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ABSTRACT

Many distant objects can only be detected, or become more scientifically valuable, if they
have been highly magnified by strong gravitational lensing. We use eagle and bahamas, two
recent cosmological hydrodynamical simulations, to predict the probability distribution for both
the lens mass and lens redshift when point sources are highly magnified by gravitational lensing.
For sources at a redshift of two, we find the distribution of lens redshifts to be broad, peaking at
z ≈ 0.6. The contribution of different lens masses is also fairly broad, with most high-magnification
lensing due to lenses with halo masses between 1012 and 1014 M�. Lower mass haloes are inefficient
lenses, while more massive haloes are rare. We find that a simple model in which all haloes have
singular isothermal sphere density profiles can approximately reproduce the simulation predictions,
although such a model over-predicts the importance of haloes with mass < 1012 M� for lensing.
We also calculate the probability that point sources at different redshifts are strongly lensed. At
low redshift, high magnifications are extremely unlikely. Each z = 0.5 source produces, on average,
5 × 10−7 images with magnification greater than ten; for z = 2 this increases to about 2 × 10−5. Our
results imply that searches for strongly lensed optical transients, including the optical counterparts
to strongly lensed gravitational waves, can be optimized by monitoring massive galaxies, groups and
clusters rather than concentrating on an individual population of lenses.
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1 INTRODUCTION

Gravitational lensing and gravitational waves are two phe-
nomena predicted by Einstein’s General Theory of Rela-
tivity (GR), both of which have now been observed. Evi-
dence for strong gravitational lensing of electromagnetic ra-
diation was first reported by Walsh et al. (1979), who dis-
covered a multiply imaged quasar. Since then strong gravita-
tional lensing has become a key tool in astrophysics, allowing
the mass distribution in galaxies and galaxy clusters to be
mapped (e.g. Bolton et al. 2008; Richard et al. 2010), and
for distant objects to be studied that would otherwise be
too faint and/or small (see Kelly et al. 2018, for a spectac-
ular example). Gravitational waves were first detected only
recently (Abbott et al. 2016) but also hold promise as a new
tool for investigating our Universe (Miller & Yunes 2019).

The prediction of GR is that gravitational waves have
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their trajectories bent by gravity in the same way as light,
that is to say that gravitational waves can also be gravita-
tionally lensed. Ignoring the lensing of gravitational waves
could lead to incorrect conclusions about the population of
merging compact objects. To leading order, the frequency
evolution, ν(t), of a gravitational wave signal is determined
by the chirp mass, M = (m1m2)3/5/(m1 + m2)1/5, where
m1 and m2 are the masses of the two merging objects (Ab-
bott et al. 2017c). The intrinsic amplitude of the emitted
signal can be predicted from the chirp mass, so the mea-
sured amplitude of the signal can be used to determine the
luminosity distance, dL, to the coalescing objects.

For objects at redshift z, the received frequency will be
lower than the intrinsic frequency by a factor of 1 + z. With
an assumed cosmology and ignoring peculiar velocities, there
is a one to one relationship between dL and z. This means
that the chirp mass and luminosity distance (and therefore
also redshift) can be inferred from the amplitude and fre-
quency evolution of a gravitational wave signal. Gravita-
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tional lensing introduces a new quantity, the magnification
µ, which alters the amplitude of the detected gravitational
wave strain by a factor of

√
µ compared with the no lensing

(µ = 1) case. A gravitational wave signal which – ignoring
lensing – would correspond to a chirp mass Mµ=1 at a red-
shift zµ=1, could actually be at a true redshift z, with true
chirp mass M where M = Mµ=1(1 + zµ=1)/(1 + z). The
magnification in this case would be µ = [dL(z)/dL(zµ=1)]2.
As such, low mass, distant, and highly magnified gravita-
tional wave sources, will masquerade as more massive and
closer gravitational wave sources if gravitational magnifica-
tion is not considered in interpreting the gravitational wave
signal.

At LIGO/Virgo’s current sensitivity, the detection rate
of strongly lensed GWs is expected to be small (Li et al.
2018; Smith et al. 2018). This can be understood in terms of
the lens magnification that is required to render a lensed GW
detectable. At present, unlensed GWs can only be detected
out to a luminosity distance of ∼ 1 Gpc (Abbott et al. 2018),
corresponding to z ' 0.2. Given that the typical redshift of
a strong lensing galaxy or cluster is z ' 0.2 − 0.5, it is
inevitable that the typical redshift of a lensed GW is z >∼
1, which corresponds to a luminosity distance of & 7 Gpc.
Given the dependence of lens magnification on luminosity
distance discussed above, these distances imply µ & 50, and
thus a low probability of detection thus far, bearing in mind
that P (> µ) ∝ µ−2. Despite some early proof of concept
follow-up observations (Smith et al. 2019b) and discussion
of LIGO’s early detections (Broadhurst et al. 2018, 2019),
there is scant evidence that any of LIGO/Virgo’s detections
to date are strongly lensed (Hannuksela et al. 2019; Singer
et al. 2019).

Calculating the expected number of detectable strongly
lensed GWs, and the probability that a given GW detec-
tion is strongly lensed requires a good understanding of the
population of gravitational lenses. Knowledge of this popu-
lation can then also shape the observing strategy for elec-
tromagnetic follow-up of candidate lensed GWs. There has
been disagreement in the literature as to what population of
lenses is most important for the high magnifications required
to reinterpret the LIGO/Virgo events as being less mas-
sive but at high redshift. For example, Smith et al. (2018)
used the results of ray-tracing through a large N -body sim-
ulation (Hilbert et al. 2008, hereafter, H08) to conclude
that galaxy clusters were the most important population
of lenses. Meanwhile, Haris et al. (2018) forward modelled
a population of lensed gravitational wave signals, assuming
that lensed images dominantly arise due to galaxy lenses,
modelling their population of lenses on SDSS early-type
galaxies (Choi et al. 2007). Claims that some of the grav-
itational wave signals already detected are likely strongly
lensed (Broadhurst et al. 2018, 2019) have also assumed
that galaxies dominate the optical depth for strong lensing,
which they justify from the population of lenses responsible
for lensed high redshift star forming galaxies detected by the
Herschel satellite (Negrello et al. 2010; Wardlow et al. 2013;
Bussmann et al. 2013). However, other lensed objects paint
a different picture, with the first detected strongly lensed su-
pernova (Kelly et al. 2015) and highly magnified individual
star (Kelly et al. 2018), as well as the most magnified lensed
quasars (Sharon et al. 2005; Oguri et al. 2013; Sharon et al.
2017), being lensed by galaxy clusters. Inferring the impor-

tance of different lenses for strong lensing using the distri-
bution of lenses responsible for observed highly magnified
objects is complicated by selection effects, which motivates
answering this question from a theoretical perspective.

In this paper we seek to answer the question of which
objects are responsible for producing strong gravitational
lensing. Given the small size of the GW emission region
in compact binary coalescence, and the high-magnifications
required to reinterpret gravitational wave events as hav-
ing come from objects significantly less massive than orig-
inally inferred, we will concentrate on high-magnifications
(|µ| > 10) for point sources. We do this by combining lens-
ing calculations performed on two state of the art hydro-
dynamical simulations, and show that the results can be
approximately reproduced by a model in which the total
mass distribution of each gravitationally collapsed object is
modelled as a singular isothermal sphere.

This paper is organised as follows. In Section 2 we de-
scribe a simple model for the strong lensing optical depth,
based upon combining the halo mass function with a simple
density profile for each halo. Then in Section 3 we describe
our simulations and how we calculated the cross-sections
for strong gravitational lensing from individual simulated
haloes. In Section 4 we present our results, combining the
strong lensing properties of all our simulated haloes to find
the contribution of different lens masses and lens redshifts
to the probability for strong lensing. We then present our
conclusions in Section 5. We assume a Planck Collabora-
tion et al. (2014) cosmology throughout this paper,1 unless
stated otherwise.

2 A SIMPLE MODEL FOR THE STRONG
LENSING OPTICAL DEPTH

Answering the question of ‘what does strong lensing? ’ re-
quires two ingredients. First, the lensing cross-section of
individual lenses as a function of their mass and redshift,
and second, the halo mass function – the number density of
haloes of different masses at different cosmic times. In this
section we discuss both of these in the context of a simple
model where all lenses are assumed to be spherically sym-
metric singular isothermal spheres (SISs), which have 3D
density profiles with ρ ∝ r−2. The advantage of using this
density profile is that it provides a simple analytic method
to relate the Einstein radius of a lens to the mass of its dark
matter halo, across a broad range of halo mass, as detailed
in Sections 2.1 and 2.2. The SIS model has been shown to
be a good description of strong lensing galaxies (Gavazzi
et al. 2007). Whilst this model is a poor description of indi-
vidual strong-lensing clusters due to the complexity of such
systems (e.g. Richard et al. 2010), the slope of the SIS pro-
file is representative of cluster density profile slopes on the
relevant scales and is therefore appropriate for population
studies such as this. The goal of this section is to introduce
notation and gain intuition that will help to understand the
results from hydrodynamical simulations in Section 3.

1 With Ωm = 0.307, Ωb = 0.04825, ΩΛ = 0.693, σ8 = 0.8288,
ns = 0.9611 and h = 0.6777.
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2.1 Lensing cross-sections of individual lenses

For a mass distribution at redshift zL, we can define the
gravitational lensing cross-section for some criterion as the
solid angle that satisfies that criterion. An example crite-
rion could be that the magnification, µ, for a source at red-
shift zS is greater than some magnification threshold, µ0.
Gravitational lensing maps an infinitesimal solid angle in
the source plane, into a solid angle in the image plane that
differs by a factor of the magnification.2 As such, we can
define cross-sections both in the image plane and the source
plane, and in general these can be different. To introduce
our notation we take a concrete example of a cross-section
for magnification greater than 10 for a redshift 2 source.
A particular lens would then have an image plane cross-
section, σI

lens(|µ| > 10, zS = 2), and source plane cross-
section, σS

lens(|µ| > 10, zS = 2), with the former correspond-
ing to the lens-plane solid angle over which lines of sight
from the observer to the lens have |µ| > 10 and the latter
corresponding to the (un-lensed) solid angle in the source
plane that will be magnified by |µ| > 10. The source plane
cross-section is therefore the relevant cross-section for cal-
culating the probability that randomly located sources at
zS = 2 will be magnified by this lens by |µ| > 10.

An SIS with Einstein radius θE, has an image-plane
magnification profile (e.g. Meneghetti 2016)

µSIS =
θ

θ − θE
, (1)

where θ is the angular distance from the centre of the SIS
profile. Armed with the magnification as a function of ra-
dius, we can then ask what the lens (or source) plane solid
angle above a particular magnification threshold is. Note
that the magnification can be both positive and negative,
with negative values corresponding to images with inverted
parity. In this study we are interested in the brightness of
lensed point sources, for which the absolute value of µ is the
relevant quantity. The image plane solid angle with |µ| > µ0

is

σI
lens(> µ0) =

∫ θ1

θ0

2πθ dθ (2)

where from equation (1) we have that θ0 = θE µ0/(µ0 + 1)
and θ1 = θE µ0/(µ0 − 1), such that

σI
lens(> µ0) = θ2

E
4πµ3

0

(µ2
0 − 1)2

. (3)

An infinitesimal solid angle of the image plane will map back
into an infinitesimal solid angle of the source plane, which is
smaller by a factor |µ| (i.e. dσI

lens = |µ|dσS
lens), so the source

plane solid angle with |µ| > µ0 is

σS
lens(> µ0) =

∫ θ1

θ0

2πθ

|µ(θ)| dθ. (4)

Note that there is a subtlety when discussing the source
plane solid angle with some property (such as |µ| > µ0),
because regions of the source plane can map to multiple
regions in the image plane. As equation (4) is defined as an

2 The image plane solid angle does not need to be larger, as |µ|
can be less than unity, but throughout this paper we are con-
cerned with high magnifications.

integral over the image plane, points on the source plane that
map to multiple points on the image plane will be counted
multiple times, once for each image that meets the respective
property. This means that for a number density of sources
per unit solid angle in the source plane, ns, we expect to see
σS

lens(> µ0)×ns images of those sources magnified by greater
than µ0 by a particular lens. This will typically be greater
than the number of sources that have at least one image
magnified by greater than µ0, because highly magnified lines
of sight are typically multiply imaged.

Evaluating the integral in equation (4) we find

σS
lens(> µ0) = θ2

E
2π(µ2

0 + 1)

(µ2
0 − 1)2

. (5)

In equations 3 and 5, σlens(> µ0) is separable into
the product of θ2

E and a function of µ0. As such, the rel-
ative contribution of different haloes to the optical depth
is independent of the exact definition of the optical depth,
whether it is the solid angle within the Einstein radius, or the
source/image plane solid angle with a magnification greater
than some µ0. While different definitions of what constitutes
‘strong lensing’ will change the total optical depth to strong
lensing, it will change the optical depth of each system in
the same manner, keeping their relative contributions fixed.
In particular, for large magnification thresholds (µ0 � 1),
σS

lens(> µ0) ∝ 1/µ2
0.

While we have shown here that P (|µ| > µ0) ∝ 1/µ2
0

for sources behind an SIS lens, this behaviour can be shown
to be more general. Critical curves are curves in the image
plane along which the magnification is formally infinite in
the geometric optics limit, while caustics are curves in the
source plane found from mapping the critical curve to the
source plane using the gravitational deflection angles. By
Taylor expanding the gravitational potential about a point
on a critical curve, it can be shown that the magnification
varies inversely as the square root of the perpendicular dis-
tance of the source from the caustic (e.g. Gaudi & Petters
2002, equation 35). The source plane solid angle above some
magnification, µ0, is the length of the caustic multiplied by
the distance from the caustic at which the magnification
drops to µ0, l0. As l0 ∝ 1/µ2

0, the high-magnification cross-
section is σS

lens(> µ0) ∝ 1/µ2
0.

2.2 The halo mass function

The halo mass function has been well studied, both in the
context of analytical predictions (Press & Schechter 1974;
Sheth et al. 2001) and measurements from N -body simu-
lations (e.g. Jenkins et al. 2001; Tinker et al. 2008). Here,
we use the Tinker et al. (2008) mass function with a Planck
Collaboration et al. (2014) cosmology, as implemented in the
Python library hmf (Murray et al. 2013). Throughout this
paper we use M200 to define halo masses; where r200 is the
radius at which the mean enclosed density is 200 times the
critical density, and M200 is the mass within r200.

We define n(M, z) as the comoving number density of
haloes with M200 < M at redshift z. ∂n(M, z)/∂ log10 M is
then the number density of haloes per decade in halo mass,
which is plotted for different redshifts in the top panel of
Fig. 1. For brevity we will often drop the ‘200’ from halo
masses, and will not explicitly write the base (always 10) of
logarithms.
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2.2.1 Tying M200 to an SIS density profile

In order to relate an SIS with a given Einstein radius to a
halo described by its M200, it helps to be concrete about
the normalisation of the SIS density profile. Starting with a
density profile with a normalisation described by the velocity
dispersion, σv,

ρSIS(r) =
σ2

v

2πGr2
, (6)

we can integrate along a line of sight a projected radius
R from the centre of the halo to get the projected surface
density

ΣSIS(R) =
σ2

v

2GR
. (7)

The mass enclosed within a 2D radius is then

MSIS(< R) =
πσ2

v

G
R. (8)

For a given cosmology and lensing geometry we can define
the critical surface density for lensing, Σcrit, as

Σcrit =
c2

4πG

dA(zS)

dA(zL) dA(zL, zS)
. (9)

Here, dA(zS), dA(zL), and dA(zL, zS) are the angular diam-
eter distances between the observer and the source, the ob-
server and the lens, and the lens and the source respectively.
For an axisymmetric lens, the average surface density within
the Einstein radius is Σcrit (i.e. MSIS(< RE) = ΣcritπR

2
E).

Combining this with the fact that the physical Einstein ra-
dius is related to an angular Einstein radius by the angular
diameter distance to the lens (RE = θE dA(zL)) we find that

θE =
σ2

v

GΣcritdA(zL)
. (10)

Returning to Equation (6), we can integrate the density
profile to find that the mass within a 3D radius is

MSIS(< r) =
2σ2

v

G
r. (11)

Equating the mass within r200 with M200 allows us to write
σv, and hence θE, in terms of the halo mass:

θE(M, zlens) =
M

2r200ΣcritdA(zL)
. (12)

At fixed zL, Σcrit and dA(zL) are constant, and r200 ∝M1/3,
such that θE ∝ M2/3. Then, using equation (5), σS

lens ∝
M4/3.

2.3 Strong-lensing optical depths

If σtot(M, z) is the sum of σlens over all haloes with M200 <
M , within some volume V , at redshift z, then

∂2σtot(M, z)

∂V ∂ logM
=
∂n(M, z)

∂ logM
σlens(M, z). (13)

For a patch of sky with solid angle, Ω, and with a total
source-plane cross-section, σS

tot, we can define a source-plane
optical depth τS ≡ σS

tot/Ω. Note that this definition of τS

differs somewhat from the source plane optical depth used
by (for example) Schneider et al. (1992), because of how
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Figure 1. Top: the halo mass function at different redshifts. At all

redshifts the low mass end of the mass function is approximately

a power-law with a slope slightly shallower than −1 as indicated
by the dashed line which is a power-law with a slope of −0.94.

Bottom: the optical depth per decade in halo mass and per unit

redshift, at the same redshifts as the mass function is shown in the
top panel, assuming all haloes to be singular isothermal spheres.

The power-law dependence of the lensing cross-section on halo

mass (Section 2.2.1) multiplied by the mass function, leads to a
gently increasing power-law at low masses, which is exponentially

suppressed at high masses due to the suppression of the mass
function.

it treats multiply imaged regions of the source plane (see
Section 2.1 for a discussion of this with an isolated lens).
We illustrate our definition with an example, consisting of
NS point-source objects randomly distributed in the source
plane. If we suppose that these objects must be magnified
by |µ| > µ0 in order to be detectable, then the expected
number of detectable images will be τS

|µ|>µ0
NS, which can

be larger than the number of different sources that are de-
tected, due to some sources being detected multiple times.
This is in contrast to the Schneider et al. (1992) definition,
which we call τ̃S

|µ|>µ0
following a similar discussion in Hilbert

et al. (2007). τ̃S
|µ|>µ0

NS is the expected number of different
sources that we would detect, some of which we may detect
multiple times. Using τS over τ̃S has two key advantages:
firstly that it is much easier to compute, because the calcu-
lation can be done in the lens plane without having to find
which regions of the lens plane map onto a common region
of the source plane; and secondly because the number of im-
ages (rather than sources) is easier to count observationally.

Note that by performing our calculations exclusively in
the lens plane we cannot consider complications that arise
when multiple images are blended into one. There could,
for example, be blended images with a total magnification
µtot > µ0 even though neither individual image has |µ| > µ0.
This is highly unlikely for lensed gravitational waves, where
the length of a ‘chirp’ is typically less than a second, and
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so multiple images will only rarely overlap in time, however,
it could be important for understanding other populations
of lensed objects. For an SIS lens the time delay between
multiple images of the same source is ∆t ∝ θ2

E/µtot (e.g.
Oguri et al. 2002), and would be around an hour for an SIS
with M200 = 1011.5 M�, zL = 0.5, zS = 2, and µtot = 100.
This halo mass is the lowest relevant for high magnification
strong lensing (see Fig. 4) and so extremely large magni-
fications would be required for time delays of a second or
less.

Defining V (z) as the comoving volume out to redshift
z, and Ω = 4π as the solid angle of the whole sky, we find
that

∂2τ

∂ logM ∂z
=

1

4π

∂2σtot(M, z)

∂V ∂ logM

dV

dz
, (14)

which using equation (13) can be calculated from the halo
mass function and σlens(M, z).

2.3.1 Strong-lensing optical depths in an SIS universe

Using σlens(M, z) for SIS density profiles in equation (14)
we can calculate the relative contribution of different lens
masses at different lens redshifts to the total optical depth.
This is plotted (for an optical depth corresponding to |µ| >
10 for zS = 2 sources) in the bottom panel of Fig. 1, where
it can be seen that the relative contribution of different lens
masses shifts towards higher masses at lower redshifts, peak-
ing at M200 ≈ 1013 M� at zL = 1.4 and M200 ≈ 1014 M�
at zL = 0.2. This is driven by the increase in the halo
mass above which the mass function is exponentially sup-
pressed (often known as M∗), through cosmic time. At all
times there is a peak in ∂2τ/∂ logM ∂z. Lensing by low-
mass haloes is relatively unimportant because the power-law
slope of the mass-function (∝ M−0.94) is not steep enough
to compensate for the decreasing cross-section of low mass
lenses (∝ M4/3), while the high-mass end is suppressed by
the high-mass end cut-off in the mass function.

Aside from the relative contribution to the total lensing
optical depth of different lens masses, Fig. 1 also demon-
strates the relative contribution from different lens redshifts.
Of the redshifts we show, zL = 0.5 and 0.8 have the largest
optical depths per unit redshift (the areas under the curves
in the bottom panel of Fig. 1). As well as the evolution of
the mass function, there are a number of different factors
that contribute to this. One is the comoving volume per
unit redshift, dV

dz
, which increases with increasing redshift

out to around z = 2.5. Another is the lensing efficiency, the
inverse of the critical surface density, which at fixed source
redshift is proportional to dA(zL)dA(zL, zS). In a flat and
non-expanding universe, dA(zL) + dA(zL, zS) = dA(zS). At
fixed dA(zS), the product of dA(zL) and dA(zL, zS) is then
maximised when they are equal, i.e. when the lens is halfway
between the observer and source. This is complicated some-
what by a universe that is expanding, but it remains true
that lensing is most efficient when the lens is neither close
to the observer nor close to the source, but roughly mid-
way between. In the case of a zS = 2 source, and a Planck
Collaboration et al. (2014) cosmology, the lensing efficiency
peaks for zL = 0.52.

3 LENSING IN HYDRODYNAMICAL
SIMULATIONS

Cosmological hydrodynamical simulations have increased
dramatically in their realism over the past decade and can
now reproduce many of the key properties of observed galax-
ies (e.g. Vogelsberger et al. 2014; Schaye et al. 2015; Davé
et al. 2016; Kaviraj et al. 2017; Pillepich et al. 2018a; Davé
et al. 2019) as well as galaxy groups and clusters (e.g. Sem-
bolini et al. 2013; Le Brun et al. 2014; Barnes et al. 2017a;
McCarthy et al. 2017; Bahé et al. 2017; Barnes et al. 2017b;
Pillepich et al. 2018b; Cui et al. 2018). Importantly for lens-
ing, simulations can produce populations of galaxies with
the correct distribution of stellar mass, and the correct stel-
lar mass – size relation (Schaye et al. 2015). As such, these
simulations can now be used to answer the question of how
important different objects are as gravitational lenses, from
a theoretical perspective.

In order to determine the contribution of different lens
masses to the strong lensing optical depth as predicted from
a state of the art hydrodynamical simulation, we require the
simulation to resolve the strong lensing region of the low-
est mass haloes important for lensing (∼ 3× 1011 M�, see
Fig. 4), while simultaneously covering a large enough volume
to accurately sample the high-mass end of the halo mass
function. A single hydrodynamical simulation like this does
not currently exist, so instead we combine two simulations,
using the high-resolution publicly available3 (100 Mpc)3 ea-
gle simulation (Schaye et al. 2015; Crain et al. 2015)
to resolve low mass haloes, and the large volume of the
(400h−1 Mpc)3 bahamas simulation (McCarthy et al. 2017)
to have an adequate number of high mass haloes.

3.1 Simulation descriptions

eagle and bahamas have similar sub-grid physics models
for galaxy formation physics on scales below the resolution
limits of the simulations. These include models for gas cool-
ing, star formation, and feedback both from stars and active
galactic nuclei (AGN). eagle was run using a Planck Col-
laboration et al. (2014) cosmology,4 and for bahamas (which
has been run with many different cosmologies, with and
without massive neutrinos) we used the simulation based
on the same Planck Collaboration et al. (2014) results as
eagle’s cosmology, with zero neutrino mass, which is de-
scribed in McCarthy et al. (2018).5

For eagle, the DM and initial baryon particle masses
are 9.7× 106 M� and 1.8× 106 M� respectively, while for
bahamas they are 6.6× 109 M� and 1.2× 109 M�. The
corresponding Plummer-equivalent gravitational softening
lengths are 0.7 kpc for eagle and 6.0 kpc for bahamas, with

3 The galaxy and halo catalogues of the simulation suite,

as well as the particle data, are publicly available at
http://www.eaglesim.org/database.php (McAlpine et al. 2016;
The EAGLE team 2017)
4 With Ωm = 0.307, Ωb = 0.04825, ΩΛ = 0.693, σ8 = 0.8288,
ns = 0.9611 and h = 0.6777.
5 This differs slightly from the eagle cosmology, with Ωm =

0.3175, Ωb = 0.049, ΩΛ = 0.6825, σ8 = 0.8341, ns = 0.9624 and
h = 0.6711. We assume the eagle cosmology for all of our lensing

calculations, including those with bahamas.
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6 A. Robertson et al.

these being fixed physical lengths (i.e. not comoving) at all
redshifts we consider.

3.2 Lensing description

Our lensing procedure treats each halo as an isolated lens,
ignoring the effect of other structures along the line-of-sight.
This is done because we want to assign light-rays that have
high magnifications to a single lensing object, in order to
answer the question of what was responsible for the lensing.
Ignoring the effects of multiple lens planes is justified by the
fact that only a very small fraction of light-rays meet our cri-
terion for being strongly lensed, such that the probability of
an object being sufficiently aligned to be strongly lensed by
two separate haloes is negligible. This was verified explicitly
by Hilbert et al. (2007), who did full multi-plane ray-tracing
through the Millennium simulation (Springel et al. 2005),
and found that strong lensing events can almost always be
traced to a single dominant lensing object. We stress that
this does not mean that line-of-sight structures can be ig-
nored in detailed lens modelling of individual systems, where
including line-of-sight structures in the model can improve
the match between the predicted and observed positions of
multiply imaged sources (for example Chiriv̀ı et al. 2018). It
means that the lensing cross-sections of lenses are not signif-
icantly altered on average by objects along the line-of-sight.

Our procedure for generating lensing maps from sim-
ulated haloes follows Robertson et al. (2019), who studied
the Einstein radii of galaxy clusters from bahamas simula-
tions run with different DM models. For each halo at each
snapshot redshift, we first find all mass within 5 r200 of the
particle with the lowest gravitational potential energy. We
then calculate the projected surface density, Σ, on a regu-
lar grid using an SPH-like smoothing scheme based on the
distance to the 16th nearest neighbour. We make 3 maps
of each halo – projecting the mass along 3 orthogonal lines
of sight, for which we use the simulation x, y and z axes.
These maps are square, with a side-length of 2 r200, and
with 1024 × 1024 pixels. The resolution therefore increases
in lower mass haloes, where the critical curve is on a smaller
physical scale. At z = 0 this corresponds to a pixel scale of
4.5 kpc for a 1015 M� halo and 0.2 kpc for a 1011 M� halo.
Note that the numerical values quoted here were motivated
by the convergence tests discussed in Section 3.4.

Our calculation of ∂2τ/∂ logM ∂z is done at more lens
redshifts than we have simulation snapshots, as illustrated
in Fig. 2. At each redshift that we use as a lens plane, zL,
we find the snapshot closest to it in redshift. We then use
the Σ maps of the haloes from this snapshot to calculate
the contribution to the strong lensing optical depth from
this particular zL. This is done by first dividing Σ by Σcrit,
to get the dimensionless convergence, κ. As both κ, and
the gravitational shear, γ, are second derivatives of the pro-
jected Newtonian potential, they can be readily calculated
from one another using discrete Fourier transforms (see e.g.
Robertson et al. 2019). We can then make a map of the
magnification µ using

µ =
1

(1− κ)2 − |γ|2 . (15)

For lens planes at a different redshift from the snap-
shot used, we keep Σ as a function of physical coordinates

zsnap = 0

zsnap = 0.125

zsnap = 0.25

zL
1

zL
2

zL
3

zL
4

zL
5

zL
6

zL
7

zL
8

zL
9

zL
10

δz
δV6

δzδV2

δz
δV3

Ω

Figure 2. A schematic illustration of our volume of lenses, using
the snapshot redshifts from bahamas. The redshift range shown

is covered by the three lowest redshift snapshots from bahamas,

with the red, green and blue filled regions covering redshifts clos-
est to zsnap = 0, 0.125 and 0.25 respectively. The ticks along the

left edge of the wedge show the redshifts at which we evaluate the

contribution to the strong-lensing optical depth, which is done by
taking the comoving volume corresponding to a redshift interval

δz. When this redshift interval includes regions closer in redshift
to two different snapshots (i.e for zL

2 ) the optical depth calcula-

tion uses only the snapshot closest in redshift to the centre of this

redshift interval.

fixed. For different lens planes that use the same snapshot,
the differences between them are that Σcrit changes with zL

(leading to a difference in the relationship between Σ and
the convergence, κ) as does the relationship between physi-
cal distances in the lens plane and angles on the sky.

3.3 Cross-sections and optical depths

With µ on a regular grid in the image plane, we calculate
the source plane solid angle with |µ| > µ0 behind some lens
as

σS
lens =

∑
|µ|>µ0

σpixel

|µ| , (16)

where σpixel is the solid angle of each image-plane pixel, and
the sum is over all pixels with |µ| > µ0.6

At each lens plane redshift (zL
i = 0.04i − 0.02 for

i = 1, 2, ...50), we calculate σS
lens of each halo with M200 >

1011 M� in eagle and M200 > 1013.5 M� in bahamas. We

6 We stress again that this is not strictly the source plane solid
angle that is magnified by greater than µ0, as it counts multiply

imaged regions of the source plane multiple times.
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What does strong lensing? 7

bin haloes by log10(M200/M�) and sum up σlens within each
bin, where the bin width is ∆ log10 M200 = 0.18. Dividing
this sum by three times7 the simulation volume and the log-
mass bin width we get the left side of equation (13), which
we can convert to ∂2τ/∂ logM ∂z using equation (14).

3.4 Numerical convergence of strong lensing
cross-sections

Before we did our full lensing analysis of the eagle and ba-
hamas simulations, we first performed a number of tests to
determine that our lensing procedure produced numerically
converged results. We did these tests on a single snapshot
from each of eagle and bahamas, so that we could test a
large number of possible numerical parameters. These snap-
shots were chosen to be at a redshift that contributes sig-
nificantly to the lensing of high redshift sources, and to be
at a redshift where eagle and bahamas have a similarly
timed output. We chose to use the z = 0.366 snapshot from
eagle, and the z = 0.375 snapshot from bahamas.

Accurately calculating the distribution of magnifica-
tions due to some mass distribution requires that the critical
curves be adequately captured. This in turn requires that the
mass distribution within the critical curves is sampled with
a reasonable number of pixels. Smaller haloes have smaller
critical curves, and hence require higher resolutions, while
larger haloes need large fields of view to include the full
halo’s mass distribution. In order to achieve both of these,
we used a pixel size and field of view that both increase with
increasing halo mass, specifically in proportion to the virial
radius (∝M1/3

200 ).
As both our pixel size and field of view scale with the

virial radius, the number of pixels used for the mass maps is
independent of halo mass. We experimented with 256, 512,
1024 and 2048 pixels on a side, making square maps with a
side-length of 2r200. The pixel scale acts as a scale on which
the mass distribution is smoothed, and with the largest pix-
els (r200/128), our lensing cross-sections were substantially
reduced compared to smaller pixel cases. The two smallest
pixel scales (r200/512 and r200/1024) produced converged
results, suggesting that the larger of those two pixel scales
(corresponding to 1024 pixels on a side) is more than ade-
quate.

The reason that our lensing procedure becomes insensi-
tive to the pixel scale is because it already smooths out the
mass of individual particles on a scale that depends on the
local number density of particles. This means that so long
as the pixels are not too large, smaller pixels do not lead
to smaller structures being resolved, but rather just a finer
sampling of a smooth mass distribution. Because the resolu-
tion of our lensing maps is set by the density of simulation
particles, we needed to check that a different simulation res-
olution, with a different number density of simulation par-
ticles, would have provided converged results.

To investigate this, we made lensing maps of all haloes
in our test snapshots, both with the full simulation data,
and when only using a fraction, fsub, of the simulation par-
ticles. When making these subsampled maps, the mass of

7 To reflect the three projection axes.
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Figure 3. Top: the zS = 2, |µ| > 10, source-plane cross-sections
for individual lenses from eagle and bahamas, from the respec-

tive snapshots with z ≈ 0.37. The different colours correspond to

different fsub values as described in Section 3.4. Running medi-
ans as a function of halo mass are shown as solid lines, which are

drawn only in the mass range where the relevant simulation with

the particular fsub value is ‘converged’. The black dashed line
shows the prediction for haloes modelled as singular isothermal

spheres all the way out to their virial radii. Bottom: the optical
depth per decade in halo mass and per unit redshift, calculated

from the cross-sections in the top panel. Lines are shown as solid

in the halo mass ranges where they are converged, and are faded
at lower masses. We stop showing eagle lines at the high-mass

end due to the poor sampling of the mass function there. The

shaded regions around the lines show the 2.5th to 97.5th per-
centiles when the optical depth is calculated from a bootstrap
resampling of all haloes in the top panel. For the black dashed

line a Tinker et al. (2008) mass function was assumed.

each particle was increased by 1/fsub to create a lower reso-
lution version of the same simulated mass distribution. With
these subsampled versions, we could then find the halo mass
at which the lensing properties of the subsampled haloes dis-
agreed with those of the full haloes, which indicates the halo
mass down to which we can trust the lensing maps being
generated from full simulation data.

In the top panel of Fig. 3 we show the zS = 2 source
plane cross-sections for |µ| > 10, for individual haloes from
both eagle and bahamas, using subsampling factors of 1,
1/4 and 1/16. The bottom panel then shows ∂2τ/∂ logM ∂z
with these different subsampling factors. For the case of ea-
gle we see that other than a slight suppression at masses
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8 A. Robertson et al.

below 4 × 1011 M�, the fsub = 1/4 optical depth is indis-
tinguishable from the full simulation case. We can also see
that eagle has just enough resolution to resolve the lowest
mass haloes important for lensing, as had the mass resolu-
tion been 16 times worse (corresponding to the yellow line),
the low-M200 cut off in ∂2τ/∂ logM ∂z would have been nu-
merical rather than properly resolved.

The mass-scale at which convergence is achieved in ba-
hamas is, unsurprisingly, different, given the much poorer
resolution of the bahamas simulations. Defining convergence
as an agreement on ∂2τ/∂ logM ∂z better than 20% be-
tween subsequent fsub levels , fsub = 1/16 is converged
down to M200 ≈ 3.2× 1014 M� and fsub = 1/4 down to
M200 ≈ 1.6× 1014 M�. Assuming a similar fractional im-
provement in the mass down to which we are converged go-
ing from fsub = 1/4 to fsub = 1 as we had when going
from fsub = 1/16 to fsub = 1/4, we expect that the full ba-
hamas results are converged down to a halo mass of around
1014 M�. For this reason we use bahamas to make predic-
tions for the contribution of M200 > 1014 M� lenses to the
strong lensing optical depth, using eagle for halo masses
below this. Owing to its relatively small box size, eagle has
few haloes at masses 1013.5− 1014 M�. As we will see in the
next section, this leads to our lensing calculation being most
uncertain at these intermediate masses, where bahamas is
not well resolved, but eagle suffers from a small volume.

4 RESULTS

The differential optical depth for strong lensing,
∂2τ/∂ logM ∂z, is plotted as a function of lens red-
shift and halo mass in Fig. 4, where we calculate this
quantity from bahamas for M200 > 1014 M� and from
eagle for M200 < 1014 M�. We remind the reader that this
is a source plane optical depth for magnifications greater
than 10. We also plot ∂τ/∂z (from integrating over lens
mass) and ∂τ/∂ logM (from integrating over lens redshift).

The first comment to make is that both ∂τ/∂z and
∂τ/∂ logM are quite broad, so there is no one population of
lenses that dominates the optical depth for high magnifica-
tion lensing. Integrating over both lens mass and lens red-
shift, the optical depth for |µ| > 10 with zS = 2 is approxi-
mately 2× 10−5. As explained earlier, for high magnification
thresholds, the optical depth is inversely proportional to the
square of the threshold, such that the high magnifications
required to significantly alter the true masses of compact
binaries that have been detected with gravitational waves
(µ & 50) will happen to only a very small fraction of all
z ∼ 2 compact binary coalescences (fewer than one in a
million).

Results from the SIS model are also included in Fig. 4,
where it can be seen that it does a reasonable job of repro-
ducing the simulation-derived optical depth, including the
relative contribution from different lens redshifts (∂τ/∂z).
This suggests that it will capture the dependence of τ on
source redshift, which is the quantity required for calculat-
ing the expected number of lensed gravitational wave events
that we should detect. Where this SIS model works less
well is in the relative importance of different lens masses,
with it predicting that low halo masses (< 1012 M�) make a
reasonable contribution to the optical depth, while the hy-

drodynamical simulations have a steep drop in ∂τ/∂ logM
below 1012 M�. The mass scale at which the simulated sys-
tems become inefficient lenses is related to the stellar to
halo mass relation for galaxies, whose behaviour changes at
halo masses of around 1012 M�. We discuss this further in
Section 4.2.

As another comparison, in Fig. 4 we plot ∂τ/∂ logM
from H08, who also used zS = 2 and |µ| > 10 (private com-
munication). In H08 the optical depth was calculated from
ray-tracing through a DM-only simulation, with the addition
of analytic gravitational potentials associated with galaxies,
where the mass distribution within the galaxies was taken
from the results of a semi-analytic galaxy formation model.
The agreement between our ∂τ/∂ logM and that from H08
is fairly good in general, although there are differences that
we discuss further in Section 4.3.

4.1 Random error on ∂τ/∂ logM

The discontinuity in ∂τ/∂ logM at 1014 M� is because we
change the simulation used at this mass. The discrepancy
between the two simulations at this mass scale, with eagle
predicting a factor of two less lensing from M200 ≈ 1014 M�
haloes than bahamas, could be for a number of reasons.
Given that poor resolution leads to a decrease in the strong
lensing cross-section of haloes (Fig. 3), it is unlikely to be res-
olution related. However, it could be that the different bary-
onic physics prescriptions lead to different predictions for the
distribution of mass within haloes at this mass scale. Alter-
natively, it could just be random error associated with the
eagle prediction, because the low volume of eagle means
that the mass function at the high-mass end is poorly sam-
pled. This can lead to noise both on the number of haloes
and their mean lensing cross-section. The top panel of Fig. 3
shows that the median σS

lens of eagle galaxies at this mass
scale is a factor of almost two lower than in bahamas, which
explains the discrepancy in ∂τ/∂ logM . However, without
more eagle haloes at this mass scale, we cannot say whether
this is a systematic difference, or just a random quirk of the
particular sample of massive haloes in eagle.

Using either the measured mass function from our sim-
ulations, or a mass function such as that from Tinker et al.
(2008) combined with the volume of our simulations, it is
possible to work out the expected number of haloes at each
redshift in a given mass bin. However, using this with an
assumption of Poisson statistics for the number of haloes
in a given mass and redshift bin would underestimate the
random error on ∂τ/∂ logM for two reasons. Firstly, the dif-
ferent snapshots are not independent, because it is the same
haloes (evolving through time) that appear in the different
snapshots. Secondly, there is fairly large scatter in σS

lens at
fixed lens redshift and halo mass. For bahamas, the distri-
bution of σS

lens at M200 ≈ 1014 M�, zL = 0.375 is well fit by
a log-normal distribution with a standard deviation of 0.35
dex (this scatter can be seen in the top panel of Fig. 3). Such
a distribution has 50% of the signal coming from only 20%
of the objects, so that the scatter in the total lensing sig-
nal from a mass bin is significantly larger than the Poisson
expectation.

In order to get an estimate of the random error on
∂τ/∂ logM that reflects the points above, we use a bootstrap
technique. Separately for both eagle and bahamas, we ex-
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Figure 4. The main panel shows the source-plane optical depth for lensing by a magnification greater than 10, at a source redshift of
2, per unit lens redshift and per decade in lens halo mass. At halo masses above 1014 M� we use the bahamas simulation, while eagle

is used at lower masses. Above and to the right of the main panel we show this quantity marginalised over halo mass and lens redshift

respectively as solid blue lines. For comparison, we show these same marginalised quantities for our SIS + Tinker et al. (2008) mass
function model as blue dashed lines. We also show ∂τ/∂ logM from H08 as the red stepped line. H08 used a different cosmology and

mass definition from us, and to show the contribution of these different definitions to the differences between our results and those from

H08, we show an SIS model with the cosmology and mass definition used by H08 as the red dashed line. The dip in the bahamas +
eagle results just below 1014 M� is where bahamas would not have sufficient resolution (so is not being used), but eagle’s volume leads

to a poorly sampled mass function.
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10 A. Robertson et al.

tract the 100 most massive haloes from the z = 0 snapshot
and find their primary progenitors in the preceding snap-
shots. We then draw 100 haloes with replacement from these
100 z = 0 haloes, and calculate ∂τ/∂ logM with the 100
most massive haloes and their progenitors replaced by the
bootstrapped sample of 100 haloes and their progenitors. We
do this 1,000 times and find the 2.5% and 97.5% percentiles
for ∂τ/∂ logM , which are shown by the blue shaded regions
in Fig. 4. Note that the choice of the 100 most massive haloes
is fairly arbitrary. In principle we could bootstrap sample all
haloes, but we avoided this because our simple method for
finding progenitors (using the most massive halo with a co-
moving centre within 4r200 of the halo comoving centre at
the preceding snapshot) works only for the most massive
haloes in the box. Owing to the sharply rising mass func-
tion towards low halo masses, the random error associated
with ∂τ/∂ logM at low masses should be negligible. Taking
the noisy sampling of the high-mass end into account, the
bahamas and eagle ∂τ/∂ logM at M200 ∼ 1014 M� are
consistent at the 2σ level.

4.2 The lowest halo masses that are efficient
lenses

An obvious feature in Fig. 4 is that ∂τ/∂ logM drops rapidly
at halo masses below 1012 M�. We attribute this to the rapid
fall off in stellar mass below this halo mass. Using abundance
matching, the observed stellar mass function can be com-
bined with N -body simulations to predict the stellar mass
that resides in different halo masses at different redshifts
(Behroozi et al. 2013; Moster et al. 2013). The resulting
stellar-to-halo mass relation is matched reasonably well by
the eagle simulations (Schaye et al. 2015). At a given red-
shift, the relationship between stellar mass and halo mass is
approximately a double power-law, which breaks at a char-
acteristic halo mass of M1 = 1011.5−12 M�. At halo masses
below this, the stellar mass (M∗) falls off rapidly with de-
creasing halo mass. In the local Universe, this fall off is ap-
proximately M∗ ∝ M

5/2
200 , while at z = 2 it is closer to

M∗ ∝M2
200. This fall off in stellar mass at low halo masses

means that stars quickly become unimportant for lensing
when M200 < M1. These low mass haloes then only have
a DM component, which should be reasonably well fit by a
Navarro, Frenk and White (NFW) density profile (Navarro
et al. 1997). The strong lensing cross-section of an NFW
halo decreases exponentially with decreasing halo mass be-
low 1013 M� (Hilbert et al. 2007), so that these low mass
haloes have very low lensing cross-sections, which – even
combined with their large abundance – leads to them mak-
ing a negligible contribution to the total optical depth.

While the median σS
lens is a monotonically increasing

function of M200, inspection of Fig. 3 reveals a feature
around 1012 M�, where lensing is most efficient compared
with the SIS prediction. This is the same mass scale at which
M∗/M200 peaks (Moster et al. 2013), and this feature in
σS

lens(M200) can be ascribed to the turn over of M∗/M200.

4.3 Comparison with Hilbert et al. (2008)

Compared with the H08 ∂τ/∂ logM , hydrodynamical sim-
ulations predict slightly more strong lensing in total, with

the increase primarily due to galaxies with halo masses of
1012−1013 M�. The cosmology and mass definition8 are dif-
ferent between H08 and the hydrodynamical simulations. To
investigate whether this explains the different lensing pre-
dictions, we calculated two different ∂τ/∂ logM from our
SIS model – one using the cosmology and mass definition
from eagle and bahamas, the other those adopted by H08.
These two ∂τ/∂ logM are plotted as dashed lines in the
right panel of Fig. 4, and the differences between them are
smaller than the differences between the lines from the dif-
ferent simulations.

For haloes with M200 > 1014 M�, i.e. those from ba-
hamas, ∂τ/∂ logM is similar between the hydrodynamical
simulations and H08. Robertson et al. (2019) looked at the
density profiles of bahamas clusters, both DM-only and in-
cluding baryons, and found that the total density at the cen-
tre of clusters increases when simulations include baryons,
not just because of the contribution from stars (which should
be captured by H08 who included analytical potentials as-
sociated with a stellar disc and bulge), but also because the
DM profile itself becomes more centrally concentrated due
to adiabatic contraction (Gnedin et al. 2004). The fact that
this does not push the bahamas curve above that from H08
probably reflects the fact that in H08 the analytical baryonic
potential is added to the DM distribution from a DM-only
simulation. Such a simulation does not ignore the baryonic
material in the universe, rather it simulates it as if it were
also made of DM. As such, there is more DM in a DM-only
simulation than in a hydrodynamical simulation, such that
when H08 add in a stellar component there is now more total
mass in each halo. This appears to mimic the effects of adi-
abatic contraction on strong lensing cross-sections such that
the hydrodynamical and DM-only plus analytical galaxies
predictions are similar in the galaxy cluster regime.

The largest discrepancy between our results and those
from H08 is in the 1012−1013 M� mass range. At these halo
masses the DM-only prediction is for negligible amounts of
strong lensing (Hilbert et al. 2007), so the lensing signal
for these systems is dominated by the stellar component. In
eagle the lensing cross-sections of these galaxies are well
resolved (Fig. 3), and in H08 they use analytic expressions
to calculate the ray distortions induced by stellar mass dis-
tributions, so they are not limited by any sort of resolution
effects. The difference must therefore come down to differ-
ences between the stellar distributions found in eagle and
those used by H08. H08 modelled the stellar component as
the sum of an exponential disc

Σdisc =
Mdisc

2πr2
disc

exp

(
− r

rdisc

)
(17)

and a bulge

Σbulge =
94.5Mbulge

r2
bulge

exp

[
−7.67

(
r

rbulge

)1/4
]
. (18)

The disc mass, bulge mass and disc radius (Mdisc,Mbulge and
rdisc respectively) were taken from the De Lucia & Blaizot
(2007) semi-analytic model, that had been run on merger
trees generated from the same Millennium simulation that

8 H08 use M200,mean whereas we use M200,crit.
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What does strong lensing? 11

H08 used for the DM component. They used an observation-
ally derived Mbulge − rbulge relation to get the bulge radius.

To verify that these parametric mass distributions, with
values taken from De Lucia & Blaizot (2007), produce less
strong lensing than eagle galaxies, we use the Millennium
database9 to find the De Lucia & Blaizot (2007) galaxy pa-
rameters for haloes with 1012 < M200/M� < 1013 in the
z = 0.362 snapshot. For each halo, we calculate σS

lens for
|µ| > 10, which we can then compare with the eagle haloes
in Fig. 3. We find that at fixed halo mass, the median σS

lens

from this procedure is one order of magnitude lower than
from eagle, which is true for both 1012 and 1013 M� haloes.
This comparison is slightly unfair, because we have not in-
cluded the DM component in the Millennium lensing. At
1013 M� (where eagle and H08 differ by a factor of two
to three in ∂τ/∂ logM) the DM fraction within the Ein-
stein radius is typically significant, whereas at 1012 M� the
lensing is dominated by the stars. As such, the increasing
discrepancy in ∂τ/∂ logM going from 1013 M� to 1012 M�
is explained by the increasing importance of the stars for
the lensing, and the stellar components used by H08 being
less efficient lenses than those found in eagle.

Given that eagle has a stellar mass – stellar size rela-
tion that is a good match to observations (Schaye et al.
2015), and a similar comparison with the stellar mass –
halo mass relation suggests that eagle has too few stars
in haloes around 1012 M�, it seems unlikely that eagle is
significantly overestimating the lensing contribution from
1012 M� haloes. A thorough analysis of the De Lucia &
Blaizot (2007) semi-analytic galaxies and their lensing sig-
nal as implemented by H08 is beyond the scope of this work,
but here we mention possible reasons for the lensing signals
being lower than in eagle. The simplest possibility is that
there is simply not enough mass in stars, or that the galax-
ies are too large (and therefore more diffuse, and so less ef-
ficient strong lenses). Another possibility is that departures
from circular symmetry may be important. In particular,
H08 assume the stellar disc is always seen face on. Most of
their galaxies in the 1012 − 1013 M� halo mass range are
disc-dominated, and viewing these discs face-on their sur-
face densities rarely exceed Σcrit. An edge-on disc reaches
much higher surface densities and is therefore a more pow-
erful lens (Bartelmann & Loeb 1998; Blain et al. 1999). The
choice to place all discs face-on may therefore cause H08 to
underestimate the contribution to the strong lensing optical
depth from lower mass haloes.

4.4 Comparison with lensed submillimeter
galaxies

As mentioned in the introduction, one of the arguments for
strong lensing being dominated by galaxy lenses, is that
these are the primary lensing population when galaxies de-
tected as being the brightest at submillimeter wavelengths
are followed up to allow identification of a potential lens

9 http://gavo.mpa-garching.mpg.de/Millennium/, described in
Lemson & Virgo Consortium (2006). Strictly speaking we use the

milli-Millennium database, similar to the Millennium database
but openly accessible, and for a simulation with a volume 1/512
of the full Millennium simulation.

(for example in Wardlow et al. 2013). Here we sketch out
a qualitative argument for why this is expected, and does
not contradict our finding that lenses with M200 > 1013 M�
make a dominant contribution to the strong lensing optical
depth for high magnifications of point sources.

The very brightest objects observed in the submillime-
ter are almost entirely gravitationally lensed, which can
be understood from the steepness of the bright-end of the
intrinsic luminosity function of dust-obscured star-forming
galaxies (Perrotta et al. 2002; Lima et al. 2010). This means
that a small fraction of less-bright objects (of which there
are many) being highly magnified, can dominate over the
intrinsically bright objects with the same observed flux (Ne-
grello et al. 2010).10

The flux limits employed in submillimeter surveys to
find likely lensed objects, primarily select for objects with
only modest magnifications. For example, Wardlow et al.
(2013) expect magnifications of around 9 given their sample
cuts. Given the universal form of P (> µ) ∝ µ−2 for large
µ, if a class of objects dominates lensing for large magnifi-
cations (greater than 100 say), then it should also dominate
lensing for more modest magnification (such as those rel-
evant for submillimeter galaxies). However, this relation is
true only for point sources, with extended sources having
more complicated magnification distributions.

It is perhaps intuitive that with increasing source size,
the maximum magnification achievable decreases, as less of
the source can lie close to a caustic. A less obvious fact is
that this decrease in maximum magnification is accompa-
nied by an increase in the probability of being moderately
magnified. This can be understood from noting that for an
extended source, the magnification of the source as a whole is
a weighted mean of the source plane magnification for point
sources over the surface brightness profile of the extended
source. As such, the mean magnification of sources randomly
distributed on the source plane must be independent of their
size. A large source cannot all be close to a caustic, but there
is an increased chance that at least some of it will be. This
effect was calculated explicitly by de Freitas et al. (2018),
who showed that for a circular source with constant surface
brightness lensed by an SIS, the cross-section for |µ| > 10 is
maximised when the angular radius of the source is 30% of
the Einstein radius. As galaxies have smaller Einstein radii
than clusters, the relative size of a submillimeter source is
larger when lensed by a galaxy than by a cluster. This de-
creases the importance of galaxy-lenses for very high magni-
fications of extended sources, but increases their prevalence
as lenses with moderate magnifications, which is what dom-
inates observed submillimeter samples.

4.5 Implications for searches for lensed
gravitational waves

Aside from its importance for trying to estimate the prob-
ability of strong lensing from observed galaxies or galaxy

10 This is the same argument being made by Broadhurst et al.

(2018), who, by assuming that the mass function of black holes

exponentially decreases at masses > 10 M�, find that objects de-
tected as having masses ∼ 30 M� would in fact be dominated by

lensed objects that are intrinsically less massive.
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clusters, knowing which halo masses are responsible for
strong lensing is important for strategies to find optical
counterparts to gravitationally lensed gravitational waves.
At present, gravitational wave detections have large posi-
tional uncertainties, with 90% confidence regions typically
covering a few hundred square degrees (Abbott et al. 2018).
Surveying this whole area with optical telescopes requires a
large number of exposures to tile the sky localisation region.

Reducing the telescope time required to find optical
counterparts to gravitational waves requires novel observ-
ing strategies. For example, the optical counterpart to the
binary neutron star merger detected by LIGO and Virgo
(GW170817, Abbott et al. 2017b) was first discovered (Coul-
ter et al. 2017) using an observing strategy that targeted
known galaxies in the three-dimensional LIGO-Virgo local-
isation (Gehrels et al. 2016).

For high redshift gravitational wave sources, narrowing
down the search using plausible host galaxies will be diffi-
cult, firstly because a larger fraction of possible hosts will
be undetected and secondly because of the large number
of galaxies per unit solid angle at high redshift compared
with low redshift. However, if there is evidence that a par-
ticular source may have been lensed, then a search strategy
that targets lenses rather than source-hosts can be used.
Such a strategy has been employed by Smith et al. (2019b),
who observed two known strong lensing clusters within the
sky localisation of a binary black hole seen by LIGO-Virgo
(GW170814, Abbott et al. 2017a).

Assuming that an observed gravitational wave has been
strongly lensed, and that there is an electromagnetic coun-
terpart to detect, for the Smith et al. (2019b) strategy to
have a high chance of success requires that massive clusters
dominate the strong lensing optical depth. From ∂τ/∂ logM
in Fig. 4, we can see that the most massive clusters con-
tribute only a small fraction of the total optical depth. In
fact, using the bahamas + eagle prediction, if we take a
z = 2 point source that we know to have been highly mag-
nified, the probability that it was lensed by a halo with
M200 > 1015 M� is only around 2%, rising to 25% for
M200 > 1014 M� and 50% for M200 > 1013 M�. However,
a single powerful strong-lensing cluster can have a source-
plane cross-section for |µ| > 10 of ∼ 500 arcsec2. 11 This
would account for around 5% of the highly magnified source
plane solid angle within the sky localisations of the best lo-
calized GW detections (90 per cent localisation uncertainty
of ∼ 50 degree2), if indeed such a cluster lens is located
within the sky uncertainties. In general, our results indicate
that finding optical counterparts to high-redshift strongly
lensed GWs will most likely require very wide-field optical
follow-up as discussed by Smith et al. (2019a). Full explo-
ration of such wide-field follow-up will benefit from highly
complete lists of strong-lensing systems down to halo masses
of 1013M� (Ryczanowski et al. 2020, submitted).

11 As a concrete example, MACS 0717 has σS
lens(|µ| > 30) =

65 arcsec2 (Vega-Ferrero et al. 2019). Converting this to |µ| > 10
using P (|µ| > µ0) ∝ 1/µ2

0 gives a cross-section of 580 arcsec2.

4.6 Strong lensing probabilities at different source
redshifts

The mass and redshift distribution of gravitational lenses is
important for designing strategies to find the likely lenses of
a lensed gravitational wave, as we have discussed. However,
for calculating the rate of detectable lensed events, or for
finding the probability that a given event has been strongly
lensed (assuming one does not have an accurate sky local-
isation), the important quantity is simply the probability
of strong lensing as a function of source redshift. Ng et al.
(2018) have made predictions for the rate at which lensed
gravitational waves should be detected, while Hannuksela
et al. (2019) recently found no evidence that any observed
gravitational wave signals have been strongly lensed. Both
groups used a strong lensing optical depth based on the as-
sumption that lensing was done by a population of SIS mass
profiles, whose mass function does not evolve, and has a
normalisation determined from galaxy surveys (Fukugita &
Turner 1991).

In Fig. 5 we plot the evolution of the source-
plane optical depth for high magnification lensing as pre-
dicted from our simulations. This was done by calculating
∂2τ/∂ logM ∂z, as shown for zS = 2 in Fig. 4, but at many
different source redshifts. At each zS, we integrate over lens
mass and lens redshift to obtain τ(zS). As we only gener-
ated mass maps for zL ≤ 2, we can only calculate the opti-
cal depth out to zS = 2. For comparison we show this same
quantity from using our SIS model and from H08. We find
that the two simulation predictions agree well with one an-
other, while the SIS model predicts slightly more strong lens-
ing, particularly at low source redshifts. We also used the SIS
model to understand the impact of a change in cosmology
from that adopted in our simulations (Planck Collaboration
et al. 2014) to the latest Planck cosmology (Planck Col-
laboration et al. 2018). This latest cosmology has a slightly
increased Ωm and a decreased σ8 compared with the earlier
Planck cosmology. These changes approximately cancel one
another to produce a τ(zS) that differs from the Planck Col-
laboration et al. (2014) SIS result in Fig. 5 by less than the
line width (the Planck Collaboration et al. (2018) line is not
plotted in Fig. 5).

To compare with work that was used to calculate the
probabilities that observed gravitational waves have been
strongly lensed, we also plot the optical depth used by Han-
nuksela et al. (2019). They used a model where the popula-
tion of lenses was comprised of singular isothermal spheres,
with a mass function that does not evolve with time. This
leads to an optical depth as a function of source redshift

τ(zS, |µ| ≥ µ0) = F

(
dC(zS)

cH−1
0

)3(
2

µ0

)2

, (19)

where dC(z) is the comoving distance to redshift z, and F
is a dimensionless constant for which they use 0.0017. This
is plotted in Fig. 5 for µ0 = 10, along with the same quan-
tity predicted from our simulations, our SIS model and from
H08.

In Fig. 5, the different models agree reasonably well on
τ(zS), except for that used by Hannuksela et al. (2019) which
predicts more strong lensing than the others by a factor of
approximately five. This means their value for F is prob-
ably optimistic in terms of the amount of strong lensing,

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/staa1429/5843301 by U

niversity of D
urham

 user on 24 M
ay 2020



What does strong lensing? 13

0 1 2 3 4 5
zS

10−7

10−6

10−5

10−4

τ
S
(|µ
|>

10
)

BAHAMAS + EAGLE

Hilbert et al. 2008

Hannuksela et al. 2019

Tinker et al. 2008 + SIS

Figure 5. The source-plane optical depth for magnifications

greater than 10, as predicted by different models. The solid blue
line shows our prediction from hydrodynamical simulations, while

the blue dashed line shows the prediction from our SIS model.

The red line shows results from H08, who also used cosmological
simulations, but using a semi-analytic model of galaxy formation

rather than hydrodynamical simulations. The yellow line shows

the results from the SIS model used by Hannuksela et al. (2019),
in which the mass function of lenses does not change with red-

shift. The different predictions agree to within a factor of two

over most of the redshift range, except for the Hannuksela et al.
(2019) line which is a factor of four to six larger than the others.

but a lower value for F would only strengthen their con-
clusion that it is unlikely that any of the already detected
gravitational wave signals have been highly magnified by
gravitational lensing.

5 CONCLUSIONS

In this paper we have calculated the optical depth for high
magnification gravitational lensing of high-redshift point
sources, and its contribution from different lens masses and
redshifts, as predicted by two recent hydrodynamical simu-
lations, eagle and bahamas. We combine these two simula-
tions because eagle has sufficient resolution to resolve the
lowest mass haloes important for strong lensing, while the
large volume of bahamas allows for an adequate sampling of
the high-mass end of the halo mass function. The predicted
contribution from group mass (1013 − 1014 M�) haloes is
rather uncertain, because the strong lensing regions of these
haloes are not well resolved in bahamas, and the eagle
simulation has insufficient volume for a robust prediction.
Future simulations, with sufficiently large volume and reso-
lution to accurately estimate the lensing contribution from
galaxy groups, will improve our predictions further.

The relative contribution of different lens masses to the
total optical depth for large magnifications has been a topic
of recent debate, particularly in the community studying
the effects of gravitational lensing on observations of grav-
itational waves. The importance of galaxies versus galaxy
clusters is a ‘tug-of-war’ between the high number density
of galaxies, and the large lensing cross-sections of galaxy
clusters. We first studied a simple model, in which haloes
are modelled as singular isothermal spheres. In this model,

the lensing cross-section of haloes grows as M4/3, while the
number density of haloes per decade in halo mass is ap-
proximately proportional to M−1. As such, the high lens-
ing cross-sections of more massive haloes wins over the in-
creasing number of less massive haloes, and it is the more
massive haloes that contribute more to the strong lensing
cross-section. This argument holds up to the mass scale at
which the mass function is no longer a power-law, but is
exponentially suppressed, which reduces the importance of
the most massive haloes for strong lensing.

The hydrodynamical simulations confirm this picture,
while altering slightly the importance of different halo
masses. The primary difference between the simulation pre-
dictions and those from our SIS model is that the simula-
tions pick out a particular mass scale (M200 ∼ 1012 M�) as
being more efficient at lensing than predicted by the SIS
model. This scale corresponds to the scale at which galaxy
formation is most efficient, in that the stellar mass to halo
mass ratio is the highest there (Moster et al. 2013). A sec-
ond result of the hydrodynamical simulations is that they
predict a minimum halo mass below which lensing becomes
inefficient. Again this is related to the stellar to halo mass
relationship, as in low mass haloes it is the stars rather than
dark matter that dominate the strong lensing region. The
stellar mass falls off quickly with decreasing halo mass be-
low a halo mass of 1012 M�, and so lower mass haloes quickly
become unimportant for lensing. Overall we find that around
half of all high magnification lensing is done by haloes with
M200 > 1013 M� (i.e. galaxy groups and clusters), with the
other half coming from less massive systems (galaxies). This
result differs somewhat from a previous simulation-based re-
sult (H08), which used a dark matter only simulation com-
bined with analytical gravitational potentials for the stellar
components of galaxies, in that we find an enhanced contri-
bution from galaxies living in 1012 − 1013 M� haloes.

We also discussed the implications of this work for
strategies to hunt for optical counterparts to gravitationally
lensed gravitational waves. If the bulk of high magnification
lines of sight resulted from the most massive haloes, then
a credible strategy for finding the optical counterpart to a
gravitational wave that was known to be strongly lensed,
would be to look in the strong lensing region of the most
massive haloes within the gravitational wave sky localisa-
tion. However, massive clusters (with M200 > 1015 M�) con-
tribute only 2% of the total optical depth for large magni-
fications, with the bulk of the signal coming from massive
galaxies or low-mass clusters. The number densities of these
objects is much higher, such that there will be many within
the sky localisation of a detected gravitational wave. This
means that finding the optical counterparts to high-redshift
gravitationally lensed gravitational waves will most likely re-
quire tiling the credible area on the sky as determined from
the gravitational waves. That said, if a particularly powerful
strong lensing cluster was in the sky localisation of a well-
constrained gravitational wave (∼ 50 degree2) then it could
account for around 5% of the strong lensing within the sky
localisation.

Finally, we presented our prediction for the optical
depth for high magnification as a function of source redshift,
a key ingredient in calculating the expected rate of gravita-
tionally lensed gravitational waves, as well as the abundance
of other gravitationally lensed point sources. We found that
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our result was in reasonable agreement both with H08’s pre-
vious simulation-based result, as well as simple models that
treat lenses as SISs. At low redshift, high magnifications are
extremely unlikely. Each zS = 0.5 source produces, on av-
erage, 5× 10−7 images with magnification greater than ten;
this increases to about 2× 10−5 images for zS = 2. These
lensing probabilities are lower than assumed by Hannuksela
et al. (2019) in recent work on the probability that observed
gravitational waves have been strongly lensed. They found
that strong lensing was unlikely to have affected the cur-
rent sample of observed gravitational waves, and our lower
intrinsic lensing probabilities strengthen this result.
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