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Abstract

This paper describes finite-element simulations and associated experimental studies of extrudate swell for near-monodisperse and polydisperse
polystyrenes. The tube-model based Rolie-Poly constitutive model, when extended to include a reduction of monomeric friction at high extension
rates, makes much-improved predictions of extrudate swell at high Weissenberg number. This is especially significant for near-monodisperse poly-
mers where rheological features are unchanged by the effects of polydispersity. Extension of this molecular rheology scheme to a polydisperse
constitutive model addresses extrusion experiments on polydisperse polystyrenes inside a multipass rheometer, accounting for experimental data
up to Rouse Weissenberg numbers of 50. We, therefore, show that from a measurement of polymer molecular weight distribution, it is possible to
predict extrudate swell over a broad range of processing conditions for polydisperse polymers and realistic extrusion processes. Small changes in
the capillary length to diameter ratio have little effect on extrudate swell in this range of Weissenberg number. This is because the capillary resi-
dence time is sufficiently long for a steady state to be reached within the polymer stretch relaxation time, which controls the most decisive physics
responsible for extrudate swell. © 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1122/1.5058207

I. INTRODUCTION

The vast majority of previous work on extrudate swell
directly addresses systems of industrial complexity. Commercial
polydisperse, crystalline, polymer melts in nonisothermal
extrusion exhibit swelling strongly controlled by crystalliza-
tion [1], as well as very complex molecular interactions.
Useful trends can be identified, but a fully predictive theory
has not emerged. The advent of molecular rheological theo-
ries based on entanglement models has opened up the possi-
bility of a fully molecular, multiscale, and predictive approach
to complex flow phenomena in polymer melts, such as extru-
date swell. The aim of the longer program within which this
work constitutes a stage is to provide such a method for pre-
dicting extrudate swell, from arbitrary die geometries, and
eventually for industrially relevant polydisperse polymers, by
using approximately monodisperse polymers [2], and then
building up in complexity by addressing bidisperse and poly-
disperse polymers (this work). In future work, we will apply
these simulations to branched systems to show that tube-
model based theories can be used to predict a wide number of
industrial polymers in relevant flow geometries.

A. Extrudate swell

Extrudate swell is a longstanding industrial problem and
is only just receiving theoretical analysis using a molecular
theory [2]. Until recently, it has only been approximately

predicted using phenomenological approaches based on corre-
lations of observed swell with rheometric characteristics,
especially the dependence on normal stress difference [3,4],
and die entry pressure drops [5,6]. None of these studies ade-
quately provides a molecular basis for their predictions or dif-
ferences observed between predictions and experiments.
Some previous studies have investigated the effect of polydis-
persity on extrudate swell. For example, Den-Doelder and
Koopmans investigated the effect of molecular weight distribu-
tion upon extrudate swell on a series of polyethylene melts [7].
They found a general increase in extrudate swell with increas-
ing weight average molecular weight, although dispersity also
had a significant effect. Indeed, at high molecular weights, a
decrease in swelling with increasing average molecular weight
was seen in some cases, when accompanied by a decrease in
dispersity. Dispersity was not the only relevant parameter; the
higher moments of the molecular mass distribution were also
important. They concluded that a high molecular weight tail
has a very significant effect on the extrudate swell, although
they did not explain this on a molecular level through a tube
theory based model or otherwise.

It is useful to understand extrudate swell in monodisperse
melts before attempting to understand it in these more
complex molecular weight distributions. An introduction to
extrudate swell for monodisperse polymer melts can be found
in [2] and is summarized in Sec. I B.

B. Monodisperse simulations

The two main tools we use to simulate our polymer
flows are the tube-model based Rolie-Poly (Rouse Linear
Entangled Polymer) model [8] for nonlinear response and the
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formulation of linear theory for entangled polymer melts of
Likhtman–McLeish [9]. This theory is used to model the rhe-
ology of linear, monodisperse polymers. It can fit the linear
rheology of an entangled polymer melt and extract the Rouse
relaxation time τR and the reptation relaxation time, τd

τd ¼3τeZ
3 1� 3:38ffiffiffi

Z
p þ 4:17

Z
� 1:55

Z3=2

� �
,

τR ¼τeZ
2:

(1)

Z =Mw/Me, the number of entanglements per chain, where
Mw is the weight average molecular weight of the chain andMe is
the molecular weight of one entanglement segment. τe is defined
as the Rouse relaxation time of one entanglement segment.

To extend the tube model to strongly nonlinear flows requires
a stochastic partial differential structure (the Graham, Likhtman
and Milner-McLeish or GLAMM model [10]) in the form of an
ordinary tensorial differential equation. The GLAMM model
carries sufficient variables to calculate in a preaveraged approxi-
mation, both the stress and the structure factor of a monodisperse
polymer melt. The Rolie-Poly [8] constitutive equation is a
single mode simplification of this model, helpful when only the
stress is required, and much faster to calculate with. It is cur-
rently required for finite-element calculations of complex flows.
A series of “Rolie-Poly elements,” each assigned to a relaxation
modulus, reptation time, and Rouse relaxation time, are taken as
inputs to the model and summed up to give overall polymeric
stress. For the monodisperse simulations, the higher frequency
elements represent different interior relaxation modes of the
“monodisperse” chain. These interior modes are noninteracting
and thus are calculated separately and then summed.

There are two types of element in the summed model: for
low frequency elements, for which chain-stretching occurs
within the simulation time scale, the relevant form of the
time-development of stress, σ is given by

dA
dt

¼ κ �AþA � κT � 1
τd

(A� λ2I)� 2
τR

F(λ)� 1
λ

� �
A

� 2β
τR

F(λ)� 1
λ

� �
F(λ)
λ

A� 1
F(λ)

I
� �

,

where

F(λ) ¼ λ2max � λ2=3

λ2max � λ2

� �
λ2max � 1

λ2max � 1=3

� �
,

σ ¼ GF(λ)A: (2)

The finite extensibility function F(λ) is the Padé approximant
to the inverse Langevin function, κ is the velocity gradient
tensor, σ is the polymeric stress tensor, A is the auxiliary
tensor describing the chain configuration, I is the identity
matrix, β is a parameter describing the level of constraint
release, λ is the chain stretch, calculated using the equation
λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(trace(A)=3)
p

, and λmax is the finite extensibility of
chains. This value, λmax, defines the maximum extension that
can theoretically be applied to a chain, i.e., when the chain
dimension equals its contour length. The Rouse time, reptation
time, and modulus for each Rolie-Poly element are given by
τR, τd, and G, respectively. This finite extensibility equation is

used as it is the form previously incorporated in the REPTATE
and flowSolve software packages used in this work.

For high frequency elements, which are nonstretching at
all flow rates in a simulation, the nonlinearity arising from
chain stretch can be removed from the dynamical equation to
give a simplified form for the auxiliary tensor A

dA
dt

¼ κ � Aþ A � κT � 1
τd

(A� I)

� 2
3
trace(κ � A)(Aþ β(A� I)): (3)

In this case, the contribution of each element to the poly-
meric stress is simply the auxiliary tensor multiplied by the
modulus of the element. The Rouse relaxation terms in the
full equation are replaced in Eq. (3) by a single constraint
release term, whereas the reptation relaxation term and flow
terms are unmodified.

In our previous work [2], we predicted extrudate swell
using the Rolie-Poly equation and compared the predictions
to isothermal extrudate swell experiments within a modified
multipass rheometer (MPR). We found that at a constant
apparent wall shear rate, the extrudate swell (characterized by
a dimensionless ratio of extrudate width to capillary diameter,
the “B value”) increased with increasing molecular weight.
When the shear rate is made dimensionless by the chains’
Rouse time, so forming a “Rouse Weissenberg number,” the
extrudate swell as a function of flow rate from samples with
different molecular weights collapses onto a single curve. We
define the Rouse Weissenberg number as

WR ¼ _γwτR, (4)

where _γw is the apparent (Newtonian) wall shear rate and τR
is, as usual, the Rouse relaxation time of the polymer. We
also found an agreement between experimental and simulated
B values for WR < 7, including the predicted data-collapse
with WR. Above this point, the data from the MPR show a
reduction in the gradient of the increase of extrudate swell
with shear rate, relative to the theoretical predictions. We
hypothesized but did not investigate in that work that this
may be due to a reduction in the monomeric friction coeffi-
cient at these high shear rates, as such effects had been previ-
ously implicated in extensional flows of monodisperse
polystyrenes under uniaxial extension [11,12] but have not
previously been considered for extrusion processes.

We also measured extrudate swell experiments for a bidis-
perse polymer melt. This melt behaved differently to the
monodisperse case, showing larger swelling at low shear
rates than that predicted by a monodisperse melt of the same
mean molecular weight. This swelling was consistent with
the higher molecular weight component in the blend having
an inflated Rouse time, caused by dilution with the short
chains and enhancing the crucial chain stretch [13]. This is
discussed in Sec. I D.

C. Friction reduction

The tube theory used thus far assumes that the relaxation
time scales of polymer chains under fast flow are the same as
the time scales under slow flow. Recently, however, evidence

320 ROBERTSON et al.



has been found that this is not the case and that relaxation is
accelerated under fast flow. In [11], this was thought to be
due to monomeric friction reduction and in [14] due to flow
induced disentanglement. In our calculations, we focus on
monomeric friction reduction, but we note that both effects
will reduce relaxation times at high Weissenberg number. In
this work, we have introduced an important modification to
the physics of molecular friction reduction, so next we
briefly review work on modeling it to date.

The value of monomeric friction reduces because the
increasing chain alignment that occurs at high shear rates
eventually induces an anisotropy in the local environment of
monomers. At sufficiently high rates, the Kuhn segments
orient significantly in the flow direction, exerting a smaller
frictional force upon similarly aligned and adjacent Kuhn
segments. Neighboring chains are thus able to move past
each other more freely than if they were in a random orienta-
tion. This lower friction results in a lowering of the relaxation
time of an entanglement segment, τe, and thus the Rouse and
reptation relaxation times.

Yaoita et al. [12] performed simulations of polystyrene
melts under extensional flows. This chemistry shows the
greatest effects in studies of monomeric friction reduction
because of polystyrene’s low finite extensibility coefficient
λmax. This ensures that reduced friction constants are reached
at relatively low rates. Yaoita et al. replaced the constant fric-
tion in their rheological model with a variable friction which
is a function of a stretch-orientation factor, FSO. They fitted
the extensional flow data to an empirical form and found that
there was a lower critical value of FSO of 0.14 above which
the friction reduction began. Yaoita et al. used this fitted
parameter within Primitive Chain Network simulations, incor-
porating these friction reduction equations. They found that
without the reduction, the simulations overpredicted start-up
extensional viscosities but gave good agreement when it is
included. The effect is especially visible for higher molecular
weight polystyrenes where the extension hardening is signifi-
cant. Furthermore, friction reduction was found to cause only
small changes in the start-up extensional viscosities under
uniaxial extension, the major effect was in the steady-state
prediction. Steady-state viscosity predicted by the unmodified
model was too high but friction reduction allowed the model to
approximately match the plateau observed in the data. Friction
reduction had no effect on a low molecular weight polymer or
at low extension rates where the predictions matched data
without friction reduction. It also had no effect on the transient
shear predictions even at high shear rates.

Ianniruberto [15], in an alternative model, kept the critical
order parameter but replaced the mathematical form used by
Yaoita et al. [12] with a much simpler power law form. For
stretching parallel to the flow direction, this reads

ζ ¼ (S=Sc)
�1:25:S � Sc,

ζ ¼ 1:S , Sc,

S ¼
�λ

λmax

� �2

(�Sxx � �Syy),

(5)

where ζ is the monomeric friction reduction coefficient,

defined as ζ(S)/ζ0, the ratio of monomeric friction at a spe-
cific orientation over the equilibrium monomeric friction. At
slow deformation rates, the friction reduction coefficient will
be 1 and the friction will have the value of ζ0. The over bar
quantities indicate averages over all chains. Sxx and Syy
describe the xx and yy components, respectively, of the orien-
tation tensor S. This orientation is related to the Rolie-Poly
conformation tensor A via S ¼ (A=trace(A)).

Ianniruberto et al. also performed molecular dynamics on
oligomers to simulate polymers under extensional flow [11].
They measured the diffusion coefficient of a test chain at dif-
ferent levels of monomer alignment and thus related this to
the monomeric friction. They also found a switch-on in
monomeric friction reduction at a critical value, 0.063, of
Kuhn segment alignment.

This basic power S−n form has also been used by Mead
et al. in [16], as well as in [17,18], for polydisperse melts
in which they used a −1.64 power law and replaced the
single SKuhn by an orientation factor Si for each weight frac-
tion of chain, i

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SKuhn,i:

X
j

fjSKuhn,j

s
, (6)

where fj is the weight fraction of chains j in the melt. The
theory was based upon slip-link methods rather than the pure
tube theory approach discussed here.

In this work, we will continue to use differential represen-
tations of the tube model rather than slip-link schemes, as
this permits the simulation of complex flow fields much
more readily, though in the spirit of Mead et al. recognize
the complex interaction between components in a polydis-
perse blend under strong flows.

The Rouse and reptation times are assumed to be directly
proportional to the magnitude of the monomeric friction
coefficient at all rates.

In the present study, we use the basic form of Yaoita et al.
from Eq. (5) to calculate ζ, although we add a new element:
a minimum friction term ζmin to avoid the monomeric friction
unphysically reducing to 0 at high extension rates (e.g., at the
exit of the extrusion die). ζmin represents the value of
monomer friction in a completely oriented local environment.
Our model can be written as

ζ ¼ζmin þ (1� ζmin)(S=Sc)
�1:25:S � Sc,

ζ ¼1:S , Sc:
(7)

The order parameter S is calculated from the overall chain
orientation of all Rolie-Poly elements in a simulation via

S ¼ λ2

λ2max

(�Sxx � �Syy):�Sxx . �Syy,

S ¼ λ2

λ2max

(�Syy � �Sxx):�Syy . �Sxx,

�S ¼
PNmodes

i¼1 Ai=trace(Ai)
N modes

,

(8)

where Nmodes is the number of Rolie-Poly elements in the
simulation, excluding any high frequency elements which are
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modeled as solvent for the purposes of the simulation [19].
Ai is the Rolie-Poly configuration tensor for each element,
and �S is the overall orientation tensor normalized to unit
trace. The tensor S and thus the friction reduction and relaxa-
tion time terms are all recalculated at each timestep of the
simulation, resulting in varying relaxation times throughout
the simulation run.

This model gives a single, isotropic friction reduction
term for relaxation in the two simulation dimensions. It may
be necessary in future to consider an anisotropic friction
reduction tensor which would allow for faster relaxation of
stress in the flow direction but not against it. This is not
performed in our finite-element simulations, however (see
Sec. III A), equivalent to the assumption that orientation in a
specific triangle is solely in either the xx or yy directions.

D. Bidisperse and polydisperse theories

The Rolie-Poly constitutive equation, as currently for-
mulated, does not include the change in the relaxation
times of polymer chains due to constraint release between
different weight fractions when used in multimode form
as a model of blends [13]. Although reasonable fits to
experimental data can be obtained by introducing multiple
stretch times across the spectrum of modes, we require a
more fundamental approach here. To complete the program
of a predictive scheme taking molecular weight distribu-
tion and process conditions as an input, and predicting the
extrudate swell, requires an approach that can extract relax-
ation times from knowledge of the molecular structure and
the molecular weight distribution of the blend without
empirical fitting.

An early theory for polydisperse systems that does contain a
mutual effect on (reptation) relaxation times is “double repta-
tion.” This approach describes a polymer melt as a series of
binary entanglements between two chains, s and l. Given that
either of the two chains can reptate to relieve the entanglement,
the stress σ at time t is proportional to the square of the total
tube survival probability P(t) summed over all chains

σ(t) ¼ G0
NP(t)

2, (9)

where G0
N is the plateau modulus of the material. At the

simplest level of approximation, the mean tube survival
probability can be calculated to be a weighted sum of the
single-exponential Maxwell relaxations of the individual com-
ponents which in the case of the bimodal blend reads [20]

P(t) ¼ fse
�t=τd,s þ fle

�t=τd,l , (10)

where fs is the volume fraction of short chains in a sample
and fl = 1−fs is the volume fraction of long chains. τd,s is
the reptation time of short chains, and τd,l is the reptation
time of long chains. This single-exponential approximation
incorrectly predicts the shape of the peaks in a linear visco-
elastic G00 vs frequency plot, overestimating their sharpness
in the case of strictly bimodal blends. The single-exponential
form of Eq. (10) can, however, be replaced with a spectrum
of relaxation times. For polydisperse rather than bidisperse
systems, the stress can be calculated within the double repta-
tion approximation by summing up the survival probabilities

of all molecular weight components, i

σ(t) ¼ G0
N

X
i

fiP(t, i)

 !2

, (11)

where fi is the volume fraction of i chains. This multimode
double reptation method produces reasonable results when
predicting the linear viscoelastic response of continuously
distributed polymers, including the materials used in this
study. To address phenomena such as extrudate swell,
however, which depend on extension hardening, in a polydis-
perse linear blend, requires a method in the same spirit but
addressing the nonlinear process of stretch relaxation as well
as the linear relaxation due to reptation. The method we use
here is that of Boudara et al. [21,22], the underlying physics
of which is discussed below.

In a pure bidisperse blend of long chains l and short
chains s, a test chain l is entangled not only with other l
chains but also with short chains. Within the tube model, we
think of the chain being constrained within two tubes as
described in Fig. 1:

• A “fat” tube formed by long chains only.
• A “thin” tube formed by all chains in the melt.

The test chain can relax via reptation along the thin tube,
by constraint release and contour length fluctuations of the
thin tube but also by reptation of the thin tube along the fat
tube. This leads to various possible limiting relaxation rates,
depending upon the ratios of individual chain relaxation
times. Read et al. [23] describe a modified “Viovy” diagram
[24], where the different relaxation mechanisms of long and
short chains are separated out graphically in regimes of dif-
ferent dimensionless parameters. A region of particular inter-
est is that in which contour length fluctuations in the fat tube
cause an acceleration of relaxation of the long chains. In this
regime, simple double reptation will fail and a more sophisti-
cated picture of chain relaxation is needed. Read et al. sepa-
rated out regions where one would expect stretch time
enhancement of long chains by shorter chains in terms of the
relative number of entanglements on each chain. Crucially,
the polydisperse Rolie-Double-Poly (RDP) equation set used
in this work accounts for these different cases and applies
relaxation time enhancement where it would be expected to
occur from an understanding of the physics.

Auhl et al. show how this method of describing a blend
leads to the counterintuitive result that the stretch relaxation
time of a long chain (τR,l) within a blend of short chains is

FIG. 1. Schematic diagram of the concept of a chain contained within two
tubes.
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increased by the inverse of its volume fraction fl [13]

τR,l ¼ τR
fl

: (12)

This leads to the result that, as a melt of long chains is
diluted by short chains, the stretch time of the long chains
increases the more diluted the chains are. In our previous
work, we found that using this formula to increase the Rouse
time of the long chains in a bidisperse blend produced an
improved fit to extrudate swell data at low shear rates.

Read et al. [25] developed a model for bidisperse blends,
incorporating several mechanisms for relaxation within both
fat and thin tubes. The rates for constraint release, reptation,
and stretch relaxation in each tube relative to the deformation
rate are considered. They calculate these for the linear rheol-
ogy of several polystyrene blends and match the nonlinear
rheology using very few fitting parameters. In particular, the
model correctly predicted the onset of extension hardening at
low strain rates. Some overestimations in extensional viscos-
ity were observed at high shear rates. We are most interested
here in the agreement at low shear rates, especially in the
potential prediction of the abnormally large extrudate swell
at low average Weissenberg numbers.

The generalization of this approach to continuous polydis-
persity by Boudara [21] incorporated the physics of the model
into a mode-coupled Rolie-Poly model for blends theory, later
called RDP. As usual, the total stress tensor, σ, is calculated
by adding up the stress over a series of Rolie-Poly elements.
Boudara compared the predictions of the RDP model to
start-up shear and extension experiments on polydisperse
polystyrenes and found a reasonable agreement in extensional
flow. In the case of bidisperse polyisoprenes, shear viscosities
were overestimated by the bidisperse RDP theory at high rates
in start-up shear, however, indicating that further work is
required in this theory. We describe the equations of motion
for all components fully in the Appendix.

The multimode formalism for the RDP theory contains a
new set of elements which differs conceptually from the
“multimode Rolie-Poly” model of a monodisperse melt. In
the latter case, the high frequency elements represent uncou-
pled internal relaxation modes of the monodisperse chain.
The highest frequency of these chain fluctuations is used to
form a solvent term for flow simulation. For the RDP model
of a polydisperse blend, high frequency elements represent
the way that the relaxation of fundamental modes of lower
molecular weight chains couple with all other chains in the
melt. In the most extreme example, the shortest chains may
constitute effective “solvent” to the longest chains.

These RDP equations produced a good fit to the exten-
sional rheology of polydisperse polystyrene melts in [21],
although overpredicted the modulus of the linear viscoelastic
envelope. This may cause problems at low speeds in flow
simulation, although the good predictions in the extension
are promising for our simulations of geometries involving
strong extensional flows.

In Secs. II and III, we show that excellent agreement between
experiments and simulations for prediction of extrudate swell
can be made for polydisperse polymers at a range of flow
rates, when both friction reduction and polydisperse effects

on extensional relaxation times are taken into account in the
underlying rheological model. In Sec. II, we describe the
experimental methods used for polymer characterization and
analysis. In Sec. III, we describe the computational methodol-
ogy by which these polymers were simulated. In Sec. IV A,
we show MPR extrusion data for capillaries of different l:d
ratios, in Sec. IV B, we describe the effect of friction reduc-
tion on results and in Sec. IV C, we describe the effect of
polydispersity on extrudate swell and evaluate the success of
the RDP equation. The modified versions of the Rolie-Poly
model incorporating polydispersity and friction reduction are
described in the Appendix.

II. EXPERIMENTAL

A. Characterization (GPC/rheology)

The materials used in this study were linear polystyrenes
(see Table I). The polymer PS281 was synthesized via anionic
polymerization according to the procedure described in [26].
The polymer P627-S, obtained from PolymerSource, was syn-
thesized using living anionic polymerization in tetrahydrofuran
(THF) at −78 °C. PS350 was obtained from Sigma-Aldrich.

A gel permeation chromatography (GPC) characterization
was performed on all polymers. The samples were all run
using THF as the solvent at 35 °C. The instrument was a
Viscotek TDA 302 instrument with a triple detector system.

Linear rheology was performed using a TA instruments
Discovery HR2 rheometer. Frequency sweeps were per-
formed at temperatures from 140 °C to 200 °C and at
angular oscillation frequencies ranging from 0.1 rad s−1 to
600 rad s−1. A 1% strain was used throughout so as to be
within the linear response region of all the polymers. The
geometry used was a 25 mm parallel plate geometry with a
sample thickness of 1 mm.

The rheology of all polymers was time-temperature super-
position shifted to 180 °C using the REPTATE software1 to
obtain a master curve. The data were fitted using the linear
theory of Likhtman–McLeish to obtain the entanglement
time and the plateau modulus, Rouse time, and reptation time
for each material. These are shown in Table II.

The monodisperse rheology was then fitted using a spec-
trum of Maxwell modes to give a spectrum of higher relax-
ation times and moduli, beyond the fundamental (reptation)
mode. The lowest frequency mode is assigned the same

TABLE I. Average molecular weight distribution data for all polymers
used.

Polymer Mw (kDa) Mn (kDa) Dispersity

PS350 350 116 3.01
P627-S 252 198 1.27
PS281 281 250 1.13

1The original REPTATE software can be found at http://www.Reptate.com. An
updated version is in development and can be found at https://reptate.
readthedocs.io/.
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relaxation time as the reptation time from the Likhtman–
McLeish theory and the other modes are obtained via a
best fit to the data.

Nonlinear extensional rheology in start-up flow was per-
formed on each material using the sentmanat extensional rhe-
ometer (SER) attachment to the HR2 rheometer. The
temperature of the environmental test chamber was main-
tained at 180 °C so as to ensure that the extensional data
matched the linear shear data. The samples are melt pressed
into a strip 20 mm by 10 mm by 1 mm thick and placed
between the SER clips. The samples are equilibrated, pre-
stretched for 10 s at a Hencky rate of 0.001 s−1 and then
stretched at the required rate up to a Hencky strain of 3.8.

B. MPR measurements

The extrudate swell measurements were obtained within
an MPR at 180 °C. The upper barrel and the upper half of
the test section are filled with polymer, and the apparatus is
heated to temperature. The polymer is left to melt and equili-
brate for at least half an hour before the apparatus is sealed
so as to compress the sample. The upper piston is lowered at
a controlled velocity and thus the polymer is extruded
through the capillary test section and into the free space
within the bottom chamber, also held isothermally at 180 °C.
The extrudate can be viewed for approximately 5 mm below
the die exit through the quartz viewing windows. A sche-
matic diagram of the apparatus is shown in Fig. 2.

The apparent shear rate at the capillary wall is calculated
using Eq. (13) for a Newtonian melt. Real wall shear rates
will of course differ and are captured in the simulations

_γw ¼ 4r2pvp
r3cap

, (13)

where rp is the piston radius (5 mm), vp is the downward
velocity of the top piston, and rcap is the radius of the MPR
capillary. For all the results reported in Secs. IV B and IV C,
rcap = 1mm, giving the 5:2 capillary die. In Sec. IVA, a 0.5mm
radius capillary is used to give a 5:1 capillary die. The swell-
ing ratios are calculated by analyzing a snapshot of the flow
at steady state using a commercial image analysis program.

III. THEORETICAL

A. Flowsolve

Flow velocities and stresses for the extrudate geometry were
calculated using the flowSolve finite-element package. flowSolve
is an adaptive Lagrangian scheme that has been used

extensively for comparison with MPR experiments [19,27,28]
and is detailed more comprehensively in our previous work
[2] and elsewhere [29]. In summary, the simulation geome-
try is filled with a series of mesh points connected by trian-
gular finite elements as shown in Fig. 3. Each point carries a
velocity, and each triangle has a constant velocity gradient
between each set of points. The triangles also carry an asso-
ciated stress tensor, as well as constitutive model dependent
parameters such as Rolie-Poly orientation, chain stretch, and
(for the first time in these simulations) monomeric friction
reduction coefficient. The geometry has an axis of rotational
symmetry down the center, which allows a 2-dimensional
simulation of the cylindrical die used in the MPR, so mark-
edly reducing the time that would be required for simulation
of the full geometry, at the cost of assuming axisymmetric
flow at all times. As a balance between simulation speed and
accuracy, the mesh is chosen to have a maximum triangle
side length corresponding to 0.3 mm within the upper
chamber. The maximum triangle length is reduced by a
factor of ½ in the region around the die entry and exit
corners. This method provides a good balance between short
computation time (with a coarse mesh) and accuracy (very
fine mesh). In our previous work, we showed that using a
finer mesh than this has little effect on the extrudate swell
results in the flow regimes of this study [2].

The velocities are solved at each point and at each simula-
tion time step using standard equations for mass and momen-
tum conservation

∇ivi ¼0,

∇jσ ij ¼∇ip� μ∇2vi:
(14)

Once this step has been performed, the points are moved
according to their velocity and then the constitutive equa-
tion is solved for each triangle. The stress calculated is then

TABLE II. Relaxation times for the single stretching mode of the
polydisperse polymers at 180 °C. The molecular weight of P627-S shown is
that of the highest Mw peak, rather than the average value shown in Table I.

Polymer
label

Molecular weight
(kDa)

Plateau modulus G0
N

(MPa) τR (s) τd (s)

PS350 350 2.4788 0.17257 4.8993
P627-S 340 2.5600 0.16285 4.8357

FIG. 2. The MPR 5:2 capillary geometry.

324 ROBERTSON et al.



used to solve the points again for their new velocities under
the creeping flow requirement of zero force density. To
ensure that the flow history prior to extrusion is properly
modeled, the free-surface is initially positioned at the die
entry and the flow is allowed to evolve within the die prior
to extrusion. In practice, as the flow is taken at steady state,
there is a little difference between simulations using this
initial condition and those which the free-surface is initially
positioned at the die exit.

The spatial region that has emerged to be of greatest inter-
est for this work is the region around the die exit, where the
no-slip boundary wall in the die meets the free-surface of the
extrudate. The singularity in the velocity gradient induces a
formal singularity in the stress, so needs careful handling
computationally. In this work, the singularity was managed
numerically by creating a special simulation point at the die
exit corner. The point is allowed to have a nonzero velocity,
and thus velocity gradients are calculated as if the point were
moving. The point is, however, never moved from the corner
so that, in this regard, the velocity is ignored. This method
effectively negotiated the flow computation between the free
flow and the fixed boundary without leading to divergences
or instabilities. However, it maintained the calculation of the
strong extensional stress generated by the formal singularity,
whose physics is highly significant for the subsequent down-
stream shape of the extrudate flow.

A spectrum of Rolie-Poly elements is used in all simula-
tions. If the reptation time of an element is less than 100
times the simulation time scale ( _γ�1), it is defined as being
solvent and is used to create a background viscosity.

B. Monodisperse polymer modeling

Monodisperse simulations were performed using the
finitely extensible Rolie-Poly equation described in Eq. (2).
A finite extensibility of 5 was used for the single stretching
element to be consistent with our previous monodisperse
work, as well as earlier work on finite extensibility in [30]
and references therein. The remaining Rolie-Poly elements
were simulated using the nonstretch Rolie-Poly equation
[Eq. (3)], and the properties are summarized in Table S1
of the supplementary material [32]. The detailed distribution
of fast, nonstretching elements is not crucial for the results of
the extrudate swell simulations. Their chief instrumental role
is in defining the background viscous stress term that stabi-
lizes the numerical method.

Two geometries were simulated: the 2 mm diameter die
as given in Fig. 3 and a similar geometry with a die diam-
eter of 1 mm.

Where friction reduction is required (Sec. IV B), the
method outlined in Sec. IV C is used to calculate variable
relaxation times for each individual simulation triangle.

C. Polydisperse polymer modeling

1. Single stretching mode Rolie-Poly approximation

A first, rough, approximation to the polydisperse and bidis-
perse polymers, useful as a benchmark for evaluation of the
more detailed polydisperse models, assumes a single Rouse
relaxation time as for the monodisperse polymers. The poly-
disperse polymers are allocated the same entanglement molec-
ular weight as in the monodisperse case, i.e., 16.5 kDa. The
Mw of the polymers is normalized by Me to give a value for Z,
and thus a value for the Rouse relaxation time can be calcu-
lated using Eq. (1) and the fitted value of τe. The values
obtained using this method for the polymers PS350 and
P627-S are shown in Table II.

The remaining nonstretching Rolie-Poly elements within
the simulations are taken to have the same moduli and relaxa-
tion times as the remaining Maxwell modes from the linear
rheological fit.

2. Polydisperse theory

To treat the polydisperse materials as faithfully as possi-
ble, we use, as introduced above, the RDP model developed
by Boudara et al. [21,22] and described in the Appendix.

The simulations work with a model of each melt contain-
ing 9–12 Rolie-Poly elements. In the monodisperse simula-
tions, these corresponded to a series of Maxwell modes from
the linear rheology, each with a modulus and relaxation time
as well as Rouse times and λmax values attached. However, in
the polydisperse case the Rolie-Poly elements are derived
from individual molecular weights from a discretized molec-
ular weight distribution.

The entanglement times and moduli for the samples are
extracted from the linear rheology. The molecular weights
and fractions for each element are calculated by discretizing
the molecular weight distribution into 9–12 bins using
REPTATE to obtain a series of masses and fractions.

FIG. 3. The extrusion geometry used within the flowSolve simulations for a
5:2 capillary die.
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These masses are normalized by the entanglement molec-
ular weight of 16.5 kDa to give a series of effective Z values
for each element. To obtain a series of Rouse and reptation
times for each element, Eq. (1) is used to obtain an initial
guess. However, this initial guess fails to take into account
that the tube formed by the chains of a particular molecular
weight is diluted by the other molecular weight chains in the
blend. The Z values must then be replaced by an effective
diluted number of entanglements, Zeff

Zeff ¼Zfdil,

τd,eff ¼3τeZ
3 1� 3:38ffiffiffiffiffiffiffi

Zeff
p þ 4:17

Zeff
� 1:55

Z3=2
eff

 !
,

τR,eff ¼ τR
fdil

:

(15)

The dilution parameter fdil is worked out iteratively for each
element using the following equation:

fdil,i ¼
XNmodes

jmin

fj, (16)

where jmin is the highest index element such that τR,eff:i .
τd,eff,j and fj is the weight fraction of chains represented by
element j. Thus, a molecular weight i is diluted by a lower
molecular weight j if the terminal relaxation time of the frac-
tion j is shorter than the effective Rouse time of i. The con-
vective constraint release coefficient, β, is assumed to be 0.5
as in [2] and [31]. Consistent with our previous work and the
simulations of Boudara, we take λmax to be 5 for all modes.

Three polymers were simulated using this theory: the
near-monodisperse sample PS281, the bidisperse polymer
P627-S, and the polydisperse polymer PS350. The molecular
weight distributions are shown in Fig. 4, and the spectrum of
Rolie-Poly elements produced for P627-S is shown in
Table III. The other spectra can be found in the supplemen-
tary material [32].

If we treat the blend P627-S as a purely bidisperse melt of
340 and 160 kDa chains as in [2], we would not expect the
stretch time enhancement of 340 kDa chains by dilution with
160 kDa chains as, according to the modified Viovy diagram
[23], they are not significantly separated in molecular weight.
However, as this sample is not purely bidisperse, but rather
consists of two broadly polydisperse peaks, we would expect
stretch time enhancement of the highest molecular weight
chains and some of the intermediate chains by the very short-
est chains. This will lead to a slight enhancement in the
average stretch relaxation time of the whole melt.

IV. RESULTS AND DISCUSSION

In this section, we describe three sets of results. In
Secs. IV A and IV B, we use monodisperse polymers to
determine the relative importance of geometrical and consti-
tutive parameters before extending to polydisperse samples
in Sec. IV C. For monodisperse polymers, Sec. IV A
describes the limited effect changing of l:d ratio on swelling
ratios, and Sec. IV B shows the effect of reducing mono-
meric friction on results at high shear rates.

A. The effect of die geometry on swelling ratio

The results obtained using the 5:1 ratio capillary die are
shown in Fig. 5 alongside the results for the 5:2 capillary die
used in the previous work.

As in our previous publication [2], the flowSolve predic-
tions for the 5:1 capillary agree with the MPR data up to a
WR∼ 7, after which point the data plateau slightly before
continuing to increase at a swelling ratio, now consistently
below the predictions. The simulations in Fig. 5 do not
predict any significant difference between the B values for
the l:d = 5:1 and 5:2 capillaries until WR = 13. It is not possi-
ble within the current geometry to show whether this trend is
matched within the MPR experiments; it is only possible to
say that no difference (outside error) between the two geome-
tries is seen and that this is consistent with the modeling.

FIG. 4. Molecular weight distributions for the monodisperse, bidisperse,
and polydisperse polymers reported here.

TABLE III. Summary of Rolie-Poly elements for P627-S. Reptation and
Rouse relaxation times are given at 180 °C. The plateau modulus G0

N is
2.4788 × 105 Pa, and the entanglement time is 0.00038 s.

Element
index

Molecular
weight (kDa)

Weight
fraction τd (s) τR (s)

1 75 0.0194756 0.0093476 0.00795496
2 107 0.062089 0.0348345 0.0161507
3 147 0.126734 0.112358 0.0304008
4 183 0.0806178 0.250364 0.0472143
5 208 0.054925 0.397923 0.0611144
6 234 0.0684394 0.600079 0.0769976
7 267 0.0676063 0.958645 0.100466
8 323 0.145531 1.8693 0.147637
9 401 0.215954 3.89571 0.226979
10 479 0.120631 7.10907 0.324487
11 563 0.0318184 12.1402 0.447937
12 675 0.00617869 21.9834 0.643365
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The disagreement between theory and experiment
occurs at the same Weissenberg number, despite the different
capillary geometry. Crucially within the MPR, these
correspond to different piston velocities, vp. WR = 7 occurs at
vp = 0.13 mm s−1 for the 5:1 geometry and at 1.5 mm s−1 for
the wider capillary. The experimentally measured pressure
drops along the MPR capillary are also different, 33 ± 2 bar
for the 5:1 capillary and 20 ± 1 bar for the 5:2 capillary. The
fact that these parameters are different and yet the disagree-
ment with theory still occurs at the same WR indicates that
the disagreement is due to a material property and not due to
systematic experimental errors.

B. Friction reduction

The model used for friction reduction in this work is
described by Eq. (7), which has an added minimum friction
term, modifying the model used by others described by
Eq. (5). Three parameter sets are used to determine the mag-
nitude of the friction reduction: the parameters of Yaoita
et al. (Sc = 0.14) and two best fit parameter sets, (Sc = 0.05,
ζmin = 0.5 and Sc = 0.0235, ζmin = 0.819). The effect of an
increase in order parameter on ζ, which in turn reduces τd
and τR for these two parameter sets is shown in Fig. 6.

Introducing a minimum friction term means that the friction
changes very little at high order parameters, but there is still a
large drop in friction at low order parameters above the critical
value. This should give a large effect at medium flow speeds
(WR > 1) but a decreasing effect at high flow speeds (WR � 1).

A test of the friction reduction equations, independent of
the complex deployment within the extrudate swell simula-
tions, is their more straightforward effect on uniaxial exten-
sional rheology. Predictions with and without friction
reduction are shown in Fig. 7.

Using a value of Sc = 0.14 has no effect on the uniaxial
extensional predictions below rates of 50 s−1 and little effect
at or above this rate, so is omitted from the diagram. Only
the highest extension rates result in order parameters above
the critical value and thus result in a decrease in friction.

Using a lower Sc gives a much larger effect, a decrease in the
steady-state plateau and a slight decrease in the transient vis-
cosity prediction leading up to the plateau.

Using friction reduction improves the fit to the SER data
at 40 s−1, giving an approximately correct high strain plateau.
At higher shear rates, however, the friction reduction with
λmax = 5 results in a steady-state plateau at too low a viscos-
ity. Using a higher λmax of 6 is necessary here to give an
improved steady-state plateau, closer to the high viscosity
limit of the experimental data. It is not possible with the SER
setup to measure the steady-state extensional viscosity, but it
seems that simulations including friction reduction would
underpredict this viscosity.

Figure 8 shows the predictions of the modified model
with a minimum friction constant [Eq. (7)] with differing
friction reduction parameters.

Also shown are the best fit parameters for Eq. (7), obtained
from fitting to the extensional data (λmax = 6, ζmin = 0.5
Sc = 0.05) and the extrudate swell data (λmax = 5, ζmin = 0.5,
Sc = 0.05). The two parameters of the friction reduction
model, Sc and ζmin, have different effects; Sc governs the
Weissenberg number at which the results deviate from the
standard predictions. Sc = 0.14 gives a deviation at WR = 9.
The ζmin term, on the other hand, governs the B value
reached at high shear rates. Not including a ζmin term results
in a plateau in extrudate swell above these critical
Weissenberg numbers. This is because the chain stretch
values approach λmax and thus the chain order parameter
rapidly approaches 1. This means that almost no additional
stretch can be built up at chain orientations above Sc. The
inclusion of a ζmin means that the chain stretch can increase
after the orientation is above Sc. This allows the extrudate
swell ratios to continue to increase albeit shifted to higher
rates due to the lower stretch built up within the extruder.

The parameters ζmin = 0.5 and Sc = 0.05 fit the extrudate
swell well but, as shown in Fig. 7, underestimate the steady-
state viscosity under uniaxial extension with the λmax value
of 5 used previously. Using a slightly increased λmax value
of 6 results in an improved fit to the uniaxial extension but,

FIG. 5. Comparison of MPR data (points) and flowSolve predictions using
the single stretching mode Rolie-Poly equation (lines) for PS281 within 5:2
and 5:1 l:d ratio capillaries.

FIG. 6. The effect of changing the value of S (the order parameter) upon
the friction reduction coefficient ζ and thus the relaxation times.
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although capturing the extrudate swell at WR up to 7, and
beyond 30, does not give a large enough decrease in B
values at intermediate values of WR of order 10. The current
theory cannot simultaneously produce accurate predictions
for both sets of experimental data throughout the full extent
of their range. For the remainder of this work, we continue
with the parameters λmax = 5, ζmin = 0.5, and Sc = 0.05, which
work well for extrudate swell, and note that the model cannot
give accurate predictions of both uniaxial extension and the
complex system of extrudate swell. Future work on this topic
may include the use of an alternative measurement system
such as a filament stretching rheometer, which can obtain the
higher strains required to thoroughly test the model.

As with chain stretch, the friction reduction coefficient
from the simulations can be plotted as a function of radius
and distance along the capillary die (Fig. 9).

The friction reduction coefficient shows a similar trend to
chain stretch as a function of distance along the capillary. At
the die entry, ζ is low, meaning short relaxation times. Chain
stretch can thus relax quickly. There is a trough in ζ at the

die exit corresponding to the chain stretch peak observed at
the same point. The friction reduction switches on a lot more
sharply than the stretch, due to its critical onset and rapid sat-
uration at high Weissenberg numbers where the wall stretch
approaches λmax.

We can now calculate the effect of reduction of friction
on the chain stretch along the die, shown in Fig. 10.

For Weissenberg numbers slightly above 1, there is almost
no effect of reducing the monomeric friction (the lower lines
in Fig. 10). The steady-state chain stretch along the capillary
wall is reduced, although this has little effect upon the peak
in the stretch at the die exit corner. At much higher
Weissenberg numbers, chain stretch values are significantly
reduced both at the capillary wall and at the die exit corner.
The magnitude of friction reduction increases with increasing
chain stretch. The reduction in chain stretch shown in Fig. 10
is the reason that the extrudate swell values are reduced at

FIG. 7. The effect of friction reduction on predictions of uniaxial extension using the Rolie-Poly model for PS281. (a) shows predictions using different finite
extensibility parameters and (b) shows the comparison of the Rolie-Poly model and the two sets of parameters to SER data. The Rolie-Poly linear viscoelastic
envelope (LVE) is also shown. All theory predictions converge on this envelope at shorter times than shown in this figure.

FIG. 8. The effect of including monomeric friction reduction on extrudate
swell simulations using the single stretching mode Rolie-Poly model and
comparison to the experimental data for PS281.

FIG. 9. The values of chain stretch, λ, (left) and friction reduction coeffi-
cient, ζ, (right) along the capillary at (a) WR = 4.7 and (b) WR = 47 for PS281
with Sc = 0.05 and ζmin = 0.5.
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these high Weissenberg numbers, as the extrudate swell is
heavily dependent on chain stretch at the wall and the exit
corner. If the alternative set of friction reduction parameters
was used then the reduction in chain stretch at WR would be
less and the two chain stretch curves at each Weissenberg
number in Fig. 10 would be closer together.

C. Polydisperse theory

To test the RDP model within the context of extrudate
swell, we first simulate the monodisperse polymer PS281 as
a benchmark. This will test to see if the method of calculat-
ing the time scales of the Rolie-Poly elements described
earlier is consistent with the method of using Maxwell
modes used previously. Predictions of nonlinear extension
for both models are shown in Fig. 11.

The Rolie-Poly and RDP models produce very similar pre-
dictions for extensional viscosities. The long time, high
strain predictions are almost identical for both models, and
there are only minor differences otherwise. The largest differ-
ence is in the short-time prediction for 5 s−1, where the vis-
cosity is underpredicted by the RDP model. This should not
be consequential for prediction of extrudate swell, as the pre-
dictions of the onset of strain hardening and steady-state vis-
cosities are more relevant. These predictions for extrudate
swell are shown in Fig. 12 both without friction reduction
and with λmax = 5, Sc = 0.05, and ζmin = 0.5.

The Rouse Weissenberg number is calculated using the
same Rouse time as the monodisperse case, i.e., 0.047 s. The
RDP model without friction reduction shown in Fig. 12 pro-
duces the same results as the monodisperse prediction up to
WR = 5, where the data start to deviate from experimental
measurements. Above this point, the trend of the data is
the same as the monodisperse simulation, but the simula-
tion results are slightly less consistent and the increase in
extrudate swell occurs less smoothly. Predictions of the
RDP model including friction reduction also produce
similar results to the friction reduced Rolie-Poly predic-
tions, giving an improved agreement with experimental

data at high Weissenberg number. This is due to the high
chain stretch values in the highest molecular weight ele-
ments causing large deformations in the finite-element
mesh at the highest speeds.

Predictions for the uniaxial extension of bidisperse sample
P627-S are shown in Fig. S1 in the supplementary material
[32]. The RDP model roughly predicts the onset of strain
hardening and the extensional viscosities up to 10 s−1. Above
this rate, extensional viscosities are overpredicted similarly to
the monodisperse sample.

Figure 13 shows the extrudate swell for P627-S. The WR

values are calculated using the Rouse times in Table II, the
Rouse time for a chain of the same Mw as the peak Mw. The
RDP model predicts the low Weissenberg number extrudate
swell much better than the 1 mode prediction; but as the
Weissenberg number is increased to ∼1, both theories under-
predict the swelling ratios by a similar amount.

In our previous work, we described a better fit by increas-
ing the stretch relaxation time by hand, according to the

FIG. 10. Simulated chain stretch along the wall of the 5 mm capillary
for PS281 at WR = 4.7 and WR = 47 for friction reduction with Sc = 0.05 and
ζmin = 0.5 enabled and disabled.

FIG. 11. Comparison of uniaxial extensional predictions for PS281 using
the Rolie-Poly (──) and RDP (- -) models without friction reduction.

FIG. 12. Comparison of MPR data of PS281 at 180 °C to the polydisperse
RDP predictions within flowSolve of PS281.

EXTRUDATE SWELL: POLYDISPERSITY AND FRICTION 329



weight fraction of long chains in the blend. This resulted in
the Rouse time of the 340 kDa chains in the blend being
increased from 0.16285 to 0.2585 s. However, using RDP,
this manual intervention is no longer required. Instead, an
increased Rouse time for diluted high molecular weights
occurs naturally as a result of the coupled constraint release
term in Eq. (A4) of the RDP equation set. This effective
increase in Rouse time only occurs for relatively low values
of chain stretch and is not sufficient to give the increase
in extrudate swell seen at intermediate shear rates (around
WR = 1). A slightly improved prediction at the lowest shear
rates is obtained with the low shear rate swelling ratios
matching those of the MPR, although this improvement does
not extend above WR = 1. To improve the prediction at these
intermediate deformation rates, it may be necessary to
change the parameterization of the slower (higher molecular
weight) elements to increase the Rouse times used as inputs
to the model rather than allow them to “effectively” increase
during running of the simulation. Doing this points to
physics not captured by the nonlinear polydisperse tube
theory to date. This may also worsen the agreement of the
RDP model to SER data at low strain rates.

Due to the discretization of the molecular weight distribu-
tion, it is now possible to calculate the chain stretch of each
individual molecular weight fraction under different flow
conditions. This is shown in Fig. 14.

The highest molecular weight chains are stretched signifi-
cantly even at low WR. Even below WR = 1, these chains are
still stretched to λ > 3 at the die exit corner. This significant
chain stretch will contribute greatly to the increased swelling
ratios compared to the monodisperse case. The simple mono-
disperse model used previously cannot account for the fact
that high molecular weight fractions are significantly
stretched at low Weissenberg numbers, instead of showing a
single, low, average stretch across all chains.

We can now address the polydisperse sample PS350.
Uniaxial extensional predictions using both the Rolie-Poly
and RDP model are shown in Fig. 15.

Using a single Rouse time in the Rolie-Poly model
results in significantly underpredicted extensional viscosi-
ties for PS350 at low rates. PS350 begins to strain harden
at approximately 1 s−1 or more, but this is not predicted
using Rolie-Poly until ∼10 s−1. However, the RDP model
accurately predicts the onset of strain hardening at these
lower and intermediate rates, although increasingly over-
predicts the extensional viscosities until the predictions at
the highest strain rates become significantly worse than the
standard Rolie-Poly prediction. At a WR of 17, the simu-
lated extension rate at the die exit corner for this sample is
greater than the highest strain rate achievable in the SER.
It would therefore be expected that the extension rate over-
prediction would slightly affect the extrudate swell predic-
tions. Friction reduction using the parameters λmax = 5,
Sc = 0.05, and ζmin = 0.5 has little effect here; it slightly,
but not significantly, reduces the overprediction in exten-
sional viscosities at the highest rates. This reduction is

FIG. 13. Comparison of MPR data of P627-S at 180 °C to the RDP theory
predictions within flowSolve of P627-S and a 1-mode prediction using stan-
dard Rolie-Poly within flowSolve.

FIG. 14. Wall chain stretch values along an extrusion die for P627-S ele-
ments 2, 8, and 12 from Table II. Rouse Weissenberg numbers of 3 and 12
correspond to solid and dashed lines, respectively.

FIG. 15. Rolie-Poly (lines) and RDP (dashed lines) predictions for uniaxial
extension for PS350 overlain on SER data. The linear viscoelastic envelope
(LVE) for each model is shown as a dashed line.
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much smaller than that shown in Fig. 7 for the monodis-
perse sample.

The polydisperse predictions for swelling ratios in PS350
are compared to the MPR swelling ratios in Fig. 16.

As with the bidisperse polymer, using a single Rouse time
for the polydisperse polymer is not an acceptable way of mod-
eling the extrudate swell. The polymer swells much more
strongly at WR∼ 1 than would be expected from a melt with a
single dominant Rouse time. This is due to high molecular
weight fractions in the blend stretching at their own effective
Rouse times. The RDP theory gives a good prediction for the
onset of extrudate swell. Some overprediction of swelling is
seen above WR = 10 here. However, as with the monodisperse
simulations, using friction reduction at high shear rates results
in a good fit to the experimental data. Crucially, the parameters
Sc = 0.05 and ζmin = 0.5 used here are the same as those that
gave the best fit to extrudate swell for the monodisperse
sample. The friction reduction has less of an effect on the poly-
disperse simulations than it does on the monodisperse ones.
This difference is due to the presence of low molecular weight
chains that are only slightly stretched at high shear rates. These

chains have a low ζ and thus serve to limit the effect of friction
reduction—the monomer environment is less perturbed from
equilibrium by strong flows. Conversely, the presence of the
high molecular weight chains means that the friction reduction
reduces extrudate swell at lower Weissenberg number than in
the monodisperse case. It is clear from these results that both a
polydisperse theory and friction reduction are required to
obtain good predictions for extrudate swell.

Example extrudate profiles from the MPR and from
flowSolve are shown in Fig. 17.

The simulated profile for WR = 1.7 appears consistent with
the experimental profile. It is difficult to compare the profile
for WR = 17 due to the limited viewing area within the MPR
lower section. The maximum swelling ratio occurs further
away from the die exit for the higher speed. However, within
this limitation, the maximum swelling observed and pre-
dicted appears to be consistent with each other.

V. CONCLUSIONS

We have shown that the RDP model combined with a
finite-element simulation package is capable of producing
good predictions of extrudate swell up to high Weissenberg
number for both near-monodisperse and polydisperse polysty-
renes over most of a three-decade range of flow rates. Reducing
the monomeric friction coefficient is essential when predicting
behavior for Rouse Weissenberg numbers above ∼7, where the
monomer orientation (in polystyrene polymers) is strongly per-
turbed from equilibrium and where the swelling ratio would be
significantly overpredicted otherwise. Viscometric and extrudate
swell data together constitute very strong constraints on the
model, indicating that there remain some unexplained features
at intermediate rates, including the strength of a plateau in
swell as friction reduction first sets in.

Using a recently developed multimode blended version of
the Rolie-Poly model (RDP), containing an approximation of
tube relaxation acceleration through constraint release, results
in good qualitative predictions for polydisperse polymers,
although the model performs less well for the low shear rate
extrudate swell of a bimodal blend. The multiscale modeling
approach we present here allows us to identify the cause as
an insufficient increase in the longest stretch relaxation time
upon dilution. The length to diameter ratio of the extrusion
die can be included explicitly but is not a significant factor
affecting the swelling ratios at the shear rates used in these
studies, on which the experiments and calculations agree.

Future work will involve extension of the polydisperse
simulations to systems with a higher polydispersity and/or a
more complex molecular weight distribution. Within this
methodology of molecular modeling of carefully controlled
materials, yet in sufficient quantity to measure in complex
flow such as extrusion, we will use polymers with controlled
levels of branching to determine how branching effects swell-
ing at well-defined flow speeds.
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APPENDIX: RHEOLOGY THEORY

Here, we describe the polydisperse RDP equation set of
Boudara et al. [21,22] and our modifications to it.

We can consider the overall stress of the blend as a
weighted sum of the individual stresses on each individual
molecular weight fraction

σ ¼ G0
N

Xn
i¼1

(fiF(λi)Ai), (A1)

where G0
N is the plateau modulus of the material, fi, F(λ) is

the finite extensibility function, and Ai is the average confor-
mation tensor of an entanglement segment of chain i.
Boudara et al. calculate F(λ) and λ using formulas

F(λ) ¼ 1� λ�2
max

1� λ2λ�2
max

,

λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace(A)

3
,

r (A2)

which are valid for all components of the blend. Here, λ is the
chain stretch and λmax is the finite extensibility of the chains.
Individual chain conformation tensors are calculated using

Ai ¼
Xn
j¼1

fjAi,j, (A3)

dAij

dt
¼κAij þ Aijκ

T � 1
τd,i

(Aij � I)� 2
τR,i

λi � 1
λi

� �
F(λi)Aij

� 1
τd,j

(Aij � I)� 2β
λiτR,j

λj � 1
λj

� �
F(λj)(Aij � I):

(A4)

This equation contains a mixed constraint release term. This
term utilizes the chain stretch in both i and j chains but only
the stretch relaxation time of j chains. This coupling term
gives rise to the enhanced stretch relaxation time of the long
chains predicted earlier. However, this enhancement in
stretch time only occurs at small values of λ, i.e., 1 < λ < 2,
otherwise the stretch time is not enhanced.

The only difference in our simulations versus the equation
set above is the exact form used for the finite extensibility.
For consistency within flowSolve, we use the Pade approxim-
ant to the Inverse Langevin function F(λ) used in the follow-
ing equation:

F(λ) ¼ λ2max � λ2=3

λ2max � λ2

� �
λ2max � 1

λ2max � 1=3

� �
: (A5)

The friction reduction method described in Sec. I C is used in
several simulations. The method used is identical although the

average orientation tensor from Eq. (8) is worked out using

�S ¼
XNmodes

i¼1

fi � Ai=trace(Ai), (A6)

instead of the assuming equal weighting as in Eq. (8).
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