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Abstract

Since the 1970’s, physicists and mathematicians who study random matrices in the GUE
or GOE models are aware of intriguing connections between integrals of such random matrices
and enumeration of graphs on surfaces. We establish a new aspect of this theory: for random
matrices sampled from the group U (n) of unitary matrices.

More concretely, we study measures induced by free words on U (n). Let Fr be the free group
on r generators. To sample a random element from U (n) according to the measure induced by
w ∈ Fr, one substitutes the r letters in w by r independent, Haar-random elements from U (n).
The main theme of this paper is that every moment of this measure is determined by families
of pairs (Σ, f), where Σ is an orientable surface with boundary, and f is a map from Σ to the
bouquet of r circles, which sends the boundary components of Σ to powers of w. A crucial role
is then played by Euler characteristics of subgroups of the mapping class group of Σ.

As corollaries, we obtain asymptotic bounds on the moments, we show that the measure on
U (n) bears information about the number of solutions to the equation [u1, v1] · · · [ug, vg] = w in
the free group, and deduce that one can “hear” the stable commutator length of a word through
its unitary word measures.
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1 Introduction

Let U (n) denote the group of n× n unitary complex matrices, and let Fr denote the free group on U (n)

Frr generators with fixed basis (free generating set) B = {x1, . . . , xr}. For a word w ∈ Fr, we define

Bthe w-measure on U (n) as the push-forward of the Haar measure on U (n)r through the word map
w : U (n)r → U (n). In plain terms, assume that w = xε1i1 · · ·x

εm
im

. To sample a random element
from U (n) by the w-measure, sample r independent Haar-random elements A1, . . . , Ar ∈ U (n) and
evaluate w (A1, . . . , Ar) = Aε1i1 · · ·A

εm
im
∈ U (n).

The motivation to study w-measures on unitary groups or on compact groups in general origi-
nates in questions revolving around random walks on these groups, in the study of representation
varieties, in problems in the theory of Free Probability, and in challenges in the study of free groups.
However, as the current paper shows, the study of w-measures is interesting for its own sake and
reveals deep and surprising connections with other mathematical concepts. See also [PP15].

Expected trace

We study word measures by considering their moments, and more particularly the expected product
of traces. For every ` ∈ N≥1 and w1, . . . , w` ∈ Fr, consider the quantity

T rw1,...,w` (n)
def
=

∫
A1,...,Ar∈U(n)

tr (w1 (A1, . . . , Ar)) · . . . · tr (w` (A1, . . . , Ar)) dµ (1.1)

where A1, . . . , Ar ∈ U (n) are independent Haar-random unitary matrices1. The development of
“Weingarten calculus” for computing integrals on U (n) [Wei78, Xu97, Col03, CŚ06] leads readily
to the following result:

Proposition 1.1. Let ` ∈ N≥1 and w1, . . . , w` ∈ Fr. Then for large enough n, the quantity
T rw1,...,w` (n) is given by a rational expression in n with rational coefficients, namely, by an element
of Q (n).

Here “large enough n” means that n ≥ maxx∈B Lx, where Lx is the total number of instances
of x+1 in the words w1, . . . , w`.

1Let us mention that the w-measure on U (n) is completely determined by moments of this type where the words
are taken to be powers of w: T rwα1 ,...,wα` (n) with α1, . . . , α` ∈ Z. See, for example, [MP15, Section 2.2]. (We
comment about the pre-print [MP15] in Remark 1.15.)
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` w1, . . . , w` T rw1,...,w` (n) Laurent Series

1

[x, y]
1
n

1
n[

x3, y
] 3

n
3
n

[x, y]2
−4
n3−n

−4
n3 + −4

n5 + −4
n7 + · · ·

[x, y]3
9(n2+4)

n5−5n3+4n
9
n3 +

81
n5 +

369
n7 + · · ·

[x, y] [x, z] 0 0

[x, y] [x, z] [x, t] 0 0

2

x2y2, xy−3x−3y
4(n2−5)
n4−5n2+4

4
n2 +

0
n4 +

−16
n6 + −80

n8 + · · ·

w,w−1 for w = x2yxy−1 1 1

w,w−1 for w = x2y2xy−1 n4−5n2

n4−5n2+4 1 + 0
n2 +

−4
n4 + −20

n6 + · · ·

Table 1: Some examples for the rational expression for T rw1,...,w` (n) and (the beginning of) its
Laurent series expansion. All these examples contain words in F4 with generators {x, y, z, t}. The
notation [x, y] is for the commutator xyx−1y−1 .

In Section 2 we give explicit combinatorial formulas for T rw1,...,w` (n), and the main innovation
here is the emergence of surfaces in these formulas. In Table 1 we list some examples2 for these
rational expressions for concrete words.

The main theme of the current paper is the interpretation of these expressions for T rw1,...,w` (n)
in terms of properties of w. We explain their degree and their leading coefficient. More generally,
we show how the entire Laurent series for T rw1,...,w` (n) is determined by natural objects related to
w1, . . . , w`.

Extending maps from circles to surfaces

Our main result, Theorem 1.7 below, states that the expressions for T rw1,...,w` (n) can be described in
terms of certain surfaces and maps. Roughly, consider a bouquet of r circles

∨r S1 with fundamental
∨r S1

group identified with Fr. Now consider ` disjoint circles (one-spheres) C1, . . . , C` and a map

fw1,...,w` : C1 t . . . t C` →
∨r S1

sending Ci to a loop at the bouquet representing wi. We now construct pairs (Σ, f) of an orientable
surface Σ with ` boundary components together with a map f : Σ→

∨r S1, so that the restriction
of f to the boundary ∂Σ is equal to fw1,...,w` . From this set one can fully recover the expressions
for T rw1,...,w` (n). See Figure 1.1.
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Figure 1.1: Two surfaces extending the map from three circles to
∨r S1 corresponding to the triple

of words w1, w2, w3.

More formally, identify the free group Fr with the fundamental group of
∨r S1, by orienting

every circle in the bouquet and determining a bijection between the circles and the generators
x1, . . . , xr of Fr. Mark the wedge point by o. We have o

Fr
∼= π1

(∨r S1, o
)
.

Let C1 t . . . t C` be a disjoint union of ` oriented 1-spheres with a marked point vi ∈ Ci for every v
i = 1, . . . , `. The map fw1,...,w` : C1 t . . . t C` →

∨r S1 sends v1, . . . , v` to o, and the induced map
on fundamental groups sends the loop at vi around the oriented Ci to [wi].

Definition 1.2. Let Σ be a surface with ` boundary components ∂Σ1, . . . , ∂Σ` and a marked point
vi ∈ ∂Σi in each boundary component. Let f : Σ →

∨r S1 be a map to the bouquet. We say that vi
(Σ, f) is admissible for w1, . . . , w` ∈ Fr if the following two conditions hold:

1. Σ is oriented and compact, with no closed connected components.

2. The restriction of f to the boundary of Σ is homotopic to fw1,...,w` relative to the marked
points v1, . . . , v`. Namely, for every i = 1, . . . , `,

f∗

([−−→
∂iΣ
])

= wi ∈ π1

(∨r S1, o
)
,

where
−−→
∂iΣ is the closed loop at vi around ∂iΣ with orientation induced from the orientation

of Σ.

In particular, we assume in the above definition that f (vi) = o for every i = 1, . . . , `.
There is a natural equivalence relation between different admissible pairs: first, if f1, f2 : Σ →∨r S1 are homotopic relative to the marked points v1, . . . , v`, then we think of (Σ, f1) and (Σ, f2)

as equivalent. We denote by [f ] the homotopy class of f relative to v1, . . . , v`. Second, there is a [f ]
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natural action of MCG (Σ), the mapping class group of Σ, on homotopy classes of maps Σ→
∨r S1, MCG (Σ)

and we define different maps in the same orbit to be equivalent (see Definition 1.3). Here, MCG (Σ)
is defined as the group of homeomorphisms of Σ which fix the boundary ∂Σ pointwise, modulo such
homeomorphisms which are isotopic to the identity. The action of MCG (Σ) on homotopy classes
of maps

{[f ] | (Σ, f) admissible for w1, . . . , w`}

is by precomposition: the action of [ρ] ∈ MCG (Σ) on [f ] results in
[
f ◦ ρ−1

]
. We gather these

considerations in the following definition:

Definition 1.3. Let (Σ, f) and (Σ′, f ′) be admissible for w1, . . . , w`. They are equivalent, denoted
(Σ, f) ∼ (Σ′, f ′), if there is an orientation preserving homeomorphism ρ : Σ→ Σ′, such that for every (Σ,f)∼(Σ′,f ′)

i = 1, . . . , `, ρ (vi) = v′i and f ' f ′ ◦ ρ are homotopic relative to the marked points v1, . . . v`. We
denote by [(Σ, f)] the equivalence class of (Σ, f). We denote the set of equivalence classes by [(Σ, f)]
Surfaces (w1, . . . , w`): Surfaces(w1,...,w`)

Surfaces (w1, . . . , w`)
def
= {[(Σ, f)] | (Σ, f) is admissible for w1, . . . , w`} .

The main goal of this paper is to show how one can read the terms of the Laurent series of
T rw1,...,w` (n) from this set Surfaces (w1, . . . , w`) of equivalence classes of pairs of surfaces and maps.

The L2-Euler characteristic of stabilizers

The Laurent series of T rw1,...,w` (n) gets some contribution from every
[(Σ, f)] ∈ Surfaces (w1, . . . , w`). As stated in Theorem 1.7 below, this contribution is of the form
c · nα, where c and α are integers. The order of magnitude of the contribution is controlled by the
Euler characteristic of the surface: α = χ (Σ). However, to determine the integer coefficient c, an
important role is played by the stabilizer of [f ] under the action of MCG (Σ), which we denote by
MCG (f): MCG (f)

MCG (f)
def
= MCG (Σ)[f ] .

Note that by definition, the elements of MCG (Σ) permute homotopy classes of maps inside the
same equivalence class [(Σ, f)]. Yet, occasionally, they may stabilize [f ], in the sense that f ◦ ρ and
f are homotopic relative to v1, . . . , v`. Given the class [(Σ, f)], the stabilizer MCG (f) is defined up
to conjugation.

The actual invariant of the stabilizer that appears in the contribution of [(Σ, f)] to T rw1,...,w` (n)
is its L2-Euler characteristic. The L2-Euler characteristic of a group is defined for groups with
nice enough properties and can take any real value. It is the alternating sum of the von Neumann
dimensions of the homology groups of a natural chain complex of modules over the group von
Neumann algebra, as we explain in more detail in Section 4.1 below, and see [Lüc02]. Thus, to state
our main result, we first need the following auxiliary theorem which is interesting for its own sake.

Theorem 1.4. Let Σ be a compact orientable surface with no closed connected components. Let
f : Σ →

∨r S1 be a map. Then the stabilizer MCG (f) = MCG (Σ)[f ] has a well-defined L2-Euler

characteristic. Moreover, this L2-Euler Characteristic is an integer.

Note that in the statement of the theorem it does not matter whether [f ] is the homotopy class
of f relative to ∂Σ or relative to some marked points in every boundary component - this nuance
does not modify the action of MCG (Σ) on the homotopy classes of maps.

Theorem 1.4 can be strengthened in an important special case we now introduce:
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Definition 1.5. A null-curve of (Σ, f) is a non-nullhomotopic simple closed curve γ in Σ with null-curve
f (γ) nullhomotopic in

∨r S1. A pair (Σ, f) is called incompressible if it admits no null-curves. It incompressible
is called compressible otherwise.

If (Σ, f) is admissible for w1, . . . , w` and is compressible, then one can cut Σ along a null-curve,
fill the two new boundary components with discs to obtain Σ′ and extend f to a map f ′ : Σ′ →

∨r S1.
If Σ′ contains a closed component, remove it to obtain Σ′′ and let f ′′ denote the restriction of f ′ to
Σ′′. The new pair (Σ′′, f ′′) is admissible for w1, . . . , w` and satisfies χ (Σ′′) ≥ χ (Σ′) = χ (Σ) + 2, as
the possibly closed component of Σ′ cannot be a sphere. Thus, pairs (Σ, f) with Σ having maximal
Euler characteristic are necessarily incompressible. When f is incompressible we have the following
stronger version of Theorem 1.4:

Theorem 1.6. Let Σ be a compact orientable surface with boundary in every connected component,
and let f : Σ→

∨r S1 be incompressible. Then the stabilizer

Γ = MCG (f) = MCG (Σ)[f ]

admits a finite simplicial complex as a K (Γ, 1)-space. In particular, Γ has a well-defined Euler
characteristic in the ordinary sense3, which coincides with its L2-Euler characteristic.

Main result

Our main theorem shows that the Laurent expansion of T rw1,...,w` (n) is given by Euler characteris-
tics of both the stabilizers of maps in Surfaces (w1, . . . , w`) and also the Euler characteristics of the
surfaces. When the L2-Euler characteristic of a group Γ is defined, we denote it by χ(2) (Γ). χ(2) (Γ)

Theorem 1.7 (Main Theorem). Let w1, . . . , w` ∈ Fr. For large enough4 n,

T rw1,...,w` (n) =
∑

[(Σ,f)]∈Surfaces(w1,...,w`)

χ(2) (MCG (f)) · nχ(Σ). (1.2)

Indeed, for any given exponent χ0, there are only finitely many non-zero terms of order nχ0, namely,
the set {

[(Σ, f)] ∈ Surfaces (w1, . . . , w`)
∣∣∣ χ (Σ) = χ0 and χ(2) (MCG (f)) 6= 0

}
is finite.

The last statement of the theorem explains why the theorem yields a well-defined coefficient for
every term in the Laurent series of T rw1,...,w` (n). However, we do not know yet how to derive from
this theorem the rationality of T rw1,...,w` (n), which we prove directly using Weingarten calculus
- see Proposition 1.1 and Section 2. This rationality means that in a way we do not yet fully
understand, the L2-Euler characteristics of different pairs [(Σ, f)] ∈ Surfaces (w1, . . . , w`) “know
about each other” – see Question 4 in Section 6.

As an immediate corollary of Proposition 1.1 and Theorem 1.7, we get an asymptotic upper
bound on T rw1,...,w` (n). Denote χmax(w1,...,w`)

2Every example in Table 1 satisfies that for every generator xi, the total number of occurrences in w1, . . . , w`
of x+1

i is equal to the number of occurrences of x−1
i . The reason is the simple fact that otherwise T rw1,...,w` (n) is

constantly zero – see Claim 2.1 below.
3The “ordinary” Euler characteristic of a group is defined for a large class of groups of certain finiteness conditions

– see [Bro82, Chapter IX]. The simplest case is when a group Γ admits a finite CW -complex as Eilenberg-MacLane
space of type K (Γ, 1), namely, a path-connected complex with fundamental group isomorphic to Γ and a contractible
universal cover. In this case, the Euler characteristic of Γ coincides with the Euler characteristic of the K (Γ, 1)-space.

4As in Proposition 1.1, the equality (1.2) holds for every n ≥ maxx∈B Lx, where Lx is the total number of
appearance of x+1 in the words w1, . . . , w`. See also Section 2.
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χmax (w1, . . . , w`)
def
= max {χ (Σ) | [(Σ, f)] ∈ Surfaces (w1, . . . , w`)} ,

where χmax (w1, . . . , w`) = −∞ if Surfaces (w1, . . . , w`) is empty, which is equivalent to w1 · · ·w` /∈
[Fr,Fr] - see Claims 2.1 and 2.12. A well-known fact going back at least to Culler [Cul81, Paragraph
1.1] is that chi (w) = 1− 2 · cl (w), where cl (w) is the commutator length of w, defined as5 cl (w)

cl (w)
def
= min {g |w = [u1, v1] · · · [ug, vg] with ui, vi ∈ Fr} .

Thus,

Corollary 1.8. Let w1, . . . , w` ∈ Fr. Then

T rw1,...,w` (n) = O
(
nχmax(w1,...,w`)

)
. (1.3)

In particular, for w ∈ Fr,

T rw (n) = O
(
nχmax(w)

)
= O

(
1

n2·cl(w)−1

)
. (1.4)

Remark 1.9. Recall that the Euler characteristic of an orientable compact surface of genus-g and `
boundary components is 2−2g−`. Thus, Theorem 1.7 yields that the Laurent series of T rw1,...,w` (n)
is supported on odd (respectively even) powers of n if ` is odd (respectively even). This is a nice
interpretation of a fact that can also be derived directly from analysis involving Weingarten calculus.

Algebraic interpretation

The connection between the commutator length of a word w and χmax (w) led to the algebraic inter-
pretation (1.4) in Corollary 1.8. This algebraic perspective also gives an interesting interpretation
to our main theorem. Because a connected surface Σ is a K (π1 (Σ) , 1)-space, the Dehn-Nielsen-
Baer Theorem states there is a natural isomorphism between MCG (Σ) and a certain subgroup of
Aut (π1 (Σ)) (see, for example, [FM12, Chapter 8] for its version for closed surfaces, and [MP15,
Thm 2.4]). For example, if Σg,1 is a connected genus g surface with one boundary component, then
π1 (Σ) ∼= F2g = F (a1, b1, . . . , ag, bg), and MCG (Σ) is isomorphic to the stabilizer of [a1, b1] · · · [ag, bg]
in Aut (F2g) – stabilizing this element reflects the fact that mapping classes in MCG (Σ) fix the
boundary of Σg,1.

Along these lines, the set Surfaces (w) can be interpreted as equivalence classes of solutions to
the equations

[u1, v1] · · · [ug, vg] = w (1.5)

with ui, vi ∈ Fr and varying g, where the equivalence relation is given by the action of the stabilizer
Aut (F2g)[a1,b1]···[ag ,bg ]. In particular, the pairs [(Σ, f)] ∈ Surfaces (w) with maximal χ (Σ) correspond

to equivalence classes of solutions to (1.5) with g = cl (w) minimal. Often, these solutions have trivial
stabilizers, in which case χ(2) (MCG (f)) = 1. For example, the stabilizer is trivial if the solutions
consist of 2g free words, or, equivalently, if f : Σ →

∨r S1 is π1-injective – see Lemma 5.1. Thus,
one could say

“The leading coefficient of T rw(n) counts the number of equivalence classes of solu-
tions to (1.5) with g = cl (w), up to corrections for the existence of non-trivial stabiliz-
ers.”

5A more general concept of the commutator length was introduced by Calegari (e.g. [Cal09a, Definition 2.71]), and
applies to finite sets of words w1, . . . , w`. This number can be related, under certain restrictions, to χmax (w1, . . . , w`),
in a similar fashion to the ` = 1 case.
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Examples

Let us now illustrate Theorem 1.7 and Corollary 1.8 on some of the examples from Table 1. The
techniques by which we obtain some of the details in the following cases are explained throughout
the paper, especially in Section 5.2.

• The commutator length of w = [x, y] is obviously one, and there is a single equivalence class
of solutions to the equation [u, v] = w, or, equivalently, a single element [(Σ, f)] ∈ Surfaces (w)
with χ (Σ) = χmax (w) = −1. The stabilizer MCG (f) is trivial and so the first term in
the Laurent expansion of T r[x,y] (n) is 1

n . Every other element [(Σ, f)] ∈ Surfaces (w) has

χ (Σ) ≤ −3 and χ(2) (MCG (f)) = 0.

• We have cl
([
x3, y

])
= 1. There are exactly three in-equivalent solutions to [u, v] = w:

[
x3, y

]
,[

x3, yx
]

and
[
x3, yx2

]
. In contrast, the solution

[
x3, yx3

]
is equivalent to

[
x3, y

]
because the

automorphism of F2 = F (a, b) fixing a and mapping b→ ba, stabilizes [a, b]. In this case, all
three solutions have trivial stabilizers, hence the leading term of T r[x3,y] is 3

n . It seems like

there are no other elements of Surfaces
([
x3, y

])
with non-vanishing χ(2) (MCG (f)) (at least

there are none with χ (Σ) ≥ −7).

• In general, if cl (w) = 1, then every solution to [u, v] = w has trivial stabilizer, because u and
v are necessarily free words inside Fr (namely, 〈u, v〉 ∼= F2). Thus, for words of commutator
length one we have T rw (n) = K

n +O
(

1
n3

)
, whereK is the number of equivalence classes of ways

to write w as a commutator. Likewise, every solution to (1.5) with 〈u1, v1, . . . , ug, vg〉 ∼= F2g

has a trivial stabilizer – see Lemma 5.1.

• For w = [x, y]2 we have cl (w) = 2. There is a single equivalence class of solutions to (1.5)
with g = 2, and MCG (f) ∼= F5. As a bouquet of five circles is a K (F5, 1)-space, we have
χ (F5) = −4. This explains the leading term of T r[x,y]2 .

• The somewhat surprising fact that cl
(

[x, y]3
)

= 2 was pointed out in [Cul81]. (Inter-

estingly, Culler shows in that paper that cl ([x, y]n) =
⌊
n
2

⌋
+ 1.) For example, [x, y]3 =[

xyx−1, y−1xyx−2
] [
y−1xy, y2

]
. There are nine in-equivalent solutions in this case, each with

a trivial stabilizer. This explain the leading term 9
n3 . There is a single pair [(Σ, f)] ∈

Surfaces
(

[x, y]3
)

with χ (Σ) = −5 and χ(2) (MCG (f)) 6= 0. The stabilizer in this single

pair satisfies χ(2) (MCG (f)) = 81. This explain the term 81
n5 .

• The word w = [x, y] [x, z] has cl (w) = 2 and admits a single solution to (1.5) with g = 2. The
stabilizer of this solution is isomorphic to Z and χ(2) (Z) = χ (Z) = 0. Note that this explains
why the coefficient of n−3 vanishes, but not why T rw (n) = 0.

• The word w = [x, y] [x, z] [x, t] has cl (w) = 3 and admits a single solution to (1.5) with g = 3.
The stabilizer of this solution is isomorphic to Z × F2 and χ(2) (Z× F2) = χ (Z× F2) = 0
(consult [MP15, Page 59] for more details).

• For w1 = x2y2 and w2 = xy−3x−3y we have χmax (w1, w2) = −2. There are four [(Σ, f)] ∈
Surfaces (w1, w2) with χ (Σ) = −2, each with a trivial stabilizer, hence the leading term 4

n2 .

All χ (Σ) = −4 solutions have χ(2) (MCG (f)) = 0, while there is a single solution with
non-vanishing contribution and χ (Σ) = −6, for which χ(2) (MCG (f)) = −16.

• For every w 6= 1, χmax

(
w,w−1

)
= 0 because there is an obvious annulus in

Surfaces
(
w,w−1

)
. In both examples of this sort in Table 1, there is a single such annu-

lus, and with a trivial stabilizer, hence the leading term 1. In both cases there are no other
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incompressible pairs in Surfaces
(
w,w−1

)
, but while for w = x2yxy−1, it seems that every

compressible pair has vanishing contribution to T rw,w−1 (n), for w = x2y2xy−1 there is a

compressible pair [(Σ, f)] with χ (Σ) = −4 and χ(2) (MCG (f)) = −4.

Compressible vs. incompressible pairs [(Σ, f)] ∈ Surfaces (w1, . . . , w`)

The difference between compressible and incompressible pairs [(Σ, f)] ∈ Surfaces (w1, . . . , w`) is al-
ready apparent from the fact that Theorem 1.6, or at least its proof, apply only to the incompressible
case. The crucial property of incompressible pairs will be pointed out in Section 4.4 in the sequel
of the paper. But there are some further differences we point out here.

First, there are finitely many incompressible elements in Surfaces (w1, . . . , w`) – see Corollary
2.14. Because highest-Euler-characteristic elements are always incompressible, we deduce there are
finitely many elements [(Σ, f)] ∈ Surfaces (w1, . . . , w`) with χ (Σ) = χmax (w1, . . . , w`). In addition,
as the examples above illustrate, the stabilizer MCG (f) of an incompressible solution is often trivial.

In contrast, there are infinitely many compressible elements in Surfaces (w1, . . . , w`). In fact,
there are often even infinitely many compressible elements [(Σ, f)] with χ (Σ) = χ0 for a given
non-maximal χ0, namely, for χ0 = χmax (w1, . . . , w`) − 2k with k ∈ Z≥1, although, as stated in
Theorem 1.7, almost all of them have zero contribution to T rw1,...,w` (n). Moreover, the stabilizer
of a compressible pair is never trivial: a Dehn twist along a null-curve is a non-trivial element in
the stabilizer.

1.1 Related lines of work

The evaluation of the integrals in (1.1) is a fundamental issue relating to several different areas of
mathematics.

I. Matrix integrals in Gaussian models The connection between the enumeration of graphs
on surfaces and matrix integrals in the classical GUE, GOE and GSE models was first established
by ’t Hooft [tH74] and later rediscovered by Harer and Zagier [HZ86]. For example, let GUE (n)
denote the probability space of n×n Hermitian complex matrices endowed with complex Gaussian
measure on each entry, where the (i, j) entry is independent of all other entries except for (j, i).
The following equation [LZ04, Proposition 3.3.1] illustrates this connection:

EH∈GUE(n)

[
(trH)α1

(
trH2

)α2 · · ·
(

trHk
)αk]

=
∑
σ

nF (σ). (1.6)

The summation on the right hand side is over ribbon graphs (also known as fat-graphs) with αi
vertices of degree i for i = 1, . . . , k, where σ is a perfect matching of the half-edges emanating from
these vertices. The exponent F (σ) is the number of faces in the embedding of the resulting ribbon
graph on the surface of smallest possible genus. We stress that (1.6) is only an illustration of the
theory, and there are many generalizations (e.g., for integrals over tuples of independent Hermitian
matrices) and deep applications. For an excellent presentation of this theory, we refer the reader to
[LZ04, Chapter 3].

There are many similarities between this by-now classical theory and the theory we develop in
the current paper. For example, apart from the natural emergence of surfaces, the combinatorial
formulas for T rw1,...,w` (n) we develop in Section 2 also involve a summation over perfect matchings.
In addition, these matrix integrals over GUE were used, inter alia, to compute the Euler charac-
teristic of the mapping class group of closed surfaces with punctures [HZ86, Pen88]. In fact, these
Euler characteristics appear as coefficients in certain generating functions for integrals as in (1.6)
(e.g., [Pen88, Theorem 1.1 and Corollary 3.1]).
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There are also substantial differences. Among others, U (n) being a group endowed with Haar
measure means that integrals as in (1.6) over a single Haar-random element can be completely
computed using theoretical properties of the Haar measure, as was done in [DS94], and the compu-
tation becomes more interesting when multiple random elements are involved. It also means that
word-measure on U (n) have nice properties, such as being Aut (Fr)-invariant, as explained in the
following paragraph. In addition, the crucial role played here by maps from the surfaces to the bou-
quet of circles is completely absent in the classical theory. Another difference is that the summation
in the right hand side of (1.6) is finite, with the exponents increasing as the Euler characteristic of
the surface decreases. The best analogue in the current paper (2.10) involves an infinite summation
with exponents decreasing together with the Euler characteristic of the surfaces. Finally, there is
also a big difference in the role played by Euler characteristics of (subgroups of) the mapping class
groups of surfaces.

II. Word measures on groups The same way w ∈ Fr induces a measure on U (n), it also induces
a probability measure on any compact group (consult [HLS15] for recent results and references
concerning the image of the word map w : Gr → G on compact Lie groups including U (n)). By
showing that Nielsen moves on w do not affect the resulting word measure, it is easy to see that
two words in the same Aut (Fr)-orbit in Fr induce the same measure on every compact group (see
[MP15, Section 2.2] for a proof). But is this the only reason for two words to have such a strong
connection? A version of the following conjecture appears, for example, in [AV11, Question 2.2]
and in [Sha13, Conjecture 4.2].

Conjecture 1.10. If two words w1, w2 ∈ Fr induce the same measure on every compact group,
then there exists φ ∈ Aut (Fr) with w2 = φ (w1).

A special case of this conjecture deals with the Aut (Fr)-orbit of the single-letter word x1,
namely, with the set of primitive words. Several researchers have asked whether words inducing the
Haar measure on every compact group are necessarily primitive. This was settled to the affirmative
in [PP15, Theorem 1.1] using word measures on symmetric groups. In subsequent work [MP19b], we
use the results in this paper and, mainly, Corollary 1.8, to prove that if a word w induces the same
measure as ug = [x1, y1] · · · [xg, yg] on every compact group then w = φ (ug) for some φ ∈ Aut (Fr).

Short of proving Conjecture 1.10, one could hope to collect as many invariants of words as
possible that can be determined by word measures induced on groups. For example, cl (w), the
commutator length of a word, and more generally, χmax (w1, . . . , w`), the highest possible Euler
characteristic of a surface in Surfaces (w1, . . . , w`), play an important role in our results. However,
because the coefficient of nχmax(w1,...,w`) in T rw1,...,w` (n) occasionally vanishes, it is not clear whether
cl (w) or χmax (w1, . . . , w`) are determined by word measures on U (n).

In contrast, the measures do determine a related number, the stable commutator length of w.
This algebraic quantity is defined by

scl(w) ≡ lim
m→∞

cl(wm)

m
. (1.7)

(There is an analogous definition for finite sets of words.) There is a deep theory behind this
invariant, and for background we refer to the short survey [Cal08] and long one [Cal09a] by Calegari.
Relying on the rationality result of Calegari [Cal09b] that shows, in particular, that scl takes on
rational values in Fr, we are able to show the following:

Corollary 1.11. The stable commutator length of a word w ∈ [Fr,Fr] can be determined by the
measures it induces on unitary groups in the following way:

scl (w) = inf
`>0; j1,...,j`>0

− limn→∞ logn

∣∣∣T rwj1 ,...,wj` (n)
∣∣∣

2 (j1 + . . .+ j`)
. (1.8)
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A similar result is true for the stable commutator length of several words. We explain how
Corollary 1.11 follows from Theorem 1.7 and Calegari’s rationality theorem in Section 5.1.

Remark 1.12. In fact, with regards to Conjecture 1.10, word-measures on U (n) alone do not suffice
and Conjecture 1.10 is not true if “every compact group” is replaced by “U (n) for all n”. Indeed,
for every w ∈ Fr and every n, the w-measure on U (n) is identical to the w−1-measure. However,
in general, w and w−1 belong to two different Aut (Fr)-orbits. See also Question 1 in Section 6.

III. Harmonic analysis on representation varieties. The integral in (1.1) can be viewed as
an integral over the space of representations Hom (Fr,U(n)) and in fact, as an integral over the
representation variety

Rep (Fr,U(n)) = Hom (Fr,U(n)) /U(n)

since the functions tr ◦wi are invariant under U(n)-conjugation, and so is the Haar measure. More
generally, if Σg is the closed genus g surface, then the spaces Rep (π1 (Σg) ,U(n)) are of interest
in geometry, via ‘Higher Teichmüller theory ’, dynamics as pioneered by Goldman [Gol97], and
mathematical physics [Wit91]. For an overview see [Lab13]. For any closed curve on the surface,
there is a natural function (Wilson loop) on the representation variety, given by the trace of the
image of that curve in a given representation. It is natural to ask what is the integral of this
function with respect to the volume form given by the Atiyah-Bott-Goldman symplectic structure
on Rep (π1 (Σg) ,U(n)) [AB83, Gol84]. Our work answers this question for representations of free
groups.

IV. Free probability theory. Voiculescu proved in [Voi91, Theorem 3.8] that for w 6= 1,

T rw(n) = o(1), n→∞. (1.9)

This is referred to the asymptotic *-freeness of the non-commutative independent random variables
(u1, . . . , ur) ∈ U (n)r, meaning that in the limit they can be modeled by the “Free Probability
Theory” developed by Voiculescu (see, for example, the monograph [VDN92]). Such asymptotic
freeness results are known for broad families of ensembles, including general Gaussian random
matrices (due to Voiculescu in the same paper [Voi91, Theorem 2.2]). In later works (1.9) is
strengthened to T rw (n) = O

(
1
n

)
whenever w 6= 1 [MŚS07, Răd06]. Our work gives quantitative

bounds on the decay rate of T rw(n) (in many cases, from above and below) - see Corollary 1.8.
More generally, free probabilists are interested in the limit of T rw1,...,w` (n) as n → ∞. This is

given by the following corollary of our main result, which is essentially [MŚS07, Theorem 2] and
[Răd06, Theorem 4.1]:

Corollary 1.13. Let w1, . . . , w` ∈ Fr, each not equal to 1, and write wi = udii where ui ∈ Fr is a
non-power and di ≥ 1. Then the limit

lim
n→∞

T rw1,...,w` (n) (1.10)

exists, and is equal to the number of ways to match w1, . . . , w` in pairs so that each word is conjugate

to the inverse of its mate, times
√∏`

i=1 di.

Proof. As w1, . . . , w` 6= 1, there are no surfaces of positive Euler characteristic in
Surfaces (w1, . . . , w`). The only possible surface Σ in this collection with χ (Σ) = 0 is a disjoint
union of annuli. The stabilizer MCG (f) is always trivial in this case, so the limit in (1.10) is equal
to the number of such surfaces in Surfaces (w1, . . . , w`). If w and w′ are the words at the boundary of
an annulus, then necessarily w′ is conjugate to w−1. Moreover, if w = ud with u ∈ Fr a non-power
and d ≥ 1, then the number of non-equivalent annuli in Surfaces

(
w,w−1

)
is exactly d. This yields

the answer above.
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1.2 Paper organization

In Section 2 we show how surfaces emerge in the computation of T rw1,...,w` (n), present a formula for
T rw1,...,w` (n) as a finite sum (Theorem 2.8) which yields Proposition 1.1, and then a second formula
for T rw1,...,w` (n), this time as an infinite sum, but where the contribution of every surface is ±nα
(Theorem 2.9). Section 2.5 then explains how every surface we constructed admits a natural map
to the bouquet which makes it (a representative of) an element in Surfaces (w1, . . . , w`). Thus, one
can group together all the surfaces we constructed in the second formula (from Theorem 2.9) that
belong to the same class [(Σ, f)] ∈ Surfaces (w1, . . . , w`). Our main result then reduces to showing
that the total contribution of this set of surfaces is equal to χ(2) (MCG (f)) · nχ(Σ), as stated in
Theorem 1.7 -- this reduction is the content of Theorem 2.16.

In Sections 3 and 4 we fix [(Σ, f)] ∈ Surfaces (w1, . . . , w`) and prove Theorem 2.16: in Section
3 we define the complex of transverse maps realizing (Σ, f), and prove it is a finite-dimensional
contractible complex. In Section 4 we analyze the action of MCG (f) on this complex, show that the
finite orbits of cells in this action are in one-to-one correspondence with the surfaces we constructed
in Section 2, and finish the proof of Theorems 2.16, 1.4 and 1.7. In Sections 4.4 and 4.5 we discuss
the difference between the compressible case and the incompressible one, and prove Theorem 1.6.

Section 5 contains three applications: in Section 5.1 we discuss stable commutator length and
how it is determined by the w-measures on U (n), thus proving Corollary 1.11; in Section 5.2 we
explain how our analysis yields a simple straight-forward algorithm to classify all incompressible
solutions in Surfaces (w1, . . . , w`), and, in particular, all solutions to the commutator equation (1.5)
with g = cl (w); and in Section 5.3 we explain why MCG (f) has finite cohomological dimension.
Section 6 contains some open questions.

Remark 1.14. The case where some of the words among w1, . . . , w` are trivial is not interesting in
the point of view of estimating the integrals T rw1,...,w` (n): T rw1,...,w`−1,1 (n) = n · T rw1,...,w`−1

(n).
Yet, some of the results, such as Theorem 1.4, are interesting in this case too. Despite that, for the
sake of simplicity, we assume throughout the rest of the paper that wi 6= 1 for i = 1, . . . , `: this
allows us to avoid extra case analysis at some points and shorten the arguments a bit. We stress,
though, that all the results hold in the general case, and the proofs hold after, possibly, minor
adaptations (with the one exception of Lemma 3.12 where, if one allows trivial words, the bound
should be modified).

Remark 1.15. The unpublished manuscript [MP15] is based on an earlier stage of the current
research. It contains some of the results of the current paper – mainly the results for incompressible
maps – although with quite a different presentation of the proofs. Since writing [MP15], we have
extended our results a great deal, and decided to rewrite everything in a whole new paper. To keep
the current paper in manageable size, we include only ingredients that are necessary for proving
and clarifying our results. Occasionally, we refer here to the more elaborated [MP15] for some
background material, which is not used in the proofs.

Remark 1.16. A sequel paper [MP19a] shows how the ideas in the current paper can be extended
and twisted to also deal with integrals over the orthogonal and compact symplectic groups.
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2 Combinatorial formulas for T rw1,...,w`
(n) using surfaces

In this section we recall basic results about the Weingarten calculus for integrals over U (n), and
derive formulas for T rw1,...,w` (n) which involve surfaces. But first, we explain why T rw1,...,w` (n)
vanishes in the “non-balanced” case, where the total exponent of some letter is not zero.:

Claim 2.1. Let w1, . . . , w` ∈ Fr. If w1w2 · · ·w` /∈ [Fr,Fr] then

1. T rw1,...,w` (n) ≡ 0.

2. The set Surfaces (w1, . . . , w`) is empty.

Proof. (1) The assumption w1, . . . , w` /∈ [Fr,Fr] is equivalent to that there is some j ∈ [r] so that
αj , the sum of exponents of the letter xj in w1, . . . , w`, satisfies αj 6= 0. As the Haar measure of
a compact group is invariant under left multiplication by any element, and the diagonal central
matrix eiθIn is in U (n) for θ ∈ [0, 2π], we obtain

T rw1,...,w` (n) =

= EA1,...,Ar∈U(n) [tr (w1 (A1, . . . , Aj , . . . , Ar)) · · · tr (w` (A1, . . . , Aj , . . . , Ar))]

= EA1,...,Ar∈U(n)

[
tr
(
w1

(
A1, . . . , e

iθAj , . . . , Ar

))
· · · tr

(
w`

(
A1, . . . , e

iθAj , . . . , Ar

))]
= eiθαj · T rw1,...,w` (n) .

The first statement follows as this equality holds for every θ ∈ [0, 2π].
(2) The second statement follows from the fact that in every connected, orientable, compact

surface Σ with boundary, the product in π1 (Σ) of loops around the boundary components belongs
to [π1 (Σ) , π1 (Σ)].

2.1 Weingarten function and integrals over U (n)

The “Weingarten calculus” for computing integrals over unitary groups with respect to the Haar
measure was developed in a series of papers, most notably [Wei78, Xu97, Col03, CŚ06]. It is based
on the Schur-Weyl duality (see Remark 2.6 below), and allows the computation of integrals over the
entries of unitary matrices and their complex conjugates, as depicted in Theorem 2.5 below. This
computation is given in terms of the Weingarten function, which we now describe.

Let Q (n) denote the field of rational functions with rational coefficients in the variable n. Let
SL denote the symmetric group on L elements. For every L ∈ Z≥1, the Weingarten function WgL SL
maps SL to Q (n). We think of such functions as elements of the group ring Q (n) [SL].

Definition 2.2. The Weingarten function WgL : SL → Q (n) is the inverse, in the group ring WgL
Q (n) [SL], of the function σ 7→ n#cycles(σ).

That the function σ 7→ n#cycles(σ) is invertible for every L follows from [CŚ06, Proposition 2.3]
and the discussion following it. In particular, WgL (σ) is in Q (n) for every σ ∈ SL. Clearly, WgL is
constant on conjugacy classes. For example, for L = 2, the inverse of

(
n2 · id + n · (12)

)
∈ Q (n) [S2]

is
(

1
n2−1

· id− 1
n(n2−1)

· (12)
)

, so Wg2 (id) = 1
n2−1

while Wg2 ((12)) = −1
n(n2−1)

. The values of Wg3

are

id 7→ n2 − 2

n (n2 − 1) (n2 − 4)
(12) 7→ −1

(n2 − 1) (n2 − 4)
(123) 7→ 2

n (n2 − 1) (n2 − 4)
.
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Collins and Śniady provide an explicit formula for WgL in terms of the irreducible characters of SL
and Schur polynomials [CŚ06, Equation (13)]:

WgL (σ) =
1

(L!)2

∑
λ`L

χλ (e)2

dλ (n)
χλ (σ) ,

where λ runs over all partitions of L, χλ is the character of SL corresponding to λ, and dλ (n) is the
number of semistandard Young tableaux with shape λ, filled with numbers from [n]. A well known

formula for dλ (n) is dλ (n) = χλ(e)
L!

∏
(i,j)∈λ (n+ j − i), where (i, j) are the coordinates of cells in

the Young diagram with shape λ (e.g. [Ful97, Section 4.3, Equation (9)]). Thus,

Corollary 2.3. For σ ∈ SL, WgL (σ) may have poles only at integers n with −L < n < L.

Below we use the following properties of the Weingarten function. The standard norm of ρ ∈
SL, denoted ‖ρ‖, is the shortest length of a product of transpositions giving ρ, and is equal to
L−#cycles (ρ).

Theorem 2.4. Let π ∈ SL be a permutation.

1. [CŚ06, Corollary 2.7] Leading term:

WgL (π) =
Möb (π)

nL+‖π‖ +O

(
1

nL+‖π‖+2

)
, (2.1)

where Möb (σ)

Möb (π) = sgn (π)
k∏
i=1

c|Ci|−1, (2.2)

with6 C1, . . . , Ck the cycles composing π, and cm = (2m)!
m!(m+1)! being the m-th Catalan number.

2. [Col03, Theorem 2.2] Asymptotic expansion:

WgL (π) =
1

nL

∑
k∈Z≥0

∑
ρ1,...,ρk∈SL\{id}

s.t. ρ1···ρk=π

(−1)k

n‖ρ1‖+...+‖ρk‖
. (2.3)

(In (2.3), when π = id, there is a term 1
nL

coming from k = 0.)

The Weingarten function is used in the following formula of Collins and Śniady, which evaluates
integrals of monomials in the entries Ai,j and their conjugates Ai,j of a Haar-random unitary matrix
A ∈ U (n). As in the proof of Claim 2.1, this integral vanishes whenever the monomial is not
balanced, namely whenever the number of Ai,j ’s is different from the number of Ai,j ’s.

Theorem 2.5. [CŚ06, Proposition 2.5] Let L be a positive integer and (i1, . . . , iL), (j1, . . . , jL),
(i′1, . . . , i

′
L) and (j′1, . . . , j

′
L) be L-tuples of positive integers. Then for every n for which the expression

EA∈U(n)

[
Ai1,j1Ai2,j2 . . . AiL,jLAi′1,j′1Ai′2,j′2 . . . Ai′L,j

′
L

]
(2.4)

makes sense, namely, for n ≥ max {i1, . . . , iL, j1, . . . , jL, i′1, . . . , i′L, j′1, . . . , j′L}, (2.4) is equal to the
evaluation of n in a rational function, which is given by∑

σ,τ∈SL

δi1i′σ(1)
. . . δiLi′σ(L)

δj1j′τ(1)
. . . δjLj′τ(L)

WgL
(
σ−1τ

)
. (2.5)

6The function Möb is the Möbius function on a natural poset structure on SL – see, for instance, [NS06, Lectures
10 and 23].
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Put differently, the rational function is given by
∑

σ,τ WgL
(
σ−1τ

)
, where σ runs over all rear-

rangements of (i′1, . . . , i
′
L) which make it identical to (i1, . . . , iL), and τ runs over all rearrangements

of (j′1, . . . , j
′
L) which make it identical to (j1, . . . , jL). In particular, the possible poles of the Wein-

garten function at n, for every n ≥ max {i1, . . . , j′L}, are guaranteed to cancel out in this summation

(see the example following Proposition 2.5 in [CŚ06]).

Remark 2.6. The basis for the Weingarten calculus is the Schur-Weyl duality for U (n). One version
of this duality is the following: let V = Cn. A unitary matrix A ∈ U (n) acts on the space of

functionals W =
(
V ⊗L ⊗ (V ∗)⊗L

)∗
by

(Aθ) (v1 ⊗ . . .⊗ vL ⊗ ϕ1 ⊗ . . .⊗ ϕL) = θ
(
A−1v1 ⊗ . . .⊗A−1vL ⊗A−1ϕ1 ⊗ . . .⊗A−1ϕL

)
,

where we think of ϕ ∈ V ∗ as a column vector in Cn whose value on v ∈ V is ϕ∗v ∈ C. Every
permutation σ ∈ SL yields a functional in W defined by:

θσ (v1 ⊗ . . .⊗ vq ⊗ ϕ1 ⊗ . . .⊗ ϕq) =
(
ϕ∗1vσ−1(1)

)
· · ·
(
ϕ∗qvσ−1(q)

)
.

The Schur-Weyl duality says that this embedding of C [SL] in W is precisely the set of U (n)-
invariant functionals in W . The family of integrals in (2.4) can be presented as a single functional
on V ⊗L ⊗ (V ∗)⊗L ⊗ V ⊗L ⊗ (V ∗)⊗L, which is U (n) × U (n)-invariant because the Haar measure is
both left- and right-invariant. This roughly explains why one can expect a result of the type of
Theorem 2.5.

2.2 Surfaces from matchings of letters

Based on Theorem 2.5 we show that T rw1,...,w` (n) is a rational expression in n, and give concrete
formulas which involve surfaces. These surfaces are constructed from matchings of the letters in
w1, . . . , w`, and we begin by describing this construction.

Recall that B denotes a fixed basis for Fr. Following Claim 2.1, we assume that w1 · · ·w` ∈
[Fr,Fr], namely, that for every letter x ∈ B, the total number of instances of x+1 in w1, . . . , w` is
equal to that of x−1, and we denote this number by Lx ∈ Z≥0. In particular, |w1| + . . . + |w`| = Lx
2
∑

x∈B Lx. We also denote by MATCHx (w1, . . . , w`) the set of bijections from the instances of x+1 MATCHx

to the instances of x−1, so that |MATCHx (w1, . . . , w`)| = Lx!.
Let κ = {κx}x∈B ∈ (Z≥0)B be an assignment of a non-negative integer to every basis element. κ

We denote by MATCHκ (w1, . . . , w`) the Cartesian product of sets of matchings, with κx + 1 copies MATCHκ

of MATCHx (w1, . . . , w`) for every x ∈ B, namely,

MATCHκ (w1, . . . , w`)
def
=
∏
x∈B

MATCHx (w1, . . . , w`)
κx+1 .

The following definition presents the construction of a surface from an element of

MATCHκ (w1, . . . , w`). We use the notation [k]
def
= {0, 1, . . . , k} for a non-negative integer k. [k]

Definition 2.7. Let w1, . . . , w` ∈ Fr \ {1} be a balanced set of words, let κ ∈ (Z≥0)B and let σ ∈
MATCHκ (w1, . . . , w`) be a tuple of matchings. We denote by σx,0, . . . , σx,κx the κx + 1 matchings
from MATCHx (w1, . . . , w`) in σ. From this data we construct a surface Σσ as a CW-complex as Σσ

follows:

• For 1 6= w ∈ Fr define S1 (w) to be an oriented 1-sphere S1 with additional marked points S1 (w)
as follows: there are7 |w| points marked o, which we call o-points. These points cut the 1- o-point
sphere into |w| intervals, which are in bijection with the letters of w, in the suitable cyclic

7We use |w| to denote the number of letters in w.
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order. For every letter of w, if the letter is x±1, we mark additional κx + 1 points on the
interval corresponding to that letter. These marked points are labeled (x, 0) , . . . , (x, κx) and
are ordered according to the orientation of S1 (w) if the letter is x+1, or in reverse orientation
if the letter is x−1. We call a point labeled (x, j) for some x ∈ B and j ∈ [κx] an (x, j)-point (x, j)-point
or a z-point if the exact x and j do not matter. z-point

• The one-dimensional skeleton of Σσ consists of S1 (w1) , . . . , S1 (w`), together with additional∑
x∈B Lx (κx + 1) edges (1-cells), referred to as matching-edges: for every x ∈ B and j ∈ [κx],

introduce Lx edges describing the matching σx,j . Namely, for every x+1-letter λ of w1, . . . , w`,
introduce an edge between the (x, j)-point on the interval corresponding to λ and the (x, j)-
point on the interval corresponding to the x−1-letter σx,j (λ). This is illustrated in the left
part of Figure 2.1.

• Finally, 2-cells are attached as follows: consider cycles in the 1-skeleton which are obtained
by starting at some marked point in S1 (wi) for some i = 1, . . . , `, moving orientably along
S1 (wi) until the next z-point, then following the matching-edge emanating from this z-point
and arriving at some z-point in S1 (wi′) for some i′, then moving orientably along S1 (wi′)
until the next z-point, continuing along the matching-edge and so on until a cycle has been
completed. A 2-cell (a disc) is glued along every such cycle.

• From the construction of Σσ, it is clear it is a surface, with boundary S1 (w1)t. . .tS1 (w`) and
with orientation prescribed from the boundary. Moreover, every 2-cell D belongs to exactly
one of the following categories:

– Either there is an o-point at every component of ∂D ∩ ∂Σσ, in which case we call D an
o-disc, o-disc

– or, ∂D contains no o-points, in which case we call D a z-disc. In this case, there are z-disc
some x ∈ B with κx ≥ 1 and j ∈ [κx − 1] such that the marked points in ∂D are exactly
of two types: (x, j)-points and (x, j + 1)-points. In this case we call the z-disc D also an
(x, j)-disc. See Figure 2.1. (x, j)-disc

• Let χ (σ) denote the Euler characteristic of this surface, namely χ (σ)
def
= χ (Σσ). χ (σ)

2.3 A formula for T rw1,...,w` (n) as a rational expression

Our first formula for T rw1,...,w` (n) is a finite sum over pairs of matchings for every letters, namely
over elements in MATCHκ (w1, . . . , w`) with κx = 1 for every x ∈ B. We denote this κ by κ ≡ 1.
In particular, this formula proves Proposition 1.1.

Theorem 2.8 (T rw1,...,w` (n) as finite sum). Let w1, . . . , w` ∈ Fr be a balanced set of words.

1. If8 n ≥ Lx for every x ∈ B, then

T rw1,...,w` (n) =
∑

σ∈MATCHκ≡1

(∏
x∈B

WgLx

(
σ−1
x,0σx,1

))
· n#{o−discs in Σσ} (2.6)

(here σ−1
x,0σx,1 is a permutation of the x+1-letters of w1, . . . , w`).

2. For n ≥ maxx∈B Lx, the function T rw1,...,w` (n) is a computable rational function in n.

8Interestingly, very similar constraints on n appear in a formula giving the expected trace of w in r uniform n× n
permutation matrices as a rational expression in n – see [Pud14, Section 5].
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Figure 2.1: On the left is the 1-skeleton of Σσ for w = [x, y] [x, z] = x1y2X3Y4x5z6X7Z8,
with κx = κy = 1 and κz = 0 and with the matchings σx,0 = (x1 7→ X3; x5 7→ X7), σx,1 =
(x1 7→ X7; x5 7→ X3), σy,0 = σy,1 = (y2 7→ Y4) and σz,0 = (z6 7→ Z8). Dashed lines are matching-
edges. The dotted lines trace the boundaries of the two o-discs to be glued in (see Definition 2.7).
Two additional discs, a (x, 0)-disc and a (y, 0)-disc are glued along the other types of cycles one
can follow (unmarked). The eight o-points are marked by V1 and black circles. The resulting
surface Σσ is on the right and is a genus-2 surface with one boundary component. In this case,
χ (σ) = χ (Σσ) = −3.

3. For σ ∈ MATCHκ≡1 (w1, . . . , w`), let σ0 = (σx,0)x∈B and σ1 = (σx,1)x∈B denote two matchings
of the “positive” letters of w1, . . . , w` to the “negative” ones. Then the summand in (2.6)
corresponding to σ is

Möb
(
σ−1

0 σ1

)
· nχ(σ) +O

(
nχ(σ)−2

)
. (2.7)

Proof. Part 2 follows from (2.6) as every value of the Weingarten function is computable and in
Q (n). We now prove part (1), which we do by way of an example. Let w1 = xyx−2y and w2 = xy−2.
Then,

T rw1,w2 (n) = E(A,B)∈U(n)×U(n)

[
tr
(
ABA−2B

)
· tr
(
AB−2

)]
= E(A,B)∈U(n)×U(n)

 ∑
i,j,k,`,m∈[n]

Ai,j ·Bj,k ·A−1
k,` ·A

−1
`,m ·Bm,i

 ∑
I,J,K∈[n]

AI,J ·B−1
J,K ·B

−1
K,I


=

∑
i,j,k,`,m,I,J,K∈[n]

E(A,B)∈U(n)×U(n)

[
Ai,j ·Bj,k ·A`,k ·Am,` ·Bm,i ·AI,J ·BK,J ·BI,K

]
=

∑
i,j,k,`,m,I,J,K∈[n]

(
EA∈U(n)

[
Ai,j ·AI,J ·A`,k ·Am,`

])
·
(
EB∈U(n)

[
Bj,k ·Bm,i ·BK,J ·BI,K

])
. (2.8)

Note that there is a clear correspondence between the o-points in S1 (w1) and the indices i, j, k, `,m
and between the o-points in S1 (w2) and the indices I, J,K (see Figure 2.2).

Now we use Theorem 2.5 to replace each of the two integrals inside the sum by a summation over
pairs of matchings. For the first integral we go over all bijections {i, I} ∼→ {`,m} and {j, J} ∼→ {k, `},
and we think of them as elements σx,0, σx,1 ∈ MATCHx (w1, w2) by thinking of a matching between
two z-points as a matching of the adjacent o-points. For example, the (x, 0)-point in the first letter
of w1 is adjacent to the o-point i, and the (x, 1)-point in the same letter is adjacent to the o-point
j. Similarly, we go over all bijections σy,0 and σy,1 for the second integral. Changing the order of
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Figure 2.2: The 1-skeleton of the surface Σσ for the tuple of matchings σ ∈
MATCHκ≡1

(
xyx−2y, xy−2

)
specified in the proof of Theorem 2.8. The o-points are identified with

the indices i, j, k, `,m and I, J,K that appear in the computation of T rxyx−2y,xy−2 (n). The o-discs
of Σσ (two of these in the current case) are in one-to-one correspondence with the blocks of indices
determined by σ, and for every x ∈ B, the (x, 0)-discs (one for each letter in the current case) are
in one-to-one correspondence with the cycles of the permutation σ−1

x,0σx,1.

summation, we sum first over σx,0, σx,1, σy,0 and σy,1, and only then over the indices i, j, . . . ,K.
This turns (2.8) into a sum over MATCHκ≡1 (w1, w2).

For every set of σ ∈ MATCHκ≡1 (w1, w2), we only need to count the number of evaluations of
i, j, . . . , L which “agree” with the permutations. For example, consider the case where

σx,0

i 7→ m

I 7→ `

σx,1

j 7→ k

J 7→ `

σy,0

j 7→ K

m 7→ I

σy,1

k 7→ K

i 7→ J

(2.9)

(these are the matchings described in Figure 2.2). Note that in this case, both the permutation
σ−1
x,0σx,1 and the permutation σ−1

y,0σy,1 are a 2-cycle. Hence, by Theorem 2.5, the summand corre-
sponding to these matchings is

Wg2 ((1 2)) ·Wg2 ((1 2)) ·
∑

i,j,k,`,m,I,J,K∈[n]

δimδI`δjkδJ`δjKδmIδkKδiJ ,

and the product inside the last sum is 1 (and not 0) if and only if i = m = I = ` = J and j = k = K.
Here, two indices must have the same value if and only if they belong to the same o-disc in Σσ,
hence there are exactly n#o−discs in Σσ contributing values of the indices, each contributing 1 to the
summation. For σ we defined in (2.9) this number is n2, and the total contribution of this σ is, thus,
Wg2 ((1 2))2 · n2 = 1

(n2−1)2
. The total summation over all the 16 elements of MATCHκ≡1 (w1, w2)

is 1
n2−1

. Since the same argument works for every w1, . . . , w` ∈ Fr, this proves part (1).
Recall that for π ∈ SL, we have ‖π‖ = L−#cycles (π). The number of cycles in the permutation
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σ−1
x,0σx,1 ∈ SLx is equal to the number of (x, 0)-discs in Σσ. Hence, by Theorem 2.4(1),

∏
x∈B

WgLx

(
σ−1
x,0σx,1

)
=
∏
x∈B

Möb
(
σ−1
x,0σx,1

)
nLx+‖σ−1

x,0σx,1‖
+O

(
1

nLx+‖σ−1
x,0σx,1‖+2

)
=
∏
x∈B

 Möb
(
σ−1
x,0σx,1

)
n2Lx−#{(x,0)−discs in Σσ}

+O

(
1

n2Lx−#{(x,0)−discs in Σσ}+2

)
=

Möb
(
σ−1

0 σ1

)
n2L−#{z−discs in Σσ}

+O

(
1

n2L−#{z−discs in Σσ}−2

)
,

where L =
∑

x∈B Lx is the total number of positive letters in w1, . . . , w`. We are done proving part
(3) as

χ (σ) = χ (Σσ) = −2L+ # {discs in Σσ} .

2.4 A formula for T rw1,...,w` (n) as Laurent expansion

We now give an alternative formula for T rw1,...,w` (n), which also uses surfaces constructed from
matchings of the letters of w1, . . . , w`. The sum in (2.6) is finite, it proves the rationality of
T rw1,...,w` (n), and allows a finite algorithm to compute it. The alternative formula we introduce
next has the disadvantage that it is an infinite sum (unless Lx ≤ 1 for every x ∈ B). However, it has
the advantage of simplifying greatly the contribution of every surface involved in the computation,
as well as being an important step towards establishing Theorem 1.7. This formula is derived
from (2.6) together the asymptotic expansion of the Weingarten function developed in [Col03] and
depicted in Theorem 2.4(2) above9.

The formula uses a restricted set of tuples of matchings which, for a given κ ∈ (Z≥0)B, we denote
by MATCH

κ
(w1, . . . , w`): this is the subset of MATCHκ (w1, . . . , w`) with the restriction that no MATCH

κ

two adjacent matchings are identical, namely, that σx,j 6= σx,j+1 for every x ∈ B and 0 ≤ j ≤ κx−1.
We also denote by MATCH

∗
(w1, . . . , w`) the union of restricted sets of matchings over all possible MATCH

∗

κ:
MATCH

∗
(w1, . . . , w`)

def
=

∐
κ∈(Z≥0)

B

MATCH
κ

(w1, . . . , w`) ,

and for σ ∈ MATCH
∗

(w1, . . . , w`) denote by κ (σ) and κx (σ) the corresponding values of κ and κx.

Also, for κ ∈ (Z≥0)B let |κ| def
=
∑

x∈B κx. |κ|

Theorem 2.9 (Laurent Combinatorial Formula for T rw1,...,w` (n)). Let w1, . . . , w` ∈ Fr be a bal-
anced set of words. If n ≥ Lx for every x ∈ B, then

T rw1,...,w` (n) =
∑

σ∈MATCH
∗
(w1,...,w`)

(−1)|κ(σ)| nχ(σ). (2.10)

Proof. This proof relies on grouping the summands in (2.10) according to the “extreme” bijections
{σx,0, σx,κx}x∈B and show that the total contribution of the summands with extreme bijections

τ = {τx,0, τx,1}x ∈ MATCHκ≡1 (w1, . . . , w`) is equal to
(∏

x∈B WgLx

(
τ−1
x,0 ◦ τx,1

))
·n#{o−discs in Στ}.

This is enough by Theorem 2.8.

9Novaes [Nov17] has recently obtained a combinatorial formula for the Weingarten function in terms of maps on
surfaces; our approach here is different and incorporates that we are integrating over independent unitary matrices,
which naturally leads to considerations about infinite groups.
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In (2.3) above, substitute θi = ρ1 · · · ρi to obtain

WgL (π) =
1

nL

∑
k∈Z≥0

∑
id=θ0 6=θ1 6=... 6=θk−1 6=θk=π

(−1)k

n‖θ
−1
0 θ1‖+‖θ−1

1 θ2‖+...+‖θ−1
k−1θk‖

.

Substituting L = Lx and π = τ−1
x,0 · τx,1, we get

WgLx

(
τ−1
x,0 · τx,1

)
=

1

nLx

∑
k∈Z≥0

∑
θ0,...,θk∈Sym(x+1−letters of w1,...,w`)

s.t. id=θ0 6=θ1 6=... 6=θk−1 6=θk=τ−1
x,0τx,1

(−1)k

n‖θ
−1
0 θ1‖+‖θ−1

1 θ2‖+...+‖θ−1
k−1θk‖

.

Multiplying all permutations from the left by τx,0 and substituting σi = τx,0θi, one obtains:

WgLx

(
τ−1
x,0 · τx,1

)
=

1

nLx

∑
k∈Z≥0

∑
σ0,...,σk∈MATCHx(w1,...,w`)

s.t. τx,0=σ0 6=σ1 6=... 6=σk−1 6=σk=τx,1

(−1)k

n‖σ
−1
0 σ1‖+‖σ−1

1 σ2‖+...+‖σ−1
k−1σk‖

.

(2.11)
Note that, by construction, the number of o-discs in Σσ depends solely on the extreme bijections in
σ, namely on {σx,0, σx,κx}x∈B. Thus, together with (2.6) we obtain

T rw1,...,w` (n) =
∑

τ∈MATCHκ≡1(w1,...,w`)

(∏
x∈B

WgLx

(
τ−1
x,0 ◦ τx,1

))
· n#{o−discs in Στ}

=
∑

τ∈MATCHκ≡1

n#{o−discs in Στ}

n
∑
x Lx

∑
κ∈(Z≥0)

B

∑
σ∈MATCH

κ s.t.

σx,0=τx,0 & σx,κx=τx,1

(−1)|κ|

n
∑
x

∑κx−1
j=0 ‖σ−1

x,j ·σx,j+1‖

=
∑

σ∈MATCH
∗(w1,...,w`)

(−1)|κ(σ)| n
#{o−discs in Σσ}−

∑
x

(
Lx+

∑κx(σ)−1
j=0 ‖σ−1

x,j ·σx,j+1‖
)
.

It is thus enough to explain why

χ (σ) = # {o−discs in Σσ} −
∑
x

Lx +

κx(σ)−1∑
j=0

∥∥∥σ−1
x,j · σx,j+1

∥∥∥
 .

• The number of vertices in Σσ is
∑

x∈B (2κx (σ) + 4)Lx (consisting of κx (σ) + 1 z-points and
a single o-point for each of the 2Lx x

±1-letters in w1, . . . , w`).

• The number of 1-cells in Σσ is Σx∈B (3κx (σ) + 5)Lx (there are
∑

x∈B (2κx (σ) + 4)Lx 1-cells
along the boundary components, and additional

∑
x∈B (κx (σ) + 1)Lx bijection-edges).

• Finally, it is easy to see from Definition 2.7 that the number of cycles in the permutation
σ−1
x,j · σx,j+1 is identical to the number of (x, j)-discs in Σσ, so that∥∥∥σ−1

x,j · σx,j+1

∥∥∥ = Lx −# {(x, j)−discs in Σσ} .
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Therefore,

χ (σ) =

[∑
x∈B

(2κx (σ) + 4)Lx

]
−

[∑
x∈B

(3κx (σ) + 5)Lx

]
+

+

∑
x∈B

κx(σ)−1∑
j=0

# {(x, j)−discs in Σσ}

+ # {o−discs in Σσ}

= # {o−discs in Σσ}+
∑
x∈B

(−κx (σ)− 1)Lx +

κx(σ)−1∑
j=0

(
Lx −

∥∥∥σ−1
x,j · σx,j+1

∥∥∥)


= # {o−discs in Σσ̃} −
∑
x∈B

Lx +

κx(σ)−1∑
j=0

∥∥∥σ−1
x,j · σx,j+1

∥∥∥
 . (2.12)

It is implicit in Theorem 2.9 and its proof that there are only finitely many sets of sequences
of bijections σ with contribution of a given order. Namely, for every integer χ0 there are finitely
many σ in the summation (2.10) with χ (σ) = χ0. This is true because the same property holds for
the asymptotic expansion of the Weingarten function in (2.3). However, for completeness, we give
a direct proof for this fact:

Claim 2.10. For every χ0 ∈ Z there are finitely many sets σ in the sum (2.10) with χ (σ) = χ0.

Proof. The number of o-discs in Σσ is bounded by the number of o-points in S1 (w1)∪ . . .∪S1 (w`).
All sets σ in the sum (2.10) satisfy σx,j 6= σx,j+1 for all x ∈ B and 0 ≤ j ≤ κx − 1, and so∥∥∥σ−1

x,j · σx,j+1

∥∥∥ ≥ 1. Thus, from (2.12) we obtain that if χ (σ) = χ0 then

χ0 = χ (σ) ≤ #
{
o−points in S1 (w1) ∪ . . . ∪ S1 (w`)

}
−
∑
x∈B

[Lx + κx (σ)] .

Hence ∑
x∈B

κx (σ) ≤ #
{
o−points in S1 (w1) ∪ . . . ∪ S1 (w`)

}
− χ0 −

∑
x∈B

Lx.

Since the right hand side is independent of σ, the proof is completed.

The duality between the two types of formulas in Theorems 2.8 and 2.9 will be manifested also
in the next section. Our main object of study will be the complex T (Σ, f) of transverse maps
which, similarly to the sets in the infinite formula (2.10), consists of sequences of arcs and curves
of arbitrary lengths, but with the single constraint that two consecutive objects in every sequence
must be different from each other (strict transverse maps – see Definition 3.3). However, for one of
the main results about T (Σ, f), namely, its being contractible, we return to the model of sequences
of length two without the constraint of two consecutive objects being different – see Definition 3.15.

2.5 Maps from the surfaces to the bouquet

In Definition 2.7 and in Theorems 2.8 and 2.9 we introduced surfaces associated with w1, . . . , w` and
tuples of matchings. The following definition introduces a natural map from these surfaces to the
bouquet so that each surface and its associated map turns into an admissible pair for w1, . . . , w`.

Definition 2.11. Let w1, . . . , w` ∈ Fr, let σ ∈ MATCHκ (w1, . . . , w`) for some κ ∈ (Z≥0)B and let
Σσ be the surface constructed in Definition 2.7. Define fσ : Σσ →

∨r S1 as follows: fσ
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o

(x,0)

(x,1)

(x,2)(y,3)
(y,2)

(y,1)
(y,0)

Figure 2.3: The wedge
∨r S1 with transversion points. Here r = 2, B = {x, y}, κx = 2 and κy = 3.

• For every x ∈ B, mark κx+1 distinct points on the circle of the bouquet
∨r S1 corresponding

to x, away from the wedge point o, and label them (x, 0) , . . . , (x, κx) in the order of the
orientation of the circle. See Figure 2.3.

• The preimage through f−1
σ of (x, j) ∈

∨r S1 is exactly the bijection-edges corresponding to
σx,j , which contain the (x, j)-points of Σσ as their endpoints.

• The o-points in Σσ are mapped to o ∈
∨r S1.

• On S1 (wi), on each of the |w| intervals, if the interval I corresponds to the letter xε, ε ∈ {±1},
fσ

∣∣∣
I

traces the x-circle in
∨r S1 monotonically, with orientation prescribed10 by ε.

• Finally, for every open disc D in the CW-complex Σσ, the image of fσ along ∂D is nullhomo-
topic, so there is a unique way to extend it to D, up to homotopy, and we extend it so that
the image of f on the interior of D avoids the marked points {(x, j)}x∈B,j∈[κx] ⊂

∨r S1.

It is evident that (Σσ, fσ) is admissible for w1, . . . , w` (with the appropriate o-point in S1 (wi)
labeled also as vi, for every i = 1, . . . , `). In particular,

Corollary 2.12. If w1 · · ·w` ∈ [Fr,Fr] then Surfaces (w1, . . . , w`) 6= ∅.

Another important observation is that every incompressible pair [(Σ, f)] ∈ Surfaces (w1, . . . , w`)
has a representative in the form of (Σσ, fσ) with only one matching per letter:

Proposition 2.13. Denote by MATCHκ≡0 (w1, . . . , w`) the set of matchings corresponding to κx =
0 for every x ∈ B. Every incompressible pair (Σ, f) which is admissible for w1, . . . , w` is equivalent
to (Σσ, fσ) for some σ ∈ MATCHκ≡0 (w1, . . . , w`).

Proof. The argument here imitates the one in [Cul81, Theorem 1.4]. Assume (Σ, f) is incompress-
ible. Mark a point (x, 0) on the middle of the circle corresponding to x in

∨r S1, and perturb
f (relative to the points v1, . . . , v` ∈ Σ) so that f (∂iΣ) is monotone, namely, never backtrack-
ing, for i = 1, . . . , `, and so that it becomes transverse to {(x, 0)}x∈B ⊂

∨r S1 (see Definition
3.1 below). As f is transverse to (x, 0) ∈

∨r S1, the preimage of (x, 0) consists of a collection of
disjoint arcs and curves (in this paper we use the notion “curve” as synonym for “simple closed
curve”). Because f (∂iΣ) is monotone, there are exactly Lx arcs, which determine an element
σ ∈ MATCHκ≡0 (w1, . . . , w`). There are no curves in f−1 ((x, 0)) because such curves would be null-
curves, which is impossible with f being incompressible. Finally, f being incompressible also guar-
antees that the collection of arcs

∐
x∈B f

−1 ((x, 0)) cuts Σ into discs. Thus (Σ, f) ∼ (Σσ, fσ).

Since the set MATCHκ≡0 (w1, . . . , w`) is finite, we obtain:

Corollary 2.14. There are finitely many classes of incompressible (Σ, f) in Surfaces (w1, . . . , w`).

10We mention this specifically because when κx = 0 this does not follow from the previous bullet points.
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In Section 5.2 we address the issue of how one can distinguish the different incompressible classes
in Surfaces (w1, . . . , w`).

At this point we can also derive the asymptotic bounds we have for T rw1,...,w` (n):

Proof of Corollary 1.8. Recall that we need to prove that T rw1,...,w` (n) = O
(
nχmax(w1,...,w`)

)
where

χmax (w1, . . . , w`) is the maximal Euler characteristic of a surface in Surfaces (w1, . . . , w`). Theorem
2.8 says that T rw1,...,w` (n) is equal to a sum over σ ∈ MATCHκ≡1 (w1, . . . , w`), and the contribution
of each σ is c · nχ(σ) + O

(
nχ(σ)−2

)
where c ∈ Z \ {0}. As (Σσ, fσ) ∈ Surfaces (w1, . . . , w`), then by

definition χ (σ) ≤ χmax (w1, . . . , w`).

Remark 2.15. In fact, we get even more: every [(Σ, f)] ∈ Surfaces (w1, . . . , w`) attaining
χmax (w1, . . . , w`) is incompressible, and therefore, by Proposition 2.13, equivalent to (Σσ, fσ) for
some
σ ∈ MATCHκ≡0 (w1, . . . , w`). This σ takes part in the expression for T rw1,...,w` (n) in Theorem
2.9 and thus one can expect that T rw1,...,w` (n) = Θ

(
nχmax(w1,...,w`)

)
. As some of the examples

from Table 1 indicate, the coefficient of nχmax(w1,...,w`) may vanish, but this only happens if the
different non-zero contributions cancel out. (One can get to the same conclusion from the finite
formula for T rw1,...,w` (n) in Theorem 2.8, by duplicating every matching in σ ∈ MATCHκ≡0 to
obtain σ′ ∈ MATCHκ≡1 (w1, . . . , w`), which then satisfies (Σσ, fσ) ∼ (Σσ′ , fσ′).)

Reduction of the main theorem

Recall that Theorem 2.9 expresses T rw1,...,w` (n) as a sum over the (generally infinite) set
MATCH

∗
(w1, . . . , w`). To prove our main result, Theorem 1.7, we group together all

σ ∈ MATCH
∗

(w1, . . . , w`) for which (Σσ, fσ) belong to the same equivalence class, and show the
total contribution of these values of σ to (2.10) is exactly the one specified in Theorem 1.7. Ac-
cordingly, for [(Σ, f)] ∈ Surfaces we let MATCH

∗
(w1, . . . , w`; Σ, f) be the σ’s yielding elements in MATCH

∗
(...;Σ,f)

the class of (Σ, f) . So, recalling the notation “∼” from Definition 1.3,

MATCH
∗

(w1, . . . , w`; Σ, f)
def
=
{
σ ∈ MATCH

∗
(w1, . . . , w`)

∣∣∣ (Σσ, fσ) ∼ (Σ, f)
}
.

From Claim 2.10 it follows that MATCH
∗

(w1, . . . , w`; Σ, f) is finite for every
(Σ, f) ∈ Surfaces (w1, . . . , w`). Using Theorem 2.9, Theorems 1.4 and 1.7 now reduce to:

Theorem 2.16. Let [(Σ, f)] ∈ Surfaces (w1, . . . , w`). Then χ(2) (MCG (f)) is well defined and given
by

χ(2) (MCG (f)) =
∑

σ∈MATCH
∗
(w1,...,w`;Σ,f)

(−1)|κ(σ)| . (2.13)

In particular, if [(Σ, f)] ∈ Surfaces (w1, . . . , w`) cannot be realized by any
σ ∈ MATCH

∗
(w1, . . . , w`), then χ(2) (MCG (f)) = 0. Since there are only finitely many σ with

Σσ of a given Euler characteristic (Claim 2.10), it follows from Theorem 2.16 that, indeed, for any
χ0 ∈ Z, there are only finitely many classes [(Σ, f)] ∈ Surfaces (w1, . . . , w`) with χ (Σ) = χ0 and for
which χ(2) (MCG (f)) 6= 0.

In the next two sections we describe the constructions and results that lead to the proof of The-
orem 2.16 and of Theorem 1.6 which strengthen the result in the case (Σ, f) is incompressible. We
hint that the special property of the incompressible case is that the set MATCH

∗
(w1, . . . , w`; Σ, f)

gives rise to a natural complex with one cell for every element σ ∈ MATCH
∗

(w1, . . . , w`; Σ, f), so
that the Euler characteristic of this complex is exactly the right hand side of (2.13). See Section
4.4 for details.
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3 A complex of transverse maps

The key ingredient in the proof of our main results is a complex of transverse maps which we
associate with a given pair [(Σ, f)] ∈ Surfaces (w1, . . . , w`). In the current section we define it,
study important properties and prove it is contractible. In the next section we study the action of
MCG (f) on this complex and prove our main results.

3.1 Transverse maps

Recall that in this paper the term “curve” is short for a simple closed curve.

Definition 3.1. Let Σ be orientable. A map f : Σ →
∨r S1 is said to be transverse to a point transverse

p ∈
∨r S1 \ {o} if the preimage of p is a disjoint union of arcs and curves, and if in a small tubular

neighborhood U of every curve or arc γ in the preimage, the two connected components of U \ γ
are mapped to two different “sides” of p.

For example, the map fσ from Definition 2.11 is transverse to the points {(x, j)}x∈B,j∈[κx] in∨r S1. In this case, the preimage of each of these points contains no curves but rather only arcs. We
shall consider here different realizations of the homotopy class [f ] of the same map f : Σ→

∨r S1,
which are transverse to different collections of points in

∨r S1.
More formally, let Σ be a surface and f a map f : Σ →

∨r S1 so that
[(Σ, f)] ∈ Surfaces (w1, . . . , w`). By definition, Σ has ` marked points: one point, labeled vi, in
every boundary component ∂iΣ, for i = 1, . . . , `, and with f (vi) = o. Note that w1, . . . , w` are

prescribed from Σ and f by wi = f∗

(−−→
∂iΣ, vi

)
∈ π1

(∨r S1, o
)
. For every i = 1, . . . , `, we mark

additional |wi| − 1 points on ∂iΣ inside f−1 (o), so that f maps the intervals of ∂iΣ cut by these
points to the letters of wi. We let Vo ⊂ Σ denote the set of all marked points in Σ: a total of Vo∑`

i=1 |wi| marked points all at the boundary.

Definition 3.2. Let κ = {κx}x∈B ∈ (Z≥0)B be a set of non-negative integers. On the circle
corresponding to x in

∨r S1 mark κx+1 disjoint points, (x, 0) , . . . , (x, κx), arranged as in Definition
2.11 and Figure 2.3. Let [(Σ, f)] ∈ Surfaces (w1, . . . , w`) and Vo ⊂ f−1 (o) ⊆ Σ be as above. A map
g : Σ→

∨r S1 is a transverse map realizing (Σ, f) with parameters κ, if it is homotopic to f relative
to Vo and transverse to the points {(x, j)}x∈B,j∈[κx] ⊂

∨r S1. Note that, in particular, g (Vo) = {o}.
An arc (curve, respectively) in the preimage of (x, j) is called an (x, j)-arc ((x, j)-curve). Let Uo (x, j)-

arc/curvebe the connected component of o in
∨r S1 \ {(x, j)}x∈B,j∈[κx]. A connected component of g−1 (Uo)

is called an o-zone. For 0 ≤ j ≤ κx − 1, let Ix,j ⊂
∨r S1 be the interval on the x-circle cut out by o-zone

(x, j) and (x, j + 1). We call a connected component of g−1 (Ix,j) an (x, j)-zone, or, if x and j are (x, j)-zone
not relevant, also a z-zone. If all zones defined by g are topological discs, we say that g fills Σ, or z-zone

fillsthat g is filling.
The isotopy11 class of the transverse map g, denoted [g], contains all transverse maps with the [g]

same parameters κ which are homotopic to g relative to Vo via a homotopy of transverse maps
with the same parameters. We stress that the marked points in

∨r S1 are allowed to move inside∨r S1 \ {o} along the homotopy as long as they remain disjoint.

Note that every (x, j)-arc/curve has a direction from one side of the arc/curve to the other,
induced by the orientation of the circle in

∨r S1. Since we do not care about the location of the
(x, j)-points in

∨r S1, a transverse map g for (Σ, f) can be identified with the collection of disjoint
“directed” and colored arcs and curves. The isotopy class of g can then be though of as the isotopy

11We call [g] the isotopy class of g, rather than the homotopy class, because if one thinks of g as a collection of
disjoint colored arcs and curves embedded in Σ, then [g] is indeed the isotopy class of this collection relative to Vo.
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Figure 3.1: A collection of arcs corresponding to a transverse map realizing (Σ, f), where Σ is a
genus 1 surface with 2 boundary components, drawn as an annulus with two discs cut out, with
boundaries of those discs identified. Here r = 1 and there is one generator x. Green arcs are
(x, 0)-arcs and purple are (x, 1)-arcs. The marked points Vo are diamonds. There are no curves in
this system and it is filling. The words at the boundary are x2, x−2.

class of this collection of arcs and curves relative to Vo. We illustrate such a collection in Figure
3.1.

Also note, by the definition above, that the boundary of an (x, j)-zone of g consists of pieces of
∂Σ, of (x, j)-arcs/curves directed inward and of (x, j + 1)-arcs/curves directed outward. In contrast,
the boundary of an o-zone of g consists of pieces of ∂Σ, of (x, 0)-arcs/curves directed outward and
of (x, κx)-arcs/curves directed inward, for various x ∈ B. Finally, every point in Vo belongs to some
o-zone of g.

Generally, we want to forbid certain trivial or redundant features of transverse maps, as we
elaborate in the following definition:

Definition 3.3. A transverse map for (Σ, f) is called loose if it satisfies loose trans-
verse map• Restriction 1. There are no o-zones nor z-zones that contain no marked point from Vo

and whose boundary arcs and curves have the same color (x, j) and are all oriented pointing
inwards or all oriented outwards. Note this rules out the possibility of a zone that is a disc
bounded by a closed curve.

• Restriction 2. No segment of the boundary of Σ that contains no marked point can be
bounded by the end points of two arcs that are equally-labeled and both directed inwards or
both outwards. Note that this is the boundary analog of Restriction 1.

A transverse map for (Σ, f) is called strict if it satisfies, in addition, strict trans-
verse map• Restriction 3. For every x ∈ B and 0 ≤ j ≤ κx − 1, the collection of (x, j)-arcs and curves

is not isotopic to the collection of (x, j + 1)-arcs and curves. In other words, there must be at
least one (x, j)-zone which is neither a rectangle nor an annulus12.

Remark 3.4. • Note that if g fills Σ then there are no curves involved in g, but only arcs. This
is the case, for example, when g = fσ as in Definition 2.11.

• Any transverse map for (Σ, f) satisfying Restriction 2 admits exactly κx + 1 arcs touching
every interval in ∂Σ corresponding to the letter x, one arc for every j ∈ [κx]. Consequently,
it admits exactly Lx arcs labeled (x, j) for every x ∈ B and j ∈ [κx]. In addition, if O is an
o-zone of such a map then every connected component of O∩∂Σ contains exactly one marked
point from Vo.

12Here, a rectangle is a disc bounded by two arcs and two pieces of ∂Σ, and an annulus is bounded by two curves.
Restriction 3 should resonate the constraint on the set of matchings MATCH

κ
(w1, . . . , w`) from Section 2.4. In

particular, if g (Σ) does not contain the circle in
∨r S1 associated with x, then necessarily κx = 0.
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H-move

Figure 3.2: The dashed line is the arc-segment γ along which the H-move is performed. The two
purple segments on the left are parts of α1 and α2.

• If Restriction 2 holds, then Restriction 1 can only fail at zones bounded by curves.

The following local surgery of a transverse map will be very useful in the sequel:

Definition 3.5. Let g be a transverse map realizing (Σ, f) with parameters κ. Let α1 and α2 be
each an (x, j)-arc or an (x, j)-curve in the collection corresponding to g, where α1 and α2 have the
same color and are not necessarily distinct. Assume further there is an embedded arc-segment γ
inside the interior of Σ, with one endpoint in α1 and the other in α2 such that the interior of γ is
disjoint from the arc-curve collection of g, and such that both α1 and α2 are directed towards γ
or both directed away from γ. We say that the transverse map g′ realizing (Σ, f) with the same
parameters is obtained from g by an H-Move along γ if: H-Move

• One takes a small collar neighborhood of γ to obtain a rectangle whose short sides are con-
tained in α1 and in α2.

• One deletes the short sides of the rectangle from the arc-curve collection of g and replaces
them with the long sides to obtain a new collection which defines g′. See Figure 3.2.

It is clear that g′ is homotopic to g as a map but not isotopic as a transverse map.

3.2 The poset of strict transverse maps

The complex of transverse maps will be defined as the geometric realization of the poset of transverse
maps:

Definition 3.6. Let Σ and f : Σ→
∨r S1 satisfy [(Σ, f)] ∈ Surfaces (w1, . . . , w`). Let Vo ⊂ f−1 (o)∩

∂Σ be defined as above, so Vo ∩ ∂iΣ cuts ∂iΣ into |wi| intervals, each of which is mapped to some
x±1 with x ∈ B by f∗. The poset of transverse maps realizing (Σ, f), denoted T = T (Σ, f) or T =T (Σ,f)

(T ,�), consists of the set of isotopy classes relative to Vo of strict transverse maps realizing (Σ, f).
The order is defined by “forgetting points of transversion”. Namely, whenever g1 is a transverse
map realizing (Σ, f) with parameters {κx}x∈B and g2 is identical to g1 except we forget a proper
(possibly empty) subset of the transversion points {(x, j)}j∈[κx] ⊂

∨r S1 for every x ∈ B, then the
isotopy classes [g1] and [g2] satisfy [g2] � [g1] in the poset T .

Of course, the transversion points that remain in g2 may need relabeling. Note that we use here
strict transverse maps: maps satisfying the three restrictions from Definition 3.3. The role of loose
transverse maps will be clarified in the sequel of this section. Another important observation is that
if the transverse map g is strict, then so are the maps obtained from g by forgetting transversion
points:

Lemma 3.7. If g1 is a strict transverse map realizing (Σ, f) and g2 is obtained from g1 by forgetting
transversion points, then g2 is also strict. In other words, if [g1] ∈ T then [g2] ∈ T .
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Proof. It is enough to prove the statement of the lemma in the special case where g2 is obtained by
forgetting a single point, say the point (x, j), for some x ∈ B with κx ≥ 1 and j ∈ [κx]. It is obvious
that g2 satisfies Restriction 3. Let I ⊂ ∂iΣ \ Vo be an interval cut out by two adjacent marked
points. As g1 satisfies Restriction 2, all arcs touching I are directed in the same orientation
w.r.t. I and this property remains true for g2, hence g2 satisfies Restriction 2.

As for Restriction 1, assume first that j = κx, so every o-zone and (x, κx − 1)-zone of g1

which are neighbors belong to the same o-zone of g2. Every z-zone of g2 is also a z-zone of g1

with the same boundary, so Restriction 1 is not violated there. Let O ⊂ Σ be an o-zone of g2

that violates Restriction 1. Then O is not an o-zone of g1, and has to be a union of o-zones and
(x, κx − 1)-zones of g1, at least one of each type. In addition, O contains no marked points and has
only incoming (x, κx − 1)-arcs/curves at its boundary: this is because g1 satisfies Restriction 1,
every (x, κx − 1)-zone has some incoming (x, κx − 1)-arc/curve at its boundary, and so O also has
some incoming (x, κx − 1)-arc/curve at its boundary. But then, every o-zone of g1 contained in O
has no marked points and only incoming (x, κx)-arcs/curves at its boundary, a contradiction.

The proof is analogous if j = 0 and is similar but even simpler if 1 ≤ j ≤ κx − 1.

Another important observation is that T = T (Σ, f) is not empty.

Lemma 3.8. Let Σ, f be as in Definition 3.6, then the poset T = T (Σ, f) is not empty.

Proof. For every x ∈ B, mark a single point (x, 0) in
∨r S1 on the circle corresponding to x. Perturb

f to obtain g that is transverse to the points {(x, 0)}x∈B (without changing the image at Vo). The
resulting map is a transverse map realizing (Σ, f) with parameters κx = 0 for all x. Restriction 3
is automatically satisfied when κx = 0 for all x.

If g violates Restriction 2, then there is a segment I of the boundary cut out by two endpoints
of (x, 0)-arcs for some x ∈ B, both directed, say, inwards, and without any marked point. Let γ
be an arc parallel to I slightly away from ∂Σ with endpoint at the two arcs cutting I. Perform an
H-move along γ, and delete the resulting (x, 0)-arc parallel to I and γ. In that manner one can get
rid of all violations of Restriction 2.

So assume now that g does not violate Restrictions 2 and 3. Any violation of Restriction
1 is at zones bounded by curves. But any such zone can be simply deleted by removing all its
bounding curves. To see that this procedure does not change the homotopy type of the function,
note that it can be achieved by a series of H-moves: first perform H-moves along arcs connecting
a curve and itself to decrease the genus of the zone to 0. Then, use H-moves between different
bounding curves to eventually reduce the number of bounding curves to one. The resulting zone
is a disk bounded by a curve which can easily be homotoped away. We can repeat this process
until no violations of Restriction 3 remain. The resulting map is a strict transverse map realizing
(Σ, f).

3.3 The complex of transverse maps

The complex of transverse maps is defined as a “polysimplicial complex”, meaning that its cells
are products of simplices, or polysimplices, as in ∆k1 ×∆k2 × . . .×∆kr , where ∆k is the standard polysimplex
simplex of dimension k. Note that the polysimplex ∆k1 × . . .×∆kr has dimension k1 + . . .+ kr.

Definition 3.9. The complex of transverse maps realizing (Σ, f), denoted |T |poly = |T |poly

|T (Σ, f)|poly, is a polysimplicial complex with a polysimplex polysim ([g])
def
=
∏
x ∆κx for every ele- polysim ([g])

ment [g] ∈ T with parameters {κx}x∈B. The faces of polysim ([g]) are exactly
{polysim ([g′]) | [g′] � [g]}. Then |T |poly is the union of closed cells or disjoint union of open cells:

|T |poly
def
=

⋃
[g]∈T

polysim ([g]) =
⊔

[g]∈T

polysimo ([g]) .
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The topology on |T |poly, as the topology on every (poly-)simplicial complex in this paper, is defined
by taking the Euclidean topology on every (poly-)simplex s, and by letting a general set A ⊆ |T |poly

to be closed if and only if A ∩ s is closed in s for every (poly-)simplex s.

We remark that Restriction 3 plays an important role in this definition: it guarantees that
different vertices of the closed polysimplex polysim ([g]) correspond to different (minimal) elements
of T , hence the closed polysimplices are embedded in |T |poly.

There is an equivalent way to construct the complex of transverse map (up to homeomorphism),
as an ordinary simplicial complex: the order complex |T | of T . This is a standard simplicial complex, |T |
with simplices corresponding to chains in T : every chain [g0] ≺ [g1] ≺ . . . ≺ [gm] corresponds to an
m-simplex, with the obvious faces.

Claim 3.10. |T | is the barycentric subdivision of |T |poly. In particular, |T | ∼= |T |poly.

To prove the claim we use the following well-known fact. Here, if (P,≤P ) and (Q,≤Q) are
posets, then |P | is the order complex of P , and the direct product (P ×Q,≤P×Q) is defined by
(p1, q1) ≤P×Q (p2, q2) if and only if p1 ≤P p2 and q1 ≤Q q2.

Fact 3.11 (e.g. [Wal88, Theorem 3.2]). Let P and Q be posets. The function |P ×Q| → |P | × |Q|
defined by ∑

λi (pi, qi) 7→
(∑

λipi,
∑

λiqi

)
is an homeomorphism.

Proof of Claim 3.10. Let [g] ∈ T with parameters κ ∈ (Z≥0)B. We show that the barycentric
subdivision of polysim ([g]) consists of the simplices corresponding to chains in T with top element
[g′] satisfying [g′] � [g]. Indeed, this is certainly true in the single-letter case where r = |B| = 1 and
every polysimplex is merely a simplex. For the general case, let [γx (g)] denote the isotopy class of
the collection of arcs/curves corresponding to the letter x, for x ∈ B. Let Px (g) denote the poset
of all isotopy classes of collections of arcs/curves obtained from [γx (g)] by forgetting arcs/curves
from a proper subset of the colors [κx]. The single-letter case shows that |Px (g)| ∼= ∆κx . Since the

subposet of T given by T�[g]
def
= {[g′] ∈ T | [g′] � [g]} is exactly

∏
x∈B Px (g), Fact 3.11 yields that

the order complex of T�[g] is homeomorphic to polysim ([g]).

An important property of |T |poly is that it is finite-dimensional. This is an analog of Claim 2.10
and here, again, Restriction 3 plays an important role:

Lemma 3.12. The complex |T |poly is finite dimensional with13 dim
(
|T |poly

)
≤ `

2 − χ (Σ).

Proof. We need to show that
∑

x κx is bounded across [g] ∈ T . It is easy to see that

χ (Σ) =
∑
Σ′

(
χ
(
Σ′
)
− 1

2
#
{

arcs at ∂Σ′
})

, (3.1)

where the sum is over all o-zones and z-zones of g in Σ, and an arc that bounds Σ′ from both its
sides is counted twice for Σ′. The contribution of Σ′ in (3.1) is positive only if Σ′ is a topological disc
with at most one arc at its boundary. By Restrictions 1 and 2 this means that Σ′ is bounded by
one arc and one interval from ∂Σ containing a marked point, and that its contribution is 1

2 . Notice
that in this case, the marked point must be the special point vi ∈ ∂iΣ marking “the beginning” of
wi, and wi must be not cyclically reduced. Hence the positive contributions on the right hand side
of (3.1) sum up to at most `

2 , and come from o-zones only.

13Recall Remark 1.14 that we assume wi 6= 1 throughout the proofs. If we do consider the case that some of the
words are trivial, then Σ may contain components made of discs, and the bound in Lemma 3.12 needs to be updated.
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On the other hand, the only zones contributing zero to (3.1) are discs with two arcs at their
boundary, namely, rectangles, or annuli bounded by two curves. Every other z-zone contributes at
most -1: this follows from the fact that every boundary component of such a zone is either a curve
or contains an even number of arcs. Thus, Restriction 3 guarantees that for every x ∈ B and
0 ≤ j ≤ κx − 1, the total contribution of the (x, j)-zones is at most −1. We obtain

χ (Σ) ≤ `

2
−
∑
x

κx,

so ∑
x

κx ≤
`

2
− χ (Σ) .

Remark 3.13. When w1, . . . , w` are cyclically reduced and none equal to 1, the proof gives

dim
(
|T |poly

)
≤ −χ (Σ).

The following theorem is the main result of the current section. It is established in Section 3.5.

Theorem 3.14. The complex of transverse maps |T |poly is contractible.

3.4 A poset of loose transverse maps

In order to show the contractibility of |T |poly we introduce a poset L = L (Σ, f) of loose transverse

maps (see Definition 3.3) with exactly two transversion points on every cycle of
∨r S1. This poset

gives rise to a subdivision of the polysimplicial complex |T |poly, which is well-adapted to the surgeries
we perform to prove contractibility. We are not able to prove contractibility directly with the
constructions |T |poly or |T | from Section 3.3. The relation between L and T is analogous to the

relation between the set of matchings MATCHκ≡1 appearing in Theorem 2.8 and the set of matchings
MATCH

∗
appearing in Theorem 2.9.

Definition 3.15. Let Σ, f and Vo be as in Definition 3.6. The poset of loose bi-transverse maps
realizing (Σ, f), denoted L = L (Σ, f) or (L,�L), consists of the set of isotopy classes relative to L=L(Σ,f)

Vo of loose transverse maps realizing (Σ, f) with parameters κx = 1 for all x ∈ B. The order is
defined as follows: assume that g is a transverse map realizing (Σ, f) with κx = 3 for all x ∈ B,
let h1 be the transverse map obtained from g by forgetting the two exterior transversion points for
every x ∈ B, and let h2 be the one obtained from g by forgetting the two interior points for every
x ∈ B. If h1 and h2 are loose, then [h1] �L [h2] in L.

The geometric realization of L, denoted |L|, is the order complex of L: the simplicial complex |L|
with vertices corresponding to the elements of L and an m-simplex for every chain [h0] ≺ . . . ≺ [hm]
of length m+ 1.

In other words, [h1] �L [h2] whenever the x-arcs and curves of [h1] can be arranged to be
“nested” inside those of h2, i.e. to lie inside the (x, 0)-zones of h2, for every letter x ∈ B, so that the
resulting map is a legal transverse map with four transversion points for every x. Another way to
put it is that [h1] �L [h2] if and only if there are representatives h′1 and h′2, respectively, which are
identical as maps, and are transverse to four points (x, 0) , . . . , (x, 3) in every cycle of

∨r S1, such
that the “official” transversion points of h′1 are (x, 1) and (x, 2), while the “official” transversion
points of h′2 are (x, 0) and (x, 3).

Note that the relation �L is indeed a partial order: as the transverse map h with κx = 3 for
every x ∈ B is allowed to be loose, i.e., to violate Restriction 3, we get the desired reflexivity:
[h] �L [h] for every [h] ∈ L. For transitivity, assume [h1] �L [h2] �L [h3]. By definition, this means
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one can draw the x-arcs/curves of some h′2 ∈ [h2] inside the (x, 0)-zones of h3 to obtain a legal loose
transverse map, and likewise to draw the x-arcs/curves of some h′1 ∈ [h1] inside the (x, 0)-zones
of h′2 to obtain a legal loose transverse map. The union of all three collections of arcs and curves
gives a loose transverse map g with κx = 5 for all x. By forgetting (x, 1) and (x, 4) for every x, we
get a map that shows [h1] �L [h3]. Finally, if [h1] �L [h2] �L [h1], we obtain in a similar fashion
a map g with κx = 5 in which the (x, 0)-arcs/curves are isotopic to the (x, 2)-arcs/curves. This
forces the (x, 1)-arcs/curves to be isotopic to (x, 0) and to (x, 2). Analogously, the (x, 4)-collection is
isotopic to the (x, 3)-collection and to the (x, 5)-collection. Thus [h2] = [h1] and we have established
antisymmetry.

Proposition 3.16. The spaces |T |poly and |L| are homeomorphic. Moreover, there exists an home-

omorphism α : |L|
∼=→ |T |poly, through which the simplices of |L| subdivide the polysimplices of

|T |poly.

The proof relies on the following general lemma:

Lemma 3.17. For a finite chain (totally ordered set) C, let (PC ,�) be the poset consisting of
{(i, j) ∈ C × C | i ≤C j} with partial order given by (i1, j1) � (i2, j2) if and only if i2 ≤C i1 ≤C
j1 ≤C j2. Then there is a canonical homeomorphism fC : |PC | → ∆C from the order complex of
PC to the closed (|C| − 1)-simplex with vertices the elements of C. Moreover, the family {fC}C
of homeomorphisms respects subsets: for every subset C ′ ⊆ C, fC

∣∣∣
C′

= fC′ and in particular

fC (|PC′ |) = ∆C′.

Proof. We write points in ∆C as
∑

c∈C tc ·c with tc ≥ 0 and
∑

c tc = 1. If (i0, j0) ≺ . . . ≺ (im, jm) is a
chain in PC , we write a point in the corresponding m-simplex of |PC | as t0 ·(i0, j0)+ . . .+tm ·(im, jm)
with t` ≥ 0 for all ` ∈ [m] and

∑
t` = 1. However, we recursively define fC on any linear

combination of (i0, j0) , . . . , (im, jm) with image some linear combination of {c ∈ C}. The definition
is the following:

fC

(
m∑
s=0

ts · (is, js)

)
def
=

m∑
s=0

(
ts
2
· is +

ts
2
· js
)
.

We recursively define the converse map, φC : ∆C → |PC |, again on any linear combination. For
c ∈ C:

φC (t · c) = t · (c, c) .

If i0 ≤C i1 then

φC (t0 · i0 + t1 · i1) =


(t0 − t1) · (i0, i0) + 2t1 · (i0, i1) t0 > t1

2t0 · (i0, i1) t0 = t1

2t0 · (i0, i1) + (t1 − t0) · (i1, i1) t0 < t1

.

Finally, if i0 ≤C≤ i1 ≤C . . . ≤C im, then

φC (t0 · i0 + . . .+ tm · im) =

=


φC ((t0 − tm) · i0 + t1 · i1 + . . .+ tm−1 · im−1) + 2tm · (i0, im) t0 > tm

2t0 · (i0, im) + φC (t1 · i1 + . . .+ tm−1 · im−1) t0 = tm

2t0 · (i0, im) + φC (t1 · i1 + . . .+ tm−1 · im−1 + (tm − t0) · im) t0 < tm

.

It is easy to verify that fC and φC are inverse to each other, that they are continuous and that,

indeed, fC

∣∣∣
C′

= fC′ for every subset C ′ ⊆ C. In Figure 3.3 we illustrate the resulting subdivision

of ∆C when C = {0 ≺ 1 ≺ 2}.
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Figure 3.3: The subdivision (on the right) of the 2-simplex ∆C (on the left) given by the order
complex of the poset of pairs PC , where C = {0 ≺ 1 ≺ 2} is the chain with three elements.

Proof of Proposition 3.16. Let c = {[h0] ≺L . . . ≺L [hm]} be a chain in L. As above, find h′0, . . . , h
′
m

so that h′j ∈ [hj ] and so that for every 0 ≤ j ≤ m− 1, the x-arcs/curves of h′j are located inside the
(x, 0)-zones of h′j+1 and together they yield a legal (loose) transverse map with four transversion

points for every letter. Let gloose (c) be the loose transverse map with 2 (m+ 1) transversion points
for all x ∈ B, obtained as the union of the collections of arcs and curves of h′0, . . . , h

′
m. Let gstrict (c) gstrict

be the strict transverse maps obtained from gloose (c) by forgetting every transverse point (x, j) such
that the collection of (x, j)-zones of gloose (c) violates Restriction 3, namely, so that the collection
of (x, j)-arcs/curves is isotopic to the (x, j + 1)-collection. Note that

[
gstrict (c)

]
is a well-defined

element of T , and we denote by {κx (c)}x∈B its parameters. For a singleton [h] ∈ L, we denote also
gstrict (h) the strict transverse map corresponding to the single-element chain {[h]}.

The sought-after homeomorphism α : |L| → |T |poly is defined per simplex, where the simplex cor-

responding to the chain c ⊆ L is mapped into the polysimplex of |T |poly corresponding to
[
gstrict (c)

]
.

The exact definition goes through the single-letter case, using Fact 3.11. More concretely, for [g] ∈ T ,

let L≤[g]
def
=
{

[h] ∈ L
∣∣ [gstrict (h)

]
�T [g]

}
. While L is certainly not a product of its projections on

the different letters x ∈ B, it is such a product locally inside L≤[g]: for x ∈ B, let γx (g) denote
the collection of x-arcs and curves of g (namely, the union over j ∈ [κx] of (x, j)-arcs/curves). Let

P x (g) denote the poset consisting of
{
γxi,j (g)

}
0≤i≤j≤κx(g)

, with γxi1,j1 (g) ≤Px(g) γ
x
i2,j2

(g) if and only

if i2 ≤ i1 ≤ j1 ≤ j2. Here, γxi,j (g) can be thought of as the union of (x, i)- and (x, j)-arcs/curves
inside γx (g). It is easy to see that L≤[g] is isomorphic as a poset to a direct product of posets given
by

L≤[g]
∼=
∏
x∈B

P x (g) ,

where [h] ∈ L≤[g] corresponds to
∏
x∈B γ

x
(
gstrict (h)

)
. Hence,

∣∣L≤[g]

∣∣ =

∣∣∣∣∣∏
x∈B

P x (g)

∣∣∣∣∣ Fact 3.11∼=
∏
x∈B
|P x (g)|

Lemma 3.17∼=
∏
x∈B

∆κx(g) = polysim ([g]) ,

and this homeomorphism defines α|L≤[g]|. This definition expands to a well defined homeomorphism

α : |L| → |T |poly because for [g′] �T [g], the restriction of α|L≤[g]|
to
∣∣L≤[g′]

∣∣ is exactly α∣∣∣L≤[g′]

∣∣∣. This

shows that the image of the open simplices in |L| corresponding to the chains
{
c
∣∣ [gstrict (c)

]
= [g]

}
subdivides the open polysimplex polysim◦ ([g]), and the image of

∣∣L≤[g]

∣∣ subdivides the closed

simplex polysim ([g]).

3.5 Contractibility of the transverse map complex

To prove the contractibility of |T |poly, we use null-arcs:
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Definition 3.18. • A null-arc for (Σ, f) is an arc ω in Σ with endpoints in Vo ⊂ ∂Σ and interior null-arc
disjoint from ∂Σ, so that if ω is closed, it is not nullhomotopic, and such that f∗ (ω) = 1. The
latter condition means, in other words, that the image of ω under f is nullhomotopic in

∨r S1

relative the endpoints.

• A system of null-arcs for (Σ, f) is a collection of null-arcs that are disjoint away from their
endpoints and such that no two are isotopic relative to Vo.

• If Ω is a system of null-arcs for (Σ, f), then TΩ = TΩ (Σ, f) and LΩ = LΩ (Σ, f) are the TΩ,LΩ

subposets of T and L, respectively, of isotopy classes of transverse maps which map
⋃
ω∈Ω ω

to o ∈
∨r S1.

Put differently, TΩ and LΩ consist of isotopy classes of transverse maps with arcs/curves col-
lections that can be drawn away from Ω, meaning that every ω ∈ Ω is entirely contained in some
o-zone of the transverse map.

Note that TΩ and LΩ are downward closed: if g′ �T g ∈ TΩ then g′ ∈ TΩ and likewise for LΩ.
Hence |TΩ|poly and |LΩ| are subcomplexes of |T |poly and |L|, respectively. Moreover:

Claim 3.19. For any system of null-arcs for (Σ, f), the homeomorphism α : |L| → |T |poly from
Proposition 3.16 satisfies α (|LΩ|) = |TΩ|poly.

Proof. The homeomorphism α maps the simplex corresponding to the chain c in L into the polysim-
plex corresponding to

[
gstrict (c)

]
. But belonging to TΩ or to LΩ depends only on the o-zones of the

transverse map, and the o-zones of the top element of c are identical to those of gstrict (c). Hence c
is contained in LΩ if and only if its top element is in LΩ, if and only if

[
gstrict (c)

]
∈ TΩ.

The following proposition is the main component of the proof of Theorem 3.14 concerning the
contractibility of |T |poly.

Proposition 3.20. Let Ω be a system of null-arcs for (Σ, f), then there is a deformation retract of
|T |poly to |TΩ|poly. In particular, TΩ is non-empty.

Proof of Theorem 3.14 assuming Proposition 3.20. Since the number of non-isotopic null-arcs that
coexist for (Σ, f) is bounded by Euler characteristic considerations, it is obvious there exist maximal
systems of null-arcs: systems so that no further null-arcs can be added to. Let Ω be a maximal
system of null-arcs. We claim that |TΩ|poly is a single vertex of |T |poly. This is enough by Proposition
3.20.

By Proposition 3.20, TΩ is non-empty. Since TΩ is downward closed, we can choose g ∈ TΩ with
parameters κx = 0 for all x. Showing that |TΩ|poly is a single vertex is equivalent to showing that
g is the only point in TΩ.

To proceed, we claim that every connected component of Σ \ Ω has one of the following forms
(and see Figure 3.4):

(i) A rectangle around some arc β of g This usually means a rectangle cut out by two null-
arcs which are parallel to β with endpoints at the points of Vo neighboring the endpoints of β. But
we also refer here to a bigon cut out by a single null-arc if β connects two adjacent components of
∂iΣ \ Vo, which is possible when the word wi is not cyclically reduced.

(ii) A triangle bounded by three null-arcs
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Figure 3.4: This figure shows the different types of connected components of Σ \ Ω, where Ω is a
maximal system of null arcs. In the terminology of the proof of Theorem 3.14 on Page 32, the two
drawings on the left are pieces of type (i), namely, pieces containing a single arc β of the unique
transverse map g ∈ TΩ. The two drawings in the middle are pieces of type (ii): triangles bounded
by three null-arcs. The drawing on the right is a piece of type (iii): an annulus cut out by two
closed null-arcs and containing at least one curve of g (in the drawing: two curves, δ1 and δ2,
corresponding to two different basis elements).

(iii) An annulus cut out by two closed null-arcs In this case the annulus must contain at
least one curve of g (non-nullhomotopic, evidently).

Indeed, it is clear that for any arc β of g, the arc that is parallel to β on either side with
endpoints at the points of Vo neighboring the endpoints of β is a null-arc and therefore in Ω by
maximality. So every connected component of Σ \Ω that contains an arc of g, contains a single arc
of g and is of type (i). This also shows that components of type (i) touch all of ∂Σ. Any other
component Σ′ of Σ \Ω does not contain any arc from g and does not touch ∂Σ \ Vo. If Σ′ contains
no curves of g neither, it can be triangulated by null-arcs and therefore has to be a triangle as in
(iii) by the maximality of Ω.

Finally, assume that Σ′ contains a curve δ of g. First, any component of ∂Σ′ is a chain of
null-arcs, and by maximality has to consist of a single closed null-arc. Recall that Σ′ contains no
arcs of g, and that any non-nullhomotopic simple closed curve c ⊂ Σ′ disjoint from the curves of
g is a null-curve (see Definition 1.5). If Σ′ is not as described in item (iii), then one can add a
null-arc to Ω inside Σ′ in one of the following ways: if Σ′ has at least two boundary components,
draw a curve which leaves the marked point at one boundary component ω1, takes some path to a
different boundary component ω2, goes around the ω2 and returns to ω1 along the same way; If Σ′

has only one boundary component ω1, there must be a pair of pants contained in Σ′ which is free
from curves of g, and one can draw a new null-curve by going from the marked point of ω1, entering
the pair of pants through one sleeve, circling another sleeve and going back. This is a contradiction
to maximality. Hence Σ′ is necessarily of type (iii).

We can now finish the argument showing that [g] is the only element in TΩ. Let g′ be a transverse
map for (Σ, f) with [g′] ∈ TΩ. Obviously, there are no arcs/curves of g′ in components of Σ \ Ω of
type (ii). Any z-zone of g′ is contained in some component Σ′ of type (i) or (iii). But the structure
of these components guarantees that any such z-zone is either a rectangle or an annulus. Thus
κx (g) = 0 for all x ∈ B, for otherwise g′ violates Restriction 3. We can now see that [g′] = [g]:
its clear that their arcs are isotopic by the structure of type-(i) components. Their curves are also
isotopic because for every Σ′ of type (iii), consider an arc α connecting the two distinct marked
points from Vo touching Σ′. The image of α under f completely prescribes the curves of g′ inside
Σ′ (here we use also Restriction 1).
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3.5.1 Proof of Proposition 3.20

Now we come to prove Proposition 3.20 and show that |T |poly deformation retracts to |TΩ|poly. Using
Proposition 3.16 and Claim 3.19, we actually prove the equivalent statement that |L| deformation
retracts to |LΩ|. The general strategy to prove Proposition 3.20 is to perform local surgeries to
gradually simplify transverse maps by removing intersections of their arcs and curves with the null-
arcs in Ω. The complexity of a given transverse map in L is measured in terms of “depth of words
along null-arcs”:

Depth of words along null-arcs

Fix an arbitrary orientation along every null-arc in Ω. For every element [h′] ∈ L, pick a loose
transverse map h ∈ [h′] so that the arcs and curves are in minimal position with respect to Ω,
meaning there are no bigons cut out by Ω and the arcs/curves of h. Every null-arc ω ∈ Ω may cross
arcs and curves of h, and we record these crossings as a word uω (h), writing uω (h)

Px if the arc/curve has color (x, 0),

Qx if the arc/curve has color (x, 1).

Put differently, we consider the path h (ω) in
∨r S1, and write Px whenever it crosses (x, 0) and

Qx whenever it crosses (x, 1). Note that h (ω) begins and ends at o, and as ω is a null-arc and h
homotopic to f , we get that h (w) is nullhomotopic relative to its endpoints. This means that the
word uω (h) can be reduced to the empty word by repeatedly deleting consecutive pairs of the form
PxPx or QxQx.

For a general word in the alphabet {Px, Qx}x∈B, we define its length as the length of its reduced
form (it is standard the the reduced form does not depend on the choice of series of reduction steps).
We define the depth of a word as the maximal length of a prefix. For example, in the word below,
which reduces to the empty word, the superscripts denote the length of each prefix:

0Px
1Qx

2Py
3Py

2Qz
3Qz

2Qt
3Pt

4Qt
5Qt

4Pt
3Qt

2Qx
1Px

0 .

Hence the depth of this word is 5. We denote the depth of the word uω (h) by depth (uω (h)). depth (uω (h))
Notice that depth (uω (h)) = 0 if and only if ω does not intersect any arcs or curves of h, namely,

if and only if ω is contained inside some o-zone of h. Thus [h] ∈ LΩ if and only if depth (uω (h)) = 0
for all ω ∈ Ω.

We use the depth to filter L: for n ∈ Z≥0 we let

Pn
def
= {[h] ∈ L | depth (uω (h)) ≤ n for all ω ∈ Ω} .

Then
LΩ = P0 ⊆ P1 ⊆ . . . ⊆ Pn ⊆ . . . ⊆ L

is a countable filtration of L and
∞⋃
n=0

Pn = L.

A deformation retract |Pn| → |Pn−1|

Let h with [h] ∈ L and ω ∈ Ω satisfy that depth (uω (h)) = n, and consider the prefixes of length n
in uω (h). If the last letter of such a prefix is, say, Px, then so is the following letter. Each of these
two letters correspond to a point where ω crosses an (x, 0)-arc/curve of h. We call the segment of
ω cut out by these two crossing points a depth-n leaf of h in Ω. The deformation retract we shall depth-n leaf
construct “prunes” all depth-n leaves of the elements of Pn.
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Parity assumption A crucial observation here is that for every null arc ω and every h, if we cut
ω to segments using the crossing points with the arcs and curves of h, then the segments alternate
between belonging to o-zones of h and belonging to z-zones of h, with the first segment always in
an o-zone. So if n is even, every depth-n leaf is contained in some o-zone, while if n is odd, every
depth-n leaf is contained in some z-zone. In what follows we assume that n is even and so all
depth-n leaves are contained in o-zones. The other case is very similar, and we shall point out steps
of the proof where there is an important difference between the two cases.

The deformation retract |Pn| → |Pn−1| is based on a map rn : Pn → Pn−1 between the underlying
posets.

Definition 3.21. For [h] ∈ Pn assume that h is in minimal position with respect to Ω. Define
rn ([h]) by the following two steps: rn
(i) Perform an H-move (see Definition 3.5) along every depth-n leaf of h in Ω to obtain h′, a
transverse map for (Σ, f).
(ii) If n is even (respectively, odd) consider all o-zones (respectively, z-zones) in h′ which violate

Restriction 1 and remove them14 to obtain h′′, a transverse map for (Σ, f). Then set rn ([h])
def
=

[h′′].

Recall that all null-arcs in Ω are disjoint away from their endpoints, so all depth-n leaves of h
are disjoint, and so the different H-moves in step (i) do not interact with each other and can be
performed simultaneously. Also note that rn ([h]) does not depend on the representative h of [h].
See Figure 3.5 for an illustration of how the rn act on transverse maps.

We still need to explain why rn ([h]) ∈ Pn−1. We do this through the following series of claims:

Claim 3.22. κx (h′′) = 1 for all x ∈ B .

Proof. It is clear that step (i) of Definition 3.21 does not alter κx, so κx (h′) = 1. It remains to
show that for every x ∈ B and j ∈ [1], some (x, j)-arc/curve survives step (ii). We remark that
this is clear if there is some (x, j)-arc in h, because rn does not modify h near ∂Σ. It is less clear,
however, when there are only (x, j)-curves.

Let β be some (x, j)-arc or (x, j)-curve of h, and consider O1, the o-zone of h touching β. All
depth-n leaves of h are contained inside o-zones (recall our ongoing assumption in the proofs that n
is even), and the leaves inside O1 cut it in step (i) to smaller o-zones of h′, separated by “z-tunnels”
along the leaves of depth n. Let O(x,j) denote the collection of o-zones of h′ which are contained
in O1 and which are removed in step (ii) because they contain no marked points and have only
(x, j)-arcs/curves along their boundary. If O(x,j) is empty, we are done, as the (x, j)-arcs/curves
which are the traces of β survive in h′′. So assume O(x,j) is non-empty. It cannot include all the
o-zones of h′ contained in O1, because this would mean that O1 itself is redundant. Thus, there
must be some o-zone O2 ∈ O(x,j) which borders, through a depth-n leaf, some o-zone O3 /∈ O(x,j)

of h′ which is contained in O1. Since the leaf separating O2 and O3 has (x, j)-arcs/curves on both
sides (in h′), O3 has some bounding (x, j)-arc/curve, which survives step (ii).

We have not shown yet that rn ([h]) ∈ L: it remains to prove that h′′ is loose, but the following
claim is the analog of saying that [h] �L [h′′]:

Claim 3.23. There is a transverse map g for (Σ, f) with κx = 3 for all x, so that forgetting (x, 0)
and (x, 3) for all x yields a map in [h] and forgetting (x, 1) and (x, 2) for all x yields a map in15

[h′′].
14As we explained in the proof of Lemma 3.8, in the current scenario, a zone violating Restriction 1 is necessarily

a zone bounded by curves all of which are of the same color. By removing the zone we mean removing all bounding
curves to obtain a new transverse map, and this procedure does not change the homotopy type of the map relative to
Vo.

15If n is odd, the parallel claim is the analog of [h′′] �L [h].
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Figure 3.5: This figure shows the effects of r2 and r1 on a transverse map on a genus 1 surface
with 2 boundary components. The surface is depicted as a rectangle with 2 holes (shaded) whose
boundaries are identified according to the labeled orientations, and with the two dashed vertical
sides of the rectangle also identified. Green corresponds to (x, 0) and purple corresponds to (x, 1).
The two null-arcs in the system are the thick black arcs. Yellow shading indicates depth-n leaves
of the guide arcs. Dashed curves are those to be removed by Step (ii) of ri – see Definition 3.21.

Proof. First, construct a transverse map g with κx = 3 by duplicating the arcs and curves of h,
so that the (x, 0)-arcs/curves are isotopic to the (x, 1)-arcs/curves, and likewise with (x, 2) isotopic
to (x, 3). Since the H-moves in step (i) of Definition 3.21 are performed in o-zones (recall our
assumption that n is even), we can perform them for g, in which they involve only arcs/curves
with color from

⋃
x {(x, 0) , (x, 3)} and occur inside o-zones. The resulting map, call it g′, shows the

analog of h �L h′. Finally, the o-zones of g′ are identical (up to homotopy) to those of h′, so step
(ii) can be performed in g′ by removing all redundant o-zones of g′. The resulting map, g′′, is still
transverse with parameters κx = 3 for all x by Claim 3.22, and is the map we need to establish the
claim.

Lemma 3.24. rn ([h]) ∈ L.

Proof. We need to show that h′′ is loose, namely that it abides to Restrictions 1 and 2. Neither
step (i) nor step (ii) from Definition 3.21 change h near ∂Σ, so h′′ abides to Restriction 2 because
so does h. It remains to show there are no “redundant” zones in h′′, namely, no zones which violate
Restriction 1. Note that the removal of redundant o-zones of h′ in step (ii) enlarges z-zones and
possibly merges several z-zones into one, but it does not create new o-zones nor does it affect other
existing o-zones. So the remaining o-zones are not redundant.

As for z-zones, we use the map g′′ from Claim 3.23. We claim that g′′ has no redundant z-zones.
Clearly, g′′ has no (x, 1)-redundant zone, because these are exactly the (x, 0)-zones of h, which abide
to Restriction 1. Note that every (x, 0)-arc/curve of g′′ is parallel, at least in some segments, to
(x, 1)-arcs/curves (by the nature of H-moves). Hence, every (x, 0)-zone of g′′ must have some
bounding (x, 1)-arc/curve. Therefore, a redundant (x, 0)-zone in g′′ has only (x, 1)-arcs/curves at
its boundary, and is thus a redundant o-zone of h, a contradiction. That there are no redundant
(x, 2)-zones in g′′ is analogous to the (x, 0) case.
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Now, let Z be an arbitrary z-zone of h′′. Without loss of generality, there is some (x, 0)-arc/curve
of h′′ at ∂Z. This (x, 0)-arc/curve is at ∂Z0 for some (x, 0)-zone Z0 of g contained in Z. By the
claim on g, this Z0 borders some (x, 1)-zone Z1 ⊂ Z of g, which borders some (x, 2)-zone Z2 ⊂ Z
of g. But Z2 has some (x, 3)-arc/curve of g at its boundary, which is necessarily a (x, 1)-arc/curve
of h′′ at the boundary of Z. Hence Z does not violate Restriction 1.

Corollary 3.25. rn ([h]) ∈ Pn−1 and16 [h] �L rn ([h]).

Proof. It remains to show that depth (uω (h′′)) ≤ n − 1 for all ω ∈ Ω. The H-moves of step (i) in
the definition of rn remove all the crossings between ω and arcs/curves of h which cut out depth-n
leaves. It is thus clear that depth (uω (h′)) ≤ n− 1. But whenever ω enters a redundant zone of h′,
it has to leave it through an arc/curve of the same color. So the effect of removing a redundant zone
on the words uw (h′) is performing reduction steps (omitting consecutive pairs of the type PxPx or
QxQx). Reduction moves cannot increase the depth of the word.

After establishing that rn : Pn → Pn−1, our next goal is to use rn to obtain the sought-after
deformation retract. We do this using the following general technique concerning posets:

A map ϕ : P → Q between posets which is order-preserving, in the sense that p1 ≤P p2 =⇒
ϕ (p1) ≤Q ϕ (p2), maps a chain p0 <P . . . <P pm in P to a, possibly “stuttering”, chain ϕ (p0) ≤Q
. . . ≤Q ϕ (pm) in Q, so the set {ϕ (p0) , . . . , ϕ (pm)} defines a simplex in the order complex |Q|. This
allows the following natural induced map |ϕ| : |P | → |Q| between the order complexes:

|ϕ|
(∑

λipi

)
=
∑

λiϕ (pi) . (3.2)

Lemma 3.26. Let P be a subposet of the poset Q. Assume that ϕ : Q → P satisfies the following
three conditions:

• ϕ is order-preserving

• ϕ is a retract, i.e. f
∣∣∣
P
≡ id

• ϕ (q) ≤ q for all q ∈ Q, or ϕ (q) ≥ q for all q ∈ Q

Then |ϕ| : |Q| → |P | is a strong deformation retract.

By a strong deformation retract we mean that there is a homotopy of |ϕ| with the identity on
|Q| which fixes |P | pointwise throughout the homotopy.

Proof. Recall that a map ψ between posets is called a poset-morphism if it is order preserving. If
ψ : P → Q is a poset morphism, we let |ψ| denote the induced map |ψ| : |P | → |Q| defined as in
(3.2). If P and Q are posets, ψ0, ψ1 : P → Q are poset morphisms, and ψ0 (p) ≤ ψ1 (p) for every
p ∈ P , then |ψ0| and |ψ1| are homotopic. Indeed, let {0 ≤ 1} denote the poset with two comparable
elements 0 and 1. Define a map (ψ0, ψ1) : P × {0 ≤ 1} → Q by (p, 0) 7→ ψ0 (p) and (p, 1) 7→ ψ1 (p).
This is clearly a poset-morphism by the assumptions, so it induces a continuous map

|(ψ0, ψ1)| : |P × {0 ≤ 1}| → |Q| .

By Fact 3.11, there is an homeomorphism

|P × {0 ≤ 1}|
∼=→ |P | × |{0 ≤ 1}| = |P | × [0, 1] ,

16For n odd, rn ([h]) �L [h].
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(x,0)
(x,1)

(x,2)
(x,3)(y,3)(y,2)

(y,1)
(y,0)

Figure 3.6: The wedge
∨r S1 when r = 2, B = {x, y}. The marked points are the transversion

points of a map g, with κx (g) = κy (g) = 3. If h1 is the transverse map obtained from g by
forgetting (x, 0) , (x, 3) , (y, 0) , (y, 3) and if n is even, then a depth-n leaf γ of h1 at some null-arc
ω is contained in some o-zone of h1, meaning that g (γ) lives outside the broken segments in the
figure.

so we get that |(ψ0, ψ1)| is a continuous map |P | × [0, 1] → |Q|. Because |(ψ0, ψ1)|
∣∣∣
|P×{0}|

≡ |ψ0|

and |(ψ0, ψ1)|
∣∣∣
|P×{1}|

≡ |ψ1|, the map |(ψ0, ψ1)| is the sought-after homotopy. (This result appears

in [Qui73, Section 1.3].)
Note that the map ϕ : Q→ Q in the statement of the lemma and the identity id : Q→ Q satisfy

the conditions regarding ψ0 and ψ1 above. Hence |ϕ| is homotopic to the identity. The fact that
the homotopy fixes |P | pointwise follows from the fact that the homotopy above does not move
the points where ψ0 and ψ1 agree. Namely, if P0 ⊆ P is the subposet where ψ0 (p) = ψ1 (p), then
|(ψ0, ψ1)| (x, t) = ψ0 (x) = ψ1 (x) for every x ∈ |P0| and t ∈ [0, 1].

Proposition 3.27. The map rn : Pn → Pn−1 satisfies the conditions of Lemma 3.26 and so defines
a strong deformation retract

|rn| : |Pn| → |Pn−1| .

Proof. We already proved above that for n even, [h] �L rn ([h]) which is the third assumption of
Lemma 3.26. The second assumption is also clear: if [h] ∈ Pn−1, then h admits no depth-n leaves
in Ω, and therefore in Definition 3.21, h = h′ = h′′. It remains to show that rn is order-preserving.

Let h1 and h2 be transverse maps so that [h1] , [h2] ∈ Pn, with [h1] �L [h2], and assume that g is
a transverse map g with κx = 3 for all x, so that h1 and h2 are obtained by forgetting the exterior
and interior, respectively, two transversion points for every letter x. We also assume g is in minimal
position with respect to Ω. For ω ∈ Ω, the words uω (h1) and uω (h2) are very much dependent:
they can be constructed simultaneously by following the path g (ω) in

∨r S1, and adding a letter
to uω (h1) whenever g (ω) crosses some (x, 1) or (x, 2) point, and a letter to uω (h2) whenever g (ω)
crosses some (x, 0) or (x, 3) point. This description shows that whenever ω visits an o-zone or an
(x, 1)-zone of g, the prefix of the two words until that point has the same reduced form and, in
particular, the same length.

Consider a depth-n leaf γ of h1 in ω. The beginning of γ is at a crossing point of ω with some
(x, j)-arc/curve of g with x ∈ B and j ∈ {1, 2}, in which ω leaves an (x, 1)-zone of g and enters
some (x, 0)- or (x, 2)-zone. Without loss of generality, assume that ω crosses some (y, 1)-arc/curve
with y ∈ B. The image g (γ) is a closed path in

∨r S1, based at (y, 1), which avoids the segments
[(x, 1) , (x, 2)] for every x ∈ B – see Figure 3.6.

When one follows the prefix of the word uω (h2) along γ, it is clear, therefore, that at the
beginning of γ it has length n − 1. If it then crosses (y, 0), it has the same length as the prefix
of uω (h1) which is n. Then, it could seemingly cross, e.g., (x, 3) for some x ∈ B, but this would
increase the length of the prefix of uω (h2) to n+1, which is impossible as [h2] ∈ Pn. Hence g (γ) can
only cross the point (y, 0) back and forth. Every two consecutive such crossings define a depth-n
leaf of h2 at ω.
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Figure 3.7: On the left, a piece of a null-arc ω crosses some arcs/curves of g, the transverse map with
κx = 3 for all x showing that h1 �L h2, both inside Pn. The thick red part of ω is a depth-n leaf
γ of h1, which in g is a segment of ω between two crossing-points with (y, 1)-arcs/curves. Inside γ
there are two depth-n leaves of h2, which, in g, are two segments cut out by (y, 0)-arcs/curves. The
right hand side shows the result of step (i) of Definition 3.21 on this local picture, where performing
the single H-move for h1 after the two H-moves of h2 causes no collisions.

Therefore, in the notation of Definition 3.21, step (i) can be performed in two phases: first,
perform step (i) for h2, where the depth-n leaves never cross any arcs/curves of h1. Second, perform
step (i) for h1: although a depth-n leaf of h1 may cross arcs/curves of h2, the previous paragraph
explains why it never crosses arcs/curves of h′2. The resulting h′1 and h′2 are compatible together in
the sense there is g′ with κx = 3 as in the definition of the order on L (although, of course, h′1 and
h′2 may not be in L). See Figure 3.7.

In step (ii) of Definition 3.21 we now remove redundant o-zones of h′1 and of h′2. Since the
o-zones of h′2 and those of g′ coincide, removing redundant o-zones of h′2 is equivalent to removing
redundant o-zones of g′ and keeps the structure of g′ as a legal transverse map with κx = 3 for all x.
Denote the resulting map by g′. However, we still need to show that removing redundant o-zones of
h′1 does not cause a problem, namely, that any redundant o-zone of h′1 does not contain any curves
of h′′2, which are the same as (x, 0)- or (x, 3)-curves of g′ for any x ∈ B.

Indeed, let O be a redundant o-zone of h′1. Without loss of generality it is bounded by outgoing
(y, 1)-curves of g′. Assume there is some curve of h′′2 inside O which is not a (y, 0)-curve of g′, say,
an (x, 3)-curve of g′. The negative side of this (x, 3)-curve cannot be a redundant (x, 2)-zone of g′,
because then it would be a redundant z-zone of h′′2 which is impossible by Lemma 3.24. Thus, this
(x, 2)-zone of g′ must have some (x, 2)-arc/curve at its boundary, a contradiction to the assumption
that O is redundant. We conclude that O may only contain (y, 0)-curves of g′. But then, on their
negative side, these curves must bound a redundant zone (there cannot be marked points from Vo
inside as O is redundant), and thus should have been removed in step (ii) for h2. Therefore, step
(ii) for h′1 can be performed on g′ without violating any rule, and the resulting map, g′′, shows that
rn (h1) = [h′′1] �L [h′′2] = rn ([h2]).

Proof of Proposition 3.20. To get a deformation retract of |L| to |LΩ| we perform |rn| at time[
1

2n ,
1

2n−1

]
. We remark that the fact that |rn| is a strong deformation retract, namely, keeps |Pn−1|

fixed pointwise, guarantees that the total deformation retract on |L| is well defined.

39



4 The action of MCG(f) on the complex of transverse maps

In this section we prove our main results: Theorems 1.4, 1.6 and 1.7. We begin with some back-
ground on L2-Euler characteristics.

4.1 L2-Betti numbers and L2-Euler characteristics

We now define the L2-invariants of groups that appear in our main theorem, although, for the sake
of the proofs, one can use Theorem 4.2, Lemma 4.3 and Theorem 4.4 as black boxes.

The following definitions and properties are all found in the book of Lück [Lüc02]; many of
the ideas we discuss originate from the paper of Cheeger and Gromov [CG86]. Throughout this
subsection, G is a discrete group.

Definition 4.1 ([Lüc02, Def. 1.25]). A G-CW -complex is a CW-complex with a cellular action of
G such that if an element of G fixes an open cell, it acts as the identity on that open cell.

Following [Lüc02, Def. 1.1], the group von Neumann algebra N (G) is defined to be the space of
G-equivariant bounded operators from `2(G) to itself. Here `2(G) is given the standard Hermitian
inner product making it a Hilbert space. Now suppose X is a G-CW-complex. Denote by Csing

∗ (X)
the singular chain complex of X. This is a complex of left ZG-modules. Giving N (G) the structure
of an (N (G),ZG)-bimodule, we can form a chain complex

. . .
dp+1−−−→ N (G)⊗ZG C

sing
p (X)

dp−→ N (G)⊗ZG C
sing
p−1(X)

dp−1−−−→ . . .

of N (G)-modules. This is a Hilbert chain complex in the terminology of [Lüc02, Def. 1.15]. In
particular, each piece N (G)⊗ZG C

sing
p (X) is a Hilbert module for N (G) as defined in [Lüc02, Def.

1.5], N (G) ⊗ZG C
sing
p (X) is a Hilbert space, and the boundary maps are bounded G-equivariant

operators. The L2-homology of the pair (X,G) we denote by H
(2)
∗ (X;G) and define by

H(2)
p (X;G)

def
=

ker(dp)

closure(image(dp+1))
,

cf. [Lüc02, Def. 6.50, Def. 1.16]. Each of these homology groups are themselves Hilbert N (G)-
modules. Any N (G)-module M has an associated dimension in [0,∞] called the von Neumann
dimension and denoted by dimN (G)(M) [Lüc02, Def 6.20]. The L2-Betti numbers of the pair (X,G)
are defined by

b(2)
p (X,G)

def
= dimN (G)H

(2)
p (X;G) ∈ [0,∞].

If ∑
p∈Z≥0

b(2)
p (X,G) <∞ (4.1)

then we can also define the L2-Euler characteristic of the pair (X,G) to be

χ(2) (X,G) =
∑
p∈Z≥0

(−1)p · b(2)
p (X,G) ∈ R.

If EG is a contractible G-CW-complex with a free action of G then we define

b(2)
p (G)

def
= b(2)

p (EG,G)

and if moreover (4.1) holds for X = EG, then we also define as in [Lüc02, Def. 6.79] the L2-Euler
characteristic of G to be

χ(2) (G)
def
= χ(2) (EG,G) .
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Since EG is unique up to G-equivariant homotopy equivalence, it follows for example from [Lüc02,

Theorem 6.54] that the quantities b
(2)
p (G) , χ(2) (G) only depend on G. The existence and G-

homotopy uniqueness of EG is discussed in [Lüc02, pg. 33] with references therein to [tD72, tD87].
Assume X is an arbitrary G-CW-complex. If c is a cell of X write Gc for the isotropy group

(stabilizer) of c in G. As in [Lüc02, §6.6.1], we consider the quantities

|Gc|−1

where we set |Gc|−1 = 0 if Gc is infinite. We define following [Lüc02, Def 6.79]

m (X,G) :=
∑

[c]∈G\X

|Gc|−1 ∈ [0,∞].

Theorem 4.2 ([Lüc02, Thm. 6.80(1)]). If m (X,G) is finite then the sum of b
(2)
p (X,G) is finite

and, moreover,

χ(2) (X,G) =
∑

[c]∈G\X

(−1)dim c |Gc|−1 . (4.2)

Following [Lüc02, Def. 7.1] let B∞ denote the class of groups G for which bp (G) = 0 for all B∞
p ∈ Z≥0.

Lemma 4.3. If X is a contractible G-CW-complex, and for all cells c of X the isotropy group Gc
is either finite or in B∞, then

b(2)
p (X,G) = b(2)

p (G) , p ∈ Z≥0.

Hence if also m (X,G) is finite then χ(2) (X,G) = χ(2) (G).

Proof. This is [Lüc02, Exercise 6.20]. It can be proved by combining [Lüc02, Thm 6.54 (2) and (3)],
and referring to Theorem 4.2 for the statement about Euler characteristics.

To use Lemma 4.3 we need to have a source of groups lying in B∞. The following theorem is
essentially due to Cheeger and Gromov (cf. [CG86, Corollary 0.6]). The precise statement we need
can be deduced from [Lüc02, Theorem 7.2, items (1) and (2)]. Recall that a discrete group is called
amenable if it has a finitely additive left invariant probability measure.

Theorem 4.4 (Cheeger-Gromov). If G is a discrete group containing a normal infinite amenable
subgroup then G ∈ B∞.

4.2 The complex of transverse maps as a MCG(f)-CW -complex

The stabilizer MCG (f) of f in MCG (Σ) acts on the poset T = T (Σ, f) by precomposition: if
[ρ] ∈ MCG (f) and [g] ∈ T with parameters κ, then [ρ] . [g] =

[
g ◦ ρ−1

]
is an element of T with the

same κ: indeed, g ◦ ρ−1 is a transverse map realizing f with the exact same transversion points as
g. This action is obviously an order preserving action: if [g1] � [g2] then [ρ] . [g1] � [ρ] . [g2].

We now show that this action on T turns its geometric realization into a MCG (f)-CW -complex,
as in Definition 4.1. The properties mentioned above of the action of MCG (f) on the poset T
guarantee that this is the case for |T |, the order complex of T (see Page 28 for the definition of
|T |). We claim this is also the case for the polysimplicial complex |T |poly:

Lemma 4.5. Let [(Σ, f)] ∈ Surfaces(w1, . . . , w`). Let Γ = MCG(f). The action of Γ on T =
T (Σ, f) makes |T |poly into a Γ-CW -complex.
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Proof. If [ρ] ∈ Γ fixes [g] ∈ T we need to show [ρ] cannot permute the faces of polysim ([g]). But[
g ◦ ρ−1

]
= [g] means there is an isotopy of transverse maps between g and g ◦ ρ−1. In such an

isotopy, the
∑

x∈B (κx (g) + 1) points of transversion in
∨r S1 may move around, but away from

the wedge point o, and without collisions. This means that their order on each circle of
∨r S1 is

preserved. In particular, for every x ∈ B and j ∈ [κx (g)], the isotopy takes the (x, j) point of
g to the (x, j) point of g ◦ ρ−1, and the collection of (x, j)-arcs/curves of g to the collection of
(x, j)-arcs/curves of g ◦ ρ−1. Thus, [ρ] necessarily preserves every face of polysim ([g]).

Definition 4.6. We define T∞ = T∞(Σ, f) to be the subposet of T = T (Σ, f) consisting of classes T∞(Σ, f)
of transverse maps [g] in T that do not fill Σ.

Recall that [g] fills Σ if its o-zones and z-zones are all topological discs. This means, in particular,
that the preimage of every transversion point contains only arcs (and no curves).

Our notation T∞ is in analogy to Harer’s use of A∞ in [Har86, Har85] for the subcomplex of the
arc complex consisting of arc systems that do not cut the surface into discs; Harer used this complex
in [Har86] to construct a Borel-Serre type bordification of Teichmüller space. This had previously
been done by Harvey [Har81] using the complex of curves. These bordifications are closely related to
the Deligne-Mumford compactification [DM69] of the moduli space of curves (see [Mon08, Remark
2.5]).

We define |T∞|poly to be the polysimplicial subcomplex of |T |poly consisting of polysimplices in
T∞. It is clear that |T∞|poly is indeed a subcomplex of |T |poly since if the arcs of [g] do not cut Σ
into discs then neither do the arcs of [g′] obtained from g by forgetting points of transversion.

Lemma 4.7. MCG(f) acts freely on T \ T∞.

Proof. If [ρ] in MCG(f) fixes an isotopy class [g] of filling transverse maps then we can assume ρ
fixes all the arcs of g, so restricts to mapping classes on each of the zones of g, which are all discs.
The Alexander Lemma [FM12, Lemma 2.1] implies these mapping classes must be trivial, so ρ is
homotopic to the identity on each zone of g, hence overall.

So the isotropy groups MCG (f)[g] are trivial for [g] ∈ T \ T∞. The following lemma shows
that for any other element of T , the isotropy groups are not only infinite, but also have vanishing
L2-Betti numbers:

Lemma 4.8. Let Γ = MCG(f). If [g] ∈ T∞ then the isotropy group Γ[g] of [g] are in B∞.

Proof. Fix a representative transverse map g for [g]. Let C denote a set of disjoint simple closed
curves, where for every zone of g we add a simple closed curve parallel to every boundary component
of that zone to C, and we think of the curves as drawn inside the zones of g they come from. If g
contains curves in the preimages of points of transversion, then this process can add to C multiple
copies of isotopy classes of simple closed curves, but this does not matter.

Because C is drawn in the zones of g, then a Dehn twist in any element of C belongs to Γ. Let
N be the subgroup of Γ generated by Dehn twists in elements of C. This group is isomorphic to Zr

for some r ≥ 0 because the curves in C are disjoint. In fact, r ≥ 1 since by assumption, some zone
of g is not a topological disc, and hence has a boundary component which does not bound a disc, so
gives rise to a non-trivial Dehn twist. To see that N is normal in Γ[g], note that any mapping class
in Γ[g] can be taken to permute the zones of g. Hence Γ[g] permutes the isotopy classes of curves
in C. Therefore the conjugation by [ρ] ∈ Γ[g] of any Dehn twist in an element of C is another Dehn
twist in an element of C.

It was proved by von Neumann [von29] that Zr is amenable, hence Γ[g] contains a normal infinite
amenable subgroup. The statement of the lemma now follows from Theorem 4.4.
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4.3 Proof of Theorem 2.16

Fix [(Σ, f)] ∈ Surfaces(w1, . . . , w`) and let Γ = MCG (f). Recall that Theorem 2.16 states that
χ(2) (Γ) is well-defined and is given by a finite alternating sum over the set
MATCH

∗
(w1, . . . , w`; Σ, f) of matchings of the letters of w1, . . . , w`. There is a natural map from

elements of T \ T∞ to MATCH
∗

(w1, . . . , w`; Σ, f):

Definition 4.9. Define a map m̃atch

m̃atch : T \ T∞ → MATCH
∗

(w1, . . . , w`)

as follows. The (x, j)-arcs of [g] ∈ T \ T∞ define a matching σx,j between the instances of x+1 in

w1, . . . , w` and the instances of x−1. Define m̃atch ([g]) to be the element

σ ∈ MATCH
κ(g)

(w1, . . . , w`) consisting of the matchings {σx,j}x∈B,j∈[κx].

We remark that if σ = m̃atch ([g]) then indeed σx,j 6= σx,j+1 for x ∈ B, j < κx: this is
guaranteed by Restriction 3 and the fact that the arcs of g cut Σ into discs.

Lemma 4.10. The map m̃atch descends to a bijection

match : MCG(f)\ (T \ T∞)
∼=−→ MATCH

∗
(w1, . . . , w`; Σ, f) . (4.3)

Proof. It is obvious that m̃atch is invariant under the action of MCG (f), hence match is well
defined. Since every element [g] ∈ T \ T∞ fills Σ (its arcs cut Σ into discs), it is clear that

(Σ, f) ∼ (Σσ, fσ) where σ = m̃atch ([g]), using a homeomorphism ρ : Σ → Σσ taking g to the
transverse map fσ (so g ◦ ρ−1 and fσ are isotopic as transverse maps - recall Definitions 2.7 and

2.11). This shows (i) that m̃atch ([g]) indeed belongs to MATCH
∗

(w1, . . . , w`; Σ, f) (and not only

to MATCH
∗

(w1, . . . , w`)), and (ii) that if m̃atch ([g1]) = m̃atch ([g2]) then [g1] and [g2] are in the
same MCG (f)-orbit of T \ T∞, hence (4.3) is injective.

Finally, to see (4.3) is surjective, notice that for every σ ∈ MATCH
∗

(w1, . . . , w`; Σ, f), if ρ is
the homeomorphism showing the equivalence of (Σ, f) ∼ (Σσ, fσ) as above, then [fσ ◦ ρ] ∈ T \ T∞,

and its image through m̃atch is σ.

It follows from Claim 2.10 that MATCH
∗

(w1, . . . , w`; Σ, f) is finite, hence:

Corollary 4.11. There are finitely many MCG(f)-orbits in T \ T∞.

We can now prove Theorem 2.16.

Proof of Theorem 2.16. The polysimplicial complex |T |poly is a Γ-CW -complex for
Γ = MCG (f) by Lemma 4.5. The isotropy groups of Γ in its action on |T |poly are either triv-
ial if [g] ∈ T \ T∞ (Lemma 4.7) or infinite if [g] ∈ T∞ (Lemma 4.8). Since Γ\ (T \ T∞) is finite
(Corollary 4.11), we have that

m
(
|T |poly ,Γ

)
=

∑
[g]∈Γ\T

∣∣Γ[g]

∣∣−1
=

∑
[g]∈Γ\(T \T∞)

∣∣Γ[g]

∣∣−1

is finite. From Theorem 4.2 we deduce that χ(2)
(
|T |poly ,Γ

)
is well defined and given by

χ(2)
(
|T |poly ,Γ

)
=

∑
[g]∈Γ\T

(−1)dim(polysim[g])
∣∣Γ[g]

∣∣−1
=

∑
[g]∈Γ\(T \T∞)

(−1)|κ(g)| ∣∣Γ[g]

∣∣−1

=
∑

[g]∈Γ\(T \T∞)

(−1)|κ(g)| =
∑

σ∈MATCH
∗
(w1,...,w`;Σ,f)

(−1)|κ(σ)| ,
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where the last equality follows from Lemma 4.10, as the bijection maps the orbit of [g] ∈ T \ T∞ to
a set of matchings σ with κ (σ) = κ (g).

Finally, Theorem 3.14 and Lemmas 4.7 and 4.8 show that the assumptions of Lemma 4.3 hold

for the action of Γ = MCG (f) on |T |poly. As m
(
|T |poly ,Γ

)
is finite, we conclude that

χ(2) (Γ) = χ(2)
(
|T |poly ,Γ

)
=

∑
σ∈MATCH

∗
(w1,...,w`;Σ,f)

(−1)|κ(σ)| .

This completes the proof of Theorem 2.16, and hence of our main Theorem 1.7 and of Theorem
1.4.

4.4 Incompressible maps and the proof of Theorem 1.6

Definition 4.12 ([Bro82, Page 247]). If G is a discrete group and X is a G-CW -complex such that
G acts freely on X, X is contractible, and G\X is a finite CW-complex, then one defines the Euler
characteristic of G to be

χ(G)
def
= χ(G\X)

where the right hand side is the topological Euler characteristic. Since G\X is a K(G, 1)-space for
G, hence unique up to weak homotopy equivalence, this definition does not depend on X.

Recall from Definition 1.5 that [(Σ, f)] ∈ Surfaces(w1, . . . , w`) is called incompressible if it admits
no null-curves.

Lemma 4.13. [(Σ, f)] is incompressible if and only if T∞ (Σ, f) is empty.

Proof. If (Σ, f) admits a null-curve γ, one can start with an arbitrary element [g] of T and surger g
using H-moves to remove its intersections with γ, similarly to the proof of Proposition 3.20 with γ
playing the role of the null-arc. It is easy to check the resulting [g′] is in T∞. In the other direction,
the arcs and curves of any element [g] ∈ T∞ are disjoint from some essential simple closed curve,
which is thus a null-curve of (Σ, f).

Recall that Theorem 1.6 says that an incompressible (Σ, f) admits a finite complex as a K (Γ, 1)-
space for Γ = MCG (f), and that χ (Γ) = χ(2) (Γ).

Proof of Theorem 1.6. By Lemmas 4.5, 4.7 and 4.13, Γ acts freely on the Γ-CW -complex |T |poly,
and by Corollary 4.11 the quotient Γ\ |T |poly is finite. As |T |poly is contractible (Theorem 3.14) we

obtain that Γ\ |T |poly is the sought-after K (Γ, 1) -complex. Hence χ (Γ) = χ
(

Γ\ |T |poly

)
is well

defined. Moreover, the proof of the Theorem 2.16 in Section 4.3 shows that χ (Γ) = χ(2) (Γ).

Remark 4.14. Note that the K (Γ, 1)-complex we obtained as a quotient in the last proof can also
be constructed directly as a cell complex with a cell for every σ ∈ MATCH

∗
(w1, . . . , w`,Σ, f), in an

analogous way to Definition 3.9 of the complex of transverse maps. The example of the single incom-
pressible map for w = [x, y] [x, z], where there are two vertices connected by two parallel edges, illus-
trates that this is not always a polysimplicial complex. However, the set MATCH

∗
(w1, . . . , w`,Σ, f)

also has a natural partial order defined by forgetting proper subsets of the matchings for every x ∈ B.

We can thus realize this K (Γ, 1) also as the order complex
∣∣∣MATCH

∗
(w1, . . . , w`,Σ, f)

∣∣∣, which is

a genuine simplicial complex.

We end this subsection with a bound on the dimension of the K (Γ, 1)-complex we constructed:
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Figure 4.1: This figure shows part of a transverse map, the surface extends to the left where there
may be other arcs and curves making up the map. Let x ∈ B. The transverse map shown has
κx = 0 and purple curves are (x, 0)-curves.

Corollary 4.15. If w1, . . . , w` are all cyclically reduced and different than 1, then the K (Γ, 1)-space
we constructed has dimension at most −χ (Σ).

Proof. The K (Γ, 1)-space is a quotient of T (Σ, f), and therefore has the same dimension, which is
bounded by −χ (Σ) – see Lemma 3.12 and Remark 3.13.

4.5 Non-finiteness of MCG(f)\T : why (the proof of) Theorem 1.6 fails for com-
pressible maps

When (Σ, f) is compressible, the subposet T∞ is non-empty (Lemma 4.13), hence the action of
Γ = MCG (f) on |T |poly is not free, and the quotient is not a K (Γ, 1). Still, the ordinary Euler
characteristic of a group is defined in much more general cases then the one based on a finite
K (Γ, 1)-space as in Definition 4.12 – see [Bro82, Chapter IX]. For example, one could hope to use
the following:

Theorem ([Bro82, Proposition IX.7.3(e’)]). Let G be a discrete group, and let X be a contractible
G-CW -complex such that G\X has finitely many cells and such that the isotropy group Gc of every
cell c “has finite homological type” (see [Bro82, Page 246]). Then χ (G) is defined and satisfies

χ (G) =
∑

[c]∈G\X

(−1)dim c χ (Gc) .

It is not too difficult to show that when G = Γ = MCG (f) and X = |T |poly, all the assumptions
in this theorem hold, except for the assumption that Γ\ |T |poly has finitely many cells. It turns out,
perhaps counter-intuitively, that indeed this latter assumption often fails:

Abelian neck phenomenon

Let g be the transverse map which is partially depicted in Figure 4.1, and (Σ, f) be such that
[g] ∈ T (Σ, f). The key feature of g is that there is a null-curve (e.g., one of the dotted black lines)
that separates a subsurface that is mapped by f at the level of π1 to the cyclic group 〈x〉. In terms
of our picture, this can be seen as the curves that appear in this subsurface are associated to only
one generator x. Note also in our picture we have illustrated a ‘neck’ region bounded by two black
dotted curves that contains 4 parallel and codirected (x, 0)-curves. Assume for the sake of clarity
that any curve that could be drawn in the neck region is indeed drawn there. One could modify
this transverse map by changing the number of the repeated curves in the neck region.

Lemma 4.16. No matter how many parallel codirected (x, 0)-curves are placed in the neck region
of g, the resulting transverse map still realizes (Σ, f) and thus represents an element of T (Σ, f).
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Proof. Call the rightmost (x, 0)-arc in the neck α and the (x, 0)-curve in the right part of Figure
4.1 β. Consider an H-move along a piece of arc connecting α to β (and arrives to both from their
positive side). This results in a strict transverse map in T (Σ, f) which is the same as g except that
α is omitted. This shows that alternating the number of (x, 0)-curve in the neck in Figure 4.1 does
not take us out of T (Σ, f).

Corollary 4.17. With T = T (Σ, f) as in Lemma 4.16, obtained from Figure 4.1, MCG(f)\T is
not finite.

Proof. We can create elements in T with an unbounded number of curves, and the number of curves
is a MCG(f)-invariant.

This is not the most general version of this phenomenon: the neck could for example be replaced
by a collection of disjoint annuli that cut from Σ some subsurface with π1 mapped by f to a non-
trivial cyclic subgroup of Fr. Our aim here is to give an illustrative example.

5 Further applications and consequences

We specify here three interesting applications of our results and techniques, regarding the sta-
ble commutator length of a word, the complete classification of all incompressible solutions in
Surfaces (w1, . . . , w`), and the cohomological dimension of MCG (f). Let us also mention that our
construction of a finite K (Γ, 1)-space for Γ = MCG (f) when [(Σ, f)] is incompressible also enables
one to write explicit finite presentations for Γ: consult [MP15, Pages 57-59].

5.1 Stable commutator length

Recall that Corollary 1.11 states that the w-measures on {U (n)}n∈N determine scl (w), the stable
commutator length of w ∈ Fr, defined in (1.7). In this subsection we explain how this result follows
from Theorem 1.7 and from Calegari’s rationality theorem.

Calegari’s theorem, which is the main result of [Cal09b], says that scl (w) is rational for every

w ∈ [Fr,Fr]. First, it is shown that scl (w) is equal to the infimum of −χ(Σ)
2|j1+...+j`| over all possible

j1, . . . , j` ∈ Z and (Σ, f) admissible for wj1 , . . . , wj` [Cal09b, Lemma 2.6]. The proof goes through
showing the existence of “extremal surfaces” for w: a surface attaining the infimum. Moreover,
by [Cal09b, Lemma 2.7], this extremal surface can be taken to be admissible for wj1 , . . . , wj` with
j1, . . . , j` > 0. By definition of extremal surface, Σ has maximal Euler characteristic for wj1 , . . . , wj` ,
namely, χ (Σ) = χmax

(
wj1 , . . . , wj`

)
. In fact, every surface which is admissible for wj1 , . . . , wj` with

Euler characteristic χmax

(
wj1 , . . . , wj`

)
is extremal. By [Cal09b, Lemma 2.9], the maps associated

with extremal surfaces are π1-injective, namely, if γ ⊂ Σ is a non-nullhomotopic closed curve, then
f (γ) is not nullhomotopic. Note that this condition is stronger than incompressibility, which only
deals with simple closed curves. The crux of the matter is the following lemma:

Lemma 5.1. If (Σ, f) is π1-injective, then MCG (f) is trivial.

Proof. The outline of the argument here is that if [ρ] ∈ MCG (f) then [ρ]∗ ∈ Aut (π1 (Σ)) fixes
f∗, and since f∗ is injective, this means that [ρ]∗ must be the identity. By a variation of the
Dehn-Nielsen-Baer Theorem, it follows that [ρ] is the identity.

In more detail, assume that Σ is connected (the general cases easily follows). Recall that v1 ∈ ∂1Σ
is one of the ` marked points at ∂Σ, and let G = π1 (Σ, v1). If ` = 1, the Dehn-Nielsen-Baer Theorem
(see Page 7 and [MP15, Thm 2.4]) yields what we need. If ` ≥ 2, consider an arc γ ⊂ Σ connecting
v1 and v`. Because [ρ] ∈ MCG (Σ) fixes the marked points, we must have that ρ (γ) is homotopic

46



relative to {v1, v`} to β ∗ γ, where β is a closed, not necessarily simple, curve based at v1 and “∗”
stands for concatenation. Inside Fr we have

f∗ [γ] = f∗ [ρ (γ)] = f∗ [β ∗ γ] = f∗ [β] · f∗ [γ]

hence f∗ [β] = 1 which means that β is nullhomotopic by π1-injectivity. Hence we can assume
without loss of generality that ρ fixes γ, and we can analyze ρ on Σ′, the surface obtained from Σ
by cutting along γ. Since Σ′ has only `− 1 boundary components, we are done by induction.

Proof of Corollary 1.11. By Lemma 5.1 and the discussion preceding it, if one of the extremal
surfaces of w is admissible for wj1 , . . . , wj` with j1, . . . , j` > 0, then Theorem 1.7 translates in this
case to

T rwj1 ,...,wj` (n) = nχmax(wj1 ,...,wj`) ·K +O
(
nχmax(wj1 ,...,wj`)−2

)
, (5.1)

where K is the number of highest-Euler-characteristic surfaces in Surfaces
(
wj1 , . . . , wj`

)
. Note that

(5.1) is strictly positive for large enough n. Hence,

− limn→∞ logn

∣∣∣T rwj1 ,...,wj` (n)
∣∣∣

2 (j1 + . . .+ j`)
=
−χmax

(
wj1 , . . . , wj`

)
2 (j1 + . . .+ j`)

= scl (w) .

On the other hand, for an arbitrary ` > 0 and j1, . . . , j` > 0 we have

− limn→∞ logn

∣∣∣T rwj1 ,...,wj` (n)
∣∣∣

2 (j1 + . . .+ j`)
≥
−χmax

(
wj1 , . . . , wj`

)
2 (j1 + . . .+ j`)

≥ scl (w) .

This proves (1.8).

Corollary 5.2. If scl (w1) 6= scl (w2) then for every large enough n, the w1-measure on U (n) is
different from the w2-measure on U (n). In particular, if w1 ∈ [Fr,Fr] and w2 /∈ [Fr,Fr] then they
induce different measures on U (n) for almost all n.

Proof. Assume without loss of generality that scl (w1) < scl (w2), and let j1, . . . , j` > 0 be so that
wj11 , . . . , w

j`
1 admit an extremal surface. Then by the above discussion, T r

w
j1
1 ,...,w

j`
1

(n) is strictly

larger than T r
w
j1
2 ,...,w

j`
2

(n) for any large enough n. In particular, if w2 is not balanced, i.e. w2 /∈

[Fr,Fr] and scl (w2) =∞, then nor is the set wj12 , . . . , w
j`
2 balanced as we assume j1, . . . , j` > 0. By

Claim 2.1, T r
w
j1
2 ,...,w

j`
2

(n) ≡ 0 for every n.

5.2 Classifying all incompressible solutions to generalized commutator equation

Since the late 1970’s there are known algorithms to determine the commutator length of a given
word w ∈ [Fr,Fr] [Edm75, GT79, Cul81] and also to find at least one representative from every
equivalence class of solutions to [u1, v1] · · · [ug, vg] = w with g = cl (w) [Cul81, Section 4.2]. In fact,
the algorithm in [Cul81] uses matchings of letters of w as in Proposition 2.13. Our analysis and
techniques expand Culler’s algorithm to yield a clear description of the set of classes of solutions
and, in particular, a direct way to distinguish them from each other.

Consider the poset P = MATCH
|κ|≤1

(w1, . . . , w`) consisting of sets of matchings for w1, . . . , w`

as in Section 2, where |κ| def
=
∑

x∈B κx ≤ 1 and σx,0 6= σx,1 whenever κx = 1, and with partial order
σ0 ≺ σ1 whenever |κ (σ0)| = 0, |κ (σ1)| = 1 and σ0 is obtained from σ1 by deleting one of the two
x-matchings for the x ∈ B with κx (σ1) = 1. Recall the definition of χ (σ) from Definition 2.7.
Construct a graph G (w1, . . . , w`) with vertices the elements of P and an edge (σ0, σ1) whenever
σ0 ≺ σ1 and χ (σ1) = χ (σ2). We say a component C of G (w1, . . . , w`) is downward-closed if every
vertex σ1 of C with κ (σ1) = 1 has two neighbors: the two elements of P that are strictly smaller.
Recall the notation Σσ and fσ from Definitions 2.7 and 2.11.
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Proposition 5.3. The map ϕ : P = MATCH
|κ|≤1 → Surfaces (w1, . . . , w`) given by

σ 7→ [(Σσ, fσ)]

induces a bijection between the downward-closed components of G (w1, . . . , w`) and the incompress-
ible pairs in Surfaces (w1, . . . , w`).

Proof. First, ϕ is constant on connected components of G (w1, . . . , w`): indeed, assume that σ0 ≺ σ1

with χ (σ0) = χ (σ1) and, say, σ0 is obtained from σ1 by forgetting the matching (σ1)x,1. Then the
condition χ (σ0) = χ (σ1) shows forgetting the (x, 1) transversion point of the transverse map fσ1
results in a transverse map which is still filling, and thus equal to fσ0 . Hence we can define ϕ̂ to be
a map from the downward-closed components of G (w1, . . . , w`) to Surfaces (w1, . . . , w`).

Second, the image of ϕ̂ consists of incompressible elements. To see this, let C be a downward-
closed component of P . Let σ ∈ C have |κ (σ)| = 0. Assume to the contrary that ϕ (σ) is
compressible. Then it admits a null-curve γ which is not disjoint from the matching-edges in Σσ

(recall that the matching-edges cut Σσ to discs). One can start performing H-moves along this null-
curve. In an H-move between two x-matching-edges e1 and e2 along a piece of γ, one first creates
a transverse map g1 with |κ (g1)| = 1 (with fσ ≺ g1 in T = T (Σσ, fσ)) and then obtains g0 ≺T g1

with |κ (g0)| = 0 which has two fewer intersection points with γ. Because the matching-edges cut
Σσ to disks, e1 and e2 must be distinct, and thus g1 has only arcs and [g1] = [fσ1 ] for some σ1 ∈ C.
As C is downward-closed, there is some σ0 ∈ C with [g0] = [fσ0 ]. We can continue in the same
manner until γ intersects no matching-edges, which is a contradiction.

Third, ϕ̂ is the sought-after bijection. Indeed, every incompressible
[(Σ, f)] ∈ Surfaces (w1, . . . , w`) is the ϕ-image of some component of G (w1, . . . , w`) by Proposi-
tion 2.13. If σ ∈ P satisfies ϕ (σ) = [(Σ, f)] and C is the connected component of σ then C is a
component of the 1-skeleton of the K (Γ, 1)-complex we constructed in the proof of Theorem 1.6
in Section 4.4. In particular, this complex is connected (because its universal cover |T |poly is con-
nected), hence so its 1-skeleton is connected. This shows that C is the only component mapping to
[(Σσ, fσ)] and that it is downward-closed.

Alternatively, one could use here a direct argument imitating some ingredients from the proof of
Theorem 3.14, as follows. For [(Σ, f)] incompressible, show that ϕ−1 ([(Σ, f)]) is a downward-closed
connected component of G (w1, . . . , w`), by taking a maximal system of null-arcs, showing there is a
single σ0 ∈ ϕ−1 ([(Σ, f)]) with matching edges disjoint from these null-arcs, and showing every other
element in the preimage can be connected to σ0 by H-moves that never leave the same connected
component of G (w1, . . . , w`).

5.3 Finiteness of the cohomological dimension of the stabilizer MCG(f)

Recall that the cohomological dimension, cd(Γ), of a torsion-free group Γ is the minimal length
of a projective resolution of Z over ZΓ if one exists, and ∞ otherwise. If a group Γ is virtually
torsion-free then the virtual cohomological dimension, vcd(Γ), is defined to be cd(Γ′) where Γ′ is a
finite index torsion-free subgroup of Γ; it is a theorem of Serre [Ser71] that the resulting dimension
does not depend on the chosen finite index subgroup. As the the following result is not needed for
the main results of this paper, we only sketch its proof.

Proposition 5.4. Let Σ be a compact orientable surface with no closed connected components and
let f : Σ→

∨r S1 be a map. Then cd(MCG(f)) <∞.

Sketch of proof. Let T = T (Σ, f) and Γ = MCG(f). Note that Γ is torsion-free since Σ has no
closed components. We use a result that is attributed to Quillen by Serre in [Ser71, Prop. 11(a)].
As |T |poly is contractible (Theorem 3.14), Quillen’s result says that
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cd(Γ) ≤ sup
[g]∈Γ\T

(dim(polysim ([g])) + cd(StabΓ(g)) .

Therefore, as |T |poly is finite dimensional (Lemma 3.12), it suffices to prove there is an upper bound
depending only on the pair (Σ, f) for cd(StabΓ(g)) given an arbitrary element g in T .

We now give a quick analysis of these stabilizers. Fix a transverse map g with [g] ∈ T . Let
{Σi}i∈I denote the zones of g which are not annuli bounded by two curves of g. By Euler character-
istic argument, I is finite and bounded independently of g. Form Σ∗i by contracting each end of Σi

bounded by a curve of g to a point, and mark the new points Wi ⊂ Σ∗i on their respective surfaces.
We denote by MCG(Σ∗i ,Wi) the mapping class group of Σ∗i that fixes each individual element of
Wi.

The subgroup Γ0 ≤ StabΓ (g) that fixes all the curves in g and their orientations has finite index
in StabΓ (g), and there is a short exact sequence obtained by restricting mapping classes in Γ0 to
the zones Σi:

1→ N → Γ0 → H
def
=
∏
i∈I

MCG(Σ∗i ,Wi)→ 1, (5.2)

where N is a free abelian group generated by Dehn twists in the curves of g. The reason one obtains
the whole of each MCG(Σ∗i ,Wi) as a factor is because g maps each Σi to a contractible piece of∨r S1, and any lift of any element of MCG(Σ∗i ,Wi) to MCG(Σ) can be taken to be the identity
outside Σi, and therefore preserves the homotopy class of f . Although MCG(Σ∗i ,Wi) could contain
torsion, it is virtually torsion-free (see either [Iva02, Theorem 6.8.A] or [Har86, §4]).

Harer proved in [Har86] that for any surface Σ and collection of interior marked points W ,

vcd(MCG(Σ,W )) ≤ 4g(Σ) + 2|π0(∂Σ)|+ |W | − 3,

where g (Σ) is the genus of Σ. Therefore using [Bro82, Prop. VIII.2.4.b] together with an argument
as in [Bro82, Proof of Prop. IX.7.3.d] to pass between vcd and cd, one obtains

vcd(H) ≤
∑
i∈I

(4g(Σ∗i ) + 2|π0(∂Σ∗i )|+ |Wi| − 3) ≤ F1 (Σ) ,

where F1 (Σ) is a bound in terms of Σ which is independent of g. Since H is virtually torsion-free,
and Γ0 has no torsion, we can find torsion-free finite index subgroups Γ′0, H

′ in Γ0 and H respectively
that form a short exact sequence 1 → N → Γ′0 → H ′ → 1. Then Serre’s Theorem [Ser71] gives
cd(StabΓ(g)) = cd(Γ0) = cd(Γ′0) and cd(H ′) = vcd(H). We also have cd (N) ≤ F2(Σ) where F2(Σ)
is the maximal number of pairwise non-isotopic disjoint simple closed curves on Σ. Now applying
[Bro82, Prop. VIII.2.4.b] to the short exact sequence for N,Γ′0, H

′ we get

cd(StabΓ(g)) = cd(Γ′0) ≤ cd(N) + cd(H ′) = cd(N) + vcd(H) < F1 (Σ) + F2 (Σ) .

6 Open problems

We mention some open problems that naturally arise from the discussion in this paper.

1. Recall that primitive words are the orbit in Fr of the single-letter word x under the action
of Aut (Fr). As mentioned on Page 10, it was shown in [PP15] that only primitive words
induce uniform measure on the symmetric group Sn for all n. Is the same true for unitary
groups? Namely, if a word induces Haar measure on U (n) for all n, is the word necessarily
primitive? In fact, the following question raised by Tsachik Gelander a few years ago (by
private communication) is still open: if a word induces Haar measure on U (2), is the word
necessarily primitive?
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2. Fix j1, . . . , j` ∈ Z. Given w ∈ Fr, is there a nice criterion for determining whether the rational
expression for T rwj1 ,...,wj` (n) has the same value as for the primitive case when w = x? An
illustrating example is T rw (n) – we know it vanishes outside [Fr,Fr], but it is not clear when
it vanishes inside [Fr,Fr]. Another illustrating example is T rw,w−1 (n): when does it differ
from 1? Some examples for each are elaborated in Table 1 and on Page 8.

3. Let Σ be a connected, orientable surface with boundary, and let f : Σ →
∨r S1. We showed

here that MCG (f) has a well-defined L2-Euler-characteristic (Theorem 1.4) and a finite coho-
mological dimension (Proposition 5.4). Does MCG (f) always have “finite homological type”
as defined in [Bro82, Page 246]? And if so, does its ordinary Euler characteristic coincide with
the L2-one?

4. We deduced the rationality of T rw1,...,w` (n) in Theorem 2.8 directly from Weingarten calcu-
lus. The rationality means that the different L2-Euler characteristics appearing in Theorem
1.7 “know” about each other. Is it possible to deduce the rationality of T rw1,...,w` (n) (i.e.,
Proposition 1.1) from our main theorem, Theorem 1.7?

5. What can one say about the distribution of T rw (n) when w is a long random word in [Fr,Fr]?
For example, what is the distribution of the commutator length of w? Is it true that for most
words of a fixed length in [Fr,Fr], the stabilizers MCG (f) of incompressible solutions are
trivial?

6. What can one systematically say about the L2-Euler characteristic of MCG(f)? For which f
are they zero, negative, or positive? The case when f is incompressible is a natural starting
point. A sufficiently good understanding of this question would allow one to make progress
on Conjecture 1.10. The Euler characteristic of the mapping class group of a closed surface
was calculated by Harer-Zagier [HZ86] and the sign of the Euler characteristic of the mapping
class group was re-obtained by McMullen [McM00] by different methods.
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