
MNRAS 000, 1–11 (2018) Preprint 1 March 2019 Compiled using MNRAS LATEX style file v3.0

A many-core CPU prototype of an MCAO and LTAO RTC for
ELT-scale instruments

David R. Jenkins,? Alastair G. Basden, and Richard M. Myers
CfAI, Department of Physics, Durham University, DH1 3LE, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
We propose a many-core CPU architecture for Extremely Large Telescope (ELT) scale adap-
tive optics (AO) real-time control (RTC) for the multi-conjugate AO (MCAO) and laser-
tomographic AO (LTAO) modes. MCAO and LTAO differ from the more conventional single-
conjugate (SCAO) mode by requiring more wavefront sensor (WFS) measurements and more
deformable mirrors to achieve a wider field of correction, further increasing the computational
requirements of ELT-scale AO. We demonstrate results of our CPU based AO RTC operating
firstly in SCAO mode, using either Shack-Hartmann or Pyramid style WFS processing, and
then in MCAO mode and in LTAO mode using the specifications of the proposed ELT instru-
ments, MAORY and HARMONI. All results are gathered using a CPU based camera simulator
utilising UDP packets to better demonstrate the pixel streaming and pipe-lining of the RTC
software.We demonstrate the effects of switching parameters, streaming telemetry and implicit
pseudo open-loop control (POLC) computation on the MCAO and LTAO modes. We achieve
results of < 600µs latency with an ELT scale SCAO setup using Shack-Hartman processing
and < 800µs latency with SCAO Pyramid WFS processing. We show that our MCAO and
LTAO many core CPU architecture can achieve full system latencies of < 1000µs with jitters
< 40µs RMS. We find that a CPU based AO RTC architecture has a good combination of
performance, flexibility and maintainability for ELT-scale AO systems.

Key words: instrumentation: adaptive optics – methods: numerical – instrumentation: mis-
cellaneous

1 INTRODUCTION

Ground based astronomical telescopes, both current and future, are
much larger than space telescopes and so provide greater light col-
lecting area and resolving power, increasing the potential for astro-
nomical imaging. However due to the Earth’s atmosphere, imaging
from the groundwithout any active correction results in a significant
degradation of diffraction limited imaging quality. Adaptive optics
(AO, Babcock 1953) is a widely-used technique that helps to negate
the perturbing effects of the atmosphere and allows telescopes to
achieve imaging fidelity much closer to the diffraction limit than
otherwise. AO has been successfully used on sky and can be used
in different configurations depending on the type and amount of
correction needed.

For the next generation of extremely large telescopes (ELTs)
such as the Giant Magellan Telescope (GMT, Johns et al. 2004),
the Thirty Meter Telescope (TMT, Stepp & Strom 2004) and the
Extremely Large Telescope (ELT, Spyromilio et al. 2008), AO cor-
rection will become much more important but also much more
difficult to achieve. The atmosphere affects imaging by reducing
the effective diffraction limit of ground-based telescopes by per-

? E-mail: d.r.jenkins@durham.ac.uk

turbing the incoming wavefront and therefore “blurring” the image
point-spread function (PSF). The relation between the strength of
the atmospheric turbulence, and therefore the amount of wavefront
perturbation, to the size of the PSF is known as the “seeing” limit.

The strength of the turbulence in the atmosphere which causes
the wavefront perturbations can be defined by the Fried parameter
(Fried 1966), r0, which has units of length and is usually on the order
of ~10cm at a wavelength of around 500nm. The Fried parameter is
related to the size of the PSF in the seeing limit in a very similar way
to the relationship of the telescope diameter to the size of the PSF in
the diffraction limit. Therefore the effective diffraction limit for all
telescopes with aperture diameters greater than r0 will be constant
for certain seeing conditions and roughly equal to the diffraction
limit of a telescope with diameter r0. This means that without any
AO correction the resolving power of larger and larger ground-based
telescopes remains effectively constant at the particular seeing limit.

1.0.1 AO functionality

The functionality of current AO systems can be split into 3 main
parts: indirectly detecting the incoming wavefront, reconstructing
the wavefront, and then applying corrections to mitigate the effects
of the atmosphere. The detection and correction of the wavefront

© 2018 The Authors

2 D. R. Jenkins et al.

are usually performed by optical methods, using a wavefront sensor
(WFS) for the detection and a deformable mirror (DM) for correc-
tion, and the reconstruction is a computational method. The basic
idea behind the reconstruction is to attempt to “flatten” the wave-
front from a point-source natural guide star (NGS) which picks up
aberrations as it travels through the atmosphere. Therefore any devi-
ations of the measured phase of the wavefront from a flat wavefront
are considered perturbations and can be corrected by the DM.

For the reconstruction, analysis of the WFS images provides
local wavefront gradients which are used to reconstruct the shape
of the wavefront phase as projected onto the DM, this information
is then used to produce commands for the DM to correct for the at-
mospheric perturbations. As the atmosphere is constantly changing,
the corrections need to be applied very shortly after measurement
for them to still be valid. This requires corrections to be performed
in real-time; i.e. there is a defined time limit between measurement
and correction within which the reconstruction must be computed
and applied such that the AO performance is sufficient for the atmo-
spheric conditions. The real-time control (RTC) of AO is therefore
fundamental to the operation of AO and is an extremely important
consideration in the design of an AO instrument.

The most basic form of AO is single conjugate AO (SCAO) us-
ing a singleWFS on a natural guide star (NGS) to provide wavefront
measurements for a single DM. An NGS is simply a bright star that
is close enough to the science object of interest such that the light
from both travels through as much of the same atmosphere as pos-
sible to ensure that the reconstruction along the NGS line of sight
is also valid for the science object. The corrected field of view for
SCAO is small and therefore it is greatly limited by sky-coverage;
NGS need to be bright and close enough to the science target to
reduce the effects of anisoplanatism (Fried 1982). To overcome the
problem of anisoplanatism, several more complex types of AO have
been proposed to allow greater sky coverage and also to increase
the corrected field of view.

1.1 Multi-conjugate and laser-tomographic AO for ELTs

Multi conjugate AO (MCAO, Beckers 1988) and laser tomographic
(LTAO, Foy & Labeyrie 1985; Fugate et al. 1991) differ from the
single conjugate AO (SCAO), described above, by having multiple
DMs and/or multiple WFSs which increase the AO functionality
over SCAO by having a wider field of view, increasing PSF field
stability and the ability to do science on multiple objects. Figure 1
summarises the differences between SCAO, MCAO and LTAO.

MCAO gets its name from having multiple DMs conjugate to
different heights in the atmosphere with multiple WFSs looking at
different guide stars which can be either natural guide stars (NGS) or
artificial laser guide stars (LGS). LGS use lasers to project a bright
source of light high up in the atmosphere. This gives greater sky
coverage as there is no fundamental restriction on the laser launch
direction however it introduces a new source of error known as the
cone effect or focus anisoplanatism (Beckers 1988). LTAO relies
mostly on LGS WFS and usually has a single DM conjugate to the
ground layer of turbulence.

There is a another type of wide-fieldAOknown asMulti-object
AO (MOAO, Assémat et al. 2007) which also uses multiple WFSs
and DMs, MOAO aims to correct the atmospheric perturbations
along a line of sight for each science target. Therefore it uses one
DM per science target in an open loop configuration with multiple
guide stars across the total field. Due to the increased complexity of
MOAO and its open loop nature, the architecture for MCAO/LTAO

WFC

WFC

WFC

Telescope

Telescope

Reference
Star

Reference
Stars

Laser
Guide
Stars

High Altitude Layer

High
Altitude
Layer

Ground Layer

Ground
Layer

Ground Conj.
DM

Ground Conj. DM

Altitude Conj. DM

On axis WFS

WFS

WFS
Camera

Laser Tomographic AOSingle Conjugate AO

Multi Conjugate
AO

Figure 1. A visual comparison of SCAO, LTAO and MCAO. SCAO in
general has one WFS and one DM. MCAO has multiple WFSs focussed on
different guide stars and multiple DMs conjugated to different atmospheric
layers. LTAO is similar to MCAO except it mainly uses LGS, it generally
only has one DM and it corrects over a narrower FoV.

proposed here will not be directly applicable to MOAO without
modification and so it will not be considered here.

The computational complexity of the reconstruction depends
on both the spatial frequency of the wavefront-gradient sampling of
the WFS and the number of degrees of freedom of the DM. These
values both typically scale to the square of telescope diameter and
therefore the computational complexity of the reconstruction scales
to the fourth power of telescope diameter; becoming much more
of a challenge for ELT-scale telescopes and especially for the more
complex types of AO which can utilise multiple WFSs and DMs
and also employ more demanding reconstruction algorithms. Each
extra WFS and DM in MCAO and LTAO increases the number of
parameters and degrees of freedom (DoF) such that the computa-
tional complexity scales linearly with the number of each compared
with an SCAO system.

Previous investigations into using many-core CPU systems,
specifically the Xeon Phi, for accelerating SCAO-like AO systems
can be found in Barr et al. (2015) and Jenkins et al. (2018). This
report will continue the work in Jenkins et al. (2018) and apply the
method to develop a prototype system suitable for the more complex

MNRAS 000, 1–11 (2018)

ELT MCAO many-core CPU RTC 3

a) Image Acquisition
and Processing

b) Wavefront Gradient
Calculation (centroiding)

c) Wavefront
Reconstruction

x and y gradient
of sub aperture i

(x, y) i = (si, sn/2+i)

=
m11 m1ns1 g1

sn gmmm1 mmn

d) Actuator
Commands

Figure 2. The four main processes in the AO loop for a single WFS. For the MCAO or LTAO case the final actuator commands from each WFS then need to
be combined in a final step.

and computationally demanding MCAO and LTAO. Section 2 will
give a brief update on the general optimisations and SCAO results
presented Jenkins et al. (2018). Section 3 will describe the extension
of this work to prototype an MCAO/LTAO system. Section 4 will
present the results of this work and section 5 will conclude with a
discussion of the results and future work.

2 RECENT DEVELOPMENTS OF DARC FOR
MANY-CORE CPUS

The general optimisations and modifications made to the RTC soft-
ware used in this report, the Durham Adaptive Optics Real-time
Controller (DARC), is detailed in Jenkins et al. (2018). However
since then improvements have been made to the software resulting
in an improvement in performance and functionality. One of the
main changes is a move away from the Aravis GigE Vision Library
(AravisProject 2018) for simulating the camera and for receiving
the pixel stream. We have instead implemented a camera simula-
tor based on the proposed standard for ESO ELT WFS (Downing
et al. 2018) that streams pixels using UDP packets, and we have
also developed a library within the RTC to receive this new camera
stream.

2.1 UDP Camera Simulator

We have developed the new ESO camera interface from the ground
up, rather than relying on a pre-existing library which is not opti-
mised for the extreme performance we require. The UDP camera
simulator is controlled at runtime of the simulator executable and the
receiver software simply waits to receive the packets. In this way
we can define the parameters of the camera simulator separately
from the receiving of the camera stream, and it no longer requires
a heartbeat thread to keep the camera sending packets, which we
found could interfere with the pixel stream.

The camera simulator is implemented in the C programming
language in an effort to make it both as low level as possible and as
easy to modify and develop as possible. The underlying networking
uses packet sockets, which are used to receive or send raw packets
at the device driver (OSI Layer 2) level (Kerrisk 2018). This in
theory allows minimal overhead from the kernel when sending and
receiving packets as most of the protocol implementation can be
programmed in user space on top of the physical layer. The type of
socket used here is SOCK_DGRAM which does not have the link
level header removed by the network stack and so is not quite as low
level as SOCK_RAW packets.

The operating system on the simulator machine is Ubuntu

16.04 on top of a Linux 4.4.0 generic kernel. A low-latency Linux
kernel was investigated but was observed to provide no discernible
performance benefit. Some OS, Kernel and network level tuning
was performed to improve performance. Some of the steps taken
involved:

◦ isolating most CPU cores from the OS scheduler,
◦ specifying the core affinity for the NIC interrupts and camera

threads,
◦ tuning both the NICs and linux network stacks UDP buffer sizes

using the linux “ethtool” command and the “sysctl” utility,
◦ and setting the CPU power settings to “performance”.

The camera simulator software is used only to simulate the
pipe-lined transfer of pixels to the RTC and so the unique images
that were streamed by each camera were created ahead of time
via AO simulations to properly construct images for the type and
dimensions of AO system tested. The images were stored on a PCIe
fast raid storage array consisting of 4 Samsung 960 EVO NVMe
solid state drives (SSDs) which provided transfer rates > 4.2GBs−1

which is sufficient to allow the pixel data to be streamed directly
from storage. The simulator software is set up such that both the
inter-packet delay and inter-frame delay can be set independently.
This not only allows different camera frame rates to be simulated,
it also allows the readout time to be adjusted to better reflect that
of a real camera, rather than just sending out the packets as soon
as possible. As the inter-packet delay needs to have microsecond
precision the timing is achieved via the Linux “timer_fd” utility
which uses file descriptors to achieve a repeatable high precision
timer.

The simulator hardware consists of a 2012 Intel Xeon E5-
2650 dual socket system with 8 CPU cores and 32GB of DDR3-
1600Mhz RAM per socket with a base CPU frequency of 2.0GHz.
The network devices used are 2 PCIe Intel Ethernet X710-DA4
Network Interface Controllers (NICs) with 4 10GbE ports each
where a single camera simulator stream will have exclusive use of
one of these 8 interfaces. In a multi-socket CPU system, certain
PCI-e lanes are physically connected to a single CPU socket. The
NICswere therefore installed in the host such that eachwas local to a
different CPU socket and then the camera threads for each interface
were assigned CPU cores on the local socket.

The camera simulator is unable to provide completely jitter
free cameras streams, Figure 3 shows two representative frame time
distributions from the camera simulator whilst it was delivering 7
individual camera streams for anMCAOorLTAOsetup as described
in Section 1.1. For 10 random distributions similar to those shown,
the number of outliers can vary from 0-11 over the 300s of running
time, the largest outlier is never more than twice the frame time.

MNRAS 000, 1–11 (2018)

4 D. R. Jenkins et al.

0 50 100 150 200 250 300

2.00

2.50

3.00

3.50

0 50 100 150 200 250 300
Cumulative time / s

2.00

2.50

3.00

3.50

1.7 2.7 3.7
Frame-time / ms

100

101

102

103

104

105

Co
un

t /
 lo

g

Fr
am

e
Ti

m
e

/ m
s

(a)

(b)

(c)

Figure 3. Frametime results from the camera simulator software showing
two representative samples of frametime distributions while the camera
simulator is delivering the 7 individual camera streams as needed by the
MCAOandLTAORTCarchitectures described in Section 1.1. Results shown
are for 1.5 × 105 iterations at 500Hz for a total time of 300s.

For the periods of low jitter the RMS jitter is very low and on
order of 5µs. Each of these data sets were collected after restarting
the camera simulator software and the amount of jitter present in
each run can vary significantly. This introduces random high latency
spikes into some of the AORTC timing data presented in this report.
This was minimised by waiting a small amount of time to determine
if a certain run was more stable than normal. Once the software was
running the amount of jitter varied little and so once a stable run
was found, it was used for as many RTC tests as possible.

Due to the simulator software needing to time the inter-packet
delay to microsecond precision and to deliver up to 7 individual
camera streams at high frame-rate, the CPU system used is not an
ideal candidate. The workload of the simulator is very different to
that of the AO RTC system and so a more modern single socket
CPU system with faster cores and lower latency memory could
potentially improve the camera simulator’s jitter performance. We
note that the jitter originating from the camera simulator would not
be present in real cameras as they are usually deterministic.

2.2 Pyramid WFS, Pixel Handling and Slope Computation

We have also implemented a SCAO RTC demonstrator for a system
using a PyramidWFS (Pyr-WFS). Pyr-WFSs (Ragazzoni 1996) dif-
fer from the more conventional Shack-Hartman WFS (SH-WFS) in
the fundamental approach to detecting the local tip/tilt slopes across
the telescope aperture. In the context of the RTC the main differ-
ence between the slope computation of a Pyr-WFS to a SH-WFS is
the reduced pixel counts in the calculation of each slope measure-
ment; only 4 pixels are needed for each slope measurement with a
Pyr-WFS, whereas the SH-WFS generally requires more (> 36 for
ELT-scale) depending on the specific AO systems requirements.

There is also a difference in the memory access of the pixels
required for each slope measurement and in the pipe-lining of the
pixels, shown in Figure 4. For a Pyr-WFS the RTC needs to wait
for more than half the WFS image to arrive before it can begin
slope calculation whereas for a SH-WFS centroiding can begin as
the soon as enough lines of pixels have arrived to complete a row
of sub-apertures. This shows that even though there are far fewer
pixels to process for a Pyr-WFS, the less efficient pipe-lining means

Pi
xe

l r
ea

d-
ou

t

Shack-Hartman sub-apertures Pyramid pixels

(x, y) slope = Centre of Gravity
per sub-aperture

(x, y) slope = relative difference
in (x, y) pixel values

w
ai

t f
or

 th
es

e
pi

xe
ls

w
ai

t f
or

 th
es

e
pi

xe
ls

Figure 4. Comparison of the pixel pipe-lining for SH-WFS and Pyramid
WFS image layouts. Each slope measurement from a SH-WFS is taken as
the centre of gravity of the pixels values in each sub-aperture, slopes can be
calculated as soon as all sub-aperture pixels have arrived. For the Pyramid
WFS the slopes are calculated as the relative x and y differences between
corresponding pixels from each pupil quadrant, no slopes can be computed
until at least half the frame has been read. This difference makes pipe-ling
of slopes much less effective when using a Pyramid WFS. Here we have
assumed that the pixels are read from the top of the detector to the bottom,
however the principle is the same for other read-out regimes.

0 50 100 150 200 250 300
Cumulative time / s

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Fr
am

e-
tim

e
/ m

s

(a):

0.6
Frame-time / ms

(b):

100

101

102

103

104

105

Co
un

t /
 lo

g

RTC on-node latency: SH-WFS 80X80

Figure 5. Frametime results for an SCAO setup using a Shack-hartman type
WFS slope calculation with 80 subapertures across the pupil. Results shown
are for 1.5 × 105 iterations at 500Hz for a total time of 300s. The mean
latency is 511 ± 15µs.

that processing Pyr-WFSs in the RTC can be less computationally
efficient than SH-WFSs.

2.3 Up to date SCAO results with camera simulator

Figure 5 shows frame time and latency results for DARC running an
SCAO RTC on an Intel Xeon Phi 7250 with an attached simulated
camera using the UDP pixel streaming method as described in
Section 2. These results are for a SCAO setup with a single 80× 80
SH-WFS with 4616 valid subapertures and an ELT-like M4 + M5
DM configuration with a total of 5318 actuators. The reconstruction
therefore, is a single MVM of dimensions 5318 × 9232. There is
300 seconds worth of data corresponding to 1.5 × 105 frames at a
framerate of 500Hz, the average latency is measured at 511± 15µs.
This compares favourably with similar results of 640 ± 20µs from

MNRAS 000, 1–11 (2018)

ELT MCAO many-core CPU RTC 5

0 50 100 150 200 250 300
Cumulative time / s

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Fr
am

e-
tim

e
/ m

s

(a):

1.0 1.4 1.7
Frame-time / ms

(b):

100

101

102

103

104

105

Co
un

t /
 lo

g

RTC on-node latency: Pyr-WFS 100X100

Figure 6. Frametime results for an SCAO setup using a Pyramid type WFS
slope calculation with 100 pixels across each quadrant. Results shown are
for 1.5× 105 iterations at 500Hz for a total time of 300s. The mean latency
is 998 ± 10µs.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Latency m/s

100

101

102

103

104

105

Co
un

t (
lo

g)

a)
80x80
90x90
100x100
110x110
120x120

70 80 90 100 110 120 130
Pixels across each pyramid quadrant

b)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
Measured Latency
Square Fit

Scaling of Latency with pyramid pixel count

Figure 7. The scaling of latency with pixels across the pupil for the Pyramid
type WFS. The latency is that for the entire RTC operation from pixels to
DM commands as shown in Figure 2, measured from the time the last pixel
arrives until the DM command is ready. The relevant values for the data are
shown in Table 2.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Latency m/s

100

101

102

103

104

105

Co
un

t (
lo

g)

a)
74x74
80x80
90x90
100x100
110x110

70 75 80 85 90 95 100 105 110 115
Subap count across the pupil

b)

0.2

0.4

0.6

0.8

1.0

1.2
Measured Latency
Square Fit

Scaling of Latency with Shack-Hartman subap count

Figure 8. The scaling of latency with subapertures across the pupil for the
Shack-Hartman type WFS. The latency is that for the entire RTC operation
from pixels to DM commands as shown in Figure 2, measured from the time
the last pixel arrives until the DM command is ready. The relevant values
for the data are shown in Table 2.

0 50 100 150 200 250 300
Cumulative time / s

0.45

0.50

0.55

0.60

0.65

0.70

Fr
am

e-
tim

e
/ m

s

(a):

0.4 0.6 0.7
Frame-time / ms

(b):

100

101

102

103

104

105

Co
un

t /
 lo

g

RTC on-node latency: EPYC SH-SCAO 80

Figure 9. Frametime results for an SCAO setup using a Shack-hartman type
WFS slope calculation with 80 subapertures across the pupil for an AMD
EPYC system as described in Section 2.4. Results shown are for 1.5 × 105

iterations at 500Hz for a total time of 300s. The mean latency is 616±17µs.

Jenkins et al. (2018), with a reconstructor of dimensions 5170 ×
9416. The problem size used here has been adjusted to better reflect
the potential dimensions of actual ELT instruments using more up
to date information (Biasi et al. 2016; Correia 2018).

Figure 6 shows frame time results for a similar AO setup as
above but using a Pyr-WFS instead of a SH-WFS, with the differ-
ences between theWFS processing as described in Section 2. There
are 300 seconds worth of data corresponding to 1.5× 105 frames at
a framerate of 500Hz, and the average latency here is measured at
998 ± 10µs. The dimensions of 100 × 100 pixels for the Pyr-WFS
and 80 × 80 subapertures for the SH-WFS were chosen as these are
the likely dimensions that would be used for real WFS on ELT-scale
instruments. The SH-WFS dimensions result from technological
limitations of the sensors being developed by ESO and the required
dimensions of each subaperture (Schreiber et al. 2018). The Pyr-
WFS dimensions were chosen based on what is being targeted for
the ELT first light instrument HARMONI (Thatte et al. 2014) SCAO
mode (Schwartz et al. 2018).

Figures 8 and 7 show the latency scaling of both the SH-
WFS RTC and Pyr-WFS RTC against sub-apertures/pixels across
the pupil. Due to the use of a simulated camera as described in
Section 2, there are some unavoidable latency spikes that result
from delays of the pixel transmission from the simulated camera.
The mean latencies, RMS jitters and largest outliers are shown in
Table 2 for data sets containing 1.5×105 samples at 500Hz. Table 2
also shows the RMS jitter and largest outliers for each case for a
reduced subset of the data containing at least 2 × 104 continuous
iterations. These reduced sets were chosen to eliminate any major
outliers resulting from camera delays to give a better idea of the
“steady” latency distribution.

For all of these results the input image sizes are kept constant
for each type of WFS processing used, images of 800 × 800 pixels
are used for the SH-WFS and 240x240 for the Pyr-WFS and either
the number of pixels per sub-aperture is reduced to provide more
sub-apertures or a smaller area within the input image is used for
reduced numbers of sub-apertures. In this way the pixels received
are kept constant between the different WFS and only the calibra-
tion, centroiding and reconstruction are affected by the different

MNRAS 000, 1–11 (2018)

6 D. R. Jenkins et al.

dimensions. We can see that for the Pyr-WFS the scaling matches
very closely to a square fit, which is as expected, this is because
the change in degrees of freedom in the reconstruction scales to the
second power of the number of pixels across the pupil.

For the SH-WFS results shown in Figures 8 there is no clear
fitting to a square fit and the case of 90 × 90 subapertures actually
has a lower latency than the 80 × 80 subapertures case. We believe
this is due to the reduced number of pixels per subaperture when
using 90×90 subapertures. Because all of the SH-WFS tests use the
same simulated camera image dimensions of 800 × 800 pixels, the
90× 90 subapertures case is only using 8× 8 pixels per subaperture
compared to 10×10 pixels per subaperture for the 80×80 case. This
reduces the perceived latency in two ways. Firstly by the reduced
pixel processing required and secondly by the fact that the latency
is measured as the time from when the last pixel arrives and due
to the way this is measured, the timestamp is taken when the full
800×800 image has arrived which is later than when the processing
completes 90 × 90 subapertures case.

If the latencies for the Pyr-WFS in Table 2 are compared di-
rectlywith the latencies from the SH-WFS for the sameWFS dimen-
sions, we see that the SH-WFS overall results in reduced latencies.
This is a result of the reduced pipe-lining efficiency of the Pyr-WFS
vs. the SH-WFS as described in Section 2 and shown in Figure 4.

2.4 Other many-core CPU systems

Most of the results presented in this report are obtained from In-
tel Xeon Phi CPU systems as described in Jenkins et al. (2018).
However the Xeon Phi platform has been discontinued and so it is
unlikely to be considered as a candidate for real AO RTC hardware.
One of the main reasons for choosing a CPU based RTC is that the
software and the optimisations made for many-core operation are
not specific to a single CPU architecture or vendor. Figure 9 shows
frametime and latency results for DARC running an SCAO RTC on
an AMDEPYC system with an attached simulated camera using the
UDP pixel streaming method as described in Section 2. This can be
compared directly to the Xeon Phi results shown in Figure 5. There
is 300 seconds worth of data corresponding to 1.5× 105 frames at a
framerate of 500Hz, the average latency is measured at 616± 17µs.

The source code and RTC parameters are identical for the two
different CPUs with the only differences coming from the compiler
options and the configuration of the threading and NUMA aware
memory allocation for the two different platforms. The EPYC sys-
tem used for these results is an AMDEPYC 7351 dual socket system
with 16 cores and 64GB of DDR4 2667 MHz memory per socket.
The core topology of the EPYCCPUs is such that each CPU has four
NUMA regions with each region having 4 CPU cores and 16GB
of memory each. The RTC software uses the NUMA information
of the CPU to allocate memory for the RTC control matrix on the
nodes relevant to each CPU core. The Kernel and OS is tuned in a
similar way to the Xeon Phi with the major differences being the
OS, Ubuntu 16.04 for EPYC vs. CentOS for the Xeon Phi, and si-
multaneous multi-threading (Hyper-Threading) is turned on for the
EPYC system as it provides better performance and allows 8 threads
per NUMA node.

The maximum memory bandwidth of the EPYC system is
350GBs−1 by having 8 channels of DDR4 memory per socket and
utilising NUMA aware software. This is less than the measured
memory bandwidth of 480GBs−1 of the Xeon Phi 7250. It is there-
fore expected that the performance of the EPYCwill be less than that
of the Xeon Phi for the memory bandwidth bound RTC operations.
However these results show that the software can be readily used

Table 1. A comparison of the specifications of ELT-scale SCAO, MCAO
and LTAO, the values are the most current known specifications for the
HARMONI SCAO mode, the MAORY MCAO mode and the HARMONI
LTAO mode respectively.

Mode SCAO MCAO LTAO

Target Frame rate (Hz) 1000 500 500

LGS number 0 6 6
LGS sub-aperture geometry N/A 80 × 80 80 × 80
LGS pixel geometry N/A 10 × 10 10 × 10
LGS total sub-apertures N/A 4616 × 6 4616 × 6
LGS image format N/A 800 × 800 800 × 800

NGS number 1 3 1
NGS type Pyramid SH-WFS SH-WFS
NGS sub-aperture geometry 100 × 100 2 × 2 2 × 2
NGS pixel geometry N/A 100 × 100 100 × 100
NGS total sub-apertures 4616 4 × 3 4
NGS image format 240 × 240 240 × 240 240 × 240

DM number 2 3 1
Total DM modes 5316 + 2 5316 + 2 5316 + 2

+176 +2 × 500 +6 × 2

on different CPU platforms and that performance is as expected
based on the knowledge that the main RTC operations are memory
bandwidth bound.

Other multi-socket CPU systems would also be suitable for
ELT-scale AO RTC such as the Intel Xeon Scalable processors
which in a quad socket configuration can provide higher maximum
memory bandwidth than the Xeon Phi when the NUMA regions
are taken into account. The multi-socket systems also benefit from
generally running at a higher base CPU frequency than the Xeon
Phi and so their single threaded performance is better. A dual-
socket EPYC system with the required memory bandwidth can be
purchased for a similar price to the Xeon Phi, making it the most
likely substitute. For the Intel Xeon Scalable processors, due to their
reduced memory channels per socket, a quad socket system would
be required to match the memory bandwidth and this can increase
the per node costs to over 4× that of comparable EPYC or Xeon Phi
systems.

Next generation AMD EPYC processors will introduce a new
architecture (Papermaster 2018) that simplifies the core topology
of the system and will be built on a smaller 7nm process node
to provide better energy efficiency. This involves introducing a 9-
die architecture which includes 8 compute chiplets and a single
I/O interface die such that each CPU core can access all mem-
ory channels equally. This is different to the current design where
each of the 4 NUMA regions has 8 cores and 2 memory channels
each and so only those 8 cores can access the full bandwidth of
those 2 channels. This should reduce the relative complexity of
NUMAmemory management and allow more efficient interleaving
of memory over all 8 memory channels which will likely reduce
the latency of the EPYC results shown in Figure 9. The memory for
the next-generation processors is also likely to be clocked faster, at
up to 3200MHz compared to the current maximum of 2667MHz,
increasing memory bandwidth.

3 PROTOTYPING AN MCAO AND LTAO RTC

As mentioned in Section 1.1 MCAO and LTAO generally differ
from SCAO by the number of WFSs and DMs used. Therefore in

MNRAS 000, 1–11 (2018)

ELT MCAO many-core CPU RTC 7

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

LGS
WFS

NGS
WFS

NGS
WFS

NGS
WFS

MC PU

MC PU

MC PU

MC PU

MC PU

MC PU MC PU

Master
Processing Unit

M4M5DM2DM1

DMs

MCAO Only

MCAO Only

MC PU = Many Core Processing Unit

Figure 10. The proposed architecture for the MCAO and LTAO multi node
RTC. The 6 LGS WFSs are each processed by a single many-core node.
The NGS are all processed on the same node, three for MAORY and one
for HARMONI. The master node sends out the final DM commands once it
has finished summing and processing the partial vectors. The master node
should also able to receieve feedback from the ELT M4 to integrate the
actual M4 shape used in the next command.

the context of the RTC they are both much more computationally
demanding than the simple SCAO case. When prototyping an RTC
architecture for MCAO and LTAO we decided to design it based
on the ELT first-light instruments, the Multi-conjugate Adaptive
Optics RelaY (MAORY, Ciliegi et al. 2018) and the HARMONI
LTAO mode (Neichel et al. 2016). For both of these instruments,
the most demanding aspects will be the reconstruction of 6 laser
guide star (LGS)WFSs operating at 500Hz, the parameters for these
instruments and a comparison with an SCAO system are shown in
Table 1. Targeting proposed ELT MCAO and LTAO instruments
allows us to demonstrate more realistic test cases and puts better
constraints on the design of the architecture.

One of the main benefits of designing a CPU based RTC lies in
the flexibility and generality that the CPU architecture provides. The
product of this is that the software optimisations and modifications
detailed in Jenkins et al. (2018) for SCAO can be readily applied
to different AO types such as MCAO and LTAO. Therefore the
architecture we propose for these AO regimes is an extension of
the SCAO case by scaling the software and hardware to match the
increased computational complexity.

For the MAORY MCAO and HARMONI LTAO parameters
detailed in Table 1 the computational demands for each LGS WFS
are similar to those of the SH-WFS SCAO case tested in Section 2.3
with slightly more DM actuator DoF but targeting a reduced framer-
ate. We therefore decided that for each LGS WFS the processing of
the WFS images to reconstructed wavefronts can be done in a very
similar way to the SCAO procedure in Section 2.3 by processing a
single LGS WFS per processing node.

The NGS parameters demand far fewer computational re-
sources than the SCAO case demonstrated on a single node in
Section 2.3, therefore we propose that the NGS WFS processing,
3 NGS for MAORY and 1 for HARMONI, can be achieved by a
single instance of DARC on a single processing node. The partial
DM commands resulting from these calculations then need to be
summed together to produce a single DM command vector for all
of the required DMs. This will be achieved by having a separate
“master” processing node which can receive partial DM commands
from the reconstruction nodes and perform any post-processing that
may be required before delivering the final actuator commands to
the DMs.

Camera Simulator

High Speed Switch (40Gb)

MC PU MC PU MC PU MC PU

MC PU MC PU MC PU Master PU

LGS x6 NGS

Camera streams

Partial DM commands

Multicast
timing packet

Figure 11. The lab test setup for the MCAO and LTAO architecture. The
simulated camera streams 6 LGSWFSs and either 1 or 3NGSWFSs through
a high speed switch to the processing units. The many-core processing units
send their partial DM commands calculated from the individualWFSs to the
master node for summing and further processing. For the tests to determine
the overall latency of the system, the master node multicasts a timing packet
for all other nodes to time stamp the end of frame.

Figure 10 shows the prototype architecture for MCAO/LTAO
RTC using the ideas described above. There are a total of 7 recon-
struction nodes to process all the WFSs required for the either the
MAORYMCAO case or the HARMONI LTAO case. An 8th master
node is used for summing the partial results from each reconstruc-
tion node and processing them for sending to the DMs. Due to the
way the ELT M4 will operate (Xompero et al. 2018), the correction
applied by M4 will not necessarily be the same as that which is
delivered to M4 from the RTC. It will therefore be necessary for
the RTC of an ELT instrument to receive feedback from M4 such
that it can incorporate the actual correction applied for the previous
iteration. In our prototype architecture, this will be processed by the
master processing unit, shown in Figure 10.

Figure 11 shows a lab test set up derived from the prototype
architecture shown in Figure 10. It shows the simulated camera de-
livering the required camera streams to each reconstruction node
over a high speed network. The master processing node commu-
nicates with the reconstruction nodes over a separate high speed
network on the same physical switch but using a different VLAN
and different network interconnects to the camera streams. For our
lab test setup the full RTC latency is calculated on each reconstruc-
tion node by measuring the time between when it receives the last
pixel from its camera stream to the time it receives a timing packet
from the master which is multicast to the reconstruction nodes when
it has completed the current frame. As the cameras use the proposed
ESO MUDPI packet they stamp each image with a frame number
which is then propagated through to the master and back through
the timing packet to be able to match the correct DM command to
the camera frames.

3.1 Results of testing the prototype

When testing the MCAO prototype described in Section 3 certain
considerations needed to be made with regards to the timing of the
individual frames. Ideally we would want to measure the time from
last pixel into the RTC until the time the DM command is ready,
however we discovered that for amulti-node CPU based architecture
it is difficult to synchronise the clocks between nodes with enough
precision using our available hardware such that timestamps gener-
ated on each node can be directly compared. Instead we have to rely
on only comparing timestamps generated on individual nodes and
so the full RTC latency is calculated as the time between a recon-
struction node receiving the last pixel from its camera stream and
the time it receives a timing packet from the master node indicating
that the final DM command is ready, which does result in a slightly
pessimistic measurement.

MNRAS 000, 1–11 (2018)

8 D. R. Jenkins et al.

0 50 100 150 200 250 300
Cumulative time / s

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fr
am

e-
tim

e
/ m

s

(a):

0.6 2.6 4.5
Frame-time / ms

(b):

100

101

102

103

104

105

Co
un

t /
 lo

g

RTC full latency: Full MCAO

Figure 12. Latency results for the full MCAO setup as described in Sec-
tion 1.1 and Table 1. This is for 1.5×105 iterations at 500Hz corresponding
to a total cumulative time of 300s. This is a measure of the time between
when the last pixel arrives at a reconstruction node and when it receives the
timing packet from the master node. The large outliers are result of delays
from the CPU based simulated cameras, which is compounded by the fact
that this timing data includes delays from all 7 simulated camera streams.

0 50 100 150 200 250 300
Cumulative time / s

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fr
am

e-
tim

e
/ m

s

(a):

0.8 2.6 4.4
Frame-time / ms

(b):

100

101

102

103

104

105

Co
un

t /
 lo

g

RTC full latency: Full LTAO

Figure 13.Latency results for the full LTAOsetup as described in Section 1.1
and Table 1. This is for 1.5 × 105 iterations at 500Hz corresponding to a
total cumulative time of 300s. This is a measure of the time between when
the last pixel arrives at a reconstruction node and when it receives the timing
packet from the master node. The large outliers are result of delays from the
CPU based simulated cameras, which is compounded by the fact that this
timing data includes delays from all 7 simulated camera streams.

Ideally the full RTC latencywould bemeasured externally with
a device that is able to record the time between when the camera
finishes sending a frame and the time when the corresponding DM
command is received from the master node. This process would
make the RTC latency measurement easier however the method
described above is no less valid as a measure of the RTC latency.

For all the MCAO and LTAO tests described in this report,
the system architecture used is shown in Figure 10 and network
interconnects are as shown in Figure 11. Each of the 7 reconstruction

Table 2. Latency, RMS jitter and largest outliers results for all of the data
presented in this report. For all results other than LTAO with buffer swap
the a) columns correspond to results from 1.5× 105 continuous iterations at
500Hz for a total time of 300s for each test case. The b) columns correspond
to results from a subset of no less than 2× 104 continuous iterations chosen
from the larger a) data sets for a toal time of 40s each. The b) column subsets
were chosen to avoid any large outliers that result from simulated camera
delays to give a better representation of the “steady” latency. The LTAOwith
buffer swap results are for 1.5 × 104 continuous iterations at 500Hz for a
total time of 30s, there are no “steady” results for this case as the outliers
here are a result of the parameter swap itself and not from an external factor.

Mean RMS Largest
Latency Jitter (µs) Outlier (µs)

AO Mode (µs) a) b) a) b)

Pyr-WFS 80 × 80 609 11 11 898 653
Pyr-WFS 90 × 90 796 16 16 1051 862
Pyr-WFS 100 × 100 998 10 9 1667 1049
Pyr-WFS 110 × 110 1209 12 12 1433 1292
Pyr-WFS 120 × 120 1450 8 8 1886 1508

SH-WFS 74 × 74 357 18 16 495 436
SH-WFS 80 × 80 511 15 15 754 589
SH-WFS 90 × 90 497 14 14 1237 559
SH-WFS 100 × 100 778 12 11 1314 821
SH-WFS 110 × 110 1001 14 14 1397 1065

Full MCAO 985 33 29 4465 1235
MCAO telemetry 1085 32 30 2988 1466
MCAO POLC 1090 45 44 2880 1312
MCAO 6 LGS 992 47 46 3498 1143
MCAO 5 LGS 979 46 44 2870 1261
MCAO 4 LGS 969 45 45 3305 1285
MCAO 3 LGS 943 43 42 2817 1182
MCAO 2 LGS 951 42 43 2858 1119

Full LTAO 894 29 28 4434 1174

LTAO with buffer swap 1034 31 – 1949 –

nodes uses a single instance of the DARC software to receive an
800 × 800 pixel camera stream which it process from pixels to a
partial DM command for that WFS. This processing is done in a
very similar way to the SH-WFS SCAO case as descibed in Jenkins
et al. (2018) and in Section 2.3, the main differences are the way
in which the reconstruction matrix is constructed and that the DM
software library is used to send the partial DM to the master node.
The master node itself runs a separate instance of DARC which
receives the partial DM commands, sums them together, processes
the result and once finished it sends a timing packet to the other
nodes.

Figure 12 and Figure 13 shows RTC latency plots for the
MCAO and LTAO test cases respectively. They show the timing data
from one of the reconstruction nodes of the 7 during full operation,
the timing data also includes the transmission and receiving time
of the DM timing packet and can therefore be considered slightly
pessimistic. The specification used for each are shown in Table 1 and
the mean latency of the MCAO case is 985 ± 33µs and 894 ± 29µs
for the LTAO case. It can be seen that there are 2 major outliers in
the latency for theMCAO test and one for the LTAO test which are a
result of delays introduced from the CPU based simulated cameras.
The number of frames losses however is acceptable considering that
there is at worst one frame drop per 150s total integration time.

Aswell as testing the full 8 nodeMCAORTCwe also tested the
architecture with different numbers of reconstruction nodes com-
bined with the master node. Table 2 shows the results for theMCAO

MNRAS 000, 1–11 (2018)

ELT MCAO many-core CPU RTC 9

0 10 20 30 40 50 60
Cumulative time / s

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Fr
am

e-
tim

e
/ m

s

(a):

0.5 0.8 1.2
Frame-time / ms

(b):

100

101

102

103

104

Co
un

t /
 lo

g

RTC on-node latency: SH-SCAO 80 with param swap

Figure 14. Latency results for an SCAO setup as described in Section 2.3
whilst two types of buffer swap are performed as described in Section 3.2. As
can be seen, the buffer swap causes a ≈ 650µs spike to the latency whenever
it is performed. This is for 3 × 104 iterations at 500Hz corresponding to a
total cumulative time of 60s to highlight the 10 second transfer time of the
first two parameter changes of the control matrix.

0 5 10 15 20 25 30
Cumulative time / s

1.0

1.2

1.4

1.6

1.8

2.0

Fr
am

e-
tim

e
/ m

s

(a):

0.9 1.4 1.9
Frame-time / ms

(b):

100

101

102

103

104

Co
un

t /
 lo

g

RTC full latency: LTAO with param swap

Figure 15. Latency results for an LTAO setup as described in Section 1.1
whilst a periodic buffer swap is performed as described in Section 3.2. As
can be seen, the buffer swap causes a ≈ 800µs spike to the latency whenever
it is performed. This is for 1.5 × 104 iterations at 500Hz corresponding to
a total cumulative time of 30s to highlight the disturbance every 5s.

case where there are less than the full number of reconstruction
nodes for theMAORY specification. Results are shown for the cases
where there are 2, 3, 4, 5 and 6 LGS reconstruction nodes feeding
partial DM commands to the master node. As can be seen from
the results the total latency varies only slightly by the reduction in
processing nodes, showing that the solution is scalable at least up
until the desired number of nodes for ELT-scale MCAO.

3.2 Effect of on-the-fly changes to RTC parameters on latency

An important aspect of any real on-sky RTC is the ability to change
parameters during operation, for example to update the matrix used
in the reconstruction process or to update the reference centroids.
DARC has the ability to set parameters through two different means,
either through a command line utility called “darcmagic” which can
be used to change simple parameters such as string and scalar values,
or through a Python interface which can also change more complex
parameters such as the arrays and matrices. DARC uses a double
buffer approach to handle parameter switching, the buffers contain
all the necessary parameters for RTC operation and whilst one of
the buffers is read by the RTC during operation the second can be
modified to include any required new values without affecting the
running processes.

Once the necessary changes have been made to the second
buffer, DARC performs a buffer swap which causes it to start read-
ing values from the second buffer instead of the first. The process
that DARC uses to handle a buffer swap involves a flag in the
main processing loop which instructs the first thread that begins
a new frame that a buffer swap is required and that thread per-
forms some checks, updates some information and then replaces
the buffer pointer. Because all of the processing threads will read
from the buffer this needs to be thread safe and so all other threads
are temporarily blocked while the buffer is swapped.

The double buffering of the parameters reduces the effects
of a parameter change by allowing the majority of the change to
happen during general operation without affecting latency. However
on a platform like the Xeon Phi which excels on multi-threaded
performance, the single threaded buffer swap can have a noticeable
impact on the latency of the frame during the swap. Figure 14 shows
the effect of a buffer swap on an SCAO system set up as described
in Table 1. The first 2 latency spikes seen are due to changing the
control matrix of size 5318 × 9232 which takes approximately 10
seconds for the transfer to happen. The other latency spikes are
due to a periodic change of a single value parameter every five
seconds. The size of the latency spikes shows that for different size
parameters the amount of jitter introduced is the same and the spike
only occurs once the internal RTC buffer is actually swapped.

Figure 15 shows the latency for an LTAO type system set up as
described in Table 1 whilst a buffer swap is set to occur on one of the
reconstruction nodes every five seconds. There is a clear impact on
the latency which corresponds to a ≈ 800µs spike to latency when
the buffer swap occurs. Here the relative size of the latency spikes
is increased from the SCAO case above as this is the full LTAO
RTC system as described in Section 1.1. This essentially results in
a frame drop for every buffer swap due to the average latency being
1034µs for this particular case.

We believe that the relatively large effect of a buffer swap
on the latency of the LTAO system in this case is partly caused
by the fact that the Xeon Phi has relatively poor single threaded
performance and partly because of the need for all reconstruction
nodes to be synchronised by the master node, compounding any
adverse effects of the swap. The parameter change performed here
was for a single valued scalar parameter, however due to the double
buffered approach of DARC, changing more complex parameters
such as arrays or matrices shouldn’t have any more impact on the
latency as all copying of data can occur concurrently with RTC
operations.

MNRAS 000, 1–11 (2018)

10 D. R. Jenkins et al.

0 50 100 150 200 250 300
Cumulative time / s

1.0

1.5

2.0

2.5

3.0

Fr
am

e-
tim

e
/ m

s

(a):

0.9 2.0 3.0
Frame-time / ms

(b):

100

101

102

103

104

105

Co
un

t /
 lo

g

RTC full latency: MCAO with telemetry

Figure 16. Latency results for an MCAO setup as described in Section 1.1
whilst both centroid and DM command telemetry is taken for all nodes as
described in Section 3.3. This is for 1.5 × 105 iterations at 500Hz corre-
sponding to a total cumulative time of 300s.

3.3 Effect of streaming RTC telemetry on latency

Another very important aspect of AO RTC operation involves the
streaming of telemetry during operation, either for concurrent pro-
cessing so as to update the reconstruction matrices or reference
centroids or purely for saving data to disk for later analysis. DARC
employs circular buffers to store telemetry when requested during
operation and also has the capability to read from these buffers and
send the telemetry to wherever is necessary. All the timing data
used in this report is gathered by using the telemetry streaming
functionality of DARC. There are 3 buffers which are read for every
timing measurement used in this report; an RTC time buffer which
stores frame times, an RTC status buffer which stores various status
information and and RTC DM time buffer which stores the timing
data for the receipt of the timing packet from the master node.

The status buffer is used to retrieve the timestamps for when
the last pixel has arrived and also the timestamp for when each
node has delivered its partial DM command. The DM time buffer
is populated by a process which listens for packets from the master
node and takes a time stamp on arrival. A common iteration number
between the two buffers originating from the simulated camera is
used to synchronise the data. In this way we can match up the DM
command timing packet sent from the master to the image frame
received from the simulated camera and calculate the full RTC
latency.

Figure 16 shows the RTC latency for anMCAO setup for a case
when slope telemetry and partial DM command telemetry is also
streamed from the reconstruction nodes during operation. Themean
latency is measured at 1085 ± 32µs and there are several outliers
which result from delays due to the simulated camera streams. There
are also a number of relatively small outliers in this data, < 1.5ms,
compared to the case without slope and DM telemetry which results
from the taking of telemetry itself.

3.4 Effect of pseudo-open loop control on latency

All of the types of AO used in this report would generally be used
in closed-loop operation, that is, the atmospheric wavefronts are

0 50 100 150 200 250 300
Cumulative time / s

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Fr
am

e-
tim

e
/ m

s

(a):

1.0 2.0 2.9
Frame-time / ms

(b):

100

101

102

103

104

105

Co
un

t /
 lo

g

RTC full latency: MCAO with POLC

Figure 17. Latency results for an MCAO setup as described in Section 1.1
whilst implicit POLC is computed on the master processing node as de-
scribed in Section 3.4. This is for 1.5×105 iterations at 500Hz correspond-
ing to a total cumulative time of 300s.

corrected before the residual phase error is measured by the WFSs.
This approach means that the wavefront phase errors measured by
the WFSs are smaller than those measured in open loop and so
the WFSs can be tuned for finer precision. Also, during closed-loop
operation, errors in themeasurement, correction, and reconstruction
can be dynamically removed by the feedback of the system. The
downside to closed-loop AO is that the slopes measured by theWFS
no longer give a measurement of the actual atmospheric wavefront
phase. The slopes measured in open-loop can be used to retrieve
information about the atmospheric conditionswhich are required for
reconstruction algorithms that take the current atmospheric statistics
into account.

To get around the lack of open-loop slopes in closed-loop
operation, it is possible to reconstruct pseudo-open loop (POL) (Pi-
atrou & Gilles 2005) slopes from the DM commands and resulting
closed-loop slopes. For reconstruction algorithms that rely on POL
control (POLC) there are 2 ways in which the POL slopes can be
incorporated into the final reconstruction result. They can either be
calculated explicitly and used directly in the algorithms or the effects
of POLC can be incorporated into the final reconstruction implic-
itly without first calculating the actual POL slopes. The benefits of
implicit POLC are massively reduced computational requirements.
Explicit POLC requires the POL slopes to be computed before the
MVM to calculate DM commands can be computed, however im-
plicit POLC only needs the final DM command as calculated by the
master node and so the POLC computation can be done there.

We have implemented the implicit POLC calculation for the
MCAO and LTAO operation of DARC on the master node. The
POLC is calculated for the next frame after the DM command is
ready and so it should have minimal impact on the overall latency.
The summing of partial DM commands on the master node is cal-
culated by a single thread and so there are enough computational
resources remaining to calculate the implicit POL, which is a single
MVM, without affecting latency. Figure 17 shows the RTC latency
for an MCAO setup for a case when the master node is performing
POLC computation using 32 threads. The mean latency is measured
at 1090± 45µs and there is a single large outlier which results from
delays due to the simulated camera streams.

MNRAS 000, 1–11 (2018)

ELT MCAO many-core CPU RTC 11

4 CONCLUSIONS

Wehave presented an update on the work and results in Jenkins et al.
(2018) and demonstrated a prototypemany-core CPURTC architec-
ture for MCAO and LTAOwhich builds on the previously presented
work. We have shown that latencies of < 1000µs can be achieved
for both MCAO and LTAO using this architecture with CPU based
simulated cameras. We have demonstrated that running the DARC
RTC software on Xeon Phi processors can achieve ELT SCAO la-
tencies of less < 600µs for Shack-hartman WFS processing and
< 800µs for Pyramid WFS processing. We have also demonstrated
latencies of less < 700µs for Shack-hartman WFS processing on
an AMD EPYC system, showing the generality of the software and
techniques. The effects of parameter switching, telemetry stream-
ing and implicit POLC computation have also been shown for the
MCAO and LTAO cases with minimal effects on the overall latency.
The CPU based simulated cameras have been shown to introduce
large outliers in the latency distributions which are an unavoidable
consequence of the hardware used.

As shown in Jenkins et al. (2018) the Xeon Phi processor is an
example of a many-core CPU system with high-bandwidth memory
and so the software and system architectures described in this report
are readily transferable to other many-core CPU systemswith the re-
quired computational and memory bandwidth specifications. More
general many-core CPU systems could also achieve better latency
and jitter due to the relatively weak single threaded performance of
the Xeon Phi which greatly effects serial processes such as receiving
pipe-lined pixel streams over network interfaces.

ACKNOWLEDGEMENTS

Real-time AO work by the Durham group is supported by the EU
H2020 funded GreenFlash project, ID 671662, under FETHPC-1-
2014, the UK Science and Technology Facilities Council consoli-
dated grant ST/P000541/1, and an STFC PhD studentship, award
reference 1628730.

REFERENCES

AravisProject 2018, Aravis, https://github.com/AravisProject/

aravis

Assémat F., Gendron E., Hammer F., 2007, Monthly Notices of the Royal
Astronomical Society, 376, 287

Babcock H. W., 1953, Publications of the Astronomical Society of the
Pacific, 65, 229

Barr D., Basden A., Dipper N., Schwartz N., 2015, Monthly Notices of the
Royal Astronomical Society, 453, 3222

Beckers J. M., 1988, in Ulrich M.-H., ed., European Southern Observatory
Conference and Workshop Proceedings Vol. 30, European Southern
Observatory Conference and Workshop Proceedings. p. 693

Biasi R., et al., 2016, E-ELTM4 adaptive unit final design and construction:
a progress report, doi:10.1117/12.2234735, https://doi.org/10.
1117/12.2234735

Ciliegi P., et al., 2018, MAORY for ELT: preliminary design overview,
doi:10.1117/12.2313672, https://doi.org/10.1117/12.2313672

Correia C., 2018, Architecture of ELT 1st light instruments’ Hard Real Time
Computing Facility with Xeon-Phis

Downing M., et al., 2018, Update on development of WFS cameras at ESO
for the ELT, doi:10.1117/12.2314489, https://doi.org/10.1117/
12.2314489

Foy R., Labeyrie A., 1985, A&A, 152, L29
Fried D. L., 1966, J. Opt. Soc. Am., 56, 1372
Fried D. L., 1982, J. Opt. Soc. Am., 72, 52

Fugate R. Q., et al., 1991, Nature, 353, 144
Jenkins D. R., Basden A., Myers R. M., 2018, Monthly Notices of the Royal

Astronomical Society, 478, 3149
Johns M., Angel R., Shectman S., Bernstein R., Fabricant D., McCarthy

P., Phillips M., 2004. pp 5489 – 5489 – 13, doi:10.1117/12.550741,
http://dx.doi.org/10.1117/12.550741

Kerrisk M., 2018, PACKET(7) Linux Programmer’s Manual, http://
man7.org/linux/man-pages/man7/packet.7.html

Neichel B., et al., 2016, The adaptive optics modes for HARMONI: from
Classical to Laser Assisted Tomographic AO, doi:10.1117/12.2231681,
https://doi.org/10.1117/12.2231681

Papermaster M., 2018, AMD Next Horizon, https://www.amd.com/
system/files/documents/next_horizon_mark_papermaster_

presentation.pdf

Piatrou P., Gilles L., 2005, Appl. Opt., 44, 1003
Ragazzoni R., 1996, Journal of Modern Optics, 43, 289
Schreiber L., et al., 2018, The MAORY laser guide star wavefront sen-

sor: design status, doi:10.1117/12.2314467, https://doi.org/10.
1117/12.2314467

Schwartz N., et al., 2018, Analysis and mitigation of pupil discontinuities on
adaptive optics performance, doi:10.1117/12.2313129, https://doi.
org/10.1117/12.2313129

Spyromilio J., Comerón F., D’Odorico S., Kissler-Patig M., Gilmozzi R.,
2008, The Messenger, 133, 2

Stepp L. M., Strom S. E., 2004, in Ardeberg A. L., Andersen T., eds,
Proc.Spie Vol. 5382, Second Backaskog Workshop on Extremely Large
Telescopes. pp 67–75, doi:10.1117/12.566105

Thatte N. A., et al., 2014, HARMONI: the first light integral field spec-
trograph for the E-ELT, doi:10.1117/12.2055436, https://doi.org/
10.1117/12.2055436

Xompero M., Briguglio R., Pariani G., Riccardi A., 2018, Fitting er-
ror analysis and performance evaluation of M4 deformable mirror,
doi:10.1117/12.2310105, https://doi.org/10.1117/12.2310105

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–11 (2018)

https://github.com/AravisProject/aravis
https://github.com/AravisProject/aravis
http://dx.doi.org/10.1111/j.1365-2966.2007.11422.x
http://dx.doi.org/10.1111/j.1365-2966.2007.11422.x
http://dx.doi.org/10.1086/126606
http://dx.doi.org/10.1086/126606
http://dx.doi.org/10.1093/mnras/stv1813
http://dx.doi.org/10.1093/mnras/stv1813
http://dx.doi.org/10.1117/12.2234735
https://doi.org/10.1117/12.2234735
https://doi.org/10.1117/12.2234735
http://dx.doi.org/10.1117/12.2313672
https://doi.org/10.1117/12.2313672
http://dx.doi.org/10.1117/12.2314489
https://doi.org/10.1117/12.2314489
https://doi.org/10.1117/12.2314489
http://adsabs.harvard.edu/abs/1985A%26A...152L..29F
http://dx.doi.org/10.1364/JOSA.56.001372
http://dx.doi.org/10.1364/JOSA.72.000052
http://dx.doi.org/10.1038/353144a0
http://adsabs.harvard.edu/abs/1991Natur.353..144F
http://dx.doi.org/10.1093/mnras/sty1310
http://dx.doi.org/10.1093/mnras/sty1310
http://dx.doi.org/10.1117/12.550741
http://dx.doi.org/10.1117/12.550741
http://man7.org/linux/man-pages/man7/packet.7.html
http://man7.org/linux/man-pages/man7/packet.7.html
http://dx.doi.org/10.1117/12.2231681
https://doi.org/10.1117/12.2231681
https://www.amd.com/system/files/documents/next_horizon_mark_papermaster_presentation.pdf
https://www.amd.com/system/files/documents/next_horizon_mark_papermaster_presentation.pdf
https://www.amd.com/system/files/documents/next_horizon_mark_papermaster_presentation.pdf
http://dx.doi.org/10.1364/AO.44.001003
http://dx.doi.org/10.1080/09500349608232742
http://dx.doi.org/10.1117/12.2314467
https://doi.org/10.1117/12.2314467
https://doi.org/10.1117/12.2314467
http://dx.doi.org/10.1117/12.2313129
https://doi.org/10.1117/12.2313129
https://doi.org/10.1117/12.2313129
http://adsabs.harvard.edu/abs/2008Msngr.133....2S
http://dx.doi.org/10.1117/12.566105
http://dx.doi.org/10.1117/12.2055436
https://doi.org/10.1117/12.2055436
https://doi.org/10.1117/12.2055436
http://dx.doi.org/10.1117/12.2310105
https://doi.org/10.1117/12.2310105

	Introduction
	Multi-conjugate and laser-tomographic AO for ELTs

	Recent Developments of DARC for many-core CPUs
	UDP Camera Simulator
	Pyramid WFS, Pixel Handling and Slope Computation
	Up to date SCAO results with camera simulator
	Other many-core CPU systems

	Prototyping an MCAO and LTAO RTC
	Results of testing the prototype
	Effect of on-the-fly changes to RTC parameters on latency
	Effect of streaming RTC telemetry on latency
	Effect of pseudo-open loop control on latency

	Conclusions

