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a b s t r a c t 

This paper presents a novel combination of two numerical techniques to produce a method for solving fracture 
mechanics problems. A weak form meshless method, the cracking particles method, forms the basis of the mechan- 
ical model while crack propagation direction is calculated using configurational forces. The combined method is 
presented here for 2D quasi-brittle crack propagation. The configurational force approach has the advantage that 
it provides a prediction of the crack propagation direction which does not require decomposition of the stress 
and displacement fields for mixed-mode crack problems. The use of a meshless method removes the need for 
remeshing and it is therefore eminently suitable for multiple crack problems. The paper includes a discussion on 
the configurational force calculations via contour integration and domain integration and results are presented 
that show both approaches to be path independent when the integrations over the two crack surfaces cancel out, 
with domain integration generally providing better accuracy than contour integration. The contribution from 

the crack surfaces to the configurational force is discussed, and shown to have little influence on the final result 
while being easily affected by the oscillations around the crack tip. In addition, the relationship between the 
configurational force and the J-integral is explained. The proposed method is demonstrated on several examples, 
including multiple crack propagation, where good agreements with results from the literature are obtained. 
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. Introduction 

Crack modelling is of great importance for studying the fracture be-
aviour of engineering structures. Crack growth prediction involves two
rocedures, namely checking whether a crack will propagate and then,
n which direction, with these two procedures repeated to achieve a
umulative crack propagation process. Several crack propagation cri-
eria have been developed, some of which use the local stress and dis-
lacement fields around the crack tip, e.g. the maximum circumferential
tress criterion (MCSC) in [1] and the minimum strain energy density
riterion (MSEDC) in [2] , while others follow a global approach based
n the energy distribution throughout the cracked domain, e.g. the max-
mum strain energy release rate criterion (MSERRC) in [3] . These crite-
ia have been widely used for crack modelling [4–8] , and a comparison
etween these three criteria can be found in [9,10] . However, these cri-
eria face issues in handling singularities caused by discontinuities and
aws, where additional physical and mathematical models (e.g. Grif-
th’s theory of brittle fracture) are required to explain the mechanism
f crack propagation. 

The configurational force (CF) approach, which was first proposed
y Eshelby [11] , introduces the concept of a fictitious force acting on
∗ Corresponding author 
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aws in solids into the classical theory of elasticity. The CF can be inter-
reted as the negative gradient of the strain energy with respect to the
rack tip, and provides the direction for crack advancement [12–14] .
his approach has been applied to the finite element method (FEM) for
rittle cracks [15–19] , elastoplastic materials [20,21] , 3D cracks [22] ,
islocations [23] , crystal plasticity [24] and crack branching in dynam-
cs [25] . Evidence of interest in the CF approach can be seen in the
ppearance of a recent textbook [26] and a review [21] for cracks in
on-linear materials. Most recently an r -adaptive CF-driven crack prop-
gation technique was developed by Miehe and co-workers [14,27] and
as been extended to the discontinuous Galerkin FEM with added p -
daptivity [28] . Despite this recent advance, the approach has been ap-
lied with meshless methods to only a limited extent to date, and so the
ase with which adaptivity can be accomplished in the latter methods
as not been investigated. 

Compared with the FEM, which requires elements to discretise the
roblem domain, meshless methods, e.g. the element free Galerkin
ethod (EFGM) [29] , the reproducing kernel particle method [30] , the
eshless local Petrov–Galerkin method [31] and collocation methods

32,33] , use only nodal data which is convenient when modelling dis-
ontinuities and large deformation problems. Despite some differences
. Augarde). 

arch 2019 
ticle under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.enganabound.2019.03.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enganabound
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2019.03.008&domain=pdf
mailto:charles.augarde@durham.ac.uk
mailto:charles.augarde@dur.ac.uk
https://doi.org/10.1016/j.enganabound.2019.03.008
http://creativecommons.org/licenses/by/4.0/


W. Ai, R.E. Bird and W.M. Coombs et al. Engineering Analysis with Boundary Elements 104 (2019) 197–208 

i  

c  

f  

e  

e  

a  

c  

u  

q  

n  

m  

t  

t  

p  

c  

i  

m  

p  

c  

t  

p  

m  

c  

i  

l  

d  

i  

i  

c  

c  

[  

l  

s  

d  

m
 

a  

t  

k  

i  

w  

a  

C  

i  

w  

t  

t  

b

2

 

E  

l  

p  

g  

m  

c  

e  

h  

s

2

 

s

𝑢  

w  

d  

i
i  

v  

o

𝚽

A

B

w  

i  

a

𝑤  

w  

(  

w  

i  

e  

b  

a  

a

2

 

t  

h  

i  

o  

t  

w  

i  

d  

a  

s
 

s  

m  

w  

i  

e  

C  

r

[  

(a) crack (b) modelling

Fig. 1. Crack modelling in the cracking particle method: (a) crack path and (b) 
crack segments, with dashed circles indicating the influence domain of particles. 
n the problem approximation between these methods, many similarities
an be found, e.g. an absence of mesh and high order continuous shape
unctions, as covered in reviews [34–36] . Unlike the extended finite el-
ment method (XFEM) where crack discontinuities are described using
nrichment functions [4] which bring extra unknowns and can lead to
n ill-conditioned system stiffness matrix [37] , meshless methods model
racks by modifying the influence domain (or “support ”) of particles
sing the visibility criterion, and therefore no extra unknowns are re-
uired [7,38] . Other alternatives for crack modelling include peridy-
amics [39] , the numerical manifold method [40,41] , the phase field
ethod [42,43] and the cracking particle method (CPM) [44,45] . In

he first of these, crack patterns are achieved by cutting “bonds ” be-
ween particles so fractures are the natural outcome of this method, but
roblems arise as a large number of particles are needed to achieve ac-
urate results. One attempt to improve its calculation efficiency is given
n [46,47] where adaptive particle distributions are defined. The nu-
erical manifold method uses a group of “covers ” for the problem ap-
roximation and crack discontinuities are introduced by dividing these
overs, but enrichments are still required for covers containing the crack
ip [40] . The phase field method uses a scalar field for describing crack
atterns so that tracking of crack geometries is not required, but the
ain issue with phase fields is the very fine mesh needed around the

racks and also an extra partial differential equation for the phase field
s required, which can be computationally costly for calculating the evo-
ution of the phase field [48] . The CPM uses a set of crack segments to
escribe crack paths and crack propagation is modelled through modify-
ng these segments, which provides a simple implementation for updat-
ng crack patterns and make it therefore suitable for modelling multiple
racks [44] . Early CPMs used simple crack segments to approximate the
rack patterns [49] and to model multiple cracks under impact loadings
50] . More recently the method has been extended to handle cracks with
arge curvatures by using bilinear segments in 2D [51] and nonplanar
egments in 3D [52] . The CPM has been applied to problems including
ynamic fracture [53] , ductile fracture [54,55] , shear bands [56] and
ultiple cracks [57] . 

In this paper, the CPM is developed further to incorporate the CF
pproach for crack propagation, making use of the advantages of the
wo methods, the first time that this has been attemptted to the authors’
nowledge. The CPM provides a simple description of crack discontinu-
ties, and the CF approach has a simpler implementation than the MCSC,
hich has already been used in the CPM [51] for predicting crack prop-
gation direction. This paper is structured as follows. The theories of the
PM and the CF are introduced in Sections 2 and 3 , respectively. The

mplementation of the CF into the CPM is also included in Section 3 ,
here both contour integration and domain integration for calculating

he CF are covered. Several numerical examples are used to demonstrate
he performance of the proposed method in Section 4 , which is followed
y a summary of the paper in Section 5 . 

. Cracking particle method 

The CPM, developed in [44,50,51] , is based on the weak-form based
FGM [29] for problem discretisation and is focused on fracture prob-
ems. This method is meshless and uses only nodal data to discretise the
roblem domain, so no remeshing is required for crack modelling. The
overning equations for the quasi-static behaviour of elastic isotropic
aterials in 2D and the associated weak form in the EFGM have been

overed by many papers [29,50,51] and will not be repeated here, how-
ver details of the means by which crack discontinuities are handled
ave not been covered in detail before and are included below to demon-
trate the key features of the CPM. 

.1. Moving least squares approximation 

The displacement field is modelled, as in [29] , by a moving least
quares (MLS) approximation, as 
198 
 

ℎ ( x ) = 

𝑛 ∑
𝑖 =1 

Φ𝑖 ( x ) 𝑢 𝑖 = 𝚽T u , (1)

here u h is the approximated displacement, u i is the nodal value of
isplacement at the i th node, x is the coordinate vector with x = [ 𝑥 1 , 𝑥 2 ]
n 2D, n is the number of nodes with influence domains covering x , Φi 

s i th shape function calculated by the MLS approximation, u and 𝚽 are
ectors of u i and Φi , respectively, for n nodes. The shape function 𝚽 is
btained as in [29] by 

( x ) = p 

T ( x ) A 

−1 ( x ) B ( x ) , (2a) 

 ( x ) = 

𝑛 ∑
𝑖 

𝑤 𝑖 ( x ) p 

T ( x 𝑖 ) p ( x 𝑖 ) , (2b) 

 ( x ) = [ 𝑤 1 ( x ) p ( x 1 ) , 𝑤 2 ( x ) p ( x 2 ) …𝑤 𝑛 ( x ) p ( x 𝑛 )] , (2c) 

here p ( x ) is the basis function, e.g. p ( x ) = [1 , 𝑥 1 , 𝑥 2 ] T for a linear basis
n 2D, and w is a weight function, e.g. the 4th order spline function
dopted in this paper 

 𝑖 ( x ) = 𝑤 ( 𝑟 ) = 

{ 

1 − 6 𝑟 2 + 8 𝑟 3 − 3 𝑟 4 if 𝑟 ≤ 1 , 
0 if 𝑟 > 1 , (3)

here 𝑟 = ‖x − x 𝑖 ‖∕ 𝑟 𝑖 , and r i is the radius of a circular influence domain
support) of the i th particle, while ‖ · ‖ stands for the L 2 norm. Different
eight functions and support sizes for the above are discussed in [58] ,

ndicating that both can affect the error of the MLS approximation, how-
ver this error is problem-dependent and convergent results can usually
e obtained. The support size is defined as a factor d s multiplying the
verage nodal spacing, where d s is suggested in the range between 2.0
nd 4.0 [59] . Here, 𝑑 𝑠 = 2 . 2 is used for all examples in Section 4 . 

.2. Crack modelling 

In the CPM, crack paths are approximated with a set of segments cen-
red at particles. There are two steps in the development of the CPM for
andling crack discontinuities, using extrinsic enrichment [44,60] or
ntrinsic enrichment [50,51] . The former introduces some discontinu-
us enrichment functions into the displacement polynomial approxima-
ion (named extrinsic enrichment) where extra unknowns are involved
hich can however make the global stiffness matrix ill-conditioned, sim-

lar to issues met with the XFEM [37] . The latter divides the influence
omain of particles using the visibility criterion, and no extra unknowns
re introduced in the MLS approximation, and is therefore called intrin-
ic enrichment. 

Here, intrinsic enrichment is used in the problem approximation. In-
tead of straight segments in the original CPM [44] , bilinear crack seg-
ents first presented in [51] are employed for representing crack paths,
hich can provide a better description of crack patterns, as illustrated

n Fig. 1 . The angular change in a crack path is captured by these bilin-
ar crack segments, so a nearly continuous crack path can be achieved.
rack opening, marked with the operator [[ · ]], is obtained from the
elative displacement between particles on the two sides of the crack, 

[ 𝑢 ( x )]] = 

∑
𝑖 ∈ + 

Φ𝑖 ( x + ) 𝑢 𝑖 − 

∑
𝑖 ∈ − 

Φ𝑖 ( x − ) 𝑢 𝑖 , (4)
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here  + and  − indicate the two sides of the crack. An h -adaptivity
pproach has also been introduced into the CPM in [51] to maintain
alculation efficiency and to handle the high stress gradients around
he crack tip, details of which are given here in Appendix A . Since shape
unctions of the MLS approximation do not possess the Kronecker delta
roperty, essential boundary conditions cannot be imposed directly but
hrough Lagrange multipliers as in [29,51] . 

. Configurational force 

The classical theory of elasticity faces issues in handling the concept
f forces acting on singularities (cracks or concave corners). This issue
as addressed by Eshelby [11] through the CF theory. The CF is re-
arded as the negative gradient of the potential energy with respect to
 singularity, which represents the energy change at the singularity for
olids undergoing deformation [11] . The potential energy is measured
y the Eshelby stress tensor 𝚺 defined as 

= 𝑊 𝜹 − 𝐇 

T ⋅ 𝝈, (5)

here 𝜹 is an identity matrix (2 ×2 in 2D), H is the displacement gra-
ient tensor with components 𝐻 𝑖𝑗 = 𝜕 𝑢 𝑖 ∕ 𝜕 𝑥 𝑗 , W is the strain energy,

 = 

1 
2 𝜎𝑖𝑗 𝜕 𝑢 𝑖 ∕ 𝜕 𝑥 𝑗 and indexes are defined with Einstein summation, 𝝈

s the Cauchy stress and 𝜎ij is a component. Similar to the equilib-
ium of Cauchy stress for a continuum, the Eshelby stress 𝚺 is also self-
quilibrating, as 

 ⋅ 𝚺 = 𝟎 in Ω. (6)

ntegrating Eq. (6) over a simply connected domain and using Green’s
heorem (the 2D version of the divergence theorem), the resultant of the
shelby stress for a contour path Γ encircling the domain must vanish,
s 

Γ
𝚺 ⋅ n d Γ = 𝟎 , (7)

here 0 is a zero vector and n is the outward normal to Γ. If the prob-
em domain contains a crack, as illustrated in Fig. 2 , the resultant from
q. (7) is nonzero. The CF at the crack tip g is obtained by integrating
ver an infinitesimal contour C s [14,27] , as 

 = lim |𝐶 𝑠 |→0 ∫𝐶 𝑠 

𝚺 ⋅ n d Γ, (8)

here g is a vector of fictitious forces, e.g. g = [ 𝑔 1 , 𝑔 2 ] in 2D. The CF is
elated to a body’s material structures, performs work when these struc-
ures evolve in the process of, for instance, phase transition at interfaces
r crack propagation, and provides a pictorial description of the body’s
esponse to these evolutions [61] . 

.1. Implementation in the CPM 

Here the CF is implemented into the CPM for crack modelling. Since
he stress distribution is singular at the crack tip in linear elastic fracture
echanics, it is not appropriate to use the results at the crack tip directly.
Fig. 2. Integration path around the crack tip. 
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q. (8) is therefore modified to an integration over a contour away from
he crack tip, as 

𝐶 𝑠 

𝚺 ⋅ n d Γ = ∮𝐶 

𝚺 ⋅ n d Γ − ∫𝐶 𝑟 2 

𝚺 ⋅ n d Γ − ∫𝐶 𝑟 1 

𝚺 ⋅ n d Γ, (9)

here 𝐶 = 𝐶 𝑠 + 𝐶 𝑟 1 + 𝐶 𝑟 2 is a closed contour with 𝐶 𝑟 2 = 𝐶 𝑟 2 − + 𝐶 𝑟 2 + as
epicted in Fig. 2 . Using Eq. (7) , the first term on the right hand side
 r.h.s. ) of Eq. (9) becomes zero. With the definition of the Eshelby stress
n Eq. (5) , the second term on the r.h.s . of Eq. (9) is 

𝐶 𝑟 2 

𝚺 ⋅ n d Γ = ∫𝐶 𝑟 2 

( 𝑊 𝜹 ⋅ n − 𝐇 

T ⋅ 𝝈 ⋅ n ) d Γ. (10)

he crack surfaces are assumed traction-free, as 𝝈 ⋅ n = 0 on the crack
urfaces C r 2 . For 𝐶 𝑟 2 − and 𝐶 𝑟 2 + , their normals are reversed so these two
arts are sometimes excluded from the calculation of the CF when the
ifference of strain energy between the two sides of crack surfaces is
eglected, e.g. [27] , as 

𝐶 𝑟 2 

𝚺 ⋅ n d Γ = ∫𝐶 𝑟 2 

𝑊 𝜹 ⋅ n d Γ ≈ 0 . (11)

he CF by contour integration therefore becomes 

 = − ∫𝐶 𝑟 1 

𝚺 ⋅ n d Γ. (12)

Alternatively, a domain integral can be used to calculate the CF. To
et up an integral over a closed contour path as in [19] , Eq. (8) is ad-
usted to 

𝐶 𝑠 

𝚺 ⋅ n d Γ = ∮𝐶 

𝑞( x ) 𝚺 ⋅ n d Γ − ∫𝐶 𝑟 2 

𝑞( x ) 𝚺 ⋅ n d Γ, (13)

here 𝑞( x ) is a weight function which should satisfy 

( x ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 on 𝐶 𝑠 

0 on 𝐶 𝑟 1 
arbitrary within Ωc , 

(14)

he first term on the r.h.s. of Eq. (13) can be converted to a domain
ntegral using Green’s theorem, as 

𝐶 

𝑞( x ) 𝚺 ⋅ n d Γ = − ∮𝐶 

𝑞( x ) 𝚺 ⋅ m d Γ = − ∫Ωc 

∇ 

(
𝑞( x ) 𝚺

)
d Ωc , (15)

here m is the outward normal to the contour C r 1 and Ωc is the do-
ain encircled by the contour C . When lim 𝐶 𝑠 → 0 and C r 2 approaches

he crack surfaces, Ωc can be regarded as the domain encircled by C r 1 .
ubstituting Eq. (6) into Eq. (15) yields 

 ∫Ωc 

∇ 

(
𝑞( x ) 𝚺

)
d Ωc = − ∫Ωc 

𝚺 ⋅ ∇ 𝑞( x ) d Ωc . (16)

he second term on the r.h.s. of Eq. (13) is not considered in [14,27] , but
s included in [19] . A discussion on this issue, i.e. whether to include the
ntegration over crack surfaces for the CF, will be given later. Without
ntegrating over crack surfaces, the final domain integration for the CF
ecomes 

 = − ∫Ωc 

𝚺 ⋅ ∇ 𝑞( x ) d Ωc . (17)

t is notable that the domain integration in Eq. (17) is path-independent
hen the crack surface terms cancel out, so the CF can be calculated
sing the stress and displacement fields away from the crack tip. The
mplementation for calculating the CF in the CPM is not complicated.
fter a solution for the stress and displacement fields is obtained, the
F is calculated by Eq. (17) through a post-processing procedure. The

ntegration uses a Gauss quadrature scheme over a square domain Ωc 
entred at the crack tip as shown in Fig. 3 . Eq. (17) is consistent with
iehe’s solution [14,27] for calculating the CF in the FEM, when doing

he integration over the elements containing the crack tip and replacing
he weight function 𝑞( x ) with the shape function of the crack tip, i.e.
( x ) = 𝑁( x ) . 
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Fig. 3. Integration domain around the crack tip. 
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.2. Crack propagation 

Different crack propagation criteria have been developed to model
racture behaviour in brittle materials including the MCSC, the MSEDC
nd the MSERRC, e.g. in [9,10] . The MCSC has been used in the CPM
51,52] for its simplicity and accuracy over the other two methods [9] ,
hile the CF is another alternative and has a simpler implementation
s in [22,28] . In the MCSC, a crack propagates towards the direction
here the shear stress at the crack tip is zero, as detailed in Appendix B ,
nd the shear stress is represented by SIFs to avoid the issue of stress
ingularity at the crack tip. SIFs are calculated using the interaction in-
egral in Appendix C , which requires the decomposition of the stress and
isplacement fields with respect to the crack for mixed mode crack prob-
ems. In contrast, the use of the CF can be regarded as more elegant since
his decomposition is not required in the calculation of Eq. (17) , and the
rack propagation direction is directly provided by the CF. The vector
 provides the crack propagation direction and determines whether the
rack can propagate, e.g. crack propagation occurs when ‖g ‖ (the L 2 
orm of g ) exceeds g c , where g c is the critical energy release per unit
rea of crack surface. Having determined direction, a constant incre-
ent of crack extension d a is given to the crack as in [14] , which is pro-
ortional to the initial crack length a and will be specified in numerical
xamples in Section 4 . If the angular change of crack direction is larger
han 5 ∘, the crack increment is reduced to 0.5d a , by which the accuracy
n predicting the curvature of crack growth is ensured. The position of
he new tip is obtained using the CF as demonstrated in Fig. 4 , and if
here is no particle at this location, a new cracking particle is created,
therwise the particle located at this position is cracked. A successive
rack propagation process can be achieved by duplicating these proce-
ures. Note that special handling is required in the FEM, e.g. dividing
lements for crack growth [19] and relocating element edges in [14] ,
hich is not necessary in the CPM due to its meshless nature. 

It is more common to use the J-integral in fracture mechanics for
odelling crack propagation, but the CF provides another option and

t is worth demonstrating the relationship between the CF and the J-
ntegral here. The J-integral can be regarded as the projection of the CF
o the crack extension direction e as mentioned in [62] , that is 

 = 𝐞 ⋅ 𝐠 = − lim |𝐶 𝑠 |→0 ∫𝐶 

𝐞 ⋅ 𝚺 ⋅ n d Γ. (18)
𝑠 

a b

ig. 4. Crack propagation driven by the configurational force in the cracking 
article method: (a) configurational force in the local coordinate system and (b) 
ew crack tip. 
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he relationship between the J-integral and the stress intensity factors
SIFs) 𝐾 I and 𝐾 II is 

 = 𝛼( 𝐾 

2 
I + 𝐾 

2 
II ) , (19)

nd 

= 

{ 

(1 − 𝜈2 )∕ 𝐸 for plane strain , 

1∕ 𝐸 for plane stress . 
(20)

lternatively the CF has a relationship with the SIFs [63] as 

 1 = 𝐽 = 𝛼( 𝐾 I 
2 + 𝐾 II 

2 ) , (21a) 

 2 = −2 𝛼𝐾 I 𝐾 II . (21b) 

. Numerical examples 

Four 2D numerical examples are used to demonstrate the perfor-
ance of the proposed method, and a comparison between the CF and

he MCSC (using the J-integral) in modelling crack propagation is in-
luded. All problems are assumed to have plane stress conditions and
inear elastic isotropic material properties except in Sections 4.2 and
.4 where plane strain conditions are used. The CF is calculated by the
ontour integration in Eq. (12) over the path Γc in Fig. 3 and the domain
ntegration in Eq. (17) over the area Ωc encircled by Γc . The contour Γc 
s a square with dimensions of 2 c ×2 c centred at the crack tip, and c is
roportional to the initial crack length a , as specified later. The weight
unction 𝑞( x ) is taken to be a simple bi-linear expression with the form

( x ) = 

(
1 − 

𝑥 

𝑐 

)(
1 − 

𝑦 

𝑐 

)
, (22)

here x and y are local coordinates at the crack tip, as shown in Fig. 3 ,
hich are parallel and normal to the crack surface, respectively. A large
umber of Gauss points are used to ensure the accuracy of integration
round the crack tip with high stress gradients. For the contour inte-
ration, each edge of Γc is divided into 6 segments, each with 8 Gauss
uadrature points, while the domain integration is calculated with 6 ×6
ackground cells each with 8 ×8 Gauss quadrature points. The SIFs are
btained by the interaction integration over the domain Ωc with the
ame Gauss quadrature scheme. For easy data analysis, the following
ormalisation is used for the CF and the SIFs, as 

 

′ = 

𝐽 

𝛼𝜎2 𝜋𝑎 
, 𝐠 ′ = 

𝐠 
𝛼𝜎2 𝜋𝑎 

, (23a) 

 

′
I = 

𝐾 I 

𝜎
√
𝜋𝑎 

, 𝐾 

′
II = 

𝐾 II 

𝜎
√
𝜋𝑎 

, (23b) 

here 𝜎 is a measure of the external loading and a is the initial crack
ength. 

.1. Half central crack 

The half central crack problem in [57] is the first problem to be
nalysed, as shown in Fig. 5 . This example is extracted from the prob-
em of a central crack in an infinite plate subjected to far field stress. The
imensions are plate length 𝑤 = 100 mm, crack length 𝑎 = 0 . 5 𝑤 and tar-
et error (see Appendix A ) for adaptivity 𝜂t = 0 . 02 . Two situations, pure
ode I and mixed mode fracture, are included to study the contribution

rom crack surfaces to the CF, considering that the deformation in pure
ode I fracture is symmetric and for mixed mode fracture it is not. An

nalytical solution for this problem is provided by [64] 

11 = 

𝐾 I √
2 𝜋𝑟 

cos 
(
𝜃

2 

)[
1 − sin 

(
𝜃

2 

)
sin 
(3 𝜃

2 

)]
− 

𝐾 II √
2 𝜋𝑟 

sin 
(
𝜃

2 

)[
2 + cos 

(
𝜃

2 

)
cos 
(3 𝜃

2 

)]
, (24a) 
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Table 1 

Mode I fracture for a half central crack (analytical values 𝐾 

′
I = 1 , 𝐾 

′
II = 0 ). 

Configurational force 

Contour integration Domain integration Crack surface part J-integral 

c/a 𝑔 ′1 𝑔 ′2 𝑔 ′1 𝑔 ′2 𝑔 ′1 𝑔 ′2 𝐾 ′I 𝐾 ′II J ′ 

0.5 1.0038 0.0000 1.0017 0.0000 0.0000 0.0000 1.0011 0.0000 1.0011 
0.1 0.9992 0.0000 1.0040 0.0000 0.0000 0.0000 1.0026 0.0000 1.0026 
0.01 1.0025 0.0000 0.9812 0.0000 0.0000 0.0000 0.9901 0.0000 0.9901 
0.001 0.9837 0.0000 0.8496 0.0000 0.0000 0.0000 0.9091 0.0000 0.9091 

Table 2 

Mixed mode fracture for a half central crack (analytical values 𝐾 

′
I = 1 , 𝐾 

′
II = 1 ). 

Configurational force 

Contour integration Domain integration Crack surface part J-integral 

c/a 𝑔 ′1 𝑔 ′2 𝑔 ′1 𝑔 ′2 𝑔 ′1 𝑔 ′2 𝐾 ′I 𝐾 ′II J ′ 

0.5 1.9940 − 1.9963 1.9994 − 2.0003 0.0000 − 0.0178 0.9999 1.0001 2.0001 
0.1 2.0033 − 2.0033 1.9987 − 2.0019 0.0000 − 0.0211 0.9999 0.9999 1.9995 
0.01 2.0076 − 2.0026 1.9910 − 1.9999 0.0000 − 0.1710 0.9973 0.9986 1.9918 
0.001 2.0043 − 1.9873 1.9883 − 1.9927 0.0000 0.1256 0.9947 0.9994 1.9882 

Fig. 5. The configuration of an half central crack in a square plate. 

𝜎

𝜎

 

t

t  

a  

c

𝑢

𝑢

w  

a  

t  
22 = 
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Fig. 6. Stresses along the crack surfaces for the half cent
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12 = 

𝐾 I √
2 𝜋𝑟 

cos 
(
𝜃

2 

)
sin 
(
𝜃

2 

)
cos 
( 3 𝜃

2 

)

+ 

𝐾 II √
2 𝜋𝑟 

cos 
(
𝜃

2 

)[
1 − sin 

(
𝜃

2 

)
sin 
(3 𝜃

2 

)]
. (24c) 

The stresses from Eq. (24) along four edges of the plate are used as
he external loading, as 

̄
 = 𝝈 ⋅ n = [ 𝜎11 𝑛 1 + 𝜎12 𝑛 2 , 𝜎12 𝑛 1 + 𝜎22 𝑛 2 ] T , (25)

nd the plate is fixed against rigid body movement using the following
onstraints, 

 1 = 0 , 𝑢 2 = 0 at 𝑥 1 = 𝑤 ∕2 , 𝑥 2 = 𝑤 ∕2 , (26a) 

 

 + 
2 + 𝑢  − 2 = 0 at 𝑥 1 = 0 , 𝑥 2 = 𝑤 ∕2 , (26b) 

here superscripts  + and  − are as depicted in Fig. 1 . Pure mode I
nd mixed mode fractures were obtained by setting different types of ex-
ernal loading t̄ using 𝐾 

′
I = 1 , 𝐾 

′
II = 0 and 𝐾 

′
I = 1 , 𝐾 

′
II = 1 , respectively.
Analytical 
xx

Analytical 
yy
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Calculated 
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Calculated 
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Calculated 
xy

ral crack problem: (a) mode I and (b) mixed mode. 
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Fig. 7. Single edge crack in a slender plate under tensile loading: (a) configu- 
ration; (b) case 1 and (c) case 2. 
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a  
he calculation of the CF was through either the contour integration
n Eq. (12) or the domain integration in Eq. (17) , where the contri-
ution from crack surfaces was calculated using the second term on
he r.h.s. of Eq. (13) , over various sizes of contours and domains e.g.
∕ 𝑎 = 0 . 001 , 0 . 01 , 0 . 1 , 0 . 5 . The SIFs were obtained by the interaction in-
egration as in Appendix C , 

The initial particle arrangement was set at 21 ×21 uniformly dis-
ributed particles, and then the adaptivity approach including 12 adap-
ive steps was used to modify the particle arrangements. A convergence
tudy has been included in Ai and Augarde [57] where the adaptivity
202 
pproach used showed better convergence properties than uniform re-
nement. Results using the CF in the two situations are presented in
ables 1 and 2 and all show good agreement with the analytical results

n Eq. (24). It is clear that the results using different sizes of domains and
ontours are all accurate, indicating the integration of the CF and the J-
ntegral are both path-independent, when the two parts of crack surface
ntegration cancel out. The integration over a larger domain provides
etter accuracy, and the domain integration generally beats the contour
ntegration. From Table 1 , the contribution from crack surfaces to the
F is zero due to the symmetric stress field, while for another case it is
ot zero but much smaller than the result from the domain integration
hen a large domain is used. Using small domains, e.g. 𝑐∕ 𝑎 = 0 . 01 and
.001, the results appear unreasonable, which are caused by the oscilla-
ions around the crack tip (for instance, see the stresses along the crack
urfaces in Fig. 6 ). For mode I fracture in Fig. 6 (a), theoretical stresses
long the crack surfaces are zero according to Eq. (24), however there
re deviations for the results close to the crack tip. Even with a very
ne particle distribution around the crack tip in this calculation, the ac-
uracy for stresses within 𝑟 ∕ 𝑎 < 10 −4 cannot be guaranteed due to the
tress singularity at the crack tip, although in the range 𝑟 ∕ 𝑎 > 10 −4 good
ccuracy can be achieved. 

.2. Single edge crack under tensile loading 

The second example considers the propagation of a single crack in
 slender plate under uniaxial tension ( Fig. 7 ). The problem domain
Fig. 8. Adaptive particle arrangements for the 
edge crack under uniaxial tension during prop- 
agation steps = 3, 6, 9, 12, 14 with different 
initial particle distributions: (a–e) case 1, (f–j) 
case 2. 
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Fig. 9. Deviations for the edge crack propagation under uniaxial tension modelled by the configurational force: (a) angle in the local polar coordinates and (b) 
vertical location. 
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Fig. 10. Validation of results for the edge crack under uniaxial tension during crack propagation steps: (a) 𝑔 ′1 and (b) 𝐾 
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as discretised with either uniformly (case 1) or non-uniformly (case
) distributed particles, as depicted in Fig. 7 (b and c), to demonstrate
he stability of the proposed method with different initial particle dis-
ributions. The geometry used was 𝑎 = 0 . 1 m, 𝑏 = 5 𝑎, ℎ = 10 𝑎, 𝜂t = 0 . 02 ,
 𝑎 = 𝑎 ∕4 and tensile loading 𝜎 = 10 MPa on both upper and lower edges
f the plate. Domain integration was used to calculate SIFs and the CF,
here 𝑐 = 0 . 2 𝑎 was applied. A plane strain condition was assumed and

hear modulus 𝜇 = 80 GPa and Poisson’s ratio 𝜈 = 0 . 3 . The plate was
xed as in [28] by forcing the average displacements and rotations to
ero. The analytical solution for the mode I SIF from [65] is 

 I ∕ 𝐾 0 = 0 . 265(1 − 𝑎̄ ∕ 𝑏 ) 4 + 

0 . 857 + 0 . 265 ̄𝑎 ∕ 𝑏 
(1 − 𝑎̄ ∕ 𝑏 ) 3∕2 

, (27)

here 𝐾 0 = 𝜎
√
𝜋𝑎̄ and 𝑎̄ is the crack length after propagation. 

Adaptive particle arrangements were generated during the crack
ropagation process and there was a “mass ” of particles generated
round the crack tip, as presented in Fig. 8 . Due to the symmetry of
he problem and initial particle distribution, particle arrangements
n case 1 are symmetric and no deviation of crack direction from the
entral line during the crack propagation process, while for case 2 with
203 
symmetric initial particle distribution, a slight deviation is found in
he crack propagation as shown in Fig. 9 . The crack propagation angle
eviates way from zero for most of steps in Fig. 9 (a), but the mean value
emains close to zero and predicts a horizontal crack growth. Similar
esults can be found in [28] . The results for the mode I SIFs in both
ases during all crack propagation steps show good agreement with the
nalytical values in Eq. (27) , as shown in Fig. 10 , where analytical 𝑔 ′1 
s unknown but can be approximated by analytical J ′ using Eq. (21). 

.3. Single edge crack under shear loading 

Mode II type crack propagation is included in the third example,
here an edge crack in a square plate under shear loading, as depicted

n Fig. 11 , is used to compare the crack paths obtained by the CF ap-
roach (case 1) and by the MCSC (case 2). The plate has dimensions
f 𝑙 = 1 m and 𝑎 = 0 . 5 𝑙, shear modulus 𝜇 = 8 . 0 GPa and Poisson’s ratio
= 0 . 3 . For most crack propagation steps in case 1, the crack increment
as set to d 𝑎 = 0 . 05 𝑎, except the first few steps in the CF case where the

rack path changes its direction rapidly so a much smaller crack incre-
ent ( d 𝑎 = 0 . 01 𝑎 ) was used. The target error for adaptivity was 𝜂t = 0 . 02 .
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Fig. 11. Single edge crack under shear loading: (a) configuration and (b) initial 
particle distribution. 
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Fig. 13. A comparison of crack growth predictions under shear loading between 
by configurational force and by the maximum circumferential stress criterion. 
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(

n case 2, a larger increment d 𝑎 = 0 . 1 𝑎 and target error 𝜂t = 0 . 04 were
sed, and these parameters were also used for the CF approach to test
heir sensitivity on the results. The lower side of the plate was fixed and
he upper side was horizontally shifted towards the left with 𝑢 = 0 . 02 𝑙.
omain integration ( 𝑐 = 0 . 01 𝑎 ) was applied to obtain SIFs and the CF,
here the integration over crack surfaces were excluded. A slight de-
iation of particles around the crack tip was applied, so the geometric
ntisymmetry of the problem was broken, to make sure the crack prop-
gates to the lower side of the plate. 

Adaptive particle arrangements for the crack propagation steps are
iven in Fig. 12 . For the crack propagation led by the CF in case 1,
he crack direction changes smoothly in Fig. 12 (a and b) and then
uns linearly towards the lower left corner, while the crack growth pre-
icted by the MCSC has a rapid change in Fig. 12 (e and f). A larger
roup of dense particles is generated at this kinked position (the cen-
re of the plate) in the following propagation steps of case 2, com-
aring between Fig. 12 (h) and (d). The CF approach thus provides
 smooth transition for crack direction changes, while the MCSC al-
ows a large kink in the crack growth, and again similar results can
e found in Miehe et al. [27] . This difference can be explained from the
heories of the two crack propagation criteria. Considering the initial
rack, the deformation is under pure mode II so 𝐾 I = 0 and 𝐾 II ≠ 0 . The
rack propagation angle given by the MCSC in Eq. (B.2) is 𝜃 = 70 . 5 ◦,
hile the CF is g 1 ≠0 and 𝑔 2 = 0 using Eq. (21) and the CF is hor-

zontally right. A comparison of the crack growths by the two ap-
roaches is given in Fig. 13 , where the main difference occurs at the
eginning propagation steps. It is notable that the crack path by the
F converges to the results given by the MCSC when more refinement
a b c

e f g

ig. 12. Adaptive particle arrangements for the edge crack under shear loading duri
e–h) steps = 3, 6, 9, 12 by maximum circumferential stress criterion. 

204 
teps and smaller crack increments are used. Similar final slopes are
btained by the two approaches, which are not far from the experimen-
al results in [1] with the inclination angle around 70 ∘ (tan 70 ∘ ≈2.7). 

.4. Crack propagation in a cruciform plate 

Mixed mode crack propagation is considered in the fourth exam-
le. A cruciform plate is placed under a uniform tensile loading ( ̄𝑡 =
00 MPa) at the top and the other three sides are restricted in move-
ent as shown in Fig. 14 . The configuration is comprised of 𝐿 = 1 m,
 = 0 . 2 𝐿 and 𝛽 = 3 𝜋∕4 , where a crack is located at the bottom-right cor-
er of the plate. The initial particle arrangement is given in Fig. 14 (b)
nd the adaptivity approach controls particle arrangements during the
rack propagation steps with the target error 𝜂𝑡 = 0 . 04 . Adaptive particle
rrangements are presented in Fig. 15 , where fine particles are gener-
ted around the crack tip and three corners except the bottom-right. The
nal crack growth is presented in Fig. 16 , where good agreements with
he results by Prasad et al. [66] can be obtained. The values of the CF
re compared with the SIFs in [66] , and the satisfaction of Eq. (21) is
chieved Fig. 16 (b). 
d

h

ng crack propagation steps: (a–d) steps = 7, 14, 21, 30 by configuration force; 
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Fig. 14. Crack propagation in a cruciform plate under uniaxial 
tension: (a) configuration and (b) initial particles with cracking 
particles in blue. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this 
article). 

a b c d

F ig. 15. Adaptive particle arrangements during crack propagation steps for the cruciform plate problem with cracking particles in blue: (a–d) step = 7, 15, 22 and 
30. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 16. Validation of the results for the cruciform plate problem: (a) crack growth and (b) normalised SIF and g 1 . 
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.5. Two cracks in a plate with two holes 

The final example includes the propagation of two cracks, and the
onfiguration is 𝐿 = 20 , ℎ = 10 , 𝑎 = 1 , d 𝑎 = 0 . 5 𝑎, ℎ 0 = 2 . 85 , 𝑅 = 2 and
 = 3 all with dimensions in mm ( Fig. 17 ). The plate has a Young’s
odulus 𝐸 = 200 GPa and a Poisson’s ratio 𝜈 = 0 . 3 and was loaded by
xing the bottom and vertically shifting the top edge by 𝑢 = 0 . 02 ℎ . The
arget error is 𝜂 = 0 . 06 , which is a little higher than previous examples
t 

205 
ue to a more complex geometry. A square domain integration was
sed to calculate the CF (excluding the crack surface integration)
ith the size 𝑐 = 0 . 2 𝑎 and also to execute the interaction integration

or SIFs. Crack growth predicted by the CF is presented in Fig. 18 ,
here the crack path predicted by the proposed method agrees with

he results obtained by the MCSC in the CPM [51] and the polygon
caled boundary finite element method [67] . The CF component g 1 
nd the J-integral, J are normalised by Eq. (23) using 𝜎 ≈ 0.02 E . The
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Fig. 17. Two cracks in a plate with two holes under uniaxial tension. 

Fig. 18. Predicted crack propagation of two cracks driven by the configura- 
tional force and the maximum circumferential stress criterion. 

Fig. 19. Energy release rate during crack propagation steps for the two-crack 
problem. 
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omparison between g 1 and J during the crack propagation steps is
iven in Fig. 19 , where good agreement is obtained between the two
pproaches, although little difference is found in steps 12–23. At these
teps, the two crack tips become close to each other, which causes more
omplex stress distributions and leads to this difference. 

. Conclusions 

A new configurational force driven cracking particle method has
een developed for crack modelling in 2D, which can take the advan-
ages of both the CF approach and the CPM. The crack propagation di-
ection is directly provided by the CF, so there is no requirement to
ecompose the stress and displacement fields for mixed-mode fracture
roblems. The CPM uses a set of discontinuous crack segments to de-
cribe crack patterns, which reduces the complexity in problem approx-
mation and is suitable for modelling multiple cracks. The CF can be
206 
alculated by contour integration or domain integration. Domain in-
egration generally provides better accuracy than contour integration.
he contribution from crack surfaces to the CF is much smaller than the
alue of the domain integration, and the result is affected by the error in
he approximation around the crack tip, even with a very fine particle
istribution. Comparing the modelling of crack propagation by the CF
pproach with the MCSC, the former gives a smooth change in crack
irection, while the latter leads to a sudden change for the edge crack
nder shear loading. Both the CF approach and the MCSC can provide
ood predictions in crack propagation and the proposed method has
hown its ability for modelling multiple crack propagation in the final
xample with two cracks. While we only present 2D problems in this
aper, the key ideas can be transferred to 3D, where the full advantage
f a meshless approach over a mesh-based approach will be realised 
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ppendix A. Adaptivity 

The adaptivity procedure optimises the distribution of particles and
s vital for crack problems in order to maintain the accuracy of results
round the crack tip where there are high stress gradients. Reviews of
ifferent adaptivity approaches can be found in [51,68] and a posteriori

daptivity approach developed in [51] is introduced below. 
The first step of the adaptivity approach is error estimation. The error

f the results is estimated by a recovery -based error estimator [69] de-
ermined as 

𝐸 𝑔 ‖ = 

{ 

1 
2 ∫Ω( 𝝈

𝑝 − 𝝈
ℎ ) T D 

−1 ( 𝝈𝑝 − 𝝈
ℎ ) d Ω

} 

1 
2 , (A.1)

here D is the material tangent stiffness, 𝝈p and 𝝈h are the projected
tress and the calculated stress, respectively, written in Voigt notation,
.g. 𝝈ℎ = [ 𝜎ℎ 

11 , 𝜎
ℎ 
22 , 𝜎

ℎ 
12 ] . 𝝈

p is a projection of the exact stress which is
nknown for many problems and is therefore instead obtained as 

𝑝 = 

𝑚 ∑
𝑘 =1 

Ψ𝑘 ( x ) 𝝈ℎ ( x 𝑘 ) , (A.2)

here m is the number of surrounding particles with supports cover-
ng x , and Ψ𝑘 ( x ) is a shape function from the MLS approximation using
maller supports. The global error 𝜂g for the problem domain is evalu-
ted by 

g = 

‖‖‖𝐸 g 
‖‖‖‖𝑈 ‖ , (A.3)

ith 

𝑈 ‖ = 

{ 

1 
2 ∫Ω( 𝝈

ℎ ) T D 

−1 
𝝈
ℎ d Ω

} 1∕2 
. (A.4)

 target error 𝜂t is predefined by the user according to the accuracy
equirement of problems, and when 𝜂g > 𝜂t , the adaptivity process is
pplied. 

Then refinement of particles is executed in the local zone with large
rrors. For the i th cell, the local error is estimated by replacing the global
omain Ω in Eq. (A.1) with the cell area Ωi , as 

𝐸 𝑖 
‖‖ = 

{ 

1 
2 ∫Ω𝑖 

( 𝝈𝑝 − 𝝈
ℎ ) T D 

−1 ( 𝝈𝑝 − 𝝈
ℎ ) d Ω𝑖 

} 

1 
2 

. (A.5)
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he relative local error is obtained by taking the global error into ac-
ount, as 

𝑖 = 

‖‖𝐸 𝑖 
‖‖‖𝑈 ‖∕ √𝑛 cell 

, (A.6)

here 𝑛 cell is the total number of background cells. When 𝜂i is larger
han the refinement threshold 𝐿 fin , cell i is divided to four small cells
ollowing a quad-tree structure and five particles are added; when four
mall cells have lower errors than the coarsening threshold 𝐿 rec , they
re combined to a large cell and five particles are deleted, as 
 

𝜂𝑖 > 𝐿 fin to be refined , 
𝜂𝑖 < 𝐿 rec to be coarsened . 

(A.7) 

 fin and 𝐿 rec are determined by a relationship with the target global
rror 𝜂t 

 fin = 2 𝜂t , 𝐿 rec = 0 . 5 𝜂t . (A.8)

ppendix B. Maximum circumferential stress criterion (MCSC) 

The MCSC has been widely used for modelling crack propagation,
.g. [4,9,51] . In the MCSC, crack propagation is towards the direction
here the shear stress 𝜎r 𝜃 at the crack tip becomes zero, i.e. 

𝑟𝜃 = 

cos 𝜃2 
2 𝜋𝑟 

[ 
𝐾 I sin ( 𝜃) 

2 
+ 

𝐾 II (3 cos ( 𝜃) − 1) 
2 

] 
= 0 . (B.1)

ere 𝜎r 𝜃 is achieved using SIFs to avoid the issue of singular stresses at
he crack tip. The solution is 

= 2 arctan 
⎛ ⎜ ⎜ ⎜ ⎝ 
𝐾 I − 

√ 

𝐾 

2 
I + 8 𝐾 

2 
II 

4 𝐾 II 

⎞ ⎟ ⎟ ⎟ ⎠ , (B.2)

here 𝜃 is the angle for the crack increment in the local polar coordinate
ystem at the crack tip. 

ppendix C. Interaction integration 

The interaction integral is based on the J-integral and used to obtain
IFs for mixed mode fracture [70] . The domain form of the J-integral in
D is 

 = ∫𝐴 

(
𝜎𝑖𝑗 𝑢 𝑗, 1 − 𝑊 𝛿1 𝑖 

)
𝑞 ,𝑖 d 𝐴, 𝑖, 𝑗 ∈ {1 , 2} , (C.1)

here W is the strain energy as in Eq. (5) , q is a weight function as in
q. (22) and 𝛿 is the Kronecker delta function. q , i stands for the deriva-
ive of q to x i , i.e. 𝜕 q / 𝜕 x i . Considering two equilibrium states, a real
tate (state 1) and an auxiliary state (state 2), the superposition for the
-integral is 

 

(1+2) = 𝐽 (1) + 𝐽 (2) + 𝐼 (1 , 2) , (C.2)

nd the interaction integral is 

 

(1 , 2) = ∫𝐴 

(
𝜎
(1) 
𝑖𝑗 

𝑢 
(2) 
𝑗, 1 + 𝜎

(2) 
𝑖𝑗 

𝑢 
(1) 
𝑗, 1 − 𝑊 

(1 , 2) 𝛿1 𝑖 

)
𝑞 ,𝑖 d 𝐴, (C.3)

here the superscripts (1) and (2) indicate the terms from states 1 and
, respectively, and the interaction strain energy is 𝑊 

(1 , 2) = 𝜎
(1) 
𝑖𝑗 

𝜀 
(2) 
𝑖𝑗 

=
(2) 
𝑖𝑗 

𝜀 
(1) 
𝑖𝑗 

. The relationship between the interaction integral and the SIFs
s obtained from Eq. (C.2) , as 

 

(1 , 2) = 2 𝛼( 𝐾 

(1) 
I 𝐾 

(2) 
I + 𝐾 

(1) 
II 𝐾 

(2) 
II ) . (C.4)

or mixed mode fracture, SIFs are obtained in two steps with selecting
he specific auxiliary state, e.g. with 𝐾 

(2) 
I = 1 and 𝐾 

(2) 
II = 0 , mode I SIF

s obtained by 𝐾 I = 𝐼 (1 , 2) ∕(2 𝛼) ; and using 𝐾 

(2) 
II = 1 and 𝐾 

(2) 
I = 0 , mode II

IF is 𝐾 = 𝐼 (1 , 2) ∕(2 𝛼) . The auxiliary field is defined as 
II 
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(2) 
11 = 

1 √
2 𝜋𝑟 

[
𝐾 

(2) 
I cos 𝜃

2 

(
1 − sin 𝜃

2 
sin 3 𝜃

2 

)
− 𝐾 

(2) 
II sin 

𝜃

2 

(
2 + cos 𝜃

2 
cos 3 𝜃

2 

)]
, 

(C.5a) 

(2) 
22 = 

1 √
2 𝜋𝑟 

[
𝐾 

(2) 
I cos 𝜃

2 

(
1 + sin 𝜃

2 
sin 3 𝜃

2 

)
+ 𝐾 

(2) 
II sin 

𝜃

2 
cos 𝜃

2 
cos 3 𝜃

2 

]
, 

(C.5b) 

(2) 
12 = 

1 √
2 𝜋𝑟 

[
𝐾 

(2) 
I sin 𝜃

2 
cos 𝜃

2 
cos 3 𝜃

2 
+ 𝐾 

(2) 
II cos 

𝜃

2 

(
1 − sin 𝜃

2 
sin 3 𝜃

2 

)]
, 

(C.5c) 

 

(2) 
1 = 

1 
2 𝜇

√ 

𝑟 

2 𝜋

[
𝐾 

(2) 
I cos 𝜃

2 

(
𝜅− 1 + 2 sin 2 𝜃

2 

)
+ 𝐾 

(2) 
II sin 

𝜃

2 

(
𝜅+ 1 + 2 cos 2 𝜃

2 

)]
, 

(C.5d) 

 

(2) 
2 = 

1 
2 𝜇

√ 

𝑟 

2 𝜋

[
𝐾 

(2) 
I sin 𝜃

2 

(
𝜅+ 1 − 2 cos 2 𝜃

2 

)
− 𝐾 

(2) 
II cos 

𝜃

2 

(
𝜅− 1 − 2 𝑠𝑖𝑛 2 𝜃

2 

)]
, 

(C.5e) 

here 𝜇 is the shear modulus and 𝜅 is the Kolosov constant, which is
efined as 

= 

{ 

3 − 4 𝜈, plane strain , 
3 − 𝜈

1 + 𝜈
, plane stress . 

(C.6) 

he auxiliary strains are 

 

(2) 
11 = 

𝜕𝑢 
(2) 
1 

𝜕𝑥 1 
, 𝜀 

(2) 
22 = 

𝜕𝑢 
(2) 
2 

𝜕𝑥 2 
, 𝜀 

(2) 
12 = 

1 
2 

( 

𝜕𝑢 
(2) 
2 

𝜕𝑥 1 
+ 

𝜕𝑢 
(2) 
1 

𝜕𝑥 2 

) 

. (C.7)
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