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Highlights

• Depth completion can be performed by learning the context and contents of

the scene.

• Depth holes can be predicted based on the scene and capture device charac-

teristics.

• Using absolute deviations loss in frequency domain (DCT) improves recon-

struction.

• Adversarial training (Wasserstein metric) can improve training and mode

selection.

• Using domain transfer, models trained on synthetic data are used in the real

world.
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Abstract

In this work, the issue of depth filling is addressed using a self-supervised feature

learning model that predicts missing depth pixel values based on the context and

structure of the scene. A fully-convolutional generative model is conditioned on

the available depth information and full RGB colour information from the scene

and trained in an adversarial fashion to complete scene depth. Since ground truth

depth is not readily available, synthetic data is instead used with a separate model

developed to predict where holes would appear in a sensed (non-synthetic) depth

image based on the contents of the RGB image. The resulting synthetic data with

realistic holes is utilized in training the depth filling model which makes joint use

of a reconstruction loss which employs the Discrete Cosine Transform for more

realistic outputs, an adversarial loss which measures the distribution distances via

the Wasserstein metric and a bottleneck feature loss that aids in better contextual

feature execration. Additionally, the model is adversarially adapted to perform
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well on naturally-obtained data with no available ground truth. Qualitative and

quantitative evaluations demonstrate the efficacy of the approach compared to

contemporary depth filling techniques. The strength of the feature learning ca-

pabilities of the resulting deep network model is also demonstrated by performing

the task of monocular depth estimation using our pre-trained depth hole filling

model as the initialization for subsequent transfer learning.

Keywords: Depth image, Hole filling, Self-supervised learning, Generative

model, Adversarial training, Feature distance, Domain adaptation.

1. Introduction

The world is visually diverse, irregular and contrastingly structured at the same

time. Three-dimensional scenes containing depth information are highly applica-

ble within visual systems such as autonomous driving, augmented reality, envi-

ronment modelling and alike. Moreover, recent achievements in depth capture

technologies, including time-of-flight cameras, stereo correspondence and struc-

tured light devices, have made depth accessible in any scene understanding pro-

cess. However, complete (hole-free) scene depth cannot be acquired facilely us-

ing commercial devices and even high-performance depth sensing solutions suffer

from a range of environmental noise issues that preclude the recovery of hole-free

scene depth under all conditions. This work is an exploration into whether a state-

of-the-art learning based approach is capable of understanding the structures and

intricacies of a scene, just as humans are, to predict the missing parts of scene

depth as a standalone real-time portion of any visual system.

Image completion is considered challenging as it is inherently ill-posed. RGB

completion approaches can achieve plausible results, using either local or non-
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local information [1, 2, 3, 4, 5]. However, due to the differences between depth

and colour images (e.g., absence of granular texture, object separation, and in-

scene transferability of varying depth sub-regions), conventional colour image

inpainting is considerably less effective within the depth modality [6].

Some depth filling techniques leverage classic image inpainting approaches to

complete depth [7]. There have also been attempts to fill a target region in one

of a set of multi-view photographs [8], to fill depth using exemplar-based image

completion [9], and a myriad of approaches utilizing filters [10], temporal-based

methods [11], reconstruction-based methods [12], and others [13, 14, 15].

Deep neural networks have recently been successfully utilized for image styl-

ization [16, 17], super-resolution [18, 19, 20], and colorization [21]. In the realm

of image completion, Pathak et al. [22] propose a context encoder which can

predict missing regions in a colour image using an adversarial [23] and a recon-

struction loss (`2). Although the model produces promising results, the absence of

fine texture and the existence of visible artefacts near the boundaries of the target

region point to flaws in the learning mechanism within the framework.

In a related work, Yeh et al. [24] utilize an analogous framework with similar

loss functions to map the input image with missing or corrupted regions to a la-

tent vector, which in turn is passed through their generator that recovers the target

content. Despite the large amount of corruption applied to the input, the model

generates perceptually plausible outputs. Nevertheless, blurring effects and un-

wanted artefacts persist in spite of the low resolution of the images.

Yang et al. [25] propose a joint optimization framework composed of two

separate networks, a content encoder, based on [22], which is tasked to preserve

contextual structures within the image, and a texture network, which enforces
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similarity of the fine texture within and without the target region using neural

patches [26]. The model is capable of completing higher resolution images than

its two earlier counterparts [22, 24] but at the cost of greater inference time since

the final output is not achievable via a single forward pass.

Regarding depth images, advances have been made in monocular depth esti-

mation [27, 28, 29, 30, 31] and depth super-resolution [32]. Here, we utilize a

generative model trained on synthetic data [33, 34] to complete depth. Since the

model is expected to synthesize large portions of depth, it has to adapt to learning

image structures and semantics. In existing works on learning-based colour image

completion [22, 24, 25], training requires large datasets. The complete image is

often considered as the ground truth, and the input is created by adding noise or

sparse corruptions [24], removing rectangular blocks [22, 24, 25], or cutting ran-

dom regions from the image [22]. In the realm of depth filling, however, no such

large datasets exist that contain large quantities of ground truth (hole-free) depth.

Consequently, synthetic data needs to be acquired from a graphically rendered

virtual environment primarily designed for a gaming application [35].

Since depth holes are neither random nor manually created, they are pre-

dictable, in that they occur due to specific scene features or the capture device.

For instance, featureless surfaces such as blank walls and roads, reflective objects,

and depth discontinuities, among others can cause depth holes. As a result of

this predictability, the location of a hole occurrence can be learned via a sepa-

rate model trained to predict where holes would be in a depth image based on the

features present in the scene and the assumption of a specific capture approach.

When high-quality ground truth exists, a model can be naively trained based

on a simplistic reconstruction loss (`1 or `2). However, due to the multi-modality
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of image completion, a model trained in this way tends to generate the average

of the multiple possible modes in the predictions, which results in an output con-

taining blurring effects. This is why the techniques in [22, 24, 25] and other

generative models [36, 37] leverage adversarial training [23] as this assists with

mode selection to generate realistic results. However, approaches using Genera-

tive Adversarial Networks (GAN) [22, 23, 24, 25] suffer from certain flaws such

as unstable training, difficulties in reaching an equilibrium, and vanishing gradi-

ents due to premature discriminator optimality and other issues [38, 39, 40]. Here,

we utilize an improved adversarial framework [39] that avoids such issues.

Even though an adversarial loss can help diffuse blurring effects, the goal

of the adversary should be generating a more realistic image across the board

and blurring artefacts still occasionally make their way to the output. This is

because the generator feels safer averaging than selecting values. To ease the

burden of de-blurring on the adversary, we propose the addition of a loss term

based on the Discrete Cosine Transform (DCT) in addition to the conventional `1

loss. The DCT preserves an accurate representation of the image structure in its

spatial frequency content, which is why it has long been used in de-blurring [41],

compression [42] and alike. We utilize the absolute deviations loss (`1) in the

frequency domain, as this error is far more obvious when the DCT is applied to a

blurry averaged image. As seen in Figure 1, the `1 distance between the original

image and the blurry image, both in the spatial domain, is not very large, but when

the same images are transformed into the frequency domain using the DCT, the `1

error is much larger and therefore a better indicator of blurring effects.

The task of our generator consists of two stages: reducing the input into a com-

pact representation of itself in the feature space (encoding) and reconstructing the
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Figure 1: A demonstration of how the DCT makes the absolute deviations loss more susceptible
to blurring. Note that the `1 distance between the images in the frequency domain is higher and
therefore a great tool to identify blurring.

image from these compact features (decoding). Up-convolutions, of any kind, are

fraught with intrinsic unpredictability and can lead to bad salient edges and ab-

sence of fine texture. As a result, ensuring that the reconstruction starts from a

correct and viable feature representation is paramount. We use the feature repre-

sentations produced in the generator bottleneck in our loss to make sure the scene

representation is correctly captured before reconstruction. While the sole use of

this as a loss function is inadvisable and can lead to high-frequency artefacts, it is

a helpful complement to the reconstruction and adversarial losses.

Our approach is meant to fill holes in depth images acquired via commercially

and computationally inexpensive tools (a stereo camera and established stereo

correspondence approaches such as [43, 44]) and not in pixel-perfect synthetic

depth images only. Therefore, as part of our training procedure, it is vital to guide

the model toward capturing the distribution of the natural data. With this in mind,

a domain transfer network is trained within the framework to rectify the model

such that real-world images can be viable inputs during inference. In short, the

contributions of our work are as follows:

• Novelty - no comparable approach utilizes a generative model using the

Earth Mover’s distance to complete depth via the Discrete Cosine Transform

based on a synthetic training corpus with predicted holes.
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• Accuracy - the approach is far more efficient and accurate than comparators

(conventional image completion techniques) within a side-by-side compar-

ison framework (Tables 2 and 3; Figures 10 and 11).

• Representation Learning - our model is capable of learning better seman-

tics and context as illustrated by superior sharp and artefact-free qualitative

outputs when performing monocular depth estimation (Figures 12 and 13).

In the following section, we present an overview of the literature relevant to

this work. Section 3 provides a discussion on the data preparation process and

Section 4 contains a detailed outline of the proposed hole filling approach. Results

are evaluated in Section 5 and the work is finally concluded in Section 6.

2. Related Work

There have recently been remarkable strides made in complex learning-based

computer vision problems such as image classification [45, 46, 47, 48, 49, 50],

semantic segmentation [51, 52, 53], and image generation [23, 36, 38, 39, 54, 55,

56]. Inspired by the capabilities of recent generative models [22, 23, 36, 38, 39],

we attempt to complete depth images by learning the details of a scene.

Generative Adversarial Networks (GAN) have revolutionized the field and are

capable of producing semantically sound samples by creating a competition be-

tween a generator (G), which endeavours to capture the data distribution, and a

discriminator (Dis), which judges the generator output and penalizes unrealis-

tic images. Both networks are trained simultaneously to achieve an equilibrium.

More formally put, this competition follows the minimax objective [23]:

min
G

max
Dis

E
x∼Pr

[log(Dis(x))] + E
x̃∼Pg

[log(1−Dis(x̃))], (1)
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Figure 12: The results of our approach re-purposed to estimate depth from an RGB image com-
pared against [27] and [28] with synthetic data.

over a single epoch of the dataset without any layer freezing. The results are

compared with state-of-the-art approaches [27, 28, 29]. Qualitative results based

on synthetic images used as inputs are seen in Figure 12.

No domain adaptation to our real-world set was performed during this exper-

iment but the models are evaluated using our real-world test images, nonetheless.

As seen in Figure 13, even though our network has never seen a real-world image

and data domain has not been transferred, we can see that our approach produces

sharper and more crisp depth information despite the anomalies that persist due to

domain bias issues. Quantitative analysis using synthetic ground truth images is

presented in Table 4. While our approach cannot outperform directly-supervised

models trained on similar synthetic data [29], we can see it has succeeded in a task

Method Mean `1 Error Mean `2 Error PSNR (dB) SSIM (−1, 1)

Result of [28] 28.61 13.68 10.15 0.374
Result of [27] 14.46 3.93 14.22 0.565
Result of [29] 4.22 0.79 24.18 0.793
Our Result 4.97 0.88 22.35 0.778

Table 4: Our pre-trained model tasked with monocular depth estimation compared to [27, 28, 29].
More realistic images have lower error values, but with PNSR and SSIM, higher values are better.
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Figure 13: The results of our approach re-purposed to estimate depth from an RGB image com-
pared against [27] and [28] with natural real-world data.

it is not primarily designed for due to its strength in scene feature learning.

6. Conclusion

We have approached the problem of hole filling in depth images from a learn-

ing perspective by employ an adversarially trained self-supervised encoder/decoder

architecture. It is expected that if enough is learned about the contents and seman-

tics of a scene, missing regions of a depth image can be inferred given the known

regions and the full RGB view. Our training is fully self-supervised, i.e. at no

point is annotation or human intervention necessary. The ground truth depth used

for training is acquired from a graphical environment developed for gaming and a

separate model is trained to infer where holes would be if the data were obtained

via stereo correspondence. The model objective is to minimize a loss consisting

of four loss components: reconstruction, adversarial, bottleneck feature and do-

main transfer loss, which results in filling depth holes, not only in synthetic depth

images but also in real-world data with no ground truth.
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