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ABSTRACT
Many distant objects can only be detected, or become more scientifically valuable, if they
have been highly magnified by strong gravitational lensing. We use EAGLE and BAHAMAS, two
recent cosmological hydrodynamical simulations, to predict the probability distribution for
both the lens mass and lens redshift when point sources are highly magnified by gravitational
lensing. For sources at a redshift of 2, we find the distribution of lens redshifts to be broad,
peaking at z ≈ 0.6. The contribution of different lens masses is also fairly broad, with most
high-magnification lensing due to lenses with halo masses between 1012 and 1014 M�. Lower
mass haloes are inefficient lenses, while more massive haloes are rare. We find that a simple
model in which all haloes have singular isothermal sphere density profiles can approximately
reproduce the simulation predictions, although such a model overpredicts the importance of
haloes with mass < 1012 M� for lensing. We also calculate the probability that point sources
at different redshifts are strongly lensed. At low redshift, high magnifications are extremely
unlikely. Each z = 0.5 source produces, on average, 5 × 10−7 images with magnification
greater than 10; for z = 2, this increases to about 2 × 10−5. Our results imply that searches
for strongly lensed optical transients, including the optical counterparts to strongly lensed
gravitational waves, can be optimized by monitoring massive galaxies, groups, and clusters
rather than concentrating on an individual population of lenses.
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1 IN T RO D U C T I O N

Gravitational lensing and gravitational waves are two phenomena
predicted by Einstein’s general theory of relativity (GR), both of
which have now been observed. Evidence for strong gravitational
lensing of electromagnetic radiation was first reported by Walsh,
Carswell & Weymann (1979), who discovered a multiply imaged
quasar. Since then, strong gravitational lensing has become a key
tool in astrophysics, allowing the mass distribution in galaxies and
galaxy clusters to be mapped (e.g. Bolton et al. 2008; Richard
et al. 2010), and for distant objects to be studied that would
otherwise be too faint and/or small (see Kelly et al. 2018, for a
spectacular example). Gravitational waves were first detected only
recently (Abbott et al. 2016) but also hold promise as a new tool for
investigating our Universe (Miller & Yunes 2019).

� E-mail: andrew.robertson@durham.ac.uk

The prediction of GR is that gravitational waves have their
trajectories bent by gravity in the same way as light, that is to say that
gravitational waves can also be gravitationally lensed. Ignoring the
lensing of gravitational waves could lead to incorrect conclusions
about the population of merging compact objects. To leading
order, the frequency evolution, ν(t), of a gravitational wave signal
is determined by the chirp mass, M = (m1m2)3/5/(m1 + m2)1/5,
where m1 and m2 are the masses of the two merging objects (Abbott
et al. 2017c). The intrinsic amplitude of the emitted signal can be
predicted from the chirp mass, so the measured amplitude of the
signal can be used to determine the luminosity distance, dL, to the
coalescing objects.

For objects at redshift z, the received frequency will be lower
than the intrinsic frequency by a factor of 1 + z. With an assumed
cosmology and ignoring peculiar velocities, there is a one-to-one
relationship between dL and z. This means that the chirp mass and
luminosity distance (and therefore also redshift) can be inferred
from the amplitude and frequency evolution of a gravitational
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wave signal. Gravitational lensing introduces a new quantity,
the magnification μ, which alters the amplitude of the detected
gravitational wave strain by a factor of

√
μ compared with the no

lensing (μ = 1) case. A gravitational wave signal that – ignoring
lensing – would correspond to a chirp mass Mμ=1 at a redshift
zμ = 1 could actually be at a true redshift z, with true chirp mass M
where M = Mμ=1(1 + zμ=1)/(1 + z). The magnification in this
case would be μ = [dL(z)/dL(zμ = 1)]2. As such, low-mass, distant,
and highly magnified gravitational wave sources will masquerade as
more massive and closer gravitational wave sources if gravitational
magnification is not considered in interpreting the gravitational
wave signal.

At LIGO/Virgo’s current sensitivity, the detection rate of strongly
lensed GWs is expected to be small (Li et al. 2018; Smith et al.
2018). This can be understood in terms of the lens magnification that
is required to render a lensed GW detectable. At present, unlensed
GWs can only be detected out to a luminosity distance of ∼1 Gpc
(Abbott et al. 2018), corresponding to z � 0.2. Given that the
typical redshift of a strong lensing galaxy or cluster is z � 0.2–
0.5, it is inevitable that the typical redshift of a lensed GW is
z � 1, which corresponds to a luminosity distance of �7 Gpc.
Given the dependence of lens magnification on luminosity distance
discussed above, these distances imply μ � 50, and thus a low
probability of detection thus far, bearing in mind that P(> μ) ∝ μ−2.
Despite some early proof-of-concept follow-up observations (Smith
et al. 2019b) and discussion of LIGO’s early detections (Broadhurst,
Diego & Smoot 2018, 2019), there is scant evidence that any of
LIGO/Virgo’s detections to date are strongly lensed (Hannuksela
et al. 2019; Singer, Goldstein & Bloom 2019).

Calculating the expected number of detectable strongly lensed
GWs and the probability that a given GW detection is strongly
lensed requires a good understanding of the population of gravi-
tational lenses. Knowledge of this population can then also shape
the observing strategy for electromagnetic follow-up of candidate
lensed GWs. There has been disagreement in the literature as to what
population of lenses is most important for the high magnifications
required to reinterpret the LIGO/Virgo events as being less massive
but at high redshift. For example, Smith et al. (2018) used the
results of ray tracing through a large N-body simulation (Hilbert
et al. 2008, hereafter H08) to conclude that galaxy clusters were
the most important population of lenses. Meanwhile, Haris et al.
(2018) forward modelled a population of lensed gravitational wave
signals, assuming that lensed images dominantly arise due to galaxy
lenses, modelling their population of lenses on SDSS early-type
galaxies (Choi, Park & Vogeley 2007). Claims that some of the grav-
itational wave signals already detected are likely strongly lensed
(Broadhurst et al. 2018, 2019) have also assumed that galaxies
dominate the optical depth for strong lensing, which they justify
from the population of lenses responsible for lensed high-redshift
star-forming galaxies detected by the Herschel satellite (Negrello
et al. 2010; Bussmann et al. 2013; Wardlow et al. 2013). However,
other lensed objects paint a different picture, with the first detected
strongly lensed supernova (Kelly et al. 2015) and highly magnified
individual star (Kelly et al. 2018), as well as the most magnified
lensed quasars (Sharon et al. 2005; Oguri et al. 2013; Sharon et al.
2017), being lensed by galaxy clusters. Inferring the importance of
different lenses for strong lensing using the distribution of lenses
responsible for observed highly magnified objects is complicated
by selection effects, which motivates answering this question from
a theoretical perspective.

In this paper, we seek to answer the question of which objects
are responsible for producing strong gravitational lensing. Given

the small size of the GW emission region in compact binary
coalescence, and the high magnifications required to reinterpret
gravitational wave events as having come from objects significantly
less massive than originally inferred, we will concentrate on
high magnifications (|μ| > 10) for point sources. We do this by
combining lensing calculations performed on two state-of-the-art
hydrodynamical simulations, and show that the results can be
approximately reproduced by a model in which the total mass
distribution of each gravitationally collapsed object is modelled
as a singular isothermal sphere.

This paper is organized as follows. In Section 2, we describe
a simple model for the strong lensing optical depth, based upon
combining the halo mass function with a simple density profile for
each halo. Then, in Section 3 we describe our simulations and how
we calculated the cross-sections for strong gravitational lensing
from individual simulated haloes. In Section 4, we present our
results, combining the strong lensing properties of all our simulated
haloes to find the contribution of different lens masses and lens
redshifts to the probability for strong lensing. We then present our
conclusions in Section 5. We assume a Planck Collaboration II
(2014) cosmology throughout this paper,1 unless stated otherwise.

2 A S I M P L E M O D E L FO R T H E ST RO N G
LENSI NG OPTI CAL DEPTH

Answering the question of ‘what does strong lensing?’ requires
two ingredients. First, the lensing cross-section of individual lenses
as a function of their mass and redshift, and secondly, the halo
mass function – the number density of haloes of different masses at
different cosmic times. In this section, we discuss both of these in
the context of a simple model where all lenses are assumed to be
spherically symmetric singular isothermal spheres (SISs), which
have 3D density profiles with ρ ∝ r−2. The advantage of using this
density profile is that it provides a simple analytic method to relate
the Einstein radius of a lens to the mass of its dark matter halo,
across a broad range of halo mass, as detailed in Sections 2.1 and
2.2. The SIS model has been shown to be a good description of
strong lensing galaxies (Gavazzi et al. 2007). Whilst this model is
a poor description of individual strong-lensing clusters due to the
complexity of such systems (e.g. Richard et al. 2010), the slope
of the SIS profile is representative of cluster density profile slopes
on the relevant scales and is therefore appropriate for population
studies such as this. The goal of this section is to introduce notation
and gain intuition that will help to understand the results from
hydrodynamical simulations in Section 3.

2.1 Lensing cross-sections of individual lenses

For a mass distribution at redshift zL, we can define the gravitational
lensing cross-section for some criterion as the solid angle that
satisfies that criterion. An example criterion could be that the
magnification, μ, for a source at redshift zS is greater than some
magnification threshold, μ0. Gravitational lensing maps an infinites-
imal solid angle in the source plane, into a solid angle in the image
plane that differs by a factor of the magnification.2 As such, we can

1With �m = 0.307, �b = 0.04825, �� = 0.693, σ 8 = 0.8288, ns = 0.9611,
and h = 0.6777.
2The image plane solid angle does not need to be larger, as |μ| can be
less than unity, but throughout this paper we are concerned with high
magnifications.
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define cross-sections both in the image plane and the source plane,
and in general these can be different. To introduce our notation
we take a concrete example of a cross-section for magnification
greater than 10 for a redshift 2 source. A particular lens would
then have an image plane cross-section, σ I

lens(|μ| > 10, zS = 2),
and source plane cross-section, σ S

lens(|μ| > 10, zS = 2), with the
former corresponding to the lens-plane solid angle over which lines
of sight from the observer to the lens have |μ| > 10 and the latter
corresponding to the (un-lensed) solid angle in the source plane that
will be magnified by |μ| > 10. The source plane cross-section is
therefore the relevant cross-section for calculating the probability
that randomly located sources at zS = 2 will be magnified by this
lens by |μ| > 10.

An SIS with Einstein radius θE, has an image-plane magnification
profile

μSIS = θ

θ − θE
, (1)

where θ is the angular distance from the centre of the SIS profile.
Armed with the magnification as a function of radius, we can then
ask what the lens (or source) plane solid angle above a particular
magnification threshold is. Note that the magnification can be both
positive and negative, with negative values corresponding to images
with inverted parity. In this study, we are interested in the brightness
of lensed point sources for which the absolute value of μ is the
relevant quantity. The image plane solid angle with |μ| > μ0 is

σ I
lens(> μ0) =

∫ θ1

θ0

2πθ dθ, (2)

where from equation (1) we have that θ0 = θE μ0/(μ0 + 1) and
θ1 = θE μ0/(μ0 − 1), such that

σ I
lens(> μ0) = θ2

E

4πμ3
0(

μ2
0 − 1

)2 . (3)

An infinitesimal solid angle of the image plane will map back into
an infinitesimal solid angle of the source plane, which is smaller by
a factor |μ| (i.e. dσ I

lens = |μ|dσ S
lens), so the source plane solid angle

with |μ| > μ0 is

σ S
lens(> μ0) =

∫ θ1

θ0

2πθ

|μ(θ )| dθ. (4)

Note that there is a subtlety when discussing the source plane solid
angle with some property (such as |μ| > μ0), because regions of
the source plane can map to multiple regions in the image plane. As
equation (4) is defined as an integral over the image plane, points
on the source plane that map to multiple points on the image plane
will be counted multiple times, once for each image that meets
the respective property. This means that for a number density of
sources per unit solid angle in the source plane, ns, we expect to
see σ S

lens(> μ0) × ns images of those sources magnified by greater
than μ0 by a particular lens. This will typically be greater than
the number of sources that have at least one image magnified by
greater than μ0, because highly magnified lines of sight are typically
multiply imaged.

Evaluating the integral in equation (4) we find

σ S
lens(> μ0) = θ2

E

2π
(
μ2

0 + 1
)

(
μ2

0 − 1
)2 . (5)

In equations (3) and (5), σ lens(> μ0) is separable into the product
of θ2

E and a function of μ0. As such, the relative contribution of
different haloes to the optical depth is independent of the exact

definition of the optical depth, whether it is the solid angle within
the Einstein radius, or the source/image plane solid angle with
a magnification greater than some μ0. While different definitions
of what constitutes ‘strong lensing’ will change the total optical
depth to strong lensing, it will change the optical depth of each
system in the same manner, keeping their relative contributions
fixed. In particular, for large magnification thresholds (μ0 	 1),
σ S

lens(> μ0) ∝ 1/μ2
0.

While we have shown here that P (|μ| > μ0) ∝ 1/μ2
0 for sources

behind an SIS lens, this behaviour can be shown to be more general.
Critical curves are curves in the image plane along which the
magnification is formally infinite in the geometric optics limit, while
caustics are curves in the source plane found from mapping the
critical curve to the source plane using the gravitational deflection
angles. By Taylor expanding the gravitational potential about a
point on a critical curve, it can be shown that the magnification
varies inversely as the square root of the perpendicular distance of
the source from the caustic (e.g. Gaudi & Petters 2002, equation
35). The source plane solid angle above some magnification, μ0,
is the length of the caustic multiplied by the distance from the
caustic at which the magnification drops to μ0, l0. As l0 ∝ 1/μ2

0,
the high-magnification cross-section is σ S

lens(> μ0) ∝ 1/μ2
0.

2.2 The halo mass function

The halo mass function has been well studied, both in the context
of analytical predictions (Press & Schechter 1974; Sheth, Mo &
Tormen 2001) and measurements from N-body simulations (e.g.
Jenkins et al. 2001; Tinker et al. 2008). Here, we use the Tinker
et al. (2008) mass function with a Planck Collaboration II (2014)
cosmology, as implemented in the Python library HMF (Murray,
Power & Robotham 2013). Throughout this paper we use M200 to
define halo masses; where r200 is the radius at which the mean
enclosed density is 200 times the critical density, and M200 is the
mass within r200.

We define n(M, z) as the comoving number density of haloes
with M200 < M at redshift z. ∂n(M, z)/∂log10M is then the number
density of haloes per decade in halo mass, which is plotted for
different redshifts in the top panel of Fig. 1. For brevity, we will
often drop the ‘200’ from halo masses, and will not explicitly write
the base (always 10) of logarithms.

2.2.1 Tying M200 to an SIS density profile

In order to relate an SIS with a given Einstein radius to a halo
described by its M200, it helps to be concrete about the normalization
of the SIS density profile. Starting with a density profile with a
normalization described by the velocity dispersion, σ v,

ρSIS(r) = σ 2
v

2πGr2
, (6)

we can integrate along a line of sight a projected radius R from the
centre of the halo to get the projected surface density

�SIS(R) = σ 2
v

2GR
. (7)

The mass enclosed within a 2D radius is then

MSIS(< R) = πσ 2
v

G
R. (8)
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Figure 1. Top: the halo mass function at different redshifts. At all redshifts,
the low-mass end of the mass function is approximately a power law with a
slope slightly shallower than −1 as indicated by the dashed line, which is a
power law with a slope of −0.94. Bottom: the optical depth per decade in
halo mass and per unit redshift, at the same redshifts as the mass function
is shown in the top panel, assuming all haloes to be singular isothermal
spheres. The power-law dependence of the lensing cross-section on halo
mass (Section 2.2.1) multiplied by the mass function leads to a gently
increasing power law at low masses, which is exponentially suppressed at
high masses due to the suppression of the mass function.

For a given cosmology and lensing geometry we can define the
critical surface density for lensing, �crit, as

�crit = c2

4πG

dA(zS)

dA(zL) dA(zL, zS)
. (9)

Here, dA(zS), dA(zL), and dA(zL, zS) are the angular diameter
distances between the observer and the source, the observer and the
lens, and the lens and the source, respectively. For an axisymmetric
lens, the average surface density within the Einstein radius is �crit

(i.e. MSIS(< RE) = �critπR2
E). Combining this with the fact that the

physical Einstein radius is related to an angular Einstein radius by
the angular diameter distance to the lens (RE = θE dA(zL)) we find
that

θE = σ 2
v

G�critdA(zL)
. (10)

Returning to equation (6), we can integrate the density profile to
find that the mass within a 3D radius is

MSIS(< r) = 2σ 2
v

G
r. (11)

Equating the mass within r200 with M200 allows us to write σ v, and
hence θE, in terms of the halo mass

θE(M, zlens) = M

2r200�critdA(zL)
. (12)

At fixed zL, �crit and dA(zL) are constant, and r200 ∝ M1/3, such that
θE ∝ M2/3. Then, using equation (5), σ S

lens ∝ M4/3.

2.3 Strong-lensing optical depths

If σ tot(M, z) is the sum of σ lens over all haloes with M200 < M,
within some volume V, at redshift z, then

∂2σtot(M, z)

∂V ∂ log M
= ∂n(M, z)

∂ log M
σlens(M, z). (13)

For a patch of sky with solid angle, �, and with a total source-
plane cross-section, σ S

tot, we can define a source-plane optical depth
τ S ≡ σ S

tot/�. Note that this definition of τ S differs somewhat from
the source plane optical depth used by (for example) Schneider,
Ehlers & Falco (1992), because of how it treats multiply imaged
regions of the source plane (see Section 2.1 for a discussion of this
with an isolated lens). We illustrate our definition with an example,
consisting of NS point-source objects randomly distributed in the
source plane. If we suppose that these objects must be magnified
by |μ| > μ0 in order to be detectable, then the expected number of
detectable images will be τ S

|μ|>μ0
NS, which can be larger than the

number of different sources that are detected, due to some sources
being detected multiple times. This is in contrast to the Schneider
et al. (1992) definition, which we call τ̃ S

|μ|>μ0
following a similar

discussion in Hilbert et al. (2007). τ̃ S
|μ|>μ0

NS is the expected number
of different sources that we would detect, some of which we may
detect multiple times. Using τ S over τ̃ S has two key advantages:
first, that it is much easier to compute, because the calculation can
be done in the lens plane without having to find which regions of
the lens plane map on to a common region of the source plane; and
secondly, because the number of images (rather than sources) is
easier to count observationally.

Note that by performing our calculations exclusively in the lens
plane we cannot consider complications that arise when multiple
images are blended into one. There could, for example, be blended
images with a total magnification μtot > μ0 even though neither
individual image has |μ| > μ0. This is highly unlikely for lensed
gravitational waves, where the length of a ‘chirp’ is typically less
than a second, and so multiple images will only rarely overlap
in time, however, it could be important for understanding other
populations of lensed objects. For an SIS lens, the time delay
between multiple images of the same source is 
t ∝ θ2

E/μtot (e.g.
Oguri et al. 2002), and would be around an hour for an SIS with
M200 = 1011.5 M�, zL = 0.5, zS = 2, and μtot = 100. This halo mass
is the lowest relevant for high-magnification strong lensing (see
Fig. 4) and so extremely large magnifications would be required for
time delays of a second or less.

Defining V(z) as the comoving volume out to redshift z, and � =
4π as the solid angle of the whole sky, we find that

∂2τ

∂ log M ∂z
= 1

4π

∂2σtot(M, z)

∂V ∂ log M

dV

dz
, (14)

which using equation (13) can be calculated from the halo mass
function and σ lens(M, z).

2.3.1 Strong-lensing optical depths in an SIS universe

Using σ lens(M, z) for SIS density profiles in equation (14), we
can calculate the relative contribution of different lens masses at
different lens redshifts to the total optical depth. This is plotted (for
an optical depth corresponding to |μ| > 10 for zS = 2 sources) in
the bottom panel of Fig. 1, where it can be seen that the relative
contribution of different lens masses shifts towards higher masses
at lower redshifts, peaking at M200 ≈ 1013 M� at zL = 1.4 and
M200 ≈ 1014 M� at zL = 0.2. This is driven by the increase in
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the halo mass above which the mass function is exponentially
suppressed (often known as M∗), through cosmic time. At all times
there is a peak in ∂2τ/∂ log M ∂z. Lensing by low-mass haloes is
relatively unimportant because the power-law slope of the mass-
function (∝M−0.94) is not steep enough to compensate for the
decreasing cross-section of low-mass lenses (∝ M4/3), while the
high-mass end is suppressed by the high-mass end cut-off in the
mass function.

Aside from the relative contribution to the total lensing optical
depth of different lens masses, Fig. 1 also demonstrates the relative
contribution from different lens redshifts. Of the redshifts we show,
zL = 0.5 and 0.8 have the largest optical depths per unit redshift
(the areas under the curves in the bottom panel of Fig. 1). As well as
the evolution of the mass function, there are a number of different
factors that contribute to this. One is the comoving volume per
unit redshift, dV

dz
, which increases with increasing redshift out to

around z = 2.5. Another is the lensing efficiency, the inverse of the
critical surface density, which at fixed source redshift is proportional
to dA(zL)dA(zL, zS). In a flat and non-expanding universe, dA(zL)
+ dA(zL, zS) = dA(zS). At fixed dA(zS), the product of dA(zL) and
dA(zL, zS) is then maximized when they are equal, i.e. when the lens
is halfway between the observer and source. This is complicated
somewhat by a universe that is expanding, but it remains true that
lensing is most efficient when the lens is neither close to the observer
nor close to the source, but roughly mid-way between. In the case
of a zS = 2 source, and a Planck Collaboration II (2014) cosmology,
the lensing efficiency peaks for zL = 0.52.

3 L E N S I N G I N H Y D RO DY NA M I C A L
SIMULATIONS

Cosmological hydrodynamical simulations have increased dramat-
ically in their realism over the past decade and can now reproduce
many of the key properties of observed galaxies (e.g. Vogelsberger
et al. 2014; Schaye et al. 2015; Davé, Thompson & Hopkins 2016;
Kaviraj et al. 2017; Pillepich et al. 2018a; Davé et al. 2019) as
well as galaxy groups and clusters (e.g. Sembolini et al. 2013;
Le Brun et al. 2014; Bahé et al. 2017; Barnes et al. 2017a,b;
McCarthy et al. 2017; Cui et al. 2018; Pillepich et al. 2018b).
Importantly for lensing, simulations can produce populations of
galaxies with the correct distribution of stellar mass, and the
correct stellar mass–size relation (Schaye et al. 2015). As such,
these simulations can now be used to answer the question of
how important different objects are as gravitational lenses, from
a theoretical perspective.

In order to determine the contribution of different lens masses to
the strong lensing optical depth as predicted from a state-of-the-art
hydrodynamical simulation, we require the simulation to resolve the
strong lensing region of the lowest mass haloes important for lensing
(∼3 × 1011 M�, see Fig. 4), while simultaneously covering a large
enough volume to accurately sample the high-mass end of the halo
mass function. A single hydrodynamical simulation like this does
not currently exist, so instead we combine two simulations, using the
high-resolution publicly available3 (100 Mpc)3 EAGLE simulation
(Crain et al. 2015; Schaye et al. 2015) to resolve low-mass haloes,
and the large volume of the (400 h−1 Mpc)3 BAHAMAS simulation

3The galaxy and halo catalogues of the simulation suite, as well as the
particle data, are publicly available at http://www.eaglesim.org/database.php
(McAlpine et al. 2016; The EAGLE team 2017).

(McCarthy et al. 2017) to have an adequate number of high-mass
haloes.

3.1 Simulation descriptions

EAGLE and BAHAMAS have similar sub-grid physics models for
galaxy formation physics on scales below the resolution limits
of the simulations. These include models for gas cooling, star
formation, and feedback both from stars and active galactic nuclei
(AGNs). EAGLE was run using a Planck Collaboration II (2014)
cosmology,4 and for BAHAMAS (which has been run with many
different cosmologies, with and without massive neutrinos) we used
the simulation based on the same Planck Collaboration II (2014)
results as EAGLE’s cosmology, with zero neutrino mass, which is
described in McCarthy et al. (2018).5

For EAGLE, the DM and initial baryon particle masses are
9.7 × 106 and 1.8 × 106 M� respectively, while for BAHAMAS they
are 6.6 × 109 M� and 1.2 × 109. The corresponding Plummer-
equivalent gravitational softening lengths are 0.7 kpc for EAGLE

and 6.0 kpc for BAHAMAS, with these being fixed physical lengths
(i.e. not comoving) at all redshifts we consider.

3.2 Lensing description

ur lensing procedure treats each halo as an isolated lens, ignoring
the effect of other structures along the line of sight. This is done
because we want to assign light-rays that have high magnifications
to a single lensing object, in order to answer the question of what
was responsible for the lensing. Ignoring the effects of multiple
lens planes is justified by the fact that only a very small fraction of
light-rays meet our criterion for being strongly lensed, such that the
probability of an object being sufficiently aligned to be strongly
lensed by two separate haloes is negligible. This was verified
explicitly by Hilbert et al. (2007), who did full multiplane ray tracing
through the Millennium simulation (Springel et al. 2005), and found
that strong lensing events can almost always be traced to a single
dominant lensing object. We stress that this does not mean that
line-of-sight structures can be ignored in detailed lens modelling of
individual systems, where including line-of-sight structures in the
model can improve the match between the predicted and observed
positions of multiply imaged sources (for example Chirivı̀ et al.
2018). It means that the lensing cross-sections of lenses are not
significantly altered on average by objects along the line of sight.

Our procedure for generating lensing maps from simulated haloes
follows Robertson et al. (2019), who studied the Einstein radii of
galaxy clusters from BAHAMAS simulations run with different DM
models. For each halo at each snapshot redshift, we first find all mass
within 5 r200 of the particle with the lowest gravitational potential
energy. We then calculate the projected surface density, �, on a
regular grid using an SPH-like smoothing scheme based on the
distance to the 16th nearest neighbour. We make 3 maps of each halo
– projecting the mass along 3 orthogonal lines of sight, for which
we use the simulation x, y, and z axes. These maps are square, with
a side length of 2 r200, and with 1024 × 1024 pixels. The resolution

4With �m = 0.307, �b = 0.04825, �� = 0.693, σ 8 = 0.8288, ns = 0.9611,
and h = 0.6777.
5This differs slightly from the EAGLE cosmology, with �m = 0.3175, �b =
0.049, �� = 0.6825, σ 8 = 0.8341, ns = 0.9624, and h = 0.6711. We
assume the EAGLE cosmology for all of our lensing calculations, including
those with BAHAMAS.
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3732 A. Robertson et al.

Figure 2. A schematic illustration of our volume of lenses, using the
snapshot redshifts from BAHAMAS. The redshift range shown is covered by
the three lowest redshift snapshots from BAHAMAS, with the red, green, and
blue filled regions covering redshifts closest to zsnap = 0, 0.125, and 0.25,
respectively. The ticks along the left edge of the wedge show the redshifts
at which we evaluate the contribution to the strong-lensing optical depth,
which is done by taking the comoving volume corresponding to a redshift
interval δz. When this redshift interval includes regions closer in redshift to
two different snapshots (i.e. for zL

2 ), the optical depth calculation uses only
the snapshot closest in redshift to the centre of this redshift interval.

therefore increases in lower mass haloes, where the critical curve
is on a smaller physical scale. At z = 0 this corresponds to a pixel
scale of 4.5 kpc for a 1015 M� halo and 0.2 kpc for a 1011 M� halo.
Note that the numerical values quoted here were motivated by the
convergence tests discussed in Section 3.4.

Our calculation of ∂2τ/∂ log M ∂z is done at more lens redshifts
than we have simulation snapshots, as illustrated in Fig. 2. At each
redshift that we use as a lens plane, zL, we find the snapshot closest
to it in redshift. We then use the � maps of the haloes from
this snapshot to calculate the contribution to the strong lensing
optical depth from this particular zL. This is done by first dividing
� by �crit, to get the dimensionless convergence, κ . As both
κ , and the gravitational shear, γ , are second derivatives of the
projected Newtonian potential, they can be readily calculated from
one another using discrete Fourier transforms (see e.g. Robertson
et al. 2019). We can then make a map of the magnification μ using

μ = 1

(1 − κ)2 − |γ |2 . (15)

For lens planes at a different redshift from the snapshot used, we
keep � as a function of physical coordinates fixed. For different lens
planes that use the same snapshot, the differences between them are
that �crit changes with zL (leading to a difference in the relationship
between � and the convergence, κ) as does the relationship between
physical distances in the lens plane and angles on the sky.

3.3 Cross-sections and optical depths

With μ on a regular grid in the image plane, we calculate the source
plane solid angle with |μ| > μ0 behind some lens as

σ S
lens =

∑
|μ|>μ0

σpixel

|μ| , (16)

where σ pixel is the solid angle of each image-plane pixel, and the
sum is over all pixels with |μ| > μ0.6

At each lens plane redshift (zL
i = 0.04i − 0.02 for i = 1, 2,

..., 50), we calculate σ S
lens of each halo with M200 > 1011 M�

in EAGLE and M200 > 1013.5 M� in BAHAMAS. We bin haloes by
log10(M200/ M�) and sum up σ lens within each bin, where the bin
width is 
log10M200 = 0.18. Dividing this sum by three times,7 the
simulation volume and the log-mass bin width we get the left side
of equation (13), which we can convert to ∂2τ/∂ log M ∂z using
equation (14).

3.4 Numerical convergence of strong lensing cross-sections

Before we did our full lensing analysis of the EAGLE and BAHAMAS

simulations, we first performed a number of tests to determine
that our lensing procedure produced numerically converged results.
We did these tests on a single snapshot from each of EAGLE and
BAHAMAS, so that we could test a large number of possible numerical
parameters. These snapshots were chosen to be at a redshift that
contributes significantly to the lensing of high-redshift sources, and
to be at a redshift where EAGLE and BAHAMAS have a similarly timed
output. We chose to use the z = 0.366 snapshot from EAGLE, and
the z = 0.375 snapshot from BAHAMAS.

Accurately calculating the distribution of magnifications due to
some mass distribution requires that the critical curves be adequately
captured. This in turn requires that the mass distribution within
the critical curves is sampled with a reasonable number of pixels.
Smaller haloes have smaller critical curves, and hence require higher
resolutions, while larger haloes need large fields of view to include
the full halo’s mass distribution. In order to achieve both of these, we
used a pixel size and field of view that both increase with increasing
halo mass, specifically in proportion to the virial radius (∝ M

1/3
200 ).

As both our pixel size and field-of-view scale with the virial
radius, the number of pixels used for the mass maps is independent
of halo mass. We experimented with 256, 512, 1024, and 2048
pixels on a side, making square maps with a side length of 2r200.
The pixel scale acts as a scale on which the mass distribution is
smoothed, and with the largest pixels (r200/128), our lensing cross-
sections were substantially reduced compared to smaller pixel cases.
The two smallest pixel scales (r200/512 and r200/1024) produced
converged results, suggesting that the larger of those two pixel scales
(corresponding to 1024 pixels on a side) is more than adequate.

The reason that our lensing procedure becomes insensitive to the
pixel scale is because it already smooths out the mass of individual
particles on a scale that depends on the local number density of
particles. This means that so long as the pixels are not too large,
smaller pixels do not lead to smaller structures being resolved, but
rather just a finer sampling of a smooth mass distribution. Because
the resolution of our lensing maps is set by the density of simulation
particles, we needed to check that a different simulation resolution,

6We stress again that this is not strictly the source plane solid angle that is
magnified by greater than μ0, as it counts multiply imaged regions of the
source plane multiple times.
7To reflect the three projection axes.
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What does strong lensing? 3733

Figure 3. Top: the zS = 2, |μ| > 10, source-plane cross-sections for
individual lenses from EAGLE and BAHAMAS, from the respective snapshots
with z ≈ 0.37. The different colours correspond to different fsub values as
described in Section 3.4. Running medians as a function of halo mass are
shown as solid lines, which are drawn only in the mass range where the
relevant simulation with the particular fsub value is ‘converged’. The black
dashed line shows the prediction for haloes modelled as singular isothermal
spheres all the way out to their virial radii. Bottom: the optical depth per
decade in halo mass and per unit redshift, calculated from the cross-sections
in the top panel. Lines are shown as solid in the halo mass ranges where they
are converged, and are faded at lower masses. We stop showing EAGLE lines
at the high-mass end due to the poor sampling of the mass function there. The
shaded regions around the lines show the 2.5th to 97.5th percentiles when
the optical depth is calculated from a bootstrap resampling of all haloes in
the top panel. For the black dashed line a Tinker et al. (2008) mass function
was assumed.

with a different number density of simulation particles, would have
provided converged results.

To investigate this, we made lensing maps of all haloes in our
test snapshots, both with the full simulation data, and when only
using a fraction, fsub, of the simulation particles. When making these
subsampled maps, the mass of each particle was increased by 1/fsub

to create a lower resolution version of the same simulated mass
distribution. With these subsampled versions, we could then find
the halo mass at which the lensing properties of the subsampled
haloes disagreed with those of the full haloes, which indicates the
halo mass down to which we can trust the lensing maps being
generated from full simulation data.

In the top panel of Fig. 3, we show the zS = 2 source plane cross-
sections for |μ| > 10, for individual haloes from both EAGLE and
BAHAMAS, using subsampling factors of 1, 1/4, and 1/16. The bottom
panel then shows ∂2τ/∂ log M ∂z with these different subsampling

factors. For the case of EAGLE we see that other than a slight
suppression at masses below 4 × 1011 M�, the fsub = 1/4 optical
depth is indistinguishable from the full simulation case. We can
also see that EAGLE has just enough resolution to resolve the lowest
mass haloes important for lensing, as had the mass resolution been
16 times worse (corresponding to the yellow line), the low-M200

cut off in ∂2τ/∂ log M ∂z would have been numerical rather than
properly resolved.

The mass-scale at which convergence is achieved in BAHAMAS

is, unsurprisingly, different, given the much poorer resolution of
the BAHAMAS simulations. Defining convergence as an agreement
on ∂2τ/∂ log M ∂z better than 20 per cent between subsequent fsub

levels, fsub = 1/16 is converged down to M200 ≈ 3.2 × 1014 M�
and fsub = 1/4 down to M200 ≈ 1.6 × 1014 M�. Assuming a similar
fractional improvement in the mass down to which we are converged
going from fsub = 1/4 to fsub = 1 as we had when going from
fsub = 1/16 to fsub = 1/4, we expect that the full BAHAMAS results
are converged down to a halo mass of around 1014 M�. For this
reason, we use BAHAMAS to make predictions for the contribution
of M200 > 1014 M� lenses to the strong lensing optical depth, using
EAGLE for halo masses below this. Owing to its relatively small box
size, EAGLE has few haloes at masses 1013.5–1014 M�. As we will
see in the next section, this leads to our lensing calculation being
most uncertain at these intermediate masses, where BAHAMAS is not
well resolved, but EAGLE suffers from a small volume.

4 R ESULTS

The differential optical depth for strong lensing, ∂2τ/∂ log M ∂z, is
plotted as a function of lens redshift and halo mass in Fig. 4, where
we calculate this quantity from BAHAMAS for M200 > 1014 M� and
from EAGLE for M200 < 1014 M�. We remind the reader that this is
a source plane optical depth for magnifications greater than 10. We
also plot ∂τ /∂z (from integrating over lens mass) and ∂τ /∂log M
(from integrating over lens redshift).

The first comment to make is that both ∂τ /∂z and ∂τ /∂log M are
quite broad, so there is no one population of lenses that dominates
the optical depth for high-magnification lensing. Integrating over
both lens mass and lens redshift, the optical depth for |μ| > 10 with
zS = 2 is approximately 2 × 10−5. As explained earlier, for high-
magnification thresholds, the optical depth is inversely proportional
to the square of the threshold, such that the high magnifications
required to significantly alter the true masses of compact binaries
that have been detected with gravitational waves (μ � 50) will
happen to only a very small fraction of all z ∼ 2 compact binary
coalescences (fewer than one in a million).

Results from the SIS model are also included in Fig. 4, where
it can be seen that it does a reasonable job of reproducing the
simulation-derived optical depth, including the relative contribution
from different lens redshifts (∂τ /∂z). This suggests that it will
capture the dependence of τ on source redshift, which is the
quantity required for calculating the expected number of lensed
gravitational wave events that we should detect. Where this SIS
model works less well is in the relative importance of different
lens masses, with it predicting that low-halo masses (< 1012 M�)
make a reasonable contribution to the optical depth, while the
hydrodynamical simulations have a steep drop in ∂τ /∂log M below
1012 M�. The mass scale at which the simulated systems become
inefficient lenses is related to the stellar-to-halo mass relation
for galaxies, whose behaviour changes at halo masses of around
1012 M�. We discuss this further in Section 4.2.
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3734 A. Robertson et al.

Figure 4. The main panel shows the source-plane optical depth for lensing by a magnification greater than 10, at a source redshift of 2, per unit lens redshift
and per decade in lens halo mass. At halo masses above 1014 M�, we use the BAHAMAS simulation while EAGLE is used at lower masses. Above and to the right
of the main panel we show this quantity marginalized over halo mass and lens redshift, respectively, as solid blue lines. For comparison, we show these same
marginalized quantities for our SIS + Tinker et al. (2008) mass function model as blue dashed lines. We also show ∂τ /∂log M from H08 as the red stepped line.
H08 used a different cosmology and mass definition from us, and to show the contribution of these different definitions to the differences between our results
and those from H08, we show an SIS model with the cosmology and mass definition used by H08 as the red dashed line. The dip in the BAHAMAS + EAGLE

results just below 1014 M� is where BAHAMAS would not have sufficient resolution (so is not being used), but EAGLE’s volume leads to a poorly sampled mass
function.

As another comparison, in Fig. 4 we plot ∂τ /∂log M from H08,
who also used zS = 2 and |μ| > 10 (private communication). In
H08, the optical depth was calculated from ray tracing through
a DM-only simulation, with the addition of analytic gravitational
potentials associated with galaxies, where the mass distribution
within the galaxies was taken from the results of a semi-analytic
galaxy formation model. The agreement between our ∂τ /∂log M

and that from H08 is fairly good in general, although there are
differences that we discuss further in Section 4.3.

4.1 Random error on ∂τ /∂log M

The discontinuity in ∂τ /∂log M at 1014 M� is because we change
the simulation used at this mass. The discrepancy between the two
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What does strong lensing? 3735

simulations at this mass scale, with EAGLE predicting a factor of
2 less lensing from M200 ≈ 1014 M� haloes than BAHAMAS, could
be for a number of reasons. Given that poor resolution leads to a
decrease in the strong lensing cross-section of haloes (Fig. 3), it
is unlikely to be resolution related. However, it could be that the
different baryonic physics prescriptions lead to different predictions
for the distribution of mass within haloes at this mass scale.
Alternatively, it could just be random error associated with the
EAGLE prediction, because the low volume of EAGLE means that the
mass function at the high-mass end is poorly sampled. This can
lead to noise both on the number of haloes and their mean lensing
cross-section. The top panel of Fig. 3 shows that the median σ S

lens

of EAGLE galaxies at this mass scale is a factor of almost two lower
than in BAHAMAS, which explains the discrepancy in ∂τ /∂log M.
However, without more EAGLE haloes at this mass scale, we cannot
say whether this is a systematic difference, or just a random quirk
of the particular sample of massive haloes in EAGLE.

Using either the measured mass function from our simulations,
or a mass function such as that from Tinker et al. (2008) combined
with the volume of our simulations, it is possible to work out the
expected number of haloes at each redshift in a given mass bin.
However, using this with an assumption of Poisson statistics for
the number of haloes in a given mass and redshift bin would
underestimate the random error on ∂τ /∂log M for two reasons.
First, the different snapshots are not independent, because it is
the same haloes (evolving through time) that appear in the different
snapshots. Secondly, there is fairly large scatter in σ S

lens at fixed lens
redshift and halo mass. For BAHAMAS, the distribution of σ S

lens at
M200 ≈ 1014 M�, zL = 0.375 is well fit by a lognormal distribution
with a standard deviation of 0.35 dex (this scatter can be seen in the
top panel of Fig. 3). Such a distribution has 50 per cent of the signal
coming from only 20 per cent of the objects, so that the scatter in
the total lensing signal from a mass bin is significantly larger than
the Poisson expectation.

In order to get an estimate of the random error on ∂τ /∂log M that
reflects the points above, we use a bootstrap technique. Separately
for both EAGLE and BAHAMAS, we extract the 100 most massive
haloes from the z = 0 snapshot and find their primary progenitors in
the preceding snapshots. We then draw 100 haloes with replacement
from these 100 z = 0 haloes, and calculate ∂τ /∂log M with the
100 most massive haloes and their progenitors replaced by the
bootstrapped sample of 100 haloes and their progenitors. We do this
1000 times and find the 2.5 per cent and 97.5 per cent percentiles
for ∂τ /∂log M, which are shown by the blue shaded regions in
Fig. 4. Note that the choice of the 100 most massive haloes is fairly
arbitrary. In principle we could bootstrap sample all haloes, but
we avoided this because our simple method for finding progenitors
(using the most massive halo with a comoving centre within 4r200 of
the halo comoving centre at the preceding snapshot) works only for
the most massive haloes in the box. Owing to the sharply rising mass
function towards low-halo masses, the random error associated with
∂τ /∂log M at low masses should be negligible. Taking the noisy
sampling of the high-mass end into account, the BAHAMAS and
EAGLE ∂τ /∂log M at M200 ∼ 1014 M� are consistent at the 2σ level.

4.2 The lowest halo masses that are efficient lenses

An obvious feature in Fig. 4 is that ∂τ /∂log M drops rapidly at
halo masses below 1012 M�. We attribute this to the rapid fall off
in stellar mass below this halo mass. Using abundance matching,
the observed stellar mass function can be combined with N-body
simulations to predict the stellar mass that resides in different

halo masses at different redshifts (Behroozi, Wechsler & Conroy
2013; Moster, Naab & White 2013). The resulting stellar-to-halo
mass relation is matched reasonably well by the EAGLE simulations
(Schaye et al. 2015). At a given redshift, the relationship between
stellar mass and halo mass is approximately a double power law,
which breaks at a characteristic halo mass of M1 = 1011.5−12 M�.
At halo masses below this, the stellar mass (M∗) falls off rapidly
with decreasing halo mass. In the local Universe, this fall off is
approximately M∗ ∝ M

5/2
200 , while at z = 2 it is closer to M∗ ∝ M2

200.
This fall off in stellar mass at low-halo masses means that stars
quickly become unimportant for lensing when M200 < M1. These
low-mass haloes then only have a DM component, which should be
reasonably well fit by a Navarro, Frenk, and White (NFW) density
profile (Navarro, Frenk & White 1997). The strong lensing cross-
section of an NFW halo decreases exponentially with decreasing
halo mass below 1013 M� (Hilbert et al. 2007), so that these low-
mass haloes have very low lensing cross-sections, which – even
combined with their large abundance – leads to them making a
negligible contribution to the total optical depth.

While the median σ S
lens is a monotonically increasing function of

M200, inspection of Fig. 3 reveals a feature around 1012 M�, where
lensing is most efficient compared with the SIS prediction. This is
the same mass scale at which M∗/M200 peaks (Moster et al. 2013),
and this feature in σ S

lens(M200) can be ascribed to the turnover of
M∗/M200.

4.3 Comparison with Hilbert et al. (2008)

Compared with the H08 ∂τ /∂log M, hydrodynamical simulations
predict slightly more strong lensing in total, with the increase
primarily due to galaxies with halo masses of 1012–1013 M�. The
cosmology and mass definition8 are different between H08 and
the hydrodynamical simulations. To investigate whether this ex-
plains the different lensing predictions, we calculated two different
∂τ /∂log M from our SIS model – one using the cosmology and
mass definition from EAGLE and BAHAMAS, the other those adopted
by H08. These two ∂τ /∂log M are plotted as dashed lines in the
right-hand panel of Fig. 4, and the differences between them are
smaller than the differences between the lines from the different
simulations.

For haloes with M200 > 1014 M�, i.e. those from BAHAMAS,
∂τ /∂log M is similar between the hydrodynamical simulations and
H08. Robertson et al. (2019) looked at the density profiles of
BAHAMAS clusters, both DM-only and including baryons, and found
that the total density at the centre of clusters increases when sim-
ulations include baryons, not just because of the contribution from
stars (which should be captured by H08 who included analytical
potentials associated with a stellar disc and bulge), but also because
the DM profile itself becomes more centrally concentrated due to
adiabatic contraction (Gnedin et al. 2004). The fact that this does not
push the BAHAMAS curve above that from H08 probably reflects the
fact that in H08 the analytical baryonic potential is added to the DM
distribution from a DM-only simulation. Such a simulation does not
ignore the baryonic material in the universe, rather it simulates it as if
it were also made of DM. As such, there is more DM in a DM-only
simulation than in a hydrodynamical simulation, such that when
H08 add in a stellar component there is now more total mass in each
halo. This appears to mimic the effects of adiabatic contraction on

8H08 use M200, mean whereas we use M200, crit.
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3736 A. Robertson et al.

strong lensing cross-sections such that the hydrodynamical and DM-
only plus analytical galaxies predictions are similar in the galaxy
cluster regime.

The largest discrepancy between our results and those from H08
is in the 1012–1013 M� mass range. At these halo masses the DM-
only prediction is for negligible amounts of strong lensing (Hilbert
et al. 2007), so the lensing signal for these systems is dominated by
the stellar component. In EAGLE, the lensing cross-sections of these
galaxies are well resolved (Fig. 3), and in H08 they use analytic
expressions to calculate the ray distortions induced by stellar mass
distributions, so they are not limited by any sort of resolution effects.
The difference must therefore come down to differences between
the stellar distributions found in EAGLE and those used by H08. H08
modelled the stellar component as the sum of an exponential disc

�disc = Mdisc

2πr2
disc

exp

(
− r

rdisc

)
(17)

and a bulge

�bulge = 94.5 Mbulge

r2
bulge

exp

[
−7.67

(
r

rbulge

)1/4
]

. (18)

The disc mass, bulge mass, and disc radius (Mdisc, Mbulge, and rdisc,
respectively) were taken from the De Lucia & Blaizot (2007) semi-
analytic model that had been run on merger trees generated from the
same Millennium simulation that H08 used for the DM component.
They used an observationally derived Mbulge–rbulge relation to get the
bulge radius.

To verify that these parametric mass distributions, with values
taken from De Lucia & Blaizot (2007), produce less strong lensing
than EAGLE galaxies, we use the Millennium data base9 to find
the De Lucia & Blaizot (2007) galaxy parameters for haloes with
1012 < M200/ M� < 1013 in the z = 0.362 snapshot. For each halo,
we calculate σ S

lens for |μ| > 10, which we can then compare with
the EAGLE haloes in Fig. 3. We find that at fixed halo mass, the
median σ S

lens from this procedure is one order of magnitude lower
than from EAGLE, which is true for both 1012 and 1013 M� haloes.
This comparison is slightly unfair, because we have not included
the DM component in the Millennium lensing. At 1013 M� (where
EAGLE and H08 differ by a factor of two to three in ∂τ /∂log M),
the DM fraction within the Einstein radius is typically significant,
whereas at 1012 M� the lensing is dominated by the stars. As such,
the increasing discrepancy in ∂τ /∂log M going from 1013 M� to
1012 M� is explained by the increasing importance of the stars for
the lensing, and the stellar components used by H08 being less
efficient lenses than those found in EAGLE.

Given that EAGLE has a stellar mass – stellar size relation that is
a good match to observations (Schaye et al. 2015), and a similar
comparison with the stellar mass–halo mass relation suggests that
EAGLE has too few stars in haloes around 1012 M�, it seems unlikely
that EAGLE is significantly overestimating the lensing contribution
from 1012 M� haloes. A thorough analysis of the De Lucia &
Blaizot (2007) semi-analytic galaxies and their lensing signal as
implemented by H08 is beyond the scope of this work, but here
we mention possible reasons for the lensing signals being lower
than in EAGLE. The simplest possibility is that there is simply not
enough mass in stars, or that the galaxies are too large (and therefore

9http://gavo.mpa-garching.mpg.de/Millennium/, described in Lemson &
Virgo Consortium (2006). Strictly speaking we use the milli-Millennium
data base, similar to the Millennium data base but openly accessible, and
for a simulation with a volume 1/512 of the full Millennium simulation.

more diffuse, and so less efficient strong lenses). Another possibility
is that departures from circular symmetry may be important. In
particular, H08 assume the stellar disc is always seen face on. Most
of their galaxies in the 1012–1013 M� halo mass range are disc-
dominated, and viewing these discs face-on their surface densities
rarely exceed �crit. An edge-on disc reaches much higher surface
densities and is therefore a more powerful lens (Bartelmann & Loeb
1998; Blain, Moller & Maller 1999). The choice to place all discs
face-on may therefore cause H08 to underestimate the contribution
to the strong lensing optical depth from lower mass haloes.

4.4 Comparison with lensed submillimeter galaxies

As mentioned in the introduction, one of the arguments for strong
lensing being dominated by galaxy lenses, is that these are the
primary lensing population when galaxies detected as being the
brightest at submillimeter wavelengths are followed up to allow
identification of a potential lens (e.g. Wardlow et al. 2013). Here,
we sketch out a qualitative argument for why this is expected, and
does not contradict our finding that lenses with M200 > 1013 M�
make a dominant contribution to the strong lensing optical depth
for high magnifications of point sources.

The very brightest objects observed in the submillimeter are
almost entirely gravitationally lensed, which can be understood
from the steepness of the bright-end of the intrinsic luminosity
function of dust-obscured star-forming galaxies (Perrotta et al.
2002; Lima et al. 2010). This means that a small fraction of less-
bright objects (of which there are many) being highly magnified,
can dominate over the intrinsically bright objects with the same
observed flux (Negrello et al. 2010).10

The flux limits employed in submillimeter surveys to find likely
lensed objects, primarily select for objects with only modest magni-
fications. For example, Wardlow et al. (2013) expect magnifications
of around 9 given their sample cuts. Given the universal form
of P(> μ) ∝ μ−2 for large μ, if a class of objects dominates
lensing for large magnifications (greater than 100 say), then it
should also dominate lensing for more modest magnification (such
as those relevant for submillimeter galaxies). However, this relation
is true only for point sources, with extended sources having more
complicated magnification distributions.

It is perhaps intuitive that with increasing source size, the
maximum magnification achievable decreases, as less of the source
can lie close to a caustic. A less obvious fact is that this decrease
in maximum magnification is accompanied by an increase in the
probability of being moderately magnified. This can be understood
from noting that for an extended source, the magnification of
the source as a whole is a weighted mean of the source plane
magnification for point sources over the surface brightness profile
of the extended source. As such, the mean magnification of sources
randomly distributed on the source plane must be independent of
their size. A large source cannot all be close to a caustic, but there
is an increased chance that at least some of it will be. This effect
was calculated explicitly by de Freitas, Makler & Dúmet-Montoya
(2018), who showed that for a circular source with constant surface
brightness lensed by an SIS, the cross-section for |μ| > 10 is

10This is the same argument being made by Broadhurst et al. (2018), who,
by assuming that the mass function of black holes exponentially decreases
at masses > 10 M�, find that objects detected as having masses ∼30 M�
would in fact be dominated by lensed objects that are intrinsically less
massive.
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maximized when the angular radius of the source is 30 per cent
of the Einstein radius. As galaxies have smaller Einstein radii than
clusters, the relative size of a submillimeter source is larger when
lensed by a galaxy than by a cluster. This decreases the importance of
galaxy-lenses for very high magnifications of extended sources, but
increases their prevalence as lenses with moderate magnifications,
which is what dominates observed submillimeter samples.

4.5 Implications for searches for lensed gravitational waves

Aside from its importance for trying to estimate the probability of
strong lensing from observed galaxies or galaxy clusters, knowing
which halo masses are responsible for strong lensing is important
for strategies to find optical counterparts to gravitationally lensed
gravitational waves. At present, gravitational wave detections have
large positional uncertainties, with 90 per cent confidence regions
typically covering a few hundred square degrees (Abbott et al.
2018). Surveying this whole area with optical telescopes requires a
large number of exposures to tile the sky localization region.

Reducing the telescope time required to find optical counterparts
to gravitational waves requires novel observing strategies. For
example, the optical counterpart to the binary neutron star merger
detected by LIGO and Virgo (GW170817, Abbott et al. 2017b) was
first discovered (Coulter et al. 2017) using an observing strategy
that targeted known galaxies in the three-dimensional LIGO-Virgo
localization (Gehrels et al. 2016).

For high-redshift gravitational wave sources, narrowing down the
search using plausible host galaxies will be difficult, first because
a larger fraction of possible hosts will be undetected and secondly
because of the large number of galaxies per unit solid angle at high
redshift compared with low redshift. However, if there is evidence
that a particular source may have been lensed, then a search strategy
that targets lenses rather than source-hosts can be used. Such a
strategy has been employed by Smith et al. (2019b), who observed
two known strong lensing clusters within the sky localization of a
binary black hole seen by LIGO–Virgo (GW170814, Abbott et al.
2017a).

Assuming that an observed gravitational wave has been strongly
lensed, and that there is an electromagnetic counterpart to detect,
for the Smith et al. (2019b) strategy to have a high chance of success
requires that massive clusters dominate the strong lensing optical
depth. From ∂τ /∂log M in Fig. 4, we can see that the most massive
clusters contribute only a small fraction of the total optical depth. In
fact, using the BAHAMAS + EAGLE prediction, if we take a z = 2 point
source that we know to have been highly magnified, the probability
that it was lensed by a halo with M200 > 1015 M� is only around
2 per cent, rising to 25 per cent for M200 > 1014 M� and 50 per cent
for M200 > 1013 M�. However, a single powerful strong-lensing
cluster can have a source-plane cross-section for |μ| > 10 of ∼
500 arcsec2.11 This would account for around 5 per cent of the highly
magnified source plane solid angle within the sky localizations of the
best localized GW detections (90 per cent localization uncertainty
of ∼50 degree2), if indeed such a cluster lens is located within the
sky uncertainties. In general, our results indicate that finding optical
counterparts to high-redshift strongly lensed GWs will most likely
require very wide-field optical follow-up as discussed by Smith
et al. (2019a). Full exploration of such wide-field follow-up will

11As a concrete example, MACS 0717 has σ S
lens(|μ| > 30) = 65 arcsec2

(Vega-Ferrero, Diego & Bernstein 2019). Converting this to |μ| > 10 using
P (|μ| > μ0) ∝ 1/μ2

0 gives a cross-section of 580 arcsec2.

Figure 5. The source-plane optical depth for magnifications greater than 10,
as predicted by different models. The solid blue line shows our prediction
from hydrodynamical simulations, while the blue dashed line shows the
prediction from our SIS model. The red line shows results from H08, who
also used cosmological simulations, but using a semi-analytic model of
galaxy formation rather than hydrodynamical simulations. The yellow line
shows the results from the SIS model used by Hannuksela et al. (2019),
in which the mass function of lenses does not change with redshift. The
different predictions agree to within a factor of two over most of the redshift
range, except for the Hannuksela et al. (2019) line which is a factor of four
to six larger than the others.

benefit from highly complete lists of strong-lensing systems down
to halo masses of 1013 M� (Ryczanowski et al. 2020).

4.6 Strong lensing probabilities at different source redshifts

The mass and redshift distribution of gravitational lenses is impor-
tant for designing strategies to find the likely lenses of a lensed
gravitational wave, as we have discussed. However, for calculating
the rate of detectable lensed events, or for finding the probability
that a given event has been strongly lensed (assuming one does not
have an accurate sky localization), the important quantity is simply
the probability of strong lensing as a function of source redshift.
Ng et al. (2018) have made predictions for the rate at which lensed
gravitational waves should be detected, while Hannuksela et al.
(2019) recently found no evidence that any observed gravitational
wave signals have been strongly lensed. Both groups used a strong
lensing optical depth based on the assumption that lensing was done
by a population of SIS mass profiles, whose mass function does not
evolve, and has a normalization determined from galaxy surveys
(Fukugita & Turner 1991).

In Fig. 5, we plot the evolution of the source-plane optical depth
for high-magnification lensing as predicted from our simulations.
This was done by calculating ∂2τ/∂ log M ∂z, as shown for zS =
2 in Fig. 4, but at many different source redshifts. At each zS, we
integrate over lens mass and lens redshift to obtain τ (zS). As we
only generated mass maps for zL ≤ 2, we can only calculate the
optical depth out to zS = 2. For comparison we show this same
quantity from using our SIS model and from H08. We find that
the two simulation predictions agree well with one another, while
the SIS model predicts slightly more strong lensing, particularly
at low source redshifts. We also used the SIS model to understand
the impact of a change in cosmology from that adopted in our
simulations (Planck Collaboration II 2014) to the latest Planck
cosmology (Planck Collaboration VI 2018). This latest cosmology
has a slightly increased �m and a decreased σ 8 compared with the
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earlier Planck cosmology. These changes approximately cancel one
another to produce a τ (zS) that differs from the Planck Collaboration
II (2014) SIS result in Fig. 5 by less than the ine width (the Planck
Collaboration VI 2018 line is not plotted in fig. 5).

To compare with work that was used to calculate the probabilities
that observed gravitational waves have been strongly lensed, we also
plot the optical depth used by Hannuksela et al. (2019). They used
a model where the population of lenses was comprised of singular
isothermal spheres, with a mass function that does not evolve with
time. This leads to an optical depth as a function of source redshift

τ (zS, |μ| ≥ μ0) = F

(
dC(zS)

cH−1
0

)3 (
2

μ0

)2

, (19)

where dC(z) is the comoving distance to redshift z, and F is a
dimensionless constant for which they use 0.0017. This is plotted
in Fig. 5 for μ0 = 10, along with the same quantity predicted from
our simulations, our SIS model and from H08.

In Fig. 5, the different models agree reasonably well on τ (zS),
except for that used by Hannuksela et al. (2019) which predicts
more strong lensing than the others by a factor of approximately
five. This means their value for F is probably optimistic in terms of
the amount of strong lensing, but a lower value for F would only
strengthen their conclusion that it is unlikely that any of the already
detected gravitational wave signals have been highly magnified by
gravitational lensing.

5 C O N C L U S I O N S

In this paper, we have calculated the optical depth for high-
magnification gravitational lensing of high-redshift point sources,
and its contribution from different lens masses and redshifts, as
predicted by two recent hydrodynamical simulations, EAGLE and
BAHAMAS. We combine these two simulations because EAGLE has
sufficient resolution to resolve the lowest mass haloes important for
strong lensing, while the large volume of BAHAMAS allows for an
adequate sampling of the high-mass end of the halo mass function.
The predicted contribution from group mass (1013–1014 M�) haloes
is rather uncertain, because the strong lensing regions of these
haloes are not well resolved in BAHAMAS, and the EAGLE simulation
has insufficient volume for a robust prediction. Future simulations,
with sufficiently large volume and resolution to accurately estimate
the lensing contribution from galaxy groups, will improve our
predictions further.

The relative contribution of different lens masses to the total
optical depth for large magnifications has been a topic of recent
debate, particularly in the community studying the effects of
gravitational lensing on observations of gravitational waves. The
importance of galaxies versus galaxy clusters is a ‘tug-of-war’
between the high number density of galaxies, and the large lensing
cross-sections of galaxy clusters. We first studied a simple model,
in which haloes are modelled as singular isothermal spheres. In this
model, the lensing cross-section of haloes grows as M4/3, while the
number density of haloes per decade in halo mass is approximately
proportional to M−1. As such, the high lensing cross-sections of
more massive haloes wins over the increasing number of less
massive haloes, and it is the more massive haloes that contribute
more to the strong lensing cross-section. This argument holds up to
the mass scale at which the mass function is no longer a power law,
but is exponentially suppressed, which reduces the importance of
the most massive haloes for strong lensing.

The hydrodynamical simulations confirm this picture, while
altering slightly the importance of different halo masses. The

primary difference between the simulation predictions and those
from our SIS model is that the simulations pick out a particular
mass scale (M200 ∼ 1012 M�) as being more efficient at lensing
than predicted by the SIS model. This scale corresponds to the
scale at which galaxy formation is most efficient, in that the stellar
mass to halo mass ratio is the highest there (Moster et al. 2013). A
second result of the hydrodynamical simulations is that they predict
a minimum halo mass below which lensing becomes inefficient.
Again this is related to the stellar-to-halo mass relationship, as in
low-mass haloes it is the stars rather than dark matter that dominate
the strong lensing region. The stellar mass falls off quickly with
decreasing halo mass below a halo mass of 1012 M�, and so lower
mass haloes quickly become unimportant for lensing. Overall we
find that around half of all high-magnification lensing is done by
haloes with M200 > 1013 M� (i.e. galaxy groups and clusters), with
the other half coming from less massive systems (galaxies). This
result differs somewhat from a previous simulation-based result
(H08), which used a dark matter only simulation combined with
analytical gravitational potentials for the stellar components of
galaxies, in that we find an enhanced contribution from galaxies
living in 1012–1013 M� haloes.

We also discussed the implications of this work for strategies to
hunt for optical counterparts to gravitationally lensed gravitational
waves. If the bulk of high magnification lines of sight resulted from
the most massive haloes, then a credible strategy for finding the
optical counterpart to a gravitational wave that was known to be
strongly lensed, would be to look in the strong lensing region of the
most massive haloes within the gravitational wave sky localization.
However, massive clusters (with M200 > 1015 M�) contribute only
2 per cent of the total optical depth for large magnifications, with
the bulk of the signal coming from massive galaxies or low-mass
clusters. The number densities of these objects is much higher, such
that there will be many within the sky localization of a detected
gravitational wave. This means that finding the optical counterparts
to high-redshift gravitationally lensed gravitational waves will most
likely require tiling the credible area on the sky as determined from
the gravitational waves. That said, if a particularly powerful strong
lensing cluster was in the sky localization of a well-constrained
gravitational wave (∼50 deg2) then it could account for around
5 per cent of the strong lensing within the sky localization.

Finally, we presented our prediction for the optical depth for high
magnification as a function of source redshift, a key ingredient in
calculating the expected rate of gravitationally lensed gravitational
waves, as well as the abundance of other gravitationally lensed
point sources. We found that our result was in reasonable agreement
both with H08’s previous simulation-based result, as well as simple
models that treat lenses as SISs. At low redshift, high magnifications
are extremely unlikely. Each zS = 0.5 source produces, on average,
5 × 10−7 images with magnification greater than 10; this increases
to about 2 × 10−5 images for zS = 2. These lensing probabilities are
lower than assumed by Hannuksela et al. (2019) in recent work on
the probability that observed gravitational waves have been strongly
lensed. They found that strong lensing was unlikely to have affected
the current sample of observed gravitational waves, and our lower
intrinsic lensing probabilities strengthen this result.
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