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Abstract The band offsets at a heterojunction lies between two limits, those given by the 
electron affinity rule and the matching of the charge neutrality levels (CNLs) or branch point 
energies. It is shown that it has been difficult to compare these cases because most experimental 
and theoretical tests require a lattice-matching across the heterojunction, and most 
semiconductors with the same lattice constant have similar average band energies referenced to 
the vacuum level. A second point is that the CNL when referenced to the vacuum level varies 
surprisingly weakly with the midgap energy referenced to the vacuum level. A calculation of 
band offsets for larger lattice mismatch heterojunctions provides a strong test, whose result is 
found to favour the CNL matching model. This result is important for the majority of practical 
device heterojunctions, where there is no match due to poly-crystallinity or other effects. For 
other cases whether the device consists of molecules, the electron affinity rule holds. 
 
Introduction 
   Most semiconductor devices require a knowledge of the band alignment at the heterojunctions 
within them, whether these are between two semiconductors, between a semiconductor and an 
insulator, or the Schottky barrier interface between a metal electrode and a semiconductor. The 
band offsets can be derived by using density functional calculations on representative atomic 
models of the heterojunction [1-10]. However, in general this can be difficult unless the two 
components are well lattice-matched, otherwise this can require large supercell periodicities 
along the interface to ensure commensurate lattices, which may involve many atoms in the 
overall supercell or an interface with mismatch defects like dangling bonds. This particularly 
applies to systems like solar cells, light emitting materials, quantum dots, or thin film transistors, 
where the materials involved can be poly-crystalline or even amorphous. Thus, there is also a 
desire for a simplifying principle or model that predicts band offsets under more general 
conditions of poor lattice-matching.  
 
    In broad terms, there are two limiting models for the band offset [1-11]. The first ‘natural’ 
band offset is if there is no charge transfer across an interface and so the conduction band offset 
is simply the difference between two energies of the two semiconductors such as electron 
affinities, as in the electron affinity model [1-3]. This model holds for molecular semiconductors 
where the inter-molecular bonding is van der Waals, which allows only minimal charge transfer 
[12]. The second limit, as in inorganic macromolecule semiconductors, is that the offset depends 
strongly on the charge transfer across the interface, so that the ‘bare’ band offset is screened by 
the charge transfer across the interface [4-7]. These limits are related respectively to the 
unpinned (Schottky) and pinned (Bardeen) limits of Schottky barriers [5,11,13,14]. While the 
behaviour of Schottky barriers is reasonably well understood, this is less so for semiconductor 
heterojunctions [8,9], even allowing for the effects of shallow cation d levels [15]. Although 
studied for over 40 years, the validity of these limits applied to such heterojunctions is less 
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settled. Here, we show why testing these limits has been less decisive. To do this, we investigate 
some specific semiconductor pairs with larger lattice mismatches. The results of this favor the 
charge neutrality level (CNL) model. We cover four broad classes of materials, the 3-
dimensionally bonded semiconductors like Si and GaAs, the insulators like HfO2, the transparent 
conductors like SnO2 and the 2D semiconductors like MoS2. 
 
   As a preliminary, we note that in order to test band offsets, we must have accurate values for 
the band gaps themselves [16-18]. We use hybrid functionals to correct the band gap error of the 
standard semi-local forms of density functional theory (DFT). It is conventional to judge the 
quality of a particular hybrid functional method in terms of how accurately they predict the band 
gap. Here we note that in discussing band offsets, the quality of prediction of both band gaps and 
electron affinities should be judged on an equal weight. 
 
Methods 

The band gap, electron affinity (EA), and ionization potential (IP) of each semiconductor 
system are calculated here using a supercell model containing a slab of 8 layers of semiconductor 
and a 20Å of vacuum layer. In each case the semiconductor slab is terminated by a non-polar 
surface. The electrostatic potential in the vacuum region is used to define the vacuum level 
energy. For the direct calculations of band offsets, we use supercells containing 6 layers of each 
semiconductor joined by their non-polar surfaces, both with and without a vacuum layer.  

The calculations are carried out using the plane wave pseudopotential code CASTEP [19]. 
The atomic geometries are relaxed within the PBE version of GGA. In this case, ultrasoft 
pseudopotentials are used with a plane wave cutoff of 400 eV, which converges the total energy 
to within 0.01 eV per atom. A 5x5x1 MP k-point mesh is used for geometry optimization. The 
residual force is less than 0.02eV/Å. A 11x11x1 k-point mesh is used to calculate the density of 
states. For layered compounds, the Grimme [20] dispersion correction is used to correct the DFT 
error for the van der Waals interaction and the associated bond lengths. Spin-orbit coupling is not 
included. 

For both 3D and layered compounds, the band gap error of the generalised gradient 
approximation (GGA) of DFT is corrected by using hybrid functionals, such as the Heyd-
Scuseria-Ernzerhof (HSE)[21] functional or screened exchange (sX) hybrid functional [22]. In 
this case, norm-conserving pseudopotentials were used with an energy cutoff of 750 eV. 

Results 
A    Band Gaps and Electron Affinities 
 

The GGA band gap error can be corrected using hybrid density functionals. Two well known 
methods are the Heyd-Scuseria-Ernzerhof (HSE) functional [21], and the screened exchange 
(SX) functional [22]. These functionals mix a certain fraction of screened Hartree-Fock 
exchange into the DFT exchange-correlation density functional. The hybrid functionals are not a 
parameter-free means of correcting the DFT band gap error as, amongst other possibilities, the 
fraction of screened exchange can be fitted. The calculated band gap for various compounds is 
given for HSE by Hinuma et al [8] and Chen et al [17,18] and for SX by Clark and Robertson 
[22]. These show that the SX band gaps match the experimental gaps over the full range of band 
gaps. On the other hand, the HSE band gaps match well for a smaller range of gaps but then they 
decline for very large gaps. This aspect can be adjusted by varying the fraction of exact exchange 
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mixed into the exchange-correlation functional. One way would be to ensure the linearity of the 
total energy with fractional occupation across the band gap [23]. Another way is vary the fraction 
of exchange included in proportion to the inverse optical dielectric constant [24,25], as was done 
by Marques et al [25] and then by Chen [18]. It is pointed out here that, in terms of band offsets, 
the electron affinity as well as the band gap should be used to judge the fraction of exchange to 
be included.  

Chen [17] and others have checked the alignment of hybrid functional band energies with 
those of GGA and with each other using the calculated electrostatic potential of the bulk 
semiconductors. In the case of SX, this is equivalent to the calculated ionisation potential, where 
the vacuum potential is used as the reference level.  

Fig. 1 compares the calculated GGA and SX band gaps against the experimental values. 
Table A1 compares the calculated band gaps and electron affinities of the various tetrahedrally 
bonded semiconductors calculated with the SX functional. These are compared with their 
experimental values from the compilation of Brillson [26].  

Fig. 2 shows the variation of the GGA and SX values of electron affinity and ionisation 
potentials for the various semiconductors. We see that the SX values are wider than the GGA 
values for both valence and conduction bands. 
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Fig. 1. Variation of calculated band gap with experimental gap, showing calculated GGA and SX 
gaps [22]. 
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Fig. 2. The calculated electron affinity and ionisation potentials for tetrahedral semi-

conductors, in the GGA and SX functionals. 
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Fig. 3. Calculated electron affinities and ionisation potentials for various oxides, using the SX 
functional. 
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Fig. 4. Calculated GGA and SX values of ionisation potential vs. their experimental values for 
some oxides. 

 
We now consider various functional oxides such as the transparent conducting oxides 

(TCOs) used in displays and solar cells, and the high K oxides used as gate dielectrics in CMOS. 
Table 2 gives the calculated band gaps, electron affinities and ionisation potentials of such 
oxides compared to their experimental values from compilations of Hosono [27], Klein [28], 
Hattori [29], Greiner [30] and Robertson [31].  

Table A2 gives the calculated SX electron affinities, ionization potentials and band gaps, and 
compares them to the experimental values. Fig 3 shows the calculated SX electron affinities and 
ionisation potentials for various oxides, both conducting and non-conducting. Fig. 4 compares 
the calculated ionisation potentials of some oxides with their experimental values. Whereas the 
GGA band gap is typically a 30% under-estimate for semiconductors, there can be a much larger 
error of up to 75% for the TCOs.  

For many technologically important systems like the TCOs, the band gap error can be 
particularly large and it arises from two separate effects. The first is the direct semi-local DFT 
under-estimation of the VB-CB gap, while the second is the effect of semi-core levels of the 
cations. This occurs for post-transition metal cations such as Zn, Cd and In. Here the upper 
valence states consist of anion p states and these are repelled upwards by the cation semi-core 
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states [15,32]. Self-interaction causes the semi-core states to be too high in GGA, and they have 
repelled the VBM which lies too high. The hybrid functionals will move the core states down in 
energy and so lessen their repulsion of the VBM state. This effect occurs in the n-type TCO 
compounds like ZnO and In2O3, in the solar cell compounds like CuInSe2 [32-35]. 

As an example, Fig. 5 shows the development of the band edge energies of ZnO from GGA 
to HSE to SX and compared to experiment. It is seen that HSE for the standard mixing fraction 
of α = 0.25 has a gap of only 2.3 eV and it opens considerably more on the CBM side by moving 
to SX. SX has improved the VB energy because it has moved the Zn 3d states down more [35].  

Fig. 5(b) shows this in a different way. The band gap of ZnO opens up as the TF screening 
parameter reduces, with the VBM and CBM moving away symmetrically from the gap center. 
On the other hand the Zn 3d level moves downwards, but it keeps a relatively constant energy 
below the VBM. Thus, if a parameter tuning scheme is desired for hybrid functionals, varying 
the value of alpha will widen the band gap, but the Zn 3d depth below the VBM is relatively 
unchanged [31]. Thus, in this scheme there is nothing to vary the Zn 3d depth independently. 

We see that our band energies are similar to those of Stephanovic [33]. On the other hand, 
there are differences to the well known compilation of van der Walle and Neugebauer [36] (eg 
ZnO vs ZnS). This is mainly because the latter authors used the GGA+U method as a solution 
for band energies. 

Many p-type TCOs are Cu oxide compounds [37,38]. The Cu 3d states lie at similar energies 
to the O 2p states, and their interaction lowers the effective mass of the O 2p states when they 
form the upper valence band. A number of p-type TCOs are from the defossalite family of 
hexagonal layer compounds [39-41]. Here we choose the (1101) faces as the nonpolar faces. The 
defossalites are notable for having a main optical absorption edge which is significantly above 
the minimum gap due to low optical matrix elements. 
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Fig. 5. Development of the valence band maximum, conduction band minimum and Zn 3d core 
levels, from LDA to HSE to SX, compared to experiment. (b) Variation of valence band 
maximum, conduction band minimum and Zn 3d core level of ZnO with SX screening constant. 
ks is typically 1 Ǻ-1. 
 

The high K oxides used as gate dielectrics are all closed shell wide band gap systems. The 
metals are very electropositive so the oxides have a high heat of formation, so that the oxides 
cannot be reduced by reaction with Si. They include the oxides of Hf, Zr, La, Y, Sc, Lu, Sr, and 
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Ba [11,31,42]. The rare-earth oxides such as Gd2O3 are also possible high K oxides [43], if their 
4f states are out of the gap. On the other hand, TiO2, SrTiO3 and Ta2O5 do not have a sufficiently 
high heat of formation and can react with Si [11]. All these oxides have a roughly 30% band gap 
error. 

BiFeO3 is an interesting multiferroic oxide [44], where Fe is the magnetic ion, and Bi is the 
ferroelectric ion, where the distortion polarises its 6s lone pair state. BiFeO3 has the R3c crystal 
structure, and its antiferromagnetism is aligned along its z-axis. 

NiO is representative of another family of p-type oxides [45]. It is an open shell oxide with a 
wide Ni 3d –like upper valence band. It has the rocksalt structure, with its antiferromagnetic 
along the z-axis as in BiFeO3. 

 
Charge Neutrality Level 
 

The vacuum level acts as a reference level in the electron affinity rule. In the charge transfer 
model, the reference level which controls the charge transfer across an interface is the charge 
neutrality level (CNL) of the semiconductor. The charge transfer across a semiconductor 
heterojunction in Tersoff’s model depends on the evanescent states of the narrower gap side 
decaying into the gap on the larger gap side [4]. These evanescent states are the analogues of the 
metal induced gap states (MIGS) at the metal-semiconductor interface (Schottky barrier). The 
MIGS are intrinsic to the semiconductor side and represent a smearing of the surface states on a 
free semiconductor surface. The CNL is the energy at which the MIGS are filled up to for a 
neutral surface. They are also the branch point of the complex band structure in the gap. 

The CNL can be calculated from the bulk band structure from the zero of its Greens function 
[4,46-50,11], 

∫
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The integral is taken over the Brillouin zone and the sum is over all bands. 

A key question is how many valence or conduction bands should be included in the integral. 
In the original expression, the limits on the number of bands were infinite. The integral becomes 
convergent by including the wavefunctions in the integral, as was done in the original Tersoff 
formulation [4]. Initially, we used an atomic orbital basis set for the calculation of CNLs [11]. 
When using a plane wave basis set, we included only the same bands as in a tight-binding 
description [31,48], that is four valence bands and four conduction bands for a zincblende 
semiconductor, and the equivalent for other lattices or d-band compounds [48]. A similar 
counting was used by others [46]. In practice the resulting CNL values for wide gap oxides were 
relatively insensitive to the choice. 

However, this choice was less appropriate for semiconductors with wider bands where the 
convergence was poor. Schliefe et al [49,50] used fewer bands when calculating the CNLs of 
tetrahedral semiconductors, and this gave values slightly closer to those of other formulations 
such as the Cardona method [51]. The latter choice is supported if one inspects the imaginary 
band structure of various systems [52,53], where the branch point is taken from the bands closest 
to k=0. For HfO2, four bands is a good choice [54], but for semiconductors, one band is clearly 
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much closer to k=0 than others [52,53]. Hence, here we now include fewer bands than previously 
for the CNL calculation. 

Band Offsets 
  
The heterojunctions of two semiconductors are constructed by joining them by a non-polar 

surface, such as (110) for zincblende structures. The band offsets are then given by the linear 
model as [11], 

 
φn = (χa - ΦCNL,a) -  (χb - ΦCNL,b) + S(ΦCNL,a - ΦCNL,b)     (2) 
 

Here �n is the conduction band offset, χa is the electron affinity of a, ΦCNL,a is the CNL of a, and 
S is the pinning factor. This is an extension of the Cowley-Sze model [55] of Schottky barriers to 
heterojunctions. 

The two limits of the electron affinity rule and the CNL matching rule can be regarded as 
using an external reference energy (the vacuum level) or an internal reference level of the 
semiconductor (the CNL/branch point of its bulk band structure). These points were realised in 
1986 when Harrison [3] proposed that band offsets should be referenced to the vacuum level in 
his tight-binding analysis, and then Harrison and Tersoff [6] over-ruled this model when 
realising that screened band offsets should be used. At the time, the numerical inaccuracies of the 
tight-binding analysis distracted from the validity of this argument. 

Experimental [56,57] and theoretical supercell tests [8,9,10,58] of these two limits require 
lattice-matching of the two sides. To an extent, strain can be used to match the two components, 
and then the effect of the strain adjusted for in the energies with respect to the vacuum level. On 
the other hand, a more direct, significant test would involve two components whose band 
energies are likely to lead to significant charge transfer.  
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Fig. 6. The strong correlation between the sp3 hybrid energy in tight-binding and bond length of 
the various tetrahedrally-bonded semiconductors 
 

Fig. 6 shows the variation of the average sp3 orbital energy (from the atomic orbital energies) 
vs. the bond lengths for the tetrahedrally bonded binary semiconductors. These show a close 
correlation between the average sp3 energy and the bond length. Thus by requiring lattice 
matching, one chooses pairs of semiconductors of similar average sp3 energy, and so are unlikely 
to have a large charge transfer across the interfacial bonds, as Harrison and Tersoff [6] noted. 
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A second point concerns the CNL values that enter into CNL matching limit. Fig. 7 shows 
the variation of CNL energies referred to the vacuum level versus the average of the electron 
affinity and ionisation potentials (the midgap energy). The data are fitted by a line of slope 
S=0.34. This means that the CNL does not lie at a constant fraction of the band gap, but has a 
trend that if the average band gap energy moves down, away from the vacuum level, the CNL 
energy upwards in the gap, to give much less overall shift than might be expected. A similar 
effect occurs in oxides in Fig. 8 [37], where the data is more scattered but has a similar trend.  

Thus, a comparison of heterojunctions for the two limits using lattice-matched pairs [8,9,56] 
will not give as great a difference of band offsets as might be expected.  
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Fig. 9. Top and side view of the model zincblende (110)AlN:AlSb heterojunction with a √2:1 

lattice-matching. N= blue, Al= pink, Sb=brown. 
 
In order to test the two limits with a stronger choice, we do not consider band offsets of 

lattice-matched pairs, but between pairs with a large mismatch of √2. The surface unit cell of 
(110) is √2 x 1, so that it is a possible to match lattices of ratio √2 if the second lattice is rotated 
by 900, as shown in Fig 9. Fig 9(b) illustrates a side-view of bonding at such an interface. We 
consider a supercell consisting of 6 layers of each semiconductor. The chosen pairs are AlSb or 
ZnTe for the larger lattice, and AlN, GaN and ZnO for the smaller lattice. The side-view shows 
that not all of the bonds continue across the interface, there are some dangling bonds left on the 
short lattice side. However, these are pairs of cation and anion DBs which relax and have charge 
transfer between them, so that they do not form gap states (Figs. 9b,10). 
 

 
 
Fig. 10. Partial density of states in SX for GaN and AlSb layers at the (110)GaN:AlSb 

heterojunction. Note the absence of gap states. 
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Fig. 11. Error between the calculated VB offsets at heterojunctions and estimated VBO 

values using the EA/IP rule (red) and the CNL matching rule (blue). 
 
AlSb and AlN are seen to have different CNL energies from Fig. 7. Fig. 10 shows the 

calculated local density of states for atomic layer away from the interface in the SX hybrid 
functional. The valence band offsets VBO can be read off from Fig. 10 as the difference of the 
intercept of the PDOS with the energy axis. The VBO values for the six interfaces ZnTe:GaN, 
ZnTe:AlN, ZnTe:ZnO, AlSb:GaN, AlSb:AlN and AlSb:ZnO are listed in Table 1. The difference 
of this VBO value from the CNL difference (blue) or the IP difference (red), or ‘error’, is plotted 
against the calculated supercell VBO on the horizontal axis in Fig 11. The VBO difference for 
the case of the CNL rule can be derived from eqn (2) using S=0, because the dielectric constants 
of ZnTe and AlSb as large, so that S is very small. We note that the blue points cluster closer to 
the horizontal axis than the red points. This shows that the data is more consistent with the CNL 
matching limit overall although there is some error in the CNL points. The error could result 
from two factors, first that the test systems ZnO and ZeTe had shallow cation cores, and second, 
the effect of the dangling bonds at the interface as in Fig 9.  

 

 Supercell 
calculation 
(eV) 

IP 
difference 
(eV) 

IP error 
(eV) 

CNL 
difference 
(eV) 

CNL 
error (eV) 

AlSb/GaN 1.8 1.7 -0.28 1.6 -0.11 
AlSb/AlN 2.75 1.8 -0.42 2.6 -0.05 
AlSb/ZnO 2.9 2.2 -0.17 2.8 -0.03 
ZnTe/GaN 0.92 1.3 0.41 1.0 0.09 
ZnTe/AlN 1.85 1.4 -0.24 2.0 0.08 
ZnTe/Zno 1.75 1.8 0.03 2.2 0.26 

 
Table 1. Comparison of the valence band offsets calculated from the supercell model, and 

from the electron affinity (IP) rule, and from the CNL matching rule, and the errors from the 
supercell calculation in each model. IP values are those calculated by SX. 

 
2D materials 
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Heterojunctions of the transition metal dichalcogenides (TMDs) and similar semiconductors 
have been studied for many applications, including the tunnel field effect transistor (TFET). The 
TFET is a transistor design with a particularly sharp turn-on characteristic or ‘steep slope’ 
needed for low power computation [59]. TFETs will use the heterojunction between vertically 
stacked layers of different TMDs with a type II / III band alignment. The advantage here is that 
the van der Waals bonding between the layers does not require the layers to be lattice matched, 
so that in principle a heterojunction without defects is possible. This differs from a typical 
heterojunction between III-V semiconductors which often have mismatch defects which degrade 
the turn-on characteristic. 

It is also possible to make the lateral heterojunction where the layers of the two compounds 
are directly bonded to each other. Interestingly, reasonably abrupt HJs have been achieved 
between TMDs for this case, even when not fully lattice matched. 

The band energies of these semiconductors with respect to the vacuum level have been 
calculated by various workers [59-61]. The electron affinities, ionisation potentials, and charge 
neutrality levels have been calculated for both bulk and monolayer versions in the SX functional 
[61]. The values for the monolayers is shown in Fig. 12. It is notable in Fig. 12 that the CNL 
energy referred to the vacuum level does vary between these compounds, and thus does not 
follow the behaviour of the 3D semiconductors seen in Fig. 7. This is very interesting. It shows 
that the ‘balancing’ process as occurs in 3D semiconductors is not seen in TMD semiconductors. 
The band offsets for stacked heterojunctions are assumed to obey the electron affinity rule, and 
tests indicate that this is broadly true. 

On the other hand, lateral heterojunctions, being fully bonded, are essentially the same as 
heterojunctions of 3D semiconductors. It has been tested whether they follow the CNL matching 
rule or the electron affinity rule by calculating the band offsets using supercell calculations. 
Generally, it is found that they do obey the CNL matching rule [61,62], as summarised in Fig. 
13. It is not yet clear if there has been a good experimental test of this behaviour. Nevertheless, 
Fig. 13 indicates that 2D semiconductors present a good test of both the no charge transfer and 
screened limits for band offsets at heterojunctions. 
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Fig. 12. Electron affinities, ionisation potentials and CNLs of various metal dichalcogenides 

calculated by the SX functional. 
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Fig. 13. Comparison of the band alignments for stacked and lateral junctions, calculated for 

supercells. 
 
Discussion 

The weak dependence of the CNL energy on the average of the electron affinity and 
ionisation potentials from Fig. 7 helps to explain a number of other diverse effects. 

The first effect is the behaviour of interstitial hydrogen in semiconductors. Hydrogen can 
have two basic behaviours [36,63,64], (a) as a shallow donor, with its +1/0 and 0/ -1 levels lying 
at the CBM, (b) as a deep amphoteric defect with its +1/0 and 0/-1 levels deep in the gap, and 
usually showing a ‘negative-U’ property. In the tetrahedral semiconductors, van der Walle and 
Neugebauer [36] showed the remarkable property that interstitial hydrogen’s +1/-1 level lay at an 
almost constant energy below the vacuum level for all these semiconductors, and including SiO2 
and water. This result implies that there is a constant reference energy for H, the vacuum level. A 
similar result but with more scatter is found to occur for interstitial hydrogen in oxides [63]. 

Van de Walle and Neugebauer [36] explained this behavior of hydrogen as a breaking of a C-
A bond (c=cation, a=anion), with H bonding to the C in the +1 state and H bonding to the A in 
the -1 state. The sites with a bonded hydrogen would have four bonds and so be passivated, 
leaving a cation dangling bond for the +1 state and an anion dangling bond for the -1 state. The 
overall result would be that the +1/-1 transition level would lie the average energy of the cation 
and anion DBs, which is similar to the CNL energy. Thus, this mechanism would argue for the 
+1/-1 state would be roughly the CNL energy, and not particularly related to the vacuum level. 
Only in the case of water should there be a relationship to the vacuum level via the 
electrochemical series. However, if, for a narrow set of semiconductors, the CNL energy actually 
varies little, as occurs in Fig 7, then the vacuum level could act as a reasonable reference energy. 

The second effect is doping limits. It was found empirically that the maximum dopant 
concentration in a semiconductor corresponded to it being able to move its Fermi energy only 
within certain energy limits, on either the n- or p-type side [65]. Beyond that, the dopant makes 
compensated defect complexes which stop further movement of EF. If these energies are within 
the band gap rather than in the bands, then that semiconductor cannot be doped for that polarity. 
An energetic analysis of this behaviour showed that the dopant becomes compensated by an 
intrinsic defect of the opposite sign, and the doping limit then corresponds to an EF where the 



13 
 

compensating defect will form spontaneously. The defect have a zero formation energy at this Ef 
value [66]. Should these doping limit energies be constant with respect to a particular 
semiconductor’s reference energy, such as its CNL, or should they be relatively independent of 
material and referred to the vacuum level? It turns out that it is difficult to differentiate between 
these two cases using the available data [37]. Fig. 7 provides some resolution to this question, 
because the CNL energy does not vary so much with the average of EA and IP, so both cases can 
hold at the same time. It will need better data, calculations, or a special materials system to 
differentiate between these two cases. 

 
Conclusions 
 
   DFT supercell calculations are used to calculate the band offsets at semiconductor 
heterojunctions and if these follow two extreme limits, the electron affinity rule (no chrge 
transfer) and the CNL matching rule (finite charge transfer). It is shown that traditional tests of 
these limits are not very strong because average band energies have a strong correlation with 
average bond lengths, so tests between lattice-matched heterojunctions are not a strong test. By 
using the case of a 1.41 lattice-mismatch, this provides a stronger test, which is found to support 
the CNL matching case.  

   The fact that in most macromolecular semiconductors that the CNL lies at a relatively constant 
energy below the vacuum level explains two other observations, that the +1/-1 energy level of 
the interstitial hydrogen should lie at a relatively constant energy, also that the doping limits lie 
at relatively constant energies below the vacuum level. 
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Appendix 
Table A1. Calculated SX values of band gap, electron affinity, ionization potential, charge 

neutrality level, and their experimental values, for 8-electron  semiconductors. 
 

eV Gap, SX EA, SX  CNL, SX CNL  Gap, exp EA, exp 
Si 1.10 -4.00 -5.10 0.20 1.11 -4.05
Ge 0.67 -4.20 -4.87 0.10 0.67 -4.00
AlAs 2.17 -3.50 -5.67 0.85 2.16 -3.50
GaAs 1.50 -3.80 -5.30 0.50 1.43 -4.07
InAs 0.50 -4.80 -5.30 0.45 0.36 -4.90
InP 1.35 -4.35 -5.70 0.93 1.35 -4.35
GaP 2.29 -3.65 -5.94 0.83 2.26 -3.65
AlP 2.46 -3.97 -6.43 1.30 2.45 -3.98
AlSb 1.62 -3.60 -5.22 0.53 1.60 -3.60
CdS 2.41 -4.79 -7.20 1.90 2.42 -4.79
CdSe 1.88 -4.72 -6.60 1.50 1.73 -4.50
CdTe 1.64 -4.06 -5.70 1.12 1.58 -4.28
ZnO 3.43 -3.97 -7.40 3.27 3.39 -4.20
ZnS 3.74 -3.76 -7.50 1.75 3.60 -3.82
ZnSe 2.73 -3.67 -6.40 1.60 2.70 -4.09
ZnTe 2.36 -3.24 -5.60 1.09 2.25 -3.53
AlN 6.20 -0.80 -7.00 3.08 6.20 -0.60
GaN 3.39 -3.50 -6.89 2.14 3.20 -3.30

 
Table A2. Calculated SX values of band gap, electron affinity, and ionization potential for 

various oxides, and their experimental values. 
 
eV Gap, SX EA, SX  IP, SX CNL  Gap, exp EA, exp 
ZnO 3.40 -4.00 -7.40 3.27 3.40 -4.1
In2O3 2.70 -4.10 -7.00 3.30 2.60 -4.1
SnO2 3.60 -4.80 -8.30 4.10 3.60 -4.8
TiO2 3.20 -4.10 -6.30 2.20 3.20 -4.1
STO 3.20 -4.10 -7.30 2.60 3.20 -4.1
LAO 5.60 -2.00 -7.60 3.80 5.60 -2
Cu2O 2.10 -3.50 -5.60 0.80 2.10 -3.5
CuAlO2 2.80 -1.90 -4.81 0.90 3.00 -1.9
CuGaO2 2.30 -2.80 -5.10 0.80 2.40 -2.8
CuInO2 2.00 -3.20 -5.20 0.80 2.00 -3.2
CuCrO2 2.90 -2.70 -5.60 1.10 3.00 -2.7
SrCu2O2 3.30 -2.20 -5.50 2.00 3.00 -2.2
ZnCo2O4 2.36 -1.20 -3.60 2.40 2.30 -1.2
NiO 3.50 -1.10 -5.10 1.80 4.10 -1.1
BiFeO3 2.85 -3.30 -6.15 1.90 2.80 -3.3
HfO2 5.60 -2.20 -7.80 3.70 5.80 -2.2
La2O3 6.19 -1.90 -8.09 2.40 6.10 -1.9
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Al2O3 8.64 -1.20 -9.84 5.50 8.80 -1.2
MgO 7.72 -0.80 -8.52 4.00 7.80 -0.8
SiO2 8.75 -0.90 -9.65 4.50 9.00 -0.9
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