent with aforementioned 

mixing of biospheric and petrogenic components if the latter are concentrated in the 

bed sediments. 

Herein the catchments are paired into upstream (U) and downstream (D) sites and 

the isotopic composition of river POC is discussed in more detail. All the individual 

suspended load sample data are provided in Table EA1 with summaries in Table 

EA2. 

3.1 POC in the Heishui River (Stations U1 and D1) 

Two gauging stations are located along the Heishui River tributary: Heishui station 

(U1) upstream and Shaba station (D1) downstream (Fig. 1). The mean [OCtotal] of 

suspended sediment from station U1 is 0.99 ± 0.30% (±1σ, n = 41) and from station 

D1 is 1.13 ± 0.71% (n = 36). The δ13Corg of POC has a mean of -25.4 ± 0.7‰ for 

station U1 and a mean of -25.0 ± 0.9‰ for station D1. The bulk δ13Corg for station U1 

and D1 is positively correlated with 1/[OCtotal] (r
2 = 0.34 and 0.79, p <0.01; Fig. 3). 

This relationship is similar to trends observed in other mountain river catchments 

(Hilton et al., 2008b; 2010) and may indicate a mixing control on the δ13Corg values. 

The Fmod of the suspended sediment ranges from 0.59 ± 0.005 to 0.79 ± 0.006 (n = 6) 

at U1 and from 0.45 ± 0.005 to 1.02 ± 0.006 (n = 5) at D1. The measured Fmod 

negatively correlates with both δ13Corg (r
2 = 0.75, p = 0.06; Fig. 4), and 1/[OCtotal] (r

2 = 

0.95, p < 0.01; Fig. 4) for station D1 but not for station U1. 

The [OCtotal] of the bed materials is 0.21 ± 0.03% (n = 5) and 0.30 ± 0.07% (n = 10) 

for stations U1 and D1, respectively. The mean δ13Corg of bed material is −21.5 ± 3.2‰ 

to −20.4 ± 1.6‰ in the upstream and downstream, respectively.  

3.2 POC in the Zagunao River (Stations U2 and D2) 

Suspended sediments were collected from 2005 to 2009 at station U2 and from 2005 

to 2011 at station D2, located at the upstream and downstream ends of the study 

reach on the Zagunao River, respectively. The data from these two stations were 

used by Wang et al. (2016) to assess the impact of the 2008 Wenchuan earthquake 

on POCbiosphere erosion. Summarized here for completeness, the [OCtotal] of the 

suspended sediment is similar at both stations with means of 0.96 ± 0.27% (n = 40) 
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at U2 and 0.96 ± 0.45% (n = 114) at D2. The mean δ13Corg of POC is -22.2 ± 1.7‰ at 

U2 and -23.7 ± 1.1‰ at D2. The δ13Corg significantly correlates with 1/[OCtotal] for 

both stations (r2 = 0.23 and 0.27 for stations U2 and D2, p < 0.01; Fig. 4). Fmod of the 

POC from station U2 ranges from 0.27 ± 0.006 to 0.74 ± 0.005 (n = 9) and at station 

D2 ranges from 0.46 ± 0.001 to 0.94 ± 0.006 (n = 16). Fmod is linearly correlated with 

δ13Corg and 1/[OCtotal] in both stations (r2 =0.45–0.67, p < 0.05; Fig. 4). 

The mean [OCtotal] of the river bed materials is 0.45 ± 0.09% (n = 5) at station U2 and 

is 0.32 ± 0.09% (n = 7) at station D2. The δ13Corg values of river bed materials in the 

Zagunao River are the most variable across the sample set, ranging from -19.8 ± 0.1‰ 

to -13.2 ± 0.1‰ at station U2 and from -19.9 ± 0.1‰ to -15.4 ± 0.1‰ at station D2. 

They are also the most 13C-enriched, with mean δ13Corg values = -15.6 ± 2.7‰ for U2 

and -18.3 ± 1.6‰ for D2. Each station has one radiocarbon analysis for the bed 

material. A very low radiocarbon activity was observed in both samples (Fmod = 0.02 

and 0.06; Table EA3), consistent with the river bed material being dominated by 

POCpetro.  

3.3 POC in the Min Jiang (Stations U3 and D3) 

The Zhenjiangguan (U3) station is located in the upstream part of the Min Jiang 

catchment, while the Weizhou station (D3) is the most-downstream station after the 

junction of the Heishui and Zagunao tributaries (Fig. 1). The [OCtotal] of suspended 

sediment has a mean of 1.09 ± 0.41% (n = 54) at station U3 and a mean of 0.62 ± 

0.27% (n = 35) at station D3. The mean δ13Corg of POC is −25.5 ± 0.8‰ at station U3 

and -24.5 ± 1.1‰ at station D3. The bulk δ13Corg is weakly but significantly positively 

correlated with 1/[OCtotal] (r
2 = 0.16 and 0.15, p < 0.05; Fig. 3). The Fmod of the 

suspended sediment at station U3 ranges from 0.59 ± 0.005 to 0.87 ± 0.006 (n = 8) 

and negatively correlates with δ13Corg (r
2 = 0.53, p < 0.05; Fig. 4). Fmod of the POC at 

D3 has a similar range from 0.58 ± 0.001 to 0.86 ± 0.002 (n = 5), which is linearly 

related to δ13Corg and 1/[OCtotal] (r
2 = 0.96 and 0.84, p < 0.05; Fig. 4). 

Three river bed material samples upstream of U3 have mean [OCtotal] values 0.20 ± 

0.03%, lower than those of the suspended sediment. The δ13Corg values of these bed 

materials average to -21.8 ± 1.6‰. River bed materials collected along the main 

stem between stations U3 and D3 (n = 7) have a mean [OCtotal] of 0.24 ± 0.12% and 

a mean δ13Corg is -22.3 ± 2.7‰.  
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3.4 Bedrock 

Twenty bedrock samples were collected throughout the upper Min Jiang catchment, 

covering a wide range of lithologies including phyllite, schist, shale, slate, mudstone, 

and granite (Table EA3). The [OCtotal] of bedrock samples from the upper Min Jiang 

is low with a mean of 0.24 ± 0.30% but displays considerable variation between 

<0.01% and 0.94%. The δ13Corg of these bedrock samples has a mean of -20.8 ± 

6.4‰, and also has a large range (Electronic Annex Fig. EA1). These values are 

more similar to the river bed materials than to the suspended sediments, but do 

cover some of the range of values measured in the suspended sediments. Very high 

δ13Corg values (>-15‰) of bedrock are found in each sub-basin. The HCl leach 

protocol used here is towards the higher end of molarities of acid used by previous 

studies (Komada et al., 2004; Galy et al., 2007), so it is difficult to invoke residual 

carbonate as a factor influencing δ13Corg values.  

River bed materials are often considered as a mixture of bedrock from within each 

catchment with relatively minor biospheric carbon input (Hilton et al., 2010; Clark et 

al., 2017). In our study, the OC content and isotopic composition of the river bed 

materials fall within the range defined by bedrock samples and could be explained as 

the mixture of different types of rocks.  

3.5 Vegetation and Soil  

The [OCtotal] of wood and twig fragments is much higher than for other types of 

samples, with values ranging from 40.04 ± 1.00% to 52.05 ± 1.30% and a mean of 

44.71 ± 1.98% (n = 54). δ13Corg for these samples averages -26.1 ± 1.8‰ and has a 

range from -30.4 ± 0.1‰ to -22.6 ± 0.1‰. These values indicate no C4 plants in our 

samples according to the global survey of plant carbon isotope compositions (Körner 

et al., 1988), consistent with our expectations for this region. 

Soils were collected from different horizons. The O horizons are richer in organic 

carbon with a mean [OCtotal] of 6.51 ± 1.64% (n = 3) ranging from 4.91 ± 0.12% to 

8.20± 0.20%. The OC in these horizons is depleted in 13C with mean δ13Corg at -28.5 

± 0.9‰ ranging from -29.4 ± 0.1‰ to -27.6 ± 0.1‰. Horizon A reaches ~50 cm in 

depth at the sites we sampled. The [OCtotal] and δ13Corg of horizon A both vary 

between different sites. The [OCtotal] ranges from 0.67 ± 0.02% to 4.09 ± 0.10% with 

a mean of 1.87 ± 1.11% (n = 10), and associated δ13Corg ranges from -28.0 ± 0.1‰ to 
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-24.3 ± 0.1‰ with a mean of -26.3 ± 1.0‰. Horizons B to C range in thickness from 

3 cm to over 1 m at our sampled sites. Because some rock detritus was mixed in 

these layers, [OCtotal] is low at 0.38 ± 0.25% ranging from 0.14 ± 0.00% to 0.91 ± 

0.02% and the δ13Corg is -22.7 ± 2.4‰ ranging from -25.5 ± 0.1‰ to -18.0 ± 0.1‰ (n 

= 9). The δ13Corg of all the soil samples is positively correlated with 1/[OCtotal] (r
2 = 

0.42, p < 0.01). 

4. Discussion 

4.1 Petrogenic Organic Carbon Influences the δ13Corg of Riverine POC 

The δ13Corg values of fine grained fluvial-sourced sedimentary deposits can be an 

important archive from which to interrogate the operation of the carbon cycle in the 

geological past (e.g. Xu et al., 2017). However, in mountain river catchments erosion 

of rocks can add POCpetro and this recycled component has been shown to strongly 

influence the δ13Corg values of river POC in Taiwan (Hilton et al., 2010), the Himalaya 

(Galy et al., 2008b) and the Peruvian Andes (Clark et al., 2013). The Longmen Shan 

is a major source of sediment to the Sichuan Basin, and here we examine the role 

that petrogenic carbon might play in controlling the δ13Corg values of river POC.  

The δ13Corg values are linearly correlated with 1/[OCtotal] in the suspended samples 

collected at each station (Fig. 3). In addition, the most 14C-depleted suspended load 

samples generally have the highest δ13Corg values (Fig. 4). These patterns are 

consistent with observations from other studies of mountain rivers (Hilton et al., 2010; 

Marwick et al., 2015). The relationship can be explained by a mixing of POCpetro from 

rocks, which here is low in [OCtotal], 
13C enriched and 14C depleted, with POCbiosphere 

from the vegetation and surface soils, which is high in [OCtotal], generally 13C 

depleted and 14C enriched (Leithold et al., 2006; Hilton et al., 2015; Clark et al., 

2017). This mixing is also suggested by the linear relationships of Fmod with δ13Corg 

and with 1/[OCtotal] of the suspended sediment samples (Fig. 4). Because of the high 

turbidity of these mountain rivers, especially at times of high runoff (Wang et al., 

2015), the in situ production of planktonic and bacterial carbon is likely to be a minor 

component of POCbiosphere. 

Four suspended load POC samples from station U2 have δ13Corg values >-20‰, 

which are higher than the most enriched values reported from other mountain rivers 

where C3 plants dominate (Marwick et al., 2015). The river bed materials are 
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dominated by POCpetro and could represent an averaged composition of POCpetro due 

to the mixing of rock clasts during sediment transport (Hilton et al., 2010; Wang et al., 

2016; Clark et al., 2017). The measured δ13Corg of the river bed material collected 

within the same catchment is -15.6 ± 2.7‰, consistent with the 13C-enriched POCpetro. 

Isotopically enriched organic matter was found in bed material samples from other 

stations, with values that fall within the range of the δ13Corg values of the bedrock 

(Table EA3). High δ13Corg values have been reported in landslide sediments and bed 

materials from another study in this area (Hara, 2016). The low Fmod also support the 

importance of 14C-depleted POCpetro as the source of higher δ13Corg values in the 

suspended load (Fig. 4).  

The high δ13Corg values of the organic matter in bedrocks of the Longmen Shan may 

reflect metamorphic reactions during the complicated tectonic history of this region 

(Robert et al., 2010). Metamorphic processes can enrich the isotope ratio of organic 

matter by devolatilization of isotopically light methane in equilibrium with graphite 

(Hoefs and Frey, 1976; Schwab et al., 2005). Therefore, high grade metamorphic 

rocks can have high δ13Corg values (Andreae, 1974), regardless of the terrestrial or 

marine origin of the organic matter, or their geological age (Hayes et al., 1999). In 

our study, some very high δ13Corg values are found in samples from high grade 

metamorphic terrains.  

The high δ13Corg values of bedrocks in the Longmen Shan give perhaps the most 

extreme example to date of how POCpetro can impact the stable carbon isotope 

composition of POC carried by mountain rivers (Komada et al., 2004; Hilton et al., 

2010; Marwick et al., 2015; Clark et al., 2017). If this POCpetro persists downstream 

and contributes to sedimentary deposits upon exiting the mountain belt, it may 

influence the bulk 13Corg of detrital material (Hilton et al., 2010; Kao et al., 2014). 

These shifts could be incorrectly assigned to changes expected from C4 organic 

matter inputs, or may potentially complicate the interpretation of the stable isotopic 

composition in the Sichuan Basin in terms of carbon cycle processes (Xu et al., 

2017), particularly where [OCtotal] are < 1% and POCpetro may contribute significantly 

to the mass of bulk organic carbon.  

4.2 Evidence for Aged Biospheric POC 
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Aged biospheric POC has been identified in the major frontal Himalayan tributaries 

that drain high altitudes of the Tibetan Plateau (Galy and Eglinton, 2011). Here we 

examine evidence for this component in rivers draining the Longmen Shan. The 

isotopic and elemental compositions of POC in the upper Min Jiang suggest that the 

POC is a mixture of POCbiosphere and POCpetro. However, these patterns do not 

preclude mixing of POCbiosphere from young OC in vegetation and surface soil with 

aged OC from deeper soils (Fig. 3): the 13Corg values of soil horizons A and B-C 

generally fall on the mixing line between C3 plants (and O-horizon soil) and river bed 

material (Fig. 3), such that the younger and older sources of POCbiosphere cannot be 

separated based on 13Corg values alone. To explore the age structure of the POC in 

these rivers in more detail, we turn to a binary mixing model based on hyperbolic 

regression using Fmod and [OCtotal] (Equation 3; Hemingway et al., 2018).  

We include the bed material samples for the regression at each station. However, 

only two samples at stations U2 and D2 have been analyzed for radiocarbon activity, 

with Fmod = 0.02 and 0.06, respectively. The bed materials of all stations appear 

distinct from vegetation and soil O and A layer measurements in terms of their stable 

isotopic composition, and are more similar to the bedrock samples (Fig. EA1), 

suggesting a dominance of POCpetro (Fig. 3). Therefore, we assume that the 

measured 14C activity of bed materials from U2 and D2 are representative of the 

petrogenic component for U1, D1, U3 and D3, and assume their Fmod = 0.04 ± 0.02 

(Fig. 5). A range of continuous [OCpetro] and Fmod-bio were used to generate a contour 

of Root Mean Square Error (RMSE) of the orthogonal distance regression, giving us 

a clear pattern of the predicted [OCpetro] and Fmod-bio values for each station and the 

reliability of the regression (Fig. EA2). For stations D1, U3 and D3, the regression 

through the data was fitted both with and without the assumed river bed material 

Fmod value, and returned the same predicted [OCpetro] and Fmod-bio values within 

uncertainty. This suggests the assumed low Fmod values for the river bed materials is 

valid.  

The hyperbolic binary mixing model returns an average Fmod-bio which ranges from 

lower values of 0.82 ± 0.09 (± standard error, SE) at U1 and 0.84 ± 0.08 at U3 to 

1.06 ± 0.05 at D1 (Table 1; Fig. 5). These correspond to 14C ages from ~1620 +980/-

870 14C years to ‘modern’. The estimated [OCpetro] ranges from 0.13 ± 0.10% to 0.36 

± 0.11%. These [OCpetro] values are consistent with the range of measured [OCtotal] 
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of bedrocks (Fig. EA1), which supports the use of bed materials as a POCpetro end 

member (Hilton et al., 2010) and the assumption that they have very low Fmod.  

Within ±1SE confidence intervals, the biospheric OC ages are oldest at two 

upstream stations which drain the high elevations of the eastern Tibetan Plateau, 

with 14C ages of biospheric OC of 1620 +980/-870 and 1420 +750/-690 14C years old 

at stations U1 and U3, respectively. The ages of the bulk biospheric POC in our 

study area are much younger than those determined for large Arctic rivers which 

drain extensive peat soils (Feng et al., 2013; Hilton et al., 2015) but are comparable 

to headwaters of the Amazon River (Bouchez et al., 2010; Clark et al., 2017). 

Studies from other rivers draining the Tibetan Plateau also showed thousand-year-

old OC in the Ganges-Brahmaputra system (Galy and Eglinton, 2011) and values of 

over 3000 14C year in the Yellow River (Tao et al., 2015). While uncertainties remain 

because of the size of our sample sets (Fig. 5) and the limited number of 14C 

analysis for bed materials, our new data suggest that aged POCbiosphere could be a 

widespread feature of the high elevations of the Tibetan Plateau.  

The comparison of biospheric carbon age, concentration, and loading between 

upstream and downstream locations is important for understanding the processing of 

river POC (Bouchez et al., 2010). The mean biospheric OC ages are different at the 

±1SE confidence level between upstream and downstream sites, with Fmod-bio = 0.82 

± 0.09 at U1, and Fmod-bio = 1.06 ± 0.05 at D1, while Fmod-bio = 0.84 ± 0.08 at station 

U3 contrasts with Fmod-bio = 1.04 ± 0.06 at D3 (Fig. 5). These differences could reflect 

degradation of some components of aged biospheric carbon, representing an 

emission of CO2 to the atmosphere from a carbon reservoir of millennial age (Galy 

and Eglinton, 2011). It also could result from the transformation of aged particulate 

phases to the dissolved OC pools. The observed differences in age from upstream to 

downstream could also reflect addition of younger OC mixing during transit 

downstream. However, the differences are not significant at the 95% confidence 

level, leaving open questions about how much change is in fact taking place along 

these rivers. In part, this uncertainty is inherent in the mixing approach adopted here. 

Future work could shed more light on downstream changes by analyzing the 

abundance and isotope composition of biomarkers (e.g. Galy and Eglinton, 2011; 

Ponton et al., 2014), and/or the 14C activity of distinct pools of organic matter, for 
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example as revealed by ramped pyrolysis/oxidation (Rosenheim and Galy, 2010; 

Rosenheim et al., 2013; Hemingway et al., 2018). 

4.3 River Discharge of POCpetro and POCbiosphere 

4.3.1 POCpetro Yield 

POCpetro discharge is calculated by multiplying the suspended sediment discharge by 

[OCpetro], which can be estimated by the hyperbolic regression of Fmod versus [OCtotal]. 

Based on this approach, POCpetro accounts for 11.8 ± 7.0% to 42.3 ± 15.3% of the 

total POC across the study area. When the POCpetro discharge is normalized to the 

catchment area, the annual POCpetro yield ranges from 0.04 ± 0.02 tC km-2 yr-1 to 

1.69 ± 0.56 tC km-2 yr-1 (Table EA4). In terms of individual stations, the mean 

POCpetro yield varies from 0.19 ± 0.11 tC km-2 yr-1 at station U3 to 0.85 ± 0.28 tC km-2 

yr-1 at station U2 (Table 1). POCpetro yield increases with the suspended sediment 

yield (Fig. 6a), in agreement with other observations from mountain rivers where 

erosion rates are much higher (Hilton et al., 2011) as well as with the global river 

trend (Galy et al., 2015). As a tectonically active mountain belt, the Longmen Shan is 

characterized by relatively frequent mass wasting events. Topographic slope is a first 

order control on mass wasting processes (Burbank et al., 1996; Larsen and 

Montgomery, 2012) and we find that higher average slope is associated with higher 

rates of POCpetro erosion, albeit not at the 95% confidence level (p = 0.06; Fig. 6b). 

The scatter may result from the limited number of stations studied here, the 

thresholds in the relationship between erosion rate and slope which relate to the 

bedrock landsliding process (Ouimet et al., 2009), as well as other factors such as 

climate that may affect erosional fluxes (Wang et al., 2015; Li et al., 2017).  

[OCpetro] in the Longmen Shan (Table 1) is heterogeneous between the main 

catchments in bedrocks bed materials, and as inferred from the mixing model, the 

suspended sediments (Fig. 5). Observed changes in sediment [OCpetro] from 

upstream to downstream in each catchment can be explained by variation in [OCpetro] 

input or by oxidation of petrogenic OC during sediment transfer (Galy et al., 2008; 

Hilton et al., 2011). In this region, the variable bedrock geology (and range of 

associated [OCpetro]) makes it difficult to resolve any losses of petrogenic carbon 

associated with oxidative weathering (Bouchez et al., 2010). Future work could seek 

to establish the rates and patterns of POCpetro oxidation in this mountain range, and 
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the extent to which it counters biospheric OC discharge, but would require alternative 

approaches to track and quantify POCpetro loss (Hilton et al., 2014). 

4.3.2 POCbiosphere Yields 

In the Longmen Shan, the annual POCbiosphere yield calculated as the difference 

between total POC and POCpetro yield across the study catchments ranges from 0.21 

± 0.04 tC km-2 yr-1 to 3.33 ± 0.57 tC km-2 yr-1, and these yields are broadly correlated 

with annual suspended sediment yield (Table EA4; Fig. 7a). The average 

POCbiosphere of individual stations during 2006 – 2012 ranged from 0.84 ± 0.21 tC km-

2 yr-1 at station D1 to 1.49 ± 0.27 tC km-2 yr-1 at station U1 (Table 1). When the 

annual POCbiosphere yields calculated here are compared to global compilations, the 

data from the Min Jiang catchments are consistent with the idea that POCbiosphere 

yield is primary controlled by erosion (Fig. 7a and b; Galy et al., 2015).  

In more detail, the upper Min Jiang catchments have POCbiosphere yields which are 

towards the lower end of published data for their suspended sediment yields (Fig. 7). 

Runoff can enhance erosion of sediment and POCbiosphere from hillslopes and 

increase the transport capacity of rivers downstream (Hilton, 2017). Higher runoff 

results in higher POCbiosphere discharge in global mountain rivers (Hilton, 2017). The 

data from individual stations from the Longmen Shan agree with these patterns, 

having relatively low annual runoff, which results in lower POCbiosphere yield (Fig. 7b).  

The normalized maximum daily runoff – a metric derived by dividing the maximum 

runoff by the annual average runoff as a measure of runoff intensity – also strongly 

controls the POCbiosphere yield in the study area (p<0.01; Fig. 7c). This observation is 

consistent with the evacuation of earthquake-triggered landslide debris, which is best 

explained by high intensity runoff events (Wang et al., 2015; Li et al., 2017). It 

appears that climate regulates the export of POCbiosphere erosion in the Longmen 

Shan, with intense precipitation driving erosion and supply to rivers (Fig. 7c). 

Depending on the magnitude of the fluxes involved and the long-term fate of 

POCbiosphere, this climate dependency could represent a stabilizing feedback in the 

Earth System: an increase in atmospheric CO2 concentrations and warmer/wetter 

world could increase the erosional export of POCbiosphere to rivers. The climate 

regulation of POCbiosphere export works in tandem with tectonic uplift and large 
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earthquakes in mobilizing large quantities of POCbiosphere for erosion in Longmen 

Shan.  

5. Conclusions 

Mountain rivers erode and transport a significant amount of organic carbon from 

sedimentary rocks and the terrestrial biosphere. We quantified the flux of these 

different sources of POC in the upper Min Jiang, at the eastern margin of the Tibetan 

Plateau, using the isotopic composition of organic carbon in suspended sediment 

and river bed material samples, soils, bedrock, and vegetation. Radiocarbon content 

and an end-member mixing model were used to estimate the mean age of 

POCbiosphere in rivers, which ranges from modern to >1620 +980/-870 14C years. The 

mean biospheric OC 14C ages were oldest in two of the upstream catchments which 

drain the highest elevations at the eastern margin of the Tibetan Plateau (at ±1SE 

confidence intervals). However, the uncertainty of the mixing model precludes 

detailed assessment of the downstream change of biospheric OC 14C age at 95% 

confidence intervals. 

The end-member mixing model was also used to calculate the petrogenic organic 

carbon concentrations. Annual POCpetro yields from each station were calculated by 

multiplying calculated concentrations by the suspended sediment yield and ranged 

from 0.04 ± 0.02 tC km-2 yr-1 from 1.69 ± 0.56 tC km-2 yr-1. Across the catchments 

studied here, these yields are broadly correlated with the suspended sediment yield 

(Fig. 6a), indicating the important role of physical erosion in POCpetro erosion. The 

isotopic composition of POCpetro in parts of the upper Min Jiang distinguishes this 

system from others, with the mean δ13Corg values of river bed materials reaching ~-

16‰ in one catchment. This 13C enrichment of POCpetro could result from 

metamorphic processes. The variability in the concentration of POCpetro between 

different catchments, likely resulting from lithological heterogeneity, obscures 

tracking any potential losses of POCpetro during weathering.   

Our mixing analysis suggests that 58% – 88% of the POC carried by the upper Min 

Jiang derives from POCbiosphere. The annual POCbiosphere yield across the study 

catchments ranges from 0.21 ± 0.04 tC km-2 yr-1 to 3.33 ± 0.57 tC km-2 yr-1, which is 

set by the intense runoff events (Fig. 7c). An increased frequency of intense rainfall 

events in the future could lead to enhanced erosion of POCbiosphere from high 
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elevations, where the rate of warming is likely to be amplified (Mountain Research 

Initiative EDW Working Group, 2015) and carbon stocks are large in high elevation 

soils (Ding et al., 2016). Our study calls for future work to constrain the age of 

POCbiosphere and its fate, alongside that of POCpetro, following erosion from the 

eastern Tibetan Plateau.  
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Figure Captions: 

 
Figure 1. The upper Min Jiang river basin in the Longmen Shan range, on the 

eastern margin of the Tibetan Plateau. (a) 6 gauging stations (white stars; U1 = 

Heishui station, D1= Shaba station on the Heishui River; U2 = Zagunao station, D2 = 

Sangping station on the Zagunao River; U3 = Zhenjiangguan station, D3 = Weizhou 

station on the Min Jiang) overlain on topography from the shuttle Radar Topographic 

Mission (SRTM) digital elevation model at 30 x 30 m resolution. The red lines are the 

faults which ruptured in the 2008 Wenchuan earthquake. (b) Bedrock type and 

bedrock and soil sampling sites (grey circle = bedrock sampling, triangle = soil 

sampling). Geology is modified from a 1: 2,500,000 China Geological Base Map 

(China Geological Survey, 2004). (c) Vegetation type (Editorial Committee for 

Vegetation of China, Chinese Academy of Sciences, 2007), showing vegetation 

(green triangle) and river bed material (yellow circle) sampling sites. 

Figure 2. Relationships between suspended-sediment concentration (SSC, g L-1) 

and total POC concentration ([POCtotal], mg L-1) for the upper Min Jiang. The open 

symbols are the upstream stations (green = U1, blue = U2, pink = U3) and the 

corresponding filled symbols are the downstream stations (stations D1, D2, D3). The 

lines show orthogonal distance regressions through log-transformed data at the 

upstream stations (dashed lines) and at the downstream stations (solid lines) with 

corresponding colors. 

Figure 3. Stable carbon isotopic composition (δ13Corg) of POC versus one over the 

total organic carbon content (1/[OCtotal]) for the (a) upstream and (b) downstream 

gauging stations. The symbols are the same as in Figure 2. Error bars show ± 1 

standard deviation. The black rectangles in each panel show the mean compositions 

of the vegetation collected over all catchments. The triangles with labels OH, A, and 

B-C show the compositions of the respective soil horizons collected throughout all 

the catchment. 

Figure 4. Radiocarbon activity of POC reported as fraction modern (Fmod) versus 

stable carbon isotopic composition (δ13Corg) and 1/[OCtotal] for the upstream (a and c) 

and downstream (b and d) gauging stations. The squares show the mean δ13Corg 

values of the river bed materials collected within each catchment, which represent 

rock-derived POCpetro sources. The boxes above the x-axes show the ranges of 

δ13Corg and 1/[OCtotal] where OH, A, and B-C refer to the respective soil horizons and 
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C3 to the C3 vegetation samples collected throughout the study area, all of which 

represent POCbiosphere sources with unknown Fmod. 

Figure 5. The radiocarbon carbon activity of biospheric carbon, Fmod-bio, and the 

petrogenic organic carbon concentration, [OCpetro], calculated by hyperbolic 

orthogonal distance regression. (a)-(c) Fmod versus [OCtotal] at each station. The open 

symbols are the upstream stations and the corresponding filled symbols are the 

downstream stations. The circles in each panel show the data of suspended 

sediment samples. The triangles in panel (b) show the data of bed materials. The 

triangles in panels (a) and (c) show the mean compositions of bed materials 

collected at each catchment with assumption Fmod = 0.04 ± 0.02, the mean Fmod of 

the two bed material samples showed on panel (b). The dashed and solid lines are 

the orthogonal distance regression best-fit solutions to the upstream and 

downstream data, respectively. The best fit solutions minimize the residual error 

between measured and predicted Fmod values. The shaded region around each line 

is the propagated ± 1SE uncertainty.  

Figure 6. POCpetro yield in the upper Min Jiang. (a) Annual POCpetro yield as a 

function of suspended sediment yield, together with data from global compilations by 

Galy et al. (2015) and Hilton (2017) for comparison. (b) Average POCpetro yield of 

individual stations in this study as a function of mean catchment slope. The mean 

catchment slope was calculated based on the SRTM digital elevation model at 30 x 

30 m resolution.  

Figure 7. Annual POCbiosphere yield in the upper Min Jiang as a function of (a) 

suspended sediment yield, (b) annual runoff, and (c) maximum daily runoff 

normalized to the mean runoff of 2006 – 2012. The black lines in (a) and (c) are the 

orthogonal distance regression best-linear-fit to suspended sediment samples at all 

stations of this study. Also shown in panels (a) and (b) are data from global 

compilations by Galy et al. (2015) and Hilton (2017) for comparison (but not included 

in regression in (a)). 
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Table 1  

Characteristics of gauging stations in the upper Min Jiang and estimates of sediment and POC yield at each station. 

River Heishui tributary Zagunao tributary Min Jiang main stream 

Gauging station 
Heishui (U1) Shaba (D1) Zagunao (U2) Sangping (D2) Zhenjiangguan 

(U3) 

Weizhou ( D3) 

Location 
N 32°03'39" 

E 102°59'52" 

N 31°49'53" 

E 103°39'38" 

N 31°26'24" 

E 103°10'00" 

N 31°29'42" 

E 103°34'36" 

N 32°17'21" 

E 103°44'00" 

N 31°26'58" 

E 103°32'42" 

Catchment area (km2) 1720 7231 2404 4629 4486 18870 

Mean catchment elevation  

(min–max range) (m) 

3851  

(2305–5277) 

3616 

(1710–5277) 

3864 

(1856–5560) 

3618 

(1423–5560) 

3626  

(2460–5510) 

3539 

(1423–5560) 

Mean slope (± 1σ, deg) 29.2 ± 10.6 28.4 ± 11.2 32.4 ± 11.2 33.0 ± 11.3 25.5 ± 10.2 29.3 ± 11.4 

Annual runoff (mm yr-1) 773 543 808 673 350 NA 

Suspended sediment yield 

 (t km-2 yr-1)a 
174 ± 17 137 ± 10 235 ± 24 208 ± 21 131 ± 13 NA 

 [OCtotal] of bed materials, % 0.21 ± 0.03 0.30 ± 0.07 0.45 ± 0.09 0.32 ± 0.09 0.20 ± 0.03 0.24 ± 0.12 

[OCpetro], %  b 0.13 ± 0.10 0.32 ± 0.04 0.36 ± 0.11 0.30 ± 0.06 0.15 ± 0.08 0.22 ± 0.04 

Fmod-bio b   0.82 ± 0.09 1.06 ± 0.05 1.01 ± 0.14 0.96 ± 0.06 0.84 ± 0.08 1.04 ± 0.06 

[OCbio], % c  0.84 ± 0.18 0.62 ± 0.16 0.54 ± 0.18 0.62 ± 0.15 0.94 ± 0.19 NA 

POCbiosphere yield (tC km-2 yr-1) 1.49 ± 0.27 0.84 ± 0.21 1.23 ± 0.40 1.32 ± 0.28 1.29 ± 0.22 NA 

POCpetro yield (tC km-2 yr-1) 0.23 ± 0.17 0.43 ± 0.07 0.85 ± 0.28 0.62 ± 0.14 0.19 ± 0.11 NA 
a average of suspended sediment yield of 2006 to 2012, except for station D2 (2006 to 2011)  

b calculated by hyperbolic orthogonal distance regression of Fmod versus [OCtotal] 
c average of values calculated dividing the POCbiosphere yield by suspended sediment yield of each year 


