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Force-free electrodynamics (FFE) is a closed set of equations for the electromagnetic field of a
magnetically dominated plasma. There are strong arguments for the existence of force-free plasmas near
pulsars and active black holes, but FFE alone cannot account for the observational signatures, such as
coherent radio emission and relativistic jets and winds. We reformulate FFE as the effective field theory of a
cold string fluid and initiate a systematic study of corrections in a derivative expansion. At leading order the
effective theory is equivalent to (generalized) FFE, with the strings comprised by magnetic field line world
sheets. Higher-order corrections generically give rise to nonzero accelerating electric fields (E ·B ≠ 0).
We discuss potential observable consequences and comment on an intriguing numerical coincidence.
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I. INTRODUCTION

The astronomical universe abounds with spectacular
phenomena that defy explanation years or even decades
after discovery. Among these persistent puzzles are the
origin of ultra high-energy cosmic rays, the mechanism of
coherent radio emission (from pulsars and fast radio
bursts), and the formation of relativistic particle jets and
winds [1–4]. Simple energetics implicates compact objects
(neutron stars and black holes) in all of these phenomena,
but a complete theoretical treatment has remained elusive.
The foundations are secure [5,6]: rapid rotation and strong
magnetic fields give rise to diffuse plasma that efficiently
carries energy away from the central object. But how does
this energy get converted into the signals we see?
The energy-carrying plasma is elegantly described by

the theory of force-free electrodynamics (FFE) [7–9]. The
assumption is that charged particles are sufficiently plenti-
ful that they screen the electric field (setting E · B ¼ 0

with B2 > E2), but sufficiently diffuse that they exchange
little stress-energy with the fields (setting jel · E ¼ 0
and ρelEþ jel × B ¼ 0). These conditions are expressed
covariantly as

ϵμνρσFμνFρσ ¼ 0 ðdegenerateÞ; ð1aÞ

FμνFμν > 0 ðmagnetically dominatedÞ; ð1bÞ

as well as

jμelFμν ¼ 0 ðforce-freeÞ: ð2Þ

When combined with Maxwell’s equations (jμel ¼ ∇νFμν

and ∇½μFρσ� ¼ 0), the force-free condition (2) becomes

∇½μFρσ� ¼ 0; Fσν∇μFμν ¼ 0: ð3Þ

Remarkably, Eqs. (3) and (1) comprise a well-posed
(hyperbolic) evolution system [8,10–12]: these nonlinear
equations can be used to evolve the electromagnetic field
forward in time in a self-consistent manner, while making
no reference to the dynamics of the charges themselves.
There are strong theoretical arguments that active pulsars

and black holes possess force-free plasmas (see [5,6] and
many later references). Famously, this enables efficient
extraction of the rotational energy of the compact object.
However, a purely force-free magnetosphere cannot accel-
erate particles into jets, winds, or cosmic rays (it has
E ·B ¼ 0 exactly), and it cannot radiate at any wavelength
not put in by initial/boundary conditions (as a theory with
no intrinsic scale). In other words, FFE alone is too simple
to account for observations.
The most common approach to going beyond FFE is to

invoke large departures in small regions, such as particle
acceleration in a reconnecting current sheet. While this kind
of violation is undoubtedly part of the story, the many
remaining puzzles—notably the lack of a coherent radia-
tion mechanism—have motivated us to try the opposite
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tack of studying small departures in large regions.
Plausibly, a numerically small correction could become
important via the growth of an instability—perhaps of
exactly the clumping character needed to provide the
observed radio emission. Similarly, even a small amount
of E · B could assist with explaining the origin of pulsar
winds or the loading of relativistic jets in active galactic
nuclei, while an anomalously large correction could
account for high-energy cosmic rays.
We therefore propose—and begin—a systematic study

of corrections to force-free electrodynamics. While ulti-
mately such corrections ought to be derivable from the
fundamental theory of quantum electrodynamics (QED), in
practice this is difficult even for the leading force-free
behavior. We will therefore resort to the framework of
effective field theory (EFT), based on the mantra that
whatever can appear, will appear. The effective field
theorist need only identify the symmetries that characterize
the relevant phase (in this case a cold, strongly magnetized
plasma), after which she simply writes down every allowed
correction. Each term will come with a coefficient of
undetermined size that could in principle be computed
from microscopics. If the symmetries are realized correctly,
then by definition the needed correction is somewhere in
this list, and an exhaustive study of the phenomenology is
bound to find it eventually.
In fact, the first steps in this program of correcting

FFE have already been taken in disguise. In Ref. [13], a
reformulation of magnetohydrodynamics (MHD) was
presented where it was argued that the theory could be
efficiently reorganized from a strictly symmetry-based
point of view, taking as fundamental starting principles
not Maxwell’s equations but rather the conservation of
stress-energy and magnetic flux,

∇μTμν ¼ 0; ∇μJμν ¼ 0; ð4Þ

where Tμν is symmetric and Jμν is the dual of the usual field
strength

Jμν ¼ 1

2
ϵμνρσFρσ: ð5Þ

The authors noted that a consistent zero-temperature
realization is possible; this turns out to be a generalized
form of FFE studied previously in [14]. It can also be seen
directly that Eqs. (4) correspond to FFE when Tμν is the
Maxwell stress-energy tensor and Jμν is the dual field
strength.1

The program of correcting FFE can thus be organized as
obtaining sets of closed, consistent equations respecting the
conservation laws (4) and reducing to FFE in some limit.

In principle the approach of Ref. [13] already allows one to
study corrections to FFE; however, the methods are some-
what cumbersome, as their formalism required certain
constraints to be satisfied off-shell, and it proved difficult
to maintain these constraints at higher orders in the
derivative expansion. The main technical advance in this
paper is the identification of an action principle whose field
equations are precisely the conservation laws (4). Using a
generalization of ideas used in hydrodynamics [15], we
promote the field line world sheets of FFE to true
dynamical degrees of freedom and assign to each a “world
sheet magnetic photon” that accounts for the conserved
flux. We can thereby invent consistent theories by writing
down scalars.
Using this approach, we find that the unique scale-free

theory at leading (“ideal”) order in derivatives is precisely
FFE. The most general ideal theory is that studied pre-
viously in [14] as generalized FFE and in [13] as zero-
temperature magnetohydrodynamics. At higher order in
derivatives there are a variety of corrections, and we focus
on those that give rise to nonzero E ·B. Interestingly, these
corrections are “topological” in that they affect only the
field strength without affecting the equations of motion.
This nevertheless has observable consequences, since it is
the field strength that accelerates particles. We consider one
simple such correction in detail and estimate the size
required to account for pulsar winds. Tantalizingly, the
needed length scale is similar to the wavelength of coherent
radio emission, suggesting that one length scale could
perhaps account for both.
In addition to practical astrophysical consequences, we

also hope that the symmetry-based approach to FFE will
shed more light on its regime(s) of validity. Force-free
fields arise in a wide variety of physical circumstances:
Besides the compact object magnetospheres considered
here, they also occur in the solar corona [16] and even in
relaxed laboratory plasmas [17]. These three types of
plasma are in entirely different physical regimes, and
indeed entirely different physical arguments converge on
the force-free description in each case. (We have presented
only the argument relevant to compact objects.) A helpful
analogy here is perhaps the Landau theory of Fermi liquids
(see e.g., [18]): a wide class of metals are described by
Fermi liquids not because interactions are always weak, but
rather because Fermi liquid theory can be formulated as an
effective theory with (almost) no relevant operators [19,20].
Here we suggest that a similar argument provides a basis for
the ubiquity of FFE.
In Sec. II we review the philosophy of effective field

theory, identify the relevant microscopic symmetries of
QED, and motivate the emergent symmetries of our
effective action. Readers uninterested in motivation may
skip to Sec. III, where we prove that the field equations are
conservation laws and study the derivative expansion. In
Sec. IV we consider some simple solutions. Finally in
Sec. V we attempt to connect with observations.

1Conservation of J is equivalent to dF ¼ 0 or F ¼ dA. It is
easy to check that ∇μTμν ¼ −Fμν∇ρFρν then holds as an identity.
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Our metric gμν has signature ð−þþþÞ. The spacetime
volume element is denoted ϵμνρσ (⋆ is the Hodge dual), with
εμν referring to an induced element on a submanifold. We
use Heaviside-Lorentz units with ℏ ¼ c ¼ 1.

II. SYMMETRIES

A. Microscopic symmetries of the system

The microscopic description of our system is presumably
QED, which we regard as nonperturbatively defined by
the path integral. A full solution of QED would entail a
complete knowledge of this path integral as a function of
external sources, from which any desired correlation
function can be computed by differentiation. Here we
are interested in sources associated with conserved quan-
tities, as only these are expected to have a simple universal
description.
As mentioned in the Introduction, there are two con-

served currents of interest. One is the stress tensor Tμν,
whose source is the metric, and whose conservation follows
as usual from diffeomorphism invariance.
The other is the 2-form current Jμν that measures

magnetic flux. Interestingly, the symmetry principle behind
the conservation of such higher-form currents has only
recently been studied systematically and is called a gen-
eralized global symmetry [21]. Such symmetries have
found applications in diverse physical contexts, ranging
from constraining the phase structure of gauge theories and
topological phases [22–28] to an understanding of gauge
bosons as Goldstone modes [21,29,30] to symmetry-based
formulations of hydrodynamics [13,31–36]. The realization
of the generalized global symmetry associated with the
conservation of magnetic flux will be a technical tool in our
analysis (we call it the “magnetic photon shift”); for now
we simply note that the source for the 2-form current Jμν is
a fixed 2-form classical field that we call bμν.
We therefore take the partition function to depend on

these sources,

Z½g; b� ¼
Z

½dψdA� exp ðiSQED½ψ ; A; g; b�Þ; ð6Þ

where SQED is the microscopic QED action,

SQED ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

4
ðdAÞ2 þ ψ̄ð=DþmÞψ

þ 1

4
bμνϵμνρσðdAÞρσ

�
: ð7Þ

The associated correlation functions are (by definition) the
stress-energy and 2-form current,

hTμνi≡ 2ffiffiffiffiffiffi−gp δW½g; b�
δgμν

; hJμνi≡ 2ffiffiffiffiffiffi−gp δW½g; b�
δbμν

; ð8Þ

where W ¼ −i logZ. In these equations it is implied that,
after variation, one sets gμν and bμν to values corresponding
to the background of interest. The metric of course
describes external gravitational fields, while b describes
the external charge density jext ¼ ⋆db,

jσext ¼ −
1

2
ϵσρμν∂ρbμν: ð9Þ

We then define the field strength hFμνi by ⋆F ¼ J,

1

2
ϵμνρσhFρσi ¼ hJμνi: ð10Þ

This agrees with the usual definition F ¼ dA when the
dynamical variable is the gauge field A, but will more
generally apply when other dynamical fields are used. The
field strength behaves as usual with respect to external
charges, pushing them around by the Lorentz force law
(Appendix D).
For our purposes a symmetry of the theory is captured2

by an invariance of the partition function with respect to a
transformation of the sources. From (6), we see that QED
has the symmetries

Z½ϕ�g;ϕ�b� ¼ Z½g; b�; ð11aÞ

Z½g; bþ dΛ� ¼ Z½g; b�; ð11bÞ

where ϕ� is the action of a diffeomorphism and Λ is an
arbitrary 1-form. Note that the Uð1Þ gauge symmetry of
electromagnetism as written in (7) does not result in such an
invariance of the partition function.
To each symmetry is associated a conservation law.

Varying with respect to an infinitesimal 1-form shift
b → bþ dΛ, from (11b) we find ∇μhJμνi ¼ 0. Varying
to respect to an infinitesimal diffeomorphism and using this
result, it follows from (11) that

∇μhTμνi ¼ 1

2
ðdbÞνρσhJρσi: ð12Þ

The right-hand side reflects nonconservation in the pres-
ence of an external electric current db. Thus in the absence
of external electric charge, the symmetries (11) imply the
conservation of the correlators (8),

∇μhTμνi ¼ 0; ∇μhJμνi ¼ 0: ð13Þ

This presentationofQEDminimizes the importanceof the
particular degrees of freedom ðψ ; AμÞ that are integrated over

2The generalized global symmetry in question is represented
on the dynamical fields by a transformation parametrized by a
closed but not exact 1-form Λ. However, this can be promoted to
an invariance of the partition function under a transformation by
an arbitrary 1-form Λ by shifting b by dΛ to compensate, as in
(11b); see Appendix A for more discussion of this point.
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in the path integral. While these degrees of freedom are
weakly couplednear thevacuumof empty space, they are not
necessarily the ideal degrees of freedom for describing a
strong-field plasma.The ideaofEFTis that there should exist
a new set of fields Φ with a new local action SEFT that
reproduces the partition function in the regime of interest,

Z½g; b� ≈
Z

½dΦ� exp ðiSEFT½Φ; g; b�Þ; ð14Þ

while also providing a simpler description in this regime.We
have chosen to regard (6) as exact and (14) as approximate,
but most properly we only require an overlapping regime of
validity.3 As a practical matter, our task is to identify
appropriate degrees of freedomΦ for a strong-field plasma,
subject only to the restriction that the partition function
respects the symmetries (11).

B. Emergent symmetries of description

Our task now is to identify degrees of freedom relevant to
the macroscopic description of strong-field plasma and
express them as a list of fields subject to certain local
symmetries. Presumably different choices result in different
phases that we can attempt to link to precise microscopic
models. We have made a choice which reproduces (at
leading order) the expected phenomenology of strong-field
plasma; as we discuss, this is a natural generalization of the
effective action for hydrodynamics of [15] to the case of
higher-form symmetry, with a slight enlargement of sym-
metries that we discuss below.
We begin, however, by providing an independent physical

motivation. Note first that while the full theory has a con-
served field line number (the magnetic flux), it offers no
provision for tracking individual field lines in time. There is
simply no way, in general, to say which field line at some
later time is the “same” one as at some earlier time. However,
in some regimes of plasma physics we can attempt this
identification by following the motion of individual charges
attached to the lines.4 Our EFTwill integrate out the charges

entirely, but we will retain this vestige of their existence by
nevertheless taking the degrees of freedom to be strings. At
leading order these strings will be the field lines of a flux-
conserving magnetic field, but at higher orders they will not
precisely align with the physical flux Jμν.
We label each string by a pair of numbers Φ1 and Φ2

(this could be the x, y position where the string pierces a
fiducial surface at a fiducial time), which are promoted to
spacetime fields ΦIðxÞ whose simultaneous level sets are
the string world sheets. This defines a foliation of space-
time into two-dimensional string world sheets, which we
take to be regular and timelike. We do not want any
preferred strings in our theory, so the labels Φ1 and Φ2

should be arbitrary. We therefore require invariance under
smooth relabelings5 (diffeomorphisms on the manifold of
Φ1 and Φ2),

Φ1 → Φ0
1ðΦ1;Φ2Þ; Φ2 → Φ0

2ðΦ1;Φ2Þ ð15Þ

such that

det
∂ðΦ1;Φ2Þ
∂ðΦ0

1;Φ0
2Þ

≠ 0: ð16Þ

The idea of taking a foliation as a fundamental degree of
freedom was discussed before in [37].
Wewill now need another degree of freedom to keep track

of the conserved flux mandated by (13). One option is to
relax the full relabeling invariance (15) tovolume-preserving
diffeos; thismakesΦ1 andΦ2 “Euler potentials” [7,9,38] for
the magnetic field, assigning to each string a conserved flux
proportional to jdΦ1 ∧ dΦ2j. However, this is too restrictive
for our purposes; we merely want a conserved flux, inde-
pendent of any assignment to the strings.
We will instead track the flux by introducing a 1-form

field aμ, which (for reasons to be explained) we will call the
world sheet magnetic photon. As a is related to the
conservation of magnetic flux, it should transform under
the 1-form general globalized symmetry parametrized by Λ
in (11b). The simplest such transformation is

a → aþ Λ; b → bþ dΛ; ð17Þ

where we have also recalled the transformation of the
external source b.6 Note this means that the combination

da − b ð18Þ
is invariant. Without a field transforming nonlinearly in this
manner, we would not be able to couple b to any light

3Opinions may differ as to which theory is more fundamental.
The civilization on the crab pulsar likely studies quantum
electrodynamical phenomena in terms of some action with
degrees of freedom relevant to strong-field plasma, and they
wonder about alternative actions. Without guidance from ex-
pensive particle accelerators that artificially construct regions of
weak magnetic fields, they have little hope of constructing the full
theory we call QED, but they do make effective actions as they
ponder what life might be like on the surface of the distant planet
Earth.

4Classically, a particle in a strong magnetic field executes
gyrations about a moving “guiding center,” whose position in
time can be used to say which field line is the “same” one it
started on. In reality, synchrotron radiation will quickly relax
particles into the lowest Landau level. Presumably there is an
analogous story: the particle remains adiabatically in this state as
the field evolves on macroscopic time and length scales, and its
wave function can be used to identify the field line.

5This symmetry is larger than those used in the effective action
approach to hydrodynamics [15], which restricted instead to
volume-preserving diffeomorphisms.

6Since aμ is shifted by a field-independent 1-form Λμ, an
action Snew respecting (17) will produce a partition function (14)
with the desired symmetry (11b).
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degrees of freedom in the action. We call this the magnetic
photon shift, and in Appendix A we review why this
transformation deserves this name. We emphasize that this
field is not the original electric photon A.
To confine the magnetic photon to the world sheet we

further demand invariance under shifts by a (possibly
different) 1-form on each sheet,

aμ → aμ þ ωμðΦ1;Φ2Þ: ð19Þ

This is a 1-form generalization of the “chemical shift” of
[15]; note that as Φ1;2 label the world sheets, demanding
invariance under this symmetry implies that only the
variation of a within each sheet can affect the dynamics.
It implies that invariant local quantities must be constructed
from the world sheet field strength [Eq. (25) below] and its
world sheet derivatives, as elaborated on in Sec. III A below.

III. ACTION

To summarize Sec. II above, we consider a theory of two
scalars Φ1, Φ2 and a vector aμ in the presence of fixed
sources gμν and bμν. We assume invariance under spacetime
diffeomorphisms as well as
(1) String relabeling: ΦI → Φ0

IðΦ1;Φ2Þ;
(2) String-dependent shifts: a → aþ ωðΦ1;Φ2Þ;
(3) Magnetic photon shift: a → aþ Λ; b → bþ dΛ.
For formulating the theory we will assume that the

foliation is regular and timelike, which may be expressed as

dΦ1 ∧ dΦ2 must be nonzero and spacelike.

We shall see that, physically, this assumption corresponds
to magnetic domination (1b). Its potential violation is
connected with the breakdown of the theory near current
sheets [39], near magnetic null points [40], or in the
presence of turbulence [41]; these interesting phenomena
are beyond the scope of the present study.

A. Invariant objects

We now construct objects invariant under the sym-
metries. We first introduce a more invariant description
of the foliation. The binormal field nμν is given7 by

n ¼ dΦ1 ∧ dΦ2

jdΦ1 ∧ Φ2j
: ð20Þ

The dual of the binormal is the induced volume element ε
on the foliation

εμν ¼
1

2
ϵμνρσnρσ ðε ¼ ⋆nÞ: ð21Þ

These forms satisfy

nμνnμν ¼ 2; εμνnμν ¼ 0; εμνε
μν ¼ −2: ð22Þ

In particular, both n and ε are degenerate as forms
(n ∧ n ¼ ε ∧ ε ¼ 0Þ. We may now define projectors par-
allel and perpendicular to the foliation,

hμν ¼ −εμρενρ; h⊥μν ¼ nμρnνρ: ð23Þ

The projector h agrees with the induced metric on the world
sheet.8 The spacetime metric and volume element are
reconstructed as

gμν ¼ hμν þ h⊥μν; ϵμνρσ ¼ 6ε½μνnρσ�: ð24Þ

The latter equation is simply ϵ ¼ ε ∧ n. These orientation
choices are consistent with ϵ ¼ dt ∧ dx ∧ dy ∧ dz,
ε ¼ dt ∧ dz, and n ¼ dx ∧ dy.
The binormal is almost invariant under string

relabelings—it transforms as n → �n, where � is the sign
of the Jacobian determinant (16). The volume element ε is
likewise invariant only up to sign, so a fully invariant
quantity must involve an even number of total appearances
of ε and n. This restriction corresponds to the lack of a
preferred orientation of the world sheets. The projectors h
and h⊥ are completely invariant and may appear in any
number.
The world sheet photon aμ may only appear in the

following combination:

f̃μν ¼ hρμhσνð∂ρaσ − ∂σaρ − bρσÞ: ð25Þ

The particular combination da − b is manifestly invariant
under the 1-form gauge transformation (17). The projectors
guarantee invariance under the string-dependent shift (19),
as from (23) and (21) we see that hρμ∂ρΦI ¼ 0. We refer to
f̃ as the world sheet field strength.
We note that bμν may appear in the combination (25) as

well as in terms of the 3-form db, which is separately
invariant under (17).

B. The field equations are conservation laws

We now consider the most general action S½ΦI; a; g; b�
respecting these symmetries. The field equations are
obtained by varying with respect to the dynamical variables
ΦI and a. However, the symmetries have been chosen so
that the result is equivalent to demanding conservation of
the currents obtained by varying with respect to the
nondynamical sources. That is, the field equations of this
theory are simply

7In components we have nμν ¼ Sμν
s where Sμν ≡∇½μΦ1∇ν�Φ2

and s≡
ffiffiffiffiffiffiffiffiffi
SμνSμν

2

q
.

8In Ref. [13], our ε was denoted u, our h was denoted Ω, and
our h⊥ was denoted Π.
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∇μTμν ¼ 1

2
ðdbÞνρσJρσ; ∇μJμν ¼ 0; ð26Þ

where

Tμν ≡ 2ffiffiffiffiffiffi−gp δS
δgμν

; Jμν ≡ 2ffiffiffiffiffiffi−gp δS
δbμν

: ð27Þ

When the external charge db is vanishing, we obtain
precisely the conservation laws (4).
To prove these claims, let δΛ represent the variation with

respect to an infinitesimal magnetic photon shift (17). Then
the action varies as

δΛS½ΦI; a; g; b� ¼
Z

d4x
�
2

δS
δbμν

∂ ½μΛν� þ
δS
δaμ

Λμ

�
: ð28Þ

By construction, this variation vanishes for any field
configuration; thus after an integration by parts, and using
the definition of the flux tensor (27), we conclude that

1ffiffiffiffiffiffi−gp δS
δaν

¼ ∇μJμν: ð29Þ

Thus the aμ field equation is equivalent to the conservation
of magnetic flux. Relations of this sort are familiar from the
physics of Goldstone modes and generically appear when-
ever a symmetry is nonlinearly realized, as in the trans-
formation of a in (17).
Varying instead by an infinitesimal diffeomorphism, we

now find (see details in Appendix B)

1ffiffiffiffiffiffi−gp δS
δΦI

∇σΦI ¼ ∇μTμ
σ −

1

2
JμνðdbÞσμν

þ∇μJμνðbσν −∇σaν þ∇νaσÞ: ð30Þ

This shows that imposing both field equations implies
the conservation laws (26), but we must establish the
converse for full equivalence. Projecting parallel to the
foliation gives

�
∇μTμ

σ −
1

2
JμνðdbÞσμν þ∇μJμνðbσν −∇σaν þ∇νaσÞ

�
× hσρ ¼ 0 ð31Þ

while projecting perpendicular gives

1ffiffiffiffiffiffi−gp δS
δΦI

∇σΦI ¼
�
∇μTμ

σ −
1

2
JμνðdbÞσμν

þ∇μJμνðbσν −∇σaν þ∇νaσÞ
�
h⊥σ

ρ:

ð32Þ

Now the point is that if the foliation is regular (dΦ1 ∧
dΦ2 ≠ 0), then dΦ1 and dΦ2 are a good basis for the
perpendicular (co)tangent space. This means that imposing
the field equations (26), which causes the right-hand side
to vanish, forces each δS=δΦI to vanish individually.
This proves the equivalence.
This discussion reveals that the field equations provide

only the perpendicular components of stress-energy con-
servation; the parallel ones come for free as an identity (31).
This is true even in ordinary FFE, where it has been
unappreciated (at least by us). Formally, it may be under-
stood as a consequence of the fact that diffeomorphisms
in the world sheet directions do not act on ΦI; i.e., if
ξμ ¼ hμνξν, then LξΦI ¼ ∂μΦIhμνξν ¼ 0. This is a some-
what unfamiliar statement for local field theories—usually
all dynamical degrees of freedom transform under diffeo-
morphisms, and clearly it is the fact that we are correlating
the diffeomorphism with the state of the system through hμν
that makes this possible.
The upshot of this discussion is that we need never vary

the action with respect to Φ, a; we may obtain a full
description of the dynamics purely from the conservation of
the conserved currents, as usual in hydrodynamics.

C. Leading order: Generalized FFE

We now write down the most general action to leading
order in derivatives. Since we want the foliation to be
the fundamental object, it is dΦ that is zeroth order in
derivatives and not Φ itself. The foliation invariants
(binormal, volume element, projectors) are similarly zeroth
order. We would also like to allow an equilibrium con-
figuration with a nonzero magnetic flux, i.e., J ∼Oð∂0Þ.
This requires that we similarly take f̃ and the source bμν to
be zeroth order in derivatives.9

We will refer to the zeroth order system as ideal,
adapting the terminology from hydrodynamics. At ideal
order the only scalar we can make is f̃μνf̃

μν (and functions
thereof). We denote this scalar as

μ2 ¼ −
1

2
f̃μνf̃

μν: ð33Þ

We can fix the sign of μ if we adopted a preferred
orientation (choice of ε) on the world sheet. As a 2-form
in a two-dimensional space (the string world sheet), f̃μν is
proportional to the volume element, so we have

f̃μν ¼ μεμν: ð34Þ
Noting that εμν takes care of the projection into the sheet,
we can also write the explicit formula

9Note that for a given quantity the order in derivatives (which
depends on the choice of dynamics) does not necessarily coincide
with the engineering mass dimension (e.g., dΦ has mass
dimension 1 but is taken to be zeroth order in derivatives).
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μ ¼ 1

2
εμνðbμν − ∂μaν þ ∂νaμÞ: ð35Þ

We will generally find it convenient to work with μ rather
than μ2, but it should be borne in mind that all terms in the
action must be invariant under the reversal ε → −ε. In
particular, scalars made from μ alone must be even
functions of μ. Allowing odd functions to appear would
constitute some kind of chiral theory that we do not explore
in this paper.
This discussion shows that, at ideal order, the action can

be an arbitrary even function pðμÞ of the scalar μ:

S0½Φ; a; g; b� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
pðμÞ: ð36Þ

Wewill shortly show that a particular choice of pðμÞ results
in dynamics that is exactly equivalent to usual force-free
electrodynamics. However, let us first keep the function
pðμÞ arbitrary and construct the magnetic flux Jμν and
stress tensor Tμν by varying the action with respect to bμν
and gμν, respectively. A helpful intermediate result is
δgμ ¼ 1

2
μhαβδgαβ. After a short computation we find

Jμν ¼ ρεμν; Tμν ¼ pgμν − μρhμν; ð37Þ

where we define the scalar ρ by,

ρðμÞ≡ dp
dμ

: ð38Þ

From (37), we see that ρ measures the magnitude of
magnetic flux. Equation (38) is the zero-temperature limit
of the first law of thermodynamics [13], with μ the potential
conjugate to the flux ρ. Note that at this (ideal) order
we have

Jαβ ¼ 1

μ

dp
dμ

f̃αβ; ð39Þ

i.e., the current is proportional to the world sheet field
strength.
While the action principle involves ðΦ1;Φ2; aμÞ, the

resulting field equations are just the conservation (26) of
the currents (37). We are free to regard some alternative set
(such as μ and εμν) as the dynamical variables when solving
or analyzing the equations.
Though this action formulation is new, this theory has

been constructed before (at least in the absence of the
external current db). To our knowledge, it first appeared in
[14] as a generalization of force-free electrodynamics,
obtained by applying the usual force-free arguments to a
nonlinear theory of electromagnetism. (We demonstrate the
equivalence in Appendix C.) In [13], the same equations of
motion were constructed using higher-form symmetries
as a “zero-T” version of magnetohydrodynamics that

respected Lorentz boosts along magnetic field lines.
Finally, as this paper was nearing completion, Ref. [36]
appeared, in which a similar zero-T limit is realized as a
symmetry enhancement of a different action principle
for MHD.

1. FFE as the scale-free ideal theory

To obtain “normal” FFE, consider expanding pðμÞ in
powers of μ. As we require p to be an even function,
we find

pðμÞ ¼ 1

2
μ2 þ 1

M2
μ4 þ � � � ; ð40Þ

where M is a quantity with dimensions of mass. (Since we
treat the action classically, the overall scale does not matter
and with foresight we have set the leading coefficient to
1=2.) If we imagine a system where the dimensionful
quantity μ is much smaller than any other quantity in the
problem, then we are justified in neglecting all terms other
than the first. This is the only term with no dimensionful
parameters, and it turns out to correspond to FFE,

pðμÞ ¼ 1

2
μ2 ðFFEÞ: ð41Þ

To see the equivalence we use the map J ¼ ⋆F (5),

ρεμν ¼ 1

2
ϵμνρσFρσ: ð42Þ

This makes the foliation agree with the world sheets of
the magnetic field lines. The conservation of Jμν is now
equivalent to the no-monopoles equation ∇½μFρσ� ¼ 0 (3).
The degeneracy (1a) and magnetically dominated (1b)
constraints follow from ε ∧ ε ¼ 0 and ε2 ¼ −2,
respectively.
The remaining equation of FFE is Fσν∇μFμν ¼ 0,

or equivalently the conservation of the Maxwell stress-
energy tensor. Using Eqs. (42), (41), (38), and (34) we
see that10

ρ ¼ μ ¼ B0; p ¼ 1

2
B2
0; f̃ ¼ ⋆F; ð43Þ

where B0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FμνFμν=2

p
is the magnetic field strength in

a frame with no electric field. In light of the stress-tensor
(37), we see that p ¼ B2

0=2 is just the standard notion of
magnetic pressure, while μρ ¼ B2

0 is the magnetic tension
along field lines. Indeed, Eq. (37) with the substitutions
(43) is precisely the Maxwell stress tensor of a degenerate

10Notice that the action (36) for this theory is just the standard
Maxwell action ð−1=4ÞF2 ¼ ð1=4Þf̃2. Thus FFE follows from
the Maxwell action varied with respect to foliation degrees of
freedom and the world sheet magnetic photon.
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Maxwell field [e.g., Eq. (15) of [9]], establishing the full
equivalence with FFE.
We conclude that conventional force-free electrodynam-

ics is the unique scale-free theory describing the infrared
dynamics of cold string fluids. This symmetry-based
derivation may help explain the ubiquity of force-free field
configurations in a variety of physical contexts.

D. Higher derivative terms

We now discuss higher derivative terms. We first note
that there are no allowed terms at odd order in the derivative
expansion. This follows from the fact that all independent
zeroth-order objects (f̃μν, εμν, bμν, gμν) have two spacetime
indices.
We will mainly be interested in the case of no external

current, and in the remainder of this section we always db
to zero after variation. It is then helpful to separately
consider three types of terms in the Lagrangian:
(1) Terms not involving db.
(2) Terms linear in db.
(3) Terms nonlinear in db.
The type 1 terms may involve f̃μν and the foliation

invariants. Alternatively, we may build all such terms from
εμν and μ. Varying with respect to bμν gives

δεμν ¼ 0; δμ ¼ 1

2
εμνδbμν: ð44Þ

This shows that for terms of type 1, the variation is always
proportional to ε,

type 1∶ Jμν ∝ εμν: ð45Þ

Geometrically, this means that the associated flux lies in the
foliation, and algebraically, it sets J ∧ J ¼ 0 (since
ε ∧ ε ¼ 0). Using the map ⋆F ¼ J (5), we see that type
1 terms preserve E ·B ¼ 0 and hence do not accelerate
particles.
The type 2 terms take the special form

1

6
Λ½μνρ�ðdbÞμνρ; ð46Þ

where Λ is any 3-form built from the invariants (e.g., εμν
and μ). This term does not contribute to the stress-tensor as
db is metric independent and set to zero after variation.
However, it does contributes to the flux current as

type 2∶ Tμν ¼ 0; Jμν ¼ −∇σΛ½σμν�: ð47Þ

This current is identically conserved—in fact it is the most
general identically conserved 2-form that can be built from
f̃μν and the foliation invariants. It thus alters the relation-
ship between the magnetic flux Jμν and the dynamical
degrees of freedom without altering the dynamics itself; in
this regard it is perhaps similar to the Hall conductivity for

ordinary fluids, which is also an identically divergenceless
contribution to a usual Uð1Þ current. In particular, noting
the map ⋆F ¼ J (5), a type 2 term will generically give rise
to nonzero E ·B.
Finally, the type 3 terms give no contribution at all since

we set db ¼ 0 after the variation,

type 3∶ Tμν ¼ 0; Jμν ¼ 0: ð48Þ

E. A second-order term introducing nonzero E ·B

Although ultimately one may hope to scour the full space
of corrections for signs of instabilities or other observa-
tionally relevant phenomena, in this paper we confine
ourselves to the lowest-hanging fruit: the introduction of
nonzero E ·B. Following the discussion in Sec. III D, this
occurs in our theory only for terms of a topological
character—they affect only the coupling to external par-
ticles, but not the dynamical equations. A simple such term
at second order in derivatives is

SR ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
RðμÞ∇αεβγðdbÞαβγ: ð49Þ

Here RðμÞ is an odd function of μ so that the term is
invariant under the change of world sheet orientation ϵ →
−ϵ (implying μ → −μ). This is just the choice Λ ¼ Rdε in
(46). Setting db ¼ 0 after variation we find

JμνR ¼ −3∇σðRðμÞ∇½σεμν�Þ: ð50Þ

If we expand RðμÞ in terms of some mass scale M as in
Eq. (40),

RðμÞ ¼ μ

M2
þ c3
M4

μ3 þ � � � ; ð51Þ

then keeping the leading term gives the simple correction

JμνR1
¼ −

3

M2
∇σðμ∇½σεμν�Þ: ð52Þ

As ordinary FFE corresponds to the leading term in the
expansion (40) for p, this is the natural correction [of the
form (49)]. In Sec. V we will explore the observational
consequences of this term.

F. Comparison with other approaches

Finally, we comment on how our approach to higher
derivative corrections contrasts with that taken previously
by [13]. In that work some possible second-order correc-
tions to Tμν and Jμν, linearized about a homogenous
equilibrium configuration, were constructed. However,
an obstruction to their approach arose from the fact that
they worked not with an action but rather directly with ϵμν

and μ. The resulting equations of motion are generically

SAMUEL E. GRALLA and NABIL IQBAL PHYS. REV. D 99, 105004 (2019)

105004-8



overdetermined, and consistency of the dynamical equa-
tions required that the currents obeyed a particular con-
straint that projected out 2 of the degrees of freedom This
constraint was only precisely formulated for the ideal order
system—in the language of this paper, it is (31), which
when restricted to the ideal order system (37) becomes

ð∇μTμ
σ þ μ∇μJμνϵνσÞhσα ¼ 0; ð53Þ

where details are given in Appendix B. In [13], it was
technically difficult to generalize this constraint to higher
orders in derivatives, and thus it remained unclear whether
the higher derivative corrections written down there were
actually consistent beyond the linearized level where the
consistency of the resulting set of equations could be
verified directly.
In our formalism, the constraint arises from the off-

shell realization of diffeomorphisms along the world
sheet, and its generalization to all orders in derivatives
is given in (31). It is satisfied automatically and plays no
role in the analysis. It would be very interesting to
systematically classify all terms that can arise from our
action approach and compare them with the set of terms
written in [13].
Finally, we note some possible limitations of our action-

based approach. It is well known that any system described
by a conventional action cannot describe dissipation, and
thus the approach of (e.g.,) [15] to conventional finite-T
hydrodynamics does not allow for the appearance of any
dissipative transport coefficients, which of course are
allowed to appear in formulations of hydrodynamics based
purely on the equations of motion. Indeed, a great deal of
recent work in the field (see e.g., [42–49]) has resulted in
the construction of much more sophisticated action prin-
ciples. The state of the art now allows for dissipation and a
systematic treatment of fluctuations, but requires a dou-
bling of fundamental fields, with the partner fields basically
now living on the two branches of the Schwinger-Keldysh
contour that is used in finite-temperature real-time quantum
field theory.
Returning to FFE, the Lorentz-invariance of our system

seems to forbid the existence of dissipation in the tradi-
tional sense; nevertheless, one may wonder whether our
single action is missing some particular class of higher-
derivative terms that could generically be present in an
approach based only on the equations of motion. Indeed,
there is evidence that the simple action formulation may
even miss some nondissipative terms in finite-T hydro-
dynamics [50]. One might hope to clarify such issues (as
well as to understand how to incorporate fluctuations) by
applying the Schwinger-Keldysh approach described above
to our framework.
Finally, we note that a different approach to producing a

nonzero E ·B in astrophysical settings is to introduce a
nonzero resistivity into the system. This requires the

selection of a rest frame, which can be done by introducing
a nonzero temperature (see e.g., [13,51]) or, for spacelike
currents, by demanding vanishing charge density and
parallel electric and magnetic fields [52]. Resistive pulsar
magnetospheres were studied in Refs. [53,54]. Our con-
struction does not appear to be simply related to these ideas,
and our expressions (though covariant) do not agree with
those of [52]. We obtain nonzero E · B even though our
dynamics are completely dissipationless. We believe the
physics underlying Eq. (52) has little to do with resistivity
as conventionally defined.

IV. SOLUTIONS

We now consider some simple solutions to clarify the
physics of our description.

A. Homogeneous field

We first discuss the simplest example solution to the
ideal theory (generalized FFE). To find a solution we first
select the external sources gμν and bμν. We wish to consider
flat spacetime with no external charge-current, so we take

ds2 ¼ −dt2 þ dx2 þ dy2 þ dz2; bμν ¼ 0: ð54Þ
We are of course free to apply diffeomorphisms and
1-form shifts (b → bþ dΛ) without altering the external
environment.
A simple timelike foliation are the strings at fixed x and

y. We may represent this foliation by Φ1 ¼ x and Φ2 ¼ y.
The remaining variable in the action formulation is aμ,
which will solve the field equations if we also take a ¼ zdt.
That is, a simple solution for the dynamical variables is

Φ1 ¼ x; Φ2 ¼ y; a ¼ −μ0zdt; ð55Þ

where μ0 is a constant. Of course, there is tremendous
gauge freedom, and it is more helpful to consider invar-
iants. The binormal and volume elements are

n ¼ dx ∧ dy; ε ¼ dt ∧ dz; ð56Þ
and the gauge-invariant “world sheet field strength” is

f̃ ¼ μ0dt ∧ dz: ð57Þ
We note that by a magnetic photon shift (17), a can be set
to 0 at the cost of turning on a source b, but of course f̃
remains unchanged. From (35) we have μ ¼ μ0.
From (37) we find

J ¼ dp
dμ

����
μ¼μ0

dt ∧ dz; ð58Þ

corresponding to a magnetic field pointing in the z
direction. Note that the precise value of the field depends
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on the equation of state pðμÞ. For the conventional FFE
with equation of state (41), this is a constant magnetic
field J ¼ μ0dt ∧ dz.

B. Michel monopole

We now consider a more complicated solution, the
Michel monopole [55] of (ordinary) FFE, i.e., with
pðμÞ ¼ 1

2
μ2. This solution represents the exterior magneto-

sphere of a rotating, conducting sphere (in flat spacetime)
that has been magnetized such that the radial component of
the magnetic field is uniform over the sphere. The field
strength is given in spherical coordinates by (e.g., [9])

F ¼ q sin θdθ ∧ ðdϕ −Ωdðt − rÞÞ: ð59Þ

Here q is the magnetic monopole charge of the solution;
however, in applications we would multiply the solution by
signðcos θÞ to “split” the monopole. This eliminates the
actual monopole charge while introducing a current sheet
along the equator that mimics the phenomenology of a
more realistic pulsar (see e.g., [9] for discussion).
To express in our language we compute the 2-form

current Jμν (5),

J ¼ ⋆F ¼ q
r2
dðt − rÞ ∧ ðdr − r2Ωsin2θdϕÞ: ð60Þ

As J ¼ με in ordinary FFE [Eqs. (42) and (43)], we
thus have

ε ¼ dðt − rÞ ∧ ðdr − r2Ωsin2θdϕÞ; μ ¼ q
r2
: ð61Þ

An allowed choice of the action degrees of freedom is

Φ1 ¼ θ; Φ2 ¼ ϕ −Ωðt − rÞ; a ¼ q
r
dt ð62Þ

with the metric flat and in spherical coordinates and the
source b vanishing. These choices make clear the inter-
pretation of a rotating monopole—we have the vector
potential aμ of a monopole attached to a rotating foliation
Φ1 and Φ2. This is an ordinary charge for the magnetic
photon, so it manifests physically as a magnetic monopole.

V. OBSERVATIONAL CONSEQUENCES

We now give a brief discussion of potential observational
consequences, focusing on the simple second-order cor-
rection (49). The qualitative effect of this term, relative to
the ideal background theory, is the introduction of nonzero
E ·B. This gives rise to particle acceleration along mag-
netic field lines, potentially producing observed particle
winds. We consider the Michel solution for definiteness,
but the main conclusions hold for force-free pulsar mag-
netospheres more generally.

We consider ordinary FFE [the ideal theory (36)
with p ¼ 1

2
μ2] corrected by (49) with the leading term

RðμÞ ¼ μ=M2. This theory has a single scale, the unknown
mass M. (As we set ℏ ¼ c ¼ 1, this can equivalently be
thought of as a length or a timescale.) The correction is
“topological” in that it affects only the map between the
degrees of freedom and the magnetic field, and not the
equations of motion themselves. Thus the Michel solution
continues to solve the corrected equations of motion, but
the flux tensor (dual electromagnetic field) undergoes a
shift,

J ¼ JMichel þ JR1
; ð63Þ

where JMichel is given in (60) and JR1
is computed from

Eq. (52) using the Michel values (61) of μ and ε. As J is just
⋆F, the invariants may be constructed as

E ·B ¼ 1

8
ϵμνρσJμνJρσ; ð64Þ

B2 −E2 ¼ −
1

2
JμνJμν: ð65Þ

We are mainly interested in the effective electric field along
field lines,11

E0 ≡ E · Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 −E2

p : ð66Þ

Using (63), (60), and (52), we find to leading order in 1=M
that

E0 ¼ −
4q

M2r3
Ω cos θ: ð67Þ

We will now work with more astrophysically convenient
quantities (recall that ℏ ¼ 1)

q ¼ B�R2�; ð68Þ

M ¼ 1=L: ð69Þ

Here B� is the magnetic field at the stellar radius R�, and L
is the microscopic length scale of the theory. We may then
write

E0 ¼ −4B⋆ðΩR�Þ
�
R�
r

�
3
�
L
R⋆

�
2

cos θ: ð70Þ

As the field lines are straight, we may integrate radially to
determine the voltage between the stellar surface and
infinity,

11This definition is suitable when E ·B ≪ B2 − E2, as occurs
in this perturbative calculation.
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V ¼ 2V0 cos θ

�
L
R�

�
2

; V0 ¼ B�R2�Ω; ð71Þ

where V0 is the typical “unipolar inductor” voltage gen-
erated by the rotation of the star through the magnetic flux
B�R2�. This is a famously large voltage for pulsars,

V0 ≈ ð6 × 1016 VoltsÞB12

P1

; ð72Þ

where B12 is the stellar magnetic field in units of 1012

Gauss, while P1 is the pulsar period in seconds. (We use a
stellar radius of ten kilometers.) The actual voltage is down
by two powers of the dimensionless ratio L=R�. The typical
Lorentz factor of an electron is then (assuming γ ≫ 1 and
dropping factors)

γ ∼ 1011ϵr
B12

P1

�
L
R�

�
2

; ð73Þ

where we have used the mass of the electronme ≈ 0.5 MeV
and where ϵr < 1 is some efficiency factor reflecting
radiative and other losses during acceleration.
Although Eq. (73) was derived in the case of purely

radial field lines (the Michel monopole model), we expect it
to hold for pulsar magnetospheres more generally. From
(52) we see that the correction to the magnetic field scales
as BL2=R2, where B and R are typical scales of magnetic
field strength and variation, respectively. Near the star these
can be identified with the stellar magnetic field and radius,
up to model-dependent factors. Then the electric field
correction E0 will take the form of (70) with ðR�=rÞ3
replaced by some more complicated function of r=R�
characterizing the falloff of the field. This will affect the
voltage (71) only by numerical factors. Indeed, V ∝ V0 can
be expected on purely physical grounds, as V0 is the typical
voltage of a unipolar inductor. We conclude that the
estimate (73) is largely insensitive to the details of the
magnetic field configuration.
We can use Eq. (73) to estimate the scale L required to

match some given observed Lorentz factor γ. Using a ten
kilometer stellar radius and solving for L yields

L ∼ ð10−5 kmÞ
ffiffiffiffi
γ

ϵr

r ffiffiffiffiffiffiffi
P1

B12

s
: ð74Þ

The rightmost factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1=B12

p
ranges from ∼0.05 to a few,

with the majority of pulsars around 1=2. Suppose that we
wish to reproduce a Lorentz factor γ ∼ 103 of a robust
pulsar wind nebula (e.g., [56]), and assume an efficiency of
ϵr ∼ 0.1. Then the length scale L comes out to about a
meter. As a frequency this is 300 MHz, which happens to
be right where the pulsar radio spectrum often peaks (e.g.,
[57]). This suggests the tantalizing possibility that a single

EFT, with a scale L ∼meters, could explain the disparate
phenomena of radio emission and pulsar wind. Needless to
say, however, significant further work is required before the
EFT could be considered a viable model of either effect.
We conclude by discussing how the coefficients in an

effective theory [e.g., the function RðμÞ in (49), or more
specifically the precise value of the scale M ¼ 1=L] can in
principle be computed from a microscopic description. In
theories of conventional hydrodynamics, this is done
through Kubo formulas that relate hydrodynamic transport
coefficients to two-point correlation functions of the con-
served currents in thermal equilibrium (see e.g., [58] for a
modern review). It is possible to derive similar Kubo
formulas in our framework, which would relate the coef-
ficient M to two-point functions of the magnetic flux and
stress tensor operators in magnetic equilibrium. These
could then in principle be computed from microscopic
quantum field theory, or (more realistically) from numerical
simulation of homogenous strong-field plasma. In this way
the EFT could bridge the gap between a microscopic
description and macroscopic observations.
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APPENDIX A: DUALIZING AND THE
MAGNETIC PHOTON

For completeness, here we review why one might
consider the transformation (17) to be analogous to that
of a magnetic photon. Similar discussion appears in the
Introduction of [59] and Appendix C of [60].
Consider free electromagnetism written in terms of the

normal electric vector potential, with no dynamical electric
charges but coupled to the external source b as in (7), i.e.,

S½A; b� ¼
Z �

−
1

2
dA ∧ ⋆dAþ b ∧ dA

�
: ðA1Þ

Recall that this action is invariant under the 1-form shift
b → bþ dΛ. As only dA appears in the action, we may
perform electromagnetic duality at the level of the action in
the usual manner (see e.g., Appendix B of [61]). This is
done by treating F≡ dA as the dynamical variable rather
than A; however, one must then introduce a Lagrange
multiplier Ã to enforce that F is closed; i.e., we obtain
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S½F; Ã; b� ¼
Z �

−
1

2
F ∧ ⋆F þ b ∧ F − Ã ∧ dA

�
: ðA2Þ

As F appears only quadratically, we may eliminate it from
the action by solving its equations of motion and plugging
back in to find

S½Ã; b� ¼
Z �

−
1

2
ðdÃ − bÞ ∧ ⋆ðdÃ − bÞ

�
: ðA3Þ

Ã is usually called the magnetic photon; we see that unlike
in the original formulation (A1) the 1-form shift now
requires a compensating shift of Ã,

Ã → Ãþ Λ; b → bþ dΛ: ðA4Þ

This is precisely the symmetry transformation postulated
for a in (17); hence we refer to it as the magnetic
photon shift.
We stress, however, that the physics of a is not identical

to that of the usual magnetic photon Ã. In particular, the
extra symmetry (19) effectively confines the dynamical part
of a to the world sheet. Furthermore, the route that we have
taken to justify the transformation (A4) involves a dual-
ization that is possible only when there are no electric
charges, which is certainly not the case for a plasma.
Relatedly, as the action (A3) suggests, the magnetic photon
Ã is actually a Goldstone boson of a spontaneously broken
generalized global symmetry [21,29,30], whereas this is not
the case for the world sheet photon a.

Consider now the transformations of the form Λ ¼ dλ
with λ a 0-form; in this case the transformation reduces to

Ã → Ãþ dλ; ðA5Þ

leaving the source invariant. Transformations of this sort
are usually called (magnetic) Uð1Þ gauge transformations
—to be more precise, if λ has compact support, then this
transformation is “pure gauge” and does not act on the
physical configuration space (i.e., in a quantum treatment it
leaves all physical states invariant).
However, if λ extends to infinity or fails to be globally

well defined (by winding, say, around a compact cycle),
then this is a so-called “large gauge” transformation that
does act on physical states. In modern language this is now
the action of a generalized global symmetry [21,30]. These
issues do not play a role in any of our analysis.

APPENDIX B: DIFFEOMORPHISM VARIATION
OF ACTION

Here we present some details of the diffeomorphism
variation of the action S½ΦI; a; g; b�. Under a diffeomor-
phism, all fields ψ (whether external sources or dynamical
fields) vary as

δξψ ¼ Lξψ ; ðB1Þ

where Lξ is the Lie derivative. The diffeomorphism
variation of the action is then

δξS½ΦI; a; g; b� ¼
Z

d4x

�
δS
δgμν

δξgμν þ
δS
δbμν

δξbμν þ
δS
δaμ

δξaμ þ
δS
δΦI

δξΦI

�
¼ 0: ðB2Þ

By construction this must vanish. Now from the definition (27) of the stress and flux tensors this may be rearranged to readZ
d4x

� ffiffiffiffiffiffi
−g

p ð−∇μTμ
σ þ

1

2
JμνðdbÞσμν −∇μJμνbσνÞξσ þ

δS
δΦI δΦ

I þ δS
δaμ

δξaμ

�
: ðB3Þ

We may further use the relation (29) for the variation δS=δa to find as an identity

Z
d4x

ffiffiffiffiffiffi
−g

p �
−∇μTμ

σ þ
1

2
JμνðdbÞσμν þ∇μJμνð∇σaν −∇νaσ − bσνÞ þ

1ffiffiffiffiffiffi−gp δS
δΦI ∂σΦI

�
ξσ ¼ 0: ðB4Þ

This is Eq. (30) in the text.
We now consider a diffeomorphism parallel to the world

sheet, i.e., ξμ ¼ hμνξν. Putting this in (B4), we find that the
last term in δS

δΦI
vanishes, and we have the following off-

shell identity, which is (31) in the text:

ð−∇μTμ
σ þ

1

2
JμνðdbÞσμν

þ∇μJμνð∇σaν −∇νaσ − bσνÞÞhσγ ¼ 0: ðB5Þ

This is a constraint that must hold on any stress and
flux tensor obtained in our formalism. We now connect
it with a constraint that played an important role in the
analysis of [13]. To proceed, we assume (as was done in
[13]) that we are working to ideal order. We then have

Jμν ¼ ρεμν ¼ ρ

jdΦ1 ∧ dΦ2j
ðϵμνρσ∂ρΦ1∂σΦ2Þ: ðB6Þ

However, by antisymmetry the divergence of the bracketed
quantity above is zero, and thus we find
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∇μJμν ¼ ∇μ

�
ρ

jdΦ1 ∧ dΦ2j
�
ðϵμνρσ∂ρΦ1∂σΦ2Þ: ðB7Þ

Thus the free ν index necessarily points in a world sheet
direction, and we have

∇μJμν ¼ ∇μJμαhαν: ðB8Þ

Using (35) we then find that the last term in (B5) can be
written entirely in terms of μ:

∇μJμνhανðbσν −∇σaν þ∇νaσÞhσγ ¼ μ∇μJμνϵσνhσα:

ðB9Þ

Next, we turn to the term in ðdbÞσμν in (B5); we note that
each of the three indices σ, μ, ν must be different; however,
as Jμν ∼ ϵμν they must also all point in the world sheet
directions for the term not to vanish. However, there are
only two such directions. Thus we find finally

ð∇μTμ
σ þ μ∇μJμνϵνσÞhσα ¼ 0; ðB10Þ

which is precisely the ideal-order constraint found by
inspection in [13]. We now see that it is a consequence
of diffeomorphisms being realized even off-shell along the
field lines. There is further discussion of this point in the
bulk of the text.

APPENDIX C: EQUIVALENCE OF IDEAL
ORDER WITH GENERALIZED

FORCE-FREE ELECTRODYNAMICS

We now explore the link between the ideal-order
equations of this EFT (Sec. III C) and the force-free
dynamics of nonlinear electromagnetism [14]. Consider
an action that is an arbitrary function of the invariants
I ¼ FμνFμν and K ¼ 1

2
ϵμνρσFμνFρσ,

SNLE ¼
Z ffiffiffiffiffiffi

−g
p

d4xLðI; KÞ: ðC1Þ

This action defines a stress-tensor Tμν
NLE in the usual way

(27). Demanding conservation of the stress tensor (but not
demanding any field equations associated with SNLE) turns
out to imply [14]

Fσν∇μ

�∂L
∂I

����
K¼0

Fμν

�
¼ 0; ðC2Þ

where we have also assumed degeneracy (1a). Adjoining
the no-monopoles condition,

∇½μFρσ� ¼ 0; ðC3Þ

constitutes the force-free dynamics of a nonlinear
electromagnetism.

We now show that these equations are equivalent to the
ideal-order theory of Sec. III C. The map is

Jμν ¼ 1

2
ϵμνρσFρσ; I ¼ 2ρ2; LjK¼0 ¼ p − μρ: ðC4Þ

Note that L is the Legendre transform of p to a function of
ρ rather than μ. For later use dp ¼ ρdμ to show that

∂L
∂I

����
K¼0

¼ −
1

4

μ

ρ
: ðC5Þ

Using (C4), it turns out that (C2) and (C3) are equivalent to
the following components of our conservation equations:

∇μJμν ¼ 0; ð∇μTμνÞh⊥νρ ¼ 0; ðC6Þ

together with the definitions (37). The conservation of J is
trivially equivalent to (C3). The less trivial equation is that
for T

ð∇μTμνÞh⊥νρ ¼ h⊥μρ∇μp − μρεμσh⊥νρ∇μεσ
ν ðC7Þ

¼ −
3

2
Jμν∇½ρ

�
Jμν�

μ

ρ

�
; ðC8Þ

where we have used ∇σp ¼ ρ∇σμ as well as
εμσεαβ∇γεσβ ¼ 0. Using (C5), the vanishing of (C8) is
now equivalent to (C3). As shown in (31), the other
components of the conservation of Tμν hold as an identity
and thus contain no dynamical information.

APPENDIX D: COUPLING AN EXTERNAL
CHARGED PARTICLE

Imagine that we would like to add an extra external
charged particle with charge q to the system. Since our
definition (5) of F in terms of J agrees with the usual
F ¼ dA, we know that (neglecting plasma backreaction)
the dynamics of this particle is given by the Lorentz force
law in terms of J:

m
D2

ds2
Xσ þ q

2
JμνðXðsÞÞϵμνρσ _Xρ ¼ 0: ðD1Þ

However, it may be instructive to see this result derived from
our action formulation. This is now something of a thorny
point: usually in electrodynamics the action of a charged
particle contains a term that is the integral of the vector
potential e

R
C A over its worldline C. However, in our

formalism the useful degrees of freedom are ðΦI; aÞ and
not the usual electric vector potentialA.Asweno longerhave
access toA, howcanwewrite down the action of the particle?
We may accomplish this following a technique used in

[62] to describe the coupling of a superconducting vortex
with external fields, which turns out to be a formally similar
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problem. We begin by recalling from (9) that db can be
viewed as an external electric charge-current that is probing
the system:

jσext ¼ −
1

2
ϵσρμν∂ρbμν: ðD2Þ

Thus to add a single external charge moving on a worldline
C, we must arrange for jσext and thus db to have delta
function support on its worldline; i.e., we would like to
construct a source field bðx;CÞ that depends on both
spacetime and a curve C so that

∇½μbνρ�ðx;CÞ ¼
q
2

Z
C
ds

dXσ

ds
ϵμνρσδ

ð4Þðx − XμðsÞÞ: ðD3Þ

There is clearly a great deal of freedom in this choice of b—
e.g., we may shift b → bþ dΛ for any 1-form Λ without
affecting this equation—but as usual this will not affect
the equations of motion. For some intuition, b may be
considered the field strength F (in ordinary Maxwell
electrodynamics) of the electromagnetic field produced
by a magnetic monopole living on the curve C.
To obtain the dynamics of the point particle, we now

consider the following combined action, which is a func-
tional of the dynamical fields as well as of the worldline C

Spp½ΦI; a; C� ¼ m
Z
C
dsþ SFFE½ΦI; a;bðx;CÞ�; ðD4Þ

where the first term is the usual geometric proper time
along the worldline, and where SFFE is the string fluid
action that we have constructed. Note that the string fluid
action depends on C through the choice of bðx;CÞ.
Denoting the particle trajectory by XμðsÞ, we now vary
Xμ þ δXμ to construct the equations of motion of the
particle.
The variation of the first term gives the usual geodesic

equation. Let us consider the variation of the second term:

δXSFFE½ΦI; a; bðx;CÞ� ¼
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
JμνδXbμνðxÞ: ðD5Þ

This may appear to be an extremely complicated variation,
as naively varying C appears to alter b arbitrarily far away
from the curve C itself. In fact, when evaluated on an on-
shell field configuration satisfying ∇μJμν ¼ 0, this varia-
tion ends up localizing on the worldline. To understand this,
we note that bðx;CÞ may be explicitly constructed by

bμνðx;CÞ ¼
q
2

Z
ds _XρTμνρðx − XðsÞÞ; ðD6Þ

where TμνρðxÞ is a “monopole propogator” that satisfies the
following equation:

∇½αTμν�ρðxÞ ¼
1ffiffiffiffiffiffi−gp δð4ÞðxÞϵαμνρ: ðD7Þ

There is again an extremely large amount of freedom in this
choice of function. One candidate is given by

TμνρðxÞ ¼
3

2
ϵμναβ∇½αGβ�

ρðxÞ; ðD8Þ

where Gβρ is the usual free photon propagator that satisfies

∇αð∇½αGβ�ρðxÞÞ ¼ 1ffiffiffiffiffiffi−gp δð4ÞðxÞgβρ: ðD9Þ

With this choice bμνðx;CÞ is exactly the field strength
produced by a magnetic monopole moving along C in free
electrodynamics. The precise form of Tμνρ will not be
important for us. We may now explicitly construct the
change in bμνðx;CÞ under a small variation δXα. We find

δXbμνðxÞ ¼
q
2

Z
dsð∇ρTμναðx − XðsÞÞ − α ↔ ρÞ _XρδXα:

ðD10Þ

Using the definition of the monopole propagator (D7) and
some rearrangement of indices, this may be rewritten as

δXbμνðxÞ ¼ q
Z

ds
dXρ

ds
ϵαμνρδ

ð4Þðx − XμðsÞÞ

þ∇μδcν −∇νδcμ; ðD11Þ

where the first term is localized on the worldline and where
δc is an infinitesimal 1-form built out of δXα whose form
depends on the choice of Tμνρ:

δcν ≡ 2q
Z

dsðTανρ − TρναÞ _XρδXα: ðD12Þ

We now insert the expression (D11) into (D5). We see that
the terms involving δc above will not contribute to the
equations of motion, as upon an integration by parts they
result in terms proportional to ∇μJμν. Only the first delta
function term contributes, and as claimed the variation has
localized on the worldline. Combining this with the usual
geodesic equation arising from varying the proper time
term, we find the full equations of motion to be (D1), as
claimed.

SAMUEL E. GRALLA and NABIL IQBAL PHYS. REV. D 99, 105004 (2019)

105004-14



[1] K. Kotera and A. V. Olinto, The astrophysics of ultrahigh-
energy cosmic rays, Annu. Rev. Astron. Astrophys. 49, 119
(2011).

[2] R. Blandford, Y. Yuan, M. Hoshino, and L. Sironi, Mag-
netoluminescence, Space Sci. Rev. 207, 291 (2017).

[3] J. I. Katz, Fast radio bursts–A brief review: Some
questions, fewer answers, Mod. Phys. Lett. A 31, 1630013
(2016).

[4] V. S. Beskin, Radio pulsars: Already fifty years! Phys. Usp.
61, 353 (2018).

[5] P. Goldreich and W. H. Julian, Pulsar electrodynamics,
Astrophys. J. 157, 869 (1969).

[6] R. D. Blandford and R. L. Znajek, Electromagnetic extrac-
tion of energy from Kerr black holes, Mon. Not. R. Astron.
Soc. 179, 433 (1977).

[7] T. Uchida, Theory of force-free electromagnetic fields. I.
General theory, Phys. Rev. E 56, 2181 (1997).

[8] S. S. Komissarov, Time-dependent, force-free, degenerate
electrodynamics, Mon. Not. R. Astron. Soc. 336, 759
(2002).

[9] S. E. Gralla and T. Jacobson, Spacetime approach to force-
free magnetospheres, Mon. Not. R. Astron. Soc. 445, 2500
(2014).

[10] C. Palenzuela, C. Bona, L. Lehner, and O. Reula, Robust-
ness of the Blandford-Znajek mechanism, Classical
Quantum Gravity 28, 134007 (2011).

[11] H. P. Pfeiffer and A. I. MacFadyen, Hyperbolicity of force-
free electrodynamics, arXiv:1307.7782.

[12] F. L. Carrasco and O. A. Reula, Covariant hyperbolization
of force-free electrodynamics, Phys. Rev. D 93, 085013
(2016).

[13] S. Grozdanov, D. M. Hofman, and N. Iqbal, Generalized
global symmetries and dissipative magnetohydrodynamics,
Phys. Rev. D 95, 096003 (2017).

[14] M. Freytsis and S. E. Gralla, QED plasma and magnetars,
J. Cosmol. Astropart. Phys. 05 (2016) 042.

[15] S. Dubovsky, L. Hui, A. Nicolis, and D. T. Son, Effective
field theory for hydrodynamics: Thermodynamics, and
the derivative expansion, Phys. Rev. D 85, 085029
(2012).

[16] T. Wiegelmann and T. Sakurai, Solar force-free magnetic
fields, Living Rev. Solar Phys. 9, 5 (2012).

[17] T. Gray, M. R. Brown, and D. Dandurand, Observation of a
Relaxed Plasma State in a Quasi-Infinite Cylinder, Phys.
Rev. Lett. 110, 085002 (2013).

[18] P. Nozieres and D. Pines, Theory Of Quantum Liquids,
Advanced Books Classics (CRC Press, Boca Raton, FL,
USA, 1999).

[19] J. Polchinski, Effective field theory and the Fermi surface, in
Proceedings, Theoretical Advanced Study Institute (TASI
92): From Black Holes and Strings to Particles: Boulder,
USA, 1992 (1992), pp. 235–276.

[20] R. Shankar, Renormalization-group approach to interacting
fermions, Rev. Mod. Phys. 66, 129 (1994).

[21] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett,
Generalized global symmetries, J. High Energy Phys. 02
(2015) 172.

[22] D. Gaiotto, A. Kapustin, Z. Komargodski, and N. Seiberg,
Theta, time reversal, and temperature, J. High Energy Phys.
05 (2017) 091.

[23] Z. Komargodski, A. Sharon, R. Thorngren, and X. Zhou,
Comments on Abelian Higgs models and persistent order,
SciPost Phys. 6, 003 (2019).

[24] B. Yoshida, Topological phases with generalized global
symmetries, Phys. Rev. B 93, 155131 (2016).

[25] J. C. Wang, Z.-C. Gu, and X.-G. Wen, Field Theory
Representation of Gauge-Gravity Symmetry-Protected
Topological Invariants, Group Cohomology and Beyond,
Phys. Rev. Lett. 114, 031601 (2015).

[26] Y. Tanizaki, Y. Kikuchi, T. Misumi, and N. Sakai, Anomaly
matching for phase diagram of massless ZN-QCD, Phys.
Rev. D 97, 054012 (2018).

[27] R. Kitano, T. Suyama, and N. Yamada, θ ¼ π in SUðNÞ=ZN

gauge theories, J. High Energy Phys. 09 (2017) 137.
[28] D. Gaiotto, Z. Komargodski, and N. Seiberg, Time-reversal

breaking in QCD4, walls, and dualities in 2þ 1 dimensions,
J. High Energy Phys. 01 (2018) 110.

[29] D. M. Hofman and N. Iqbal, Goldstone modes and photo-
nization for higher form symmetries, SciPost Phys. 6, 006
(2019).

[30] E. Lake, Higher-form symmetries and spontaneous sym-
metry breaking, arXiv:1802.07747.

[31] S. Grozdanov and N. Poovuttikul, Generalised global
symmetries and magnetohydrodynamic waves in a strongly
interacting holographic plasma, arXiv:1707.04182.

[32] S. Grozdanov, A. Lucas, and N. Poovuttikul, Holography
and hydrodynamics with weakly broken symmetries,
arXiv:1810.10016.

[33] J. Armas and A. Jain, One-form superfluids and magneto-
hydrodynamics, arXiv:1811.04913.

[34] J. Armas and A. Jain, Magnetohydrodynamics as super-
fluidity, arXiv:1808.01939.

[35] S. Grozdanov and N. Poovuttikul, Generalized global
symmetries in states with dynamical defects: The case of
the transverse sound in field theory and holography, Phys.
Rev. D 97, 106005 (2018).

[36] P. Glorioso and D. T. Son, Effective field theory of mag-
netohydrodynamics from generalized global symmetries,
arXiv:1811.04879.

[37] G. Compère, S. E. Gralla, and A. Lupsasca, Force-free
foliations, Phys. Rev. D 94, 124012 (2016).

[38] B. Carter, The general theory of the mechanical, electro-
magnetic and thermodynamic properties of black holes, in
General Relativity: An Einstein Centenary Survey, edited by
S.W. Hawking and W. Israel, vol. 179 (Cambridge Uni-
versity Press, Cambridge, England, 1979), pp. 457–472.

[39] A. Spitkovsky, Time-dependent force-free Pulsar magneto-
spheres: Axisymmetric and oblique rotators, Astrophys. J.
Lett. 648, L51 (2006).

[40] M. Lyutikov, L. Sironi, S. S. Komissarov, and O. Porth,
Explosive X-point collapse in relativistic magnetically
dominated plasma, J. Plasma Phys. 83, 635830601 (2017).

[41] J. Zrake andW. E. East, Freely decaying turbulence in force-
free electrodynamics, Astrophys. J. 817, 89 (2016).

[42] S. Endlich, A. Nicolis, R. A. Porto, and J. Wang, Dissipation
in the effective field theory for hydrodynamics: First order
effects, Phys. Rev. D 88, 105001 (2013).

[43] S. Grozdanov and J. Polonyi, Viscosity and dissipative
hydrodynamics from effective field theory, Phys. Rev. D 91,
105031 (2015).

EFFECTIVE FIELD THEORY OF FORCE-FREE ELECTRODYNAMICS PHYS. REV. D 99, 105004 (2019)

105004-15

https://doi.org/10.1146/annurev-astro-081710-102620
https://doi.org/10.1146/annurev-astro-081710-102620
https://doi.org/10.1007/s11214-017-0376-2
https://doi.org/10.1142/S0217732316300135
https://doi.org/10.1142/S0217732316300135
https://doi.org/10.3367/UFNe.2017.10.038216
https://doi.org/10.3367/UFNe.2017.10.038216
https://doi.org/10.1086/150119
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1093/mnras/179.3.433
https://doi.org/10.1103/PhysRevE.56.2181
https://doi.org/10.1046/j.1365-8711.2002.05313.x
https://doi.org/10.1046/j.1365-8711.2002.05313.x
https://doi.org/10.1093/mnras/stu1690
https://doi.org/10.1093/mnras/stu1690
https://doi.org/10.1088/0264-9381/28/13/134007
https://doi.org/10.1088/0264-9381/28/13/134007
http://arXiv.org/abs/1307.7782
https://doi.org/10.1103/PhysRevD.93.085013
https://doi.org/10.1103/PhysRevD.93.085013
https://doi.org/10.1103/PhysRevD.95.096003
https://doi.org/10.1088/1475-7516/2016/05/042
https://doi.org/10.1103/PhysRevD.85.085029
https://doi.org/10.1103/PhysRevD.85.085029
https://doi.org/10.12942/lrsp-2012-5
https://doi.org/10.1103/PhysRevLett.110.085002
https://doi.org/10.1103/PhysRevLett.110.085002
https://doi.org/10.1103/RevModPhys.66.129
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.1007/JHEP05(2017)091
https://doi.org/10.21468/SciPostPhys.6.1.003
https://doi.org/10.1103/PhysRevB.93.155131
https://doi.org/10.1103/PhysRevLett.114.031601
https://doi.org/10.1103/PhysRevD.97.054012
https://doi.org/10.1103/PhysRevD.97.054012
https://doi.org/10.1007/JHEP09(2017)137
https://doi.org/10.1007/JHEP01(2018)110
https://doi.org/10.21468/SciPostPhys.6.1.006
https://doi.org/10.21468/SciPostPhys.6.1.006
http://arXiv.org/abs/1802.07747
http://arXiv.org/abs/1707.04182
http://arXiv.org/abs/1810.10016
http://arXiv.org/abs/1811.04913
http://arXiv.org/abs/1808.01939
https://doi.org/10.1103/PhysRevD.97.106005
https://doi.org/10.1103/PhysRevD.97.106005
http://arXiv.org/abs/1811.04879
https://doi.org/10.1103/PhysRevD.94.124012
https://doi.org/10.1086/507518
https://doi.org/10.1086/507518
https://doi.org/10.1017/S0022377817000629
https://doi.org/10.3847/0004-637X/817/2/89
https://doi.org/10.1103/PhysRevD.88.105001
https://doi.org/10.1103/PhysRevD.91.105031
https://doi.org/10.1103/PhysRevD.91.105031


[44] P. Kovtun, G. D. Moore, and P. Romatschke, Towards an
effective action for relativistic dissipative hydrodynamics,
J. High Energy Phys. 07 (2014) 123.

[45] M. Harder, P. Kovtun, and A. Ritz, On thermal fluctuations
and the generating functional in relativistic hydrodynamics,
J. High Energy Phys. 07 (2015) 025.

[46] M. Crossley, P. Glorioso, and H. Liu, Effective field theory
of dissipative fluids, J. High Energy Phys. 09 (2017) 095.

[47] F. M. Haehl, R. Loganayagam, and M. Rangamani, The
fluid manifesto: Emergent symmetries, hydrodynamics,
and black holes, J. High Energy Phys. 01 (2016) 184.

[48] F. M. Haehl, R. Loganayagam, and M. Rangamani, Topo-
logical sigma models & dissipative hydrodynamics, J. High
Energy Phys. 04 (2016) 039.

[49] D. Montenegro and G. Torrieri, Lagrangian formulation of
relativistic Israel-Stewart hydrodynamics, Phys. Rev. D 94,
065042 (2016).

[50] J. Bhattacharya, S. Bhattacharyya, and M. Rangamani, Non-
dissipative hydrodynamics: Effective actions versus entropy
current, J. High Energy Phys. 02 (2013) 153.

[51] J. Hernandez and P. Kovtun, Relativistic magnetohydro-
dynamics, J. High Energy Phys. 05 (2017) 001.

[52] A.Gruzinov, Strong-FieldElectrodynamics, arXiv:0802.1716.
[53] J. Li, A. Spitkovsky, and A. Tchekhovskoy, Resistive

solutions for pulsar magnetospheres, Astrophys. J. 746,
60 (2012).

[54] C. Kalapotharakos, D. Kazanas, A. Harding, and I.
Contopoulos, Toward a realistic pulsar magnetosphere,
Astrophys. J. 749, 2 (2012).

[55] F. C. Michel, Rotating magnetospheres: An exact 3-D
solution, Astrophys. J. 180, L133 (1973).

[56] B. M. Gaensler and P. O. Slane, The evolution and structure
of pulsar wind nebulae, Annu. Rev. Astron. Astrophys. 44,
17 (2006).

[57] F. Jankowski, W. van Straten, E. F. Keane, M. Bailes, E. D.
Barr, S. Johnston, and M. Kerr, Spectral properties of
441 radio pulsars, Mon. Not. R. Astron. Soc. 473, 4436
(2018).

[58] P. Kovtun, Lectures on hydrodynamic fluctuations in
relativistic theories, J. Phys. A 45, 473001 (2012).

[59] D. M. Hofman and N. Iqbal, Generalized global symmetries
and holography, SciPost Phys. 4, 005 (2018).

[60] C. Cordova, T. T. Dumitrescu, and K. Intriligator, Exploring
2-group global symmetries, J. High Energy Phys. 02 (2019)
184.

[61] J. Polchinski, String Theory. Vol. 2: Superstring Theory
and Beyond, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2007).

[62] N. Iqbal and H. Liu, Luttinger’s theorem, superfluid
vortices, and holography, Classical Quantum Gravity 29,
194004 (2012).

SAMUEL E. GRALLA and NABIL IQBAL PHYS. REV. D 99, 105004 (2019)

105004-16

https://doi.org/10.1007/JHEP07(2014)123
https://doi.org/10.1007/JHEP07(2015)025
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1007/JHEP01(2016)184
https://doi.org/10.1103/PhysRevD.94.065042
https://doi.org/10.1103/PhysRevD.94.065042
https://doi.org/10.1007/JHEP02(2013)153
https://doi.org/10.1007/JHEP05(2017)001
http://arXiv.org/abs/0802.1716
https://doi.org/10.1088/0004-637X/746/1/60
https://doi.org/10.1088/0004-637X/746/1/60
https://doi.org/10.1088/0004-637X/749/1/2
https://doi.org/10.1086/181169
https://doi.org/10.1146/annurev.astro.44.051905.092528
https://doi.org/10.1146/annurev.astro.44.051905.092528
https://doi.org/10.1093/mnras/stx2476
https://doi.org/10.1093/mnras/stx2476
https://doi.org/10.1088/1751-8113/45/47/473001
https://doi.org/10.21468/SciPostPhys.4.1.005
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1007/JHEP02(2019)184
https://doi.org/10.1088/0264-9381/29/19/194004
https://doi.org/10.1088/0264-9381/29/19/194004

