
Research Paper

Studies on the energy and deep memory
behaviour of a cache-oblivious,
task-based hyperbolic PDE solver

Dominic E Charrier1, Benjamin Hazelwood1,
Ekaterina Tutlyaeva2, Michael Bader3, Michael Dumbser4,
Andrey Kudryavtsev5, Alexander Moskovsky2

and Tobias Weinzierl1

Abstract
We study the performance behaviour of a seismic simulation using the ExaHyPE engine with a specific focus on memory
characteristics and energy needs. ExaHyPE combines dynamically adaptive mesh refinement (AMR) with ADER-DG. It is
parallelized using tasks, and it is cache efficient. AMR plus ADER-DG yields a task graph which is highly dynamic in nature
and comprises both arithmetically expensive tasks and tasks which challenge the memory’s latency. The expensive tasks
and thus the whole code benefit from AVX vectorization, although we suffer from memory access bursts. A frequency
reduction of the chip improves the code’s energy-to-solution. Yet, it does not mitigate burst effects. The bursts’ latency
penalty becomes worse once we add Intel Optane technology, increase the core count significantly or make individual,
computationally heavy tasks fall out of close caches. Thread overbooking to hide away these latency penalties becomes
contra-productive with noninclusive caches as it destroys the cache and vectorization character. In cases where memory-
intense and computationally expensive tasks overlap, ExaHyPE’s cache-oblivious implementation nevertheless can exploit
deep, noninclusive, heterogeneous memory effectively, as main memory misses arise infrequently and slow down only few
cores. We thus propose that upcoming supercomputing simulation codes with dynamic, inhomogeneous task graphs are
actively supported by thread runtimes in intermixing tasks of different compute character, and we propose that future
hardware actively allows codes to downclock the cores running particular task types.

Keywords
Adaptive mesh refinement, hyperbolic, Intel Optane technology, energy, cache behaviour

1. Introduction

The memory architectures in mainstream supercomputing

(Intel-inspired architectures) become more and more inho-

mogeneous. We classify these trends into clock tick, ver-

tical and horizontal inhomogeneity (Figure 1). Modern

architectures can modify the chip frequencies of some com-

ponents. Modern memory hierarchies are built in layers

with the chip’s registers on the top, persistent memory at

the bottom and caches in-between. This yields the vertical

dimension. As access from the CPU registers to the main

memory is very expensive, the caches hold data copies

temporarily. Small intermediate memory layers can deliver

data quick to the cores. Modern chips are predominantly

multi-socket systems. This yields the horizontal dimension.

Although the main memory and some intermediate mem-

ory layers are logically shared between all cores, the chip

technically is split up into sets of cores with their own

memories and memory controllers. Data access cost within

one layer depends on whether data reside on the local seg-

ment of memory or have to be fetched from memory tech-

nically associated with other sets of cores.

Neither vertical and horizontal nor frequency diversity

is new. Their character however evolves and their impact

1 Department of Computer Science, Durham University, Durham, UK
2 RSC Group, Moscow, Russia
3 Department of Informatics, Technical University of Munich, Munich,

Germany
4 Dipartimento di Ingegneria Civile Ambientale e Meccanica, Universita

degli Studi di Trento, Trento, Italy
5 Intel, Folsom, CA, USA

Corresponding author:

Tobias Weinzierl, Department of Computer Science, Durham University,

Stockton Road, Durham DH1 3LE, UK.

Email: tobias.weinzierl@durham.ac.uk

The International Journal of High
Performance Computing Applications
1–14
ª The Author(s) 2019

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342019842645
journals.sagepub.com/home/hpc

https://orcid.org/0000-0002-6208-1841
https://orcid.org/0000-0002-6208-1841
mailto:tobias.weinzierl@durham.ac.uk
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342019842645
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342019842645&domain=pdf&date_stamp=2019-04-15

on code performance increases. There are at least three

recent hardware trends to consider: With an increase of

core counts, non-uniform memory access (NUMA) effects

gain importance. More cores and their caches have to be

synchronized, while the pressure on the main memory

increases. With the arrival of more inhomogeneous or new

beyond-main memory storage technology (Intel® Optane™

technology or MCDRAM) which introduce new cache

layers, as well as with the farewell of inclusive caching

with the Intel Xeon® Scalable processors (Skylake) –

though likely to be compensated to some degree with the

advent of mesh interconnects – we witness increased non-

uniformity when it comes to memory accesses. With the

opportunity to downclock or upclock system components –

either triggered by users or the energy controllers on board

– we finally face further fluctuations in effective speed.

These hardware features are imposed on high-

performance computing (HPC) simulations by the vendors.

Despite co-design efforts, algorithmic and hardware evo-

lution seem to diverge for some of the most advanced simu-

lation codes. Code developers invest significant

development time into the vectorization of their core

compute kernels. Downclocking hits vectorization. Code

developers invest significant time into a flexible task decom-

position of their codes to uncover the maximum concur-

rency. Yet, modern numerics yield task graphs that have

heterogeneous compute characteristics, non-predictable run-

time cost and dependencies changing frequently. An exam-

ple are predictor–corrector schemes with expensive

predictors and cheap correctors, built on top of Newton- or

Picard-iterations with dynamic termination criteria and

dynamic adaptive mesh refinement (AMR). Horizontally,

diverse multicore systems challenge NUMA-aware sche-

duling. Finally, developers invest significant time into

cache blocking and compute routines of high arithmetic

intensity which exploit all vector registers. New memory

layers typically deliver improved bandwidth and storage

size but also increase latency. For embarrassingly parallel

codes streaming data through the cores as we find them in

machine learning, in-memory database systems (Boyandin,

2018) or dense matrix–matrix multiplications (Kudryavt-

sev, 2018), latency poses a manageable challenge: threads

accessing remote memory are postponed and switched with

other threads. We ‘asynchronize’ threads and memory

accesses. Intel’s IMDT is explicitly built with this in mind

(Figure 2). Indeed, moving data into the main memory

upon request can even improve the performance, as moving

the data into the ‘right’ memory location eliminates NUMA

penalties without complicated first-touch optimizations

(Kudryavtsev, 2018). Such a programming model, being

similar to CUDA, is however problematic for codes which

are tailored towards cache reusage, exploit all registers and

thus suffer from context switches.

Our case study on a complex AMR code with a non-

homogeneous task pattern showcases flavours of this hard-

ware–software divergence. It suggests that memory latency

becomes a major showstopper. Unfortunately, (i) frequency

modifications are ill-suited to tackle the latency problem –

they help to improve the energy efficiency though; (ii) task/

thread oversubscription is ill-suited to hide latency if data

swapped out are not reliably backed up in the next-level

cache; and (iii) additional memory layers amplify latency

penalties. We however uncover that a heterogeneous task

graph where tasks of different computational character are

intermixed reduces the memory pressure and latency pen-

alty. As a consequence, our code performs, by means of

memory characteristics, better with dynamic AMR than

with regular grids once the task character difference (com-

pute- vs. memory-heavy) is reasonably high and dynamic

AMR starts to mix those different tasks. This counter-

intuitive result is, to the best of our knowledge, novel, and

our report also seems to be the first in a line that studies the

impact of the Intel Optane technology on a non-trivial sol-

ver for partial differential equations (PDEs) from both a

performance and an energy consumption view.

The case study is structured as follows. We give an

overview over our benchmark code base ExaHyPE, before

we phrase our research hypotheses: Chip frequency allows

us to balance between speed and energy efficiency, over-

subscription with tasks helps us to moderate latency penal-

ties and increased memory latency harms notably

applications with an inhomogeneous compute task pattern

which destroys streaming character. They circumscribe

common expectations. Besides hypothesis 1, our results

falsify these assumptions. The text next describes the two

test machines. In the subsequent section, we benchmark the

code’s runtime characteristics, before we try to find

Cores

M
em

or
y

 L

3

 L

2

 L

1
 C

or
e

Frequency

Figure 1. Vertical inhomogeneity of the data access cost, and
thus speed, arises from multiple cache levels and different cache
coherence strategies (inclusive vs. noninclusive). With the Intel
Optane technology, main memory effectively becomes a fourth
cache and an additional memory layer is added at the bottom.
Horizontal inhomogeneity arises from the fact that memory is
logically shared yet physically distributed. Further diversity stems
from the fact that a core hosts multiple (hyper-)threads which in
turn might accommodate multiple logical threads. A third diver-
sity dimension is introduced by the opportunity to calibrate the
cores’ frequency.

2 The International Journal of High Performance Computing Applications XX(X)

evidence for our hypotheses. The findings are summarized

in our conclusion and guide future work.

2. The ExaHyPE benchmark code

Our experiments study a strongly simplified and idealized

earthquake scenario (Figure 3) realized through the Exa-

HyPE engine (Bader et al., 2014–2019). ExaHyPE solves

hyperbolic differential equations in their first-order formu-

lation with Arbitrary high-order DERivatives Discontinu-

ous Galerkin (ADER-DG). ADER-DG is a predictor–

corrector scheme (Charrier and Weinzierl, 2018; Dumbser

and Käser, 2006) which traverses a grid tessellating the

computational domain and first computes per mesh cell a

predicted solution evolution. This prediction is of the

same order in time as the spatial order (typically

p 2 f3; 4; . . . ; 9g) and is determined implicitly. Solving

such an implicit space-time problem is computationally

possible as we neglect the solution in neighbouring cells.

It is a cell-local prediction. The implicit solve of high

order renders the predictor computationally intense. Rie-

mann solves in a second step tackle the arising jumps in the

predicted solutions along cell faces, before a corrector step

sums up the result of the prediction and the Riemann solves.

These two follow-up steps are arithmetically cheap.

ExaHyPE employs a dynamically adaptive Cartesian

grid. It is constructed from a spacetree (Weinzierl and Mehl,

2011; Weinzierl, 2018). The term spacetree describes a gen-

eralization of the octree/quadtree concept. Our code thus

falls into the class of structured AMR or block-structured

AMR where individual blocks are tiny (Dubey et al., 2016).

The meshing supports dynamically adaptive grids which

may change in each and every time step. On purpose, we

neglect multi-node runs. They inevitably yield load balan-

cing challenges which hide the per-node memory effects

studied here. The mesh topology determines which

ADER-DG tasks can be run in parallel (Charrier et al.,

2018). All Riemann solves, for example, are embarrassingly

parallel but require input from their two neighbouring cells.

Along adaptivity boundaries, more than two cells are

involved. As the adaptivity changes, every time step induces

a different multicore task pattern, that is, the sequence and

structure of parallel work items never is the same between

any two time steps. We do not have an invariant task graph.

Combining a predictor–corrector scheme with task-

based parallelism implies that (i) very compute-intense

steps take turns with tasks that are computationally cheap;

(ii) the memory demands change as dynamic mesh

Figure 3. Cut through the LOH.1 simulation. The domain con-
sists of a homogeneous material with a thin crust on top. It is
homogeneous, too, but of a different material than the remainder.
A point source earthquake is inserted into the crust, that is, just
below the surface. Waves propagate from this point. Regular grid
visualization through the experiments runs with both regular and
dynamically adaptive meshes.

Figure 2. Intel Optane SSD DC P4800X Series with IMDT operation mode. It relies on software IP for memory management. Newer
products such as Intel Optane DC Persistent Memory are promised to integrate on DIMM form-factor and also to introduce a memory
mode fully managed by the CPU without extra software; and hence smaller cost penalty. IMDT: Intel Memory Drive Technology.

Charrier et al. 3

refinement allocates additional blocks in the main memory,

while mesh coarsening releases memory segments; and (iii)

the concurrency profile of the code is time-dependent and

changing such that dynamic tasking with task stealing is

required. To cope with these characteristics, our code base

is subject to three optimizations.

2.1. Homogenization of the task execution

In ADER-DG, all cell-based (correction and prediction)

tasks are independent of each other. All Riemann tasks are

independent of each other, too. Between those types,

dependencies exist: A predictor requires the input from the

correction which in turn requires the result of 2d Riemann

solves. Each Riemann solve requires input from the two

predictions of adjacent cells.

ExaHyPE offers two task processing modes. In its basic

variant, it first issues one type of tasks, processes these tasks

(which are all independent of each other) and then continues

with the next type of tasks. Per time step, it first spawns all

predictor tasks, then all Riemann tasks and finally all cor-

rector tasks. Dynamic adaptivity introduces additional grid

modification tasks. Each sweep is homogeneous with respect

to its compute profile. The total time step however exhibits

inhomogeneous character. This scheme is equivalent to a

breadth-first traversal of the task graph.

An alternative variant is the fused mode (Charrier and

Weinzierl, 2018). It issues a task as soon as its input data

are available. A Riemann solve starts as soon as the pre-

dictions of the two adjacent cells become available – it does

not wait for all predictions to terminate – and a corrector

task is issued immediately once all 2d Riemann solves on

the cell’s adjacent faces are solved. We issue tasks as soon

as possible. This induces some overhead to find out

whether a task is already ready. Yet, the latter approach

allows the task runtime to orchestrate tasks of different

types to run concurrently. This homogenizes, that is,

averages the character of the tasks over a time step.

Although we have no absolute control on the processing

order of the tasks – this is up to the task runtime – we may

assume that the task graph is processed close to a depth-

first order (Reinders, 2007).

2.2. Temporal and spatial blocking

ADER-DG’s predictor inherently realizes spatial and

temporal blocking of data accesses (Kowarschik and

Weiß, 2003): The expensive implicit solves are not run

on the whole mesh but on a per-cell basis. This means

many floating point operations are executed over a rel-

atively small set of data. On top of this, ExaHyPE’s grid

traversal localizes all data accesses further. It traverses

the grid along a space-filling curve whose Hölder con-

tinuity yields a spatial and temporal locality of data

accesses (Weinzierl, 2018). The result of the Riemann

solve feeds into the face’s adjacent cells. The probability

that an adjacent cell is processed shortly after is high.

Together with the optimization resulting from the homo-

genization, ExaHyPE realizes a cache-oblivious algo-

rithm, which fuses correction and prediction. These

cell operations are executed directly after another and

merged into one task.

2.3. Optimization of task core routines

ExaHyPE customizes the engine: As soon as architecture,

number of equation unknowns, PDE-term types and poly-

nomial orders are known – as they are for our LOH.1 setup

– an ExaHyPE preprocessor (toolkit) can rewrite the most

time-consuming code parts into manually vectorized, tai-

lored code kernels. For these, it employs Advanced Vector

Extension (AVX) instructions, appropriate alignment and

padding, as well as aggressive function inlining: The

application-generic engine machinery is rewritten without

virtual function calls.

3. Research hypotheses

We consider our ExaHyPE benchmark to be a prime can-

didate to study and assess new memory hierarchies, as the

code exhibits multiple characteristic properties of modern

simulation software: First, high-order, locally implicit

approaches are one popular way forward to exploit vector-

ization. Second, we expect many future simulation codes to

consist of different task types. Computationally demanding

tasks – the workhorses – take turns with other, cheaper

tasks which are however mandatory for advanced

numerics. We focus on a predictor–corrector scheme here.

Another popular example for such an algorithmic imprint is

multigrid codes with expensive fine grid smoothers and

cheap coarse equation systems. Third, we expect the major-

ity of future codes to exploit some kind of dynamic adap-

tivity to invest compute power where it pays off most. As a

result, task graphs, memory footprint and compute facility

needs are never invariant or temporarily homogeneous.

Notably, we assume proper a priori prefetching to become

very difficult or even impossible for the runtimes. Fourth,

we assume that cache blocking – realized here implicitly

through a computationally heavy predictor which acts on

one cell of the mesh only – removal of virtual function

calls, padding, manual vectorization and so forth are state

of the art for any compute kernel.

By means of our non-trivial benchmark setup, we follow

up on the following hypotheses:

1. A frequency increase of the compute units helps to

improve the time-of-solution, while a frequency

reduction improves the energy-of-solution ratio.

It also weakens the latency penalty.

2. Task oversubscription helps to hide latency effects.

The popular (light) oversubscription pattern from

CUDA enters mainstream processors.

3. The increased latency introduced by additional

memory layers (fourth-level cache) harms notably

4 The International Journal of High Performance Computing Applications XX(X)

those runs that exhibit a strongly inhomogeneous

data access pattern (dynamic AMR). In hardware,

prefetching breaks down.

4. Benchmark setup and system

Our benchmark is run on the following server configura-

tions. The first one is an Intel Xeon E5-2650V4 (Broad-

well) cluster in a dual-socket configuration with 24 cores.

They run at 2.4 GHz. TurboBoost can increase this up to

2.9 GHz, but a core executing AVX(2) instructions might

fall back to a minimum of 1.8 GHz to stay within the

Thermal Design Power (TDP) limits (Microway, 2018).

Each node has access to 64 GB of 2.4 GHz TruDDR4

memory. Each Broadwell CPU utilizes a hierarchy of inclu-

sive caches (12� ð32þ 32Þ KiB, 12� 256 KiB and

12� 2:5 MiB). While the L3 is shared and retains copies

of the L1 and L2 content once data are moved into these, L1

and L2 are individual to each core. They are only shared by

the two hyperthreads. The node is able to deliver around

120 GB/s in the Stream TRIAD (McCalpin, 1995) bench-

mark. It has a theoretical double precision peak perfor-

mance between 2� 105:6 (non-AVX mode and baseline

speed) and 2� 556:8 Gflop/s if we use FMA3 with full

turbo boost (Microway, 2018). Although artificial – the

all-core turbo is, for example, capped at 2.5 GHz – TRIAD

and peak performance allow us to classify codes as band-

width- or compute-bound.

The second configuration is a dual-socket Intel Xeon

Scalable Gold 6150 with 18 physical cores per socket,

clocked at 2.70 GHz, and equipped with 192 GB of 2.7 GHz

DDR4 memory (12 ranks of 16 GB modules). The chip may

reduce the base clock frequency to 2.3 GHz for AVX2 and to

1.9 GHz for AVX-512 (WikiChip, 2018). The other way

round, thermal velocity boost permits individual cores to

upclock up to 3.7 GHz temporarily. The node’s three cache

levels (18� ð32þ 32Þ KiB, 18� 1 MiB and 18� 1:375

MiB) work noninclusive: Once data are moved into

L1/L2, there is no guarantee that the L3 retains a copy. Loads

issued by other cores might remove them. L3 is logically

shared between the cores, while L1 and L2 are individual to

each core. They are only shared by the two hyperthreads.

According to our benchmarks, the node delivers 125 GB/s

for the Stream TRIAD benchmark. Its theoretical peak is

2� 388:8 Gflop/s with base frequency in non-AVX mode.

With upclocking and FMA3, the two AVX units allow us in

theory to squeeze out 2� 2; 131:2 Gflop/s.

In our experiments, the latter system is expanded with

6� Intel DC Optane SSD P4800X, that is, 375 GB, non-

volatile memory. The SSDs are connected via PCIe-switch

IC to the CPU, while the Intel Memory Drive Technology

(IMDT) implements software-defined memory on top of

the Intel Optane technology SSDs (cf. Figure 1). This

IMDT uses part of the overall memory capacity from the

DRAM for caching, prefetching and endurance protection,

that is, the drives become transparently available to the

operating system as system memory. Although our memory

totals to roughly 1.4 TB, we stick to the default IMDT

settings recommended by Intel which limits the available

memory to 8� the main memory. Larger ratios than 1 : 8

would lead to performance drops according to the vendor.

All shared memory parallelization relies on Intel’s Thread-

ing Building Blocks (TBB) (Reinders, 2007) while Intel’s

2018 Cþþ compiler translated all codes. We use Likwid

(Treibig et al., 2010) to read out hardware and energy counters

made available through Intel’s Running Average Power

Limit (RAPL). On the Purley platform chip, we use energy

sensors which are directly attached to the board.

Our experiments study the LOH.1 benchmark (Day and

Bradley, 2001; The SPICE Code Validation 2006) realized

through the ExaHyPE engine (Bader et al., 2014–2019).

LOH.1’s artificial setup splits up a cubic domain into two

horizontal layers of material. An earthquake is then induced

as point source inside the cube. Sensors close to the domain

surface track incoming waves. While LOH.1 is artificial, it

exhibits real-world simulation characteristics with its mate-

rial transition, a source term and non-trivial inference and

reflection patterns. To obtain high-quality results at reason-

able cost, a feature-based refinement criterion follows the

steepest solution gradients and shocks. The mesh spreads

from the point source.

5. Benchmark code characteristics

5.1. Automatic frequency alterations

We kick off our experiments with studies on the Broadwell

chip. For statements on the code’s scaling, it is important

first to understand the frequency behaviour under load. On

Broadwell, a single- or dual-core setup drives the chip at

around 2.5 GHz (Figure 4). If we however use all 24 cores

and run our optimized code variant using AVX, the node is

downclocked to around 2.165 GHz on average. If we

manually disable AVX, the downclocking is less severe

(2.35 GHz on average). For all-core loads, overclocking

is not used of the chip’s own accord. We observe one core

– predominantly being busy with task production and sche-

duling – to perform at close-to-nominal speed. All others

clock down. Scalability graphs have to take the amortized

downclocking into account.

5.2. Scalability

To assess the impact of frequency, horizontal and vertical

diversity, it would make limited sense to benchmark serial

or non-scaling code. Before we study our code’s memory

and energy characteristics, we thus validate that the code

scales reasonably on Broadwell (Figure 5). Qualitatively

similar results arise on the Intel Xeon Scalable chip.

This holds despite the significantly changed memory

architecture.

As the corrector step is merged into the predictor in the

fused scheme, we benchmark the fused scheme against the

nonfused implementation and decompose the latter’s beha-

viour into the scaling of the Riemann solve and the scaling

Charrier et al. 5

of the cell-wise operator (Figure 5) top. While the predictor

scales perfectly for both p ¼ 5 and p ¼ 7 once we accept

that the cores clock down, the Riemann solvers scale hardly

at all. They are heavy on data movements, move many

small chunks of data and suffer from the AMR administra-

tion overhead which we did not remove from any plot.

Furthermore, we exploit the first-touch policy to ensure that

data are allocated following their cell associativity: all cell

data plus all faces of this cell are allocated en bloc by the

allocating thread. The Riemann solves however bring

together data from two cells and thus suffer from NUMA

effects. In the end, the combination of the three task types

ends up in-between these two extreme cases. Fusion is

robustly faster than the nonfused scheme. The higher the

order, the more dominating the predictor steps. The arith-

metic intensity of the Riemann solves in contrast is close to

p-invariant. Similar to an Amdahl law, we obtain better

scaling overall when we increase the order.

Our experiments clarify that our code scales reasonably

on one socket. The predictor ‘saves’ the overall scalability.

If the other 12 cores are also used, the parallel efficiency

deteriorates.

5.2.1. Observation 1. Strongly dynamic AMR codes with

heterogeneous tasks suffer from multi-socket architectures.

It might be reasonable to deploy one process/rank per

socket, that is, to give up on the idea of a larger shared

memory system, to reduce NUMA effects.

Higher orders mitigate this effect, while dynamic adap-

tivity makes it slightly worse. Dynamic adaptivity is not for

free. Further increases of the mesh resolution n (growing

the mesh with OðndÞ for regular grids) or polynomial order

(increase in OðnpÞ) are impossible due to memory limits on

Broadwell. Our benchmark quickly is caught in a strong

scaling regime. This observation is typical for many HPC

codes working with dynamically adaptive meshes. They do

not exhibit arbitrary concurrency.

5.2.2. Observation 2. To improve code scalability, increases

of the polynomial order or mesh size are required. Such

Figure 4. Broadwell’s frequency choice per core for a dual-core (left), one-socket (middle) and a 24-core run (right). The caption gives
the time-averaged frequency. All setups rely on code translated with AVX. Without the manual AVX optimization (not shown), the
average frequency is 2616 GHz for two cores, drops to 2454 GHz on a socket and finally to 2409 GHz, while the AVX-optimized code
base, as shown, yields 2529, 2433, 2262 MHz, respectively.

1 4 8 12 16 24

1

4

8

12

16

24

Cores

Sp
ee

du
p

p7, predictor
p7, fused
p7, nonfused
p7, Riemann
p5, predictor
ideal
freq.-scaled ideal

1 4 8 12 16 24

1

4

8

12

16

24

Cores

Sp
ee

du
p

of
Fu

se
d

Sc
he

m
e

p7, regular
p6, regular
p5, regular
p4, regular
p3, regular
p7, adaptive
ideal
freq.-scaled ideal

Figure 5. Code scalability on Broadwell for various orders and a
27� 27� 27 grid. Top: Scalability of the isolated predictor and
Riemann phase of the nonfused scheme plus overall scalability of
the nonfused (straightforward) and the fused schemes for orders
5 and 7. Both an ideal linear speed-up and a speed-up calibrated
with the observed frequency reduction are given. Bottom: Scal-
ability of the fused scheme for orders 3–7. Regular grid runs are
compared to adaptive grids where a dynamic refinement criterion
is allowed to add additional grid levels to the regular base grid.

6 The International Journal of High Performance Computing Applications XX(X)

increases however are constrained by the memory

available.

It does not come as a surprise that it is desirable to have

more memory to be able to increase either the resolution,

that is, to shift the strong scaling regime, or p, that is, to

increase the arithmetic intensity (Hutchinson et al., 2016).

While this favours the introduction of novel large-scale

memory as provided through the Intel Optane technology,

our observations suggest that any architectural extension

that increases NUMA penalties affects the overall perfor-

mance negatively.

5.3. Code characteristics and optimizations

If we rewrite our code into a fused variant where a task is

immediately triggered once its input data become available,

we obtain faster code. It robustly pays off to issue compute

tasks as soon as their input data are available and thus to

overlap computationally demanding with memory-intense

tasks. This observation is in line with implicit data access

blocking as we find it in Intel’s TBB (Reinders, 2007),

where the task graph/tree is processed depth-first. We thus

focus solely on the fused scheme from hereon.

Our benchmarking continues with performance counter

measurements. Each test is done without any vectorization

(disabled at compile time) and with full AVX2 vectoriza-

tion. We observe a robust speed improvement through vec-

torization (Table 1). The reduction of the time-to-solution

follows an increase of the gigaflop per second (Gflop/s).

The positive vectorization impact is solely due to the high-

order prediction tasks which make up for the majority of

the runtime. The higher the polynomial order, the higher

the fraction of the runtime plus the higher the Gflop/s.

While the predictors yield the Gflop/s, the solution

update, which is fused with the predictor, delivers the mem-

ory throughput. It reaches around 25% of Stream TRIAD

on Broadwell. Correcting the solution reduces the effective

Gflop/s of this fused, cell-aligned task type. The vectoriza-

tion success is diminished further by the fact that arithme-

tically intense tasks take turns with cheap Riemann solves.

The runtime of the latter benefits insignificantly from vec-

torization. Riemann solves process face by face. Each face

Table 1. Hardware counters on Broadwell (24 cores) for a 273 grid.a

Regular Dyn. adaptive

Scalar AVX2 Scalar AVX2

p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7

Avg. time (s) 0.34 0.84 2.29 0.31 0.52 1.3 2.57 4.09 11.11 2.58 2.88 6.79
Gflop/s 12.3 32 41.7 12.8 47.9 74.3 3.7 18.4 37.1 5.7 23 58.1
L2 request rate (%) 6.55 9.27 8.80 8.52 16.34 19.78 5.09 7.56 7.99 6.79 14.93 18.16
L2 miss ratio (%) 13.76 14.43 18.95 10.37 15.28 19.96 17.12 16.91 18.26 11.92 13.63 17.59
L3 request rate (%) 0.09 0.04 0.04 0.11 0.20 0.28 0.05 0.05 0.04 0.09 0.17 0.28
L3 miss ratio (%) 29.38 7.43 8.85 60.69 20.91 13.40 28.23 14.15 9.86 44.55 24.26 11.57
Mem. bandwidth (GB/s) 7.9 6.5 5.4 6.4 12 9.7 4.5 6.8 5.7 6.1 8.2 9.4
Avg. time (s) 0.3 0.51 1.78 0.28 0.38 0.94 1.95 2.56 9.04 1.97 2.32 4.59
Gflop/s 11.8 42 54.3 11.8 26.9 93.1 5.5 22.3 51.8 4 24.5 66.1
L2 request rate (%) 6.49 8.69 8.92 9.21 17.17 18.17 5.08 8.43 8.63 7.14 14.24 18.32
L2 miss ratio (%) 9.58 16.07 18.79 8.26 15.56 22.49 13.37 15.35 15.77 8.90 17.68 20.48
L3 request rate (%) 0.02 0.04 0.04 0.05 0.19 0.28 0.03 0.04 0.03 0.06 0.16 0.25
L3 miss ratio (%) 25.48 4.64 6.84 41.80 2.99 3.96 27.42 11.22 10.98 29.54 8.06 5.54
Mem. bandwidth (GB/s) 4.85 6.34 4.09 6.05 11.74 6.91 3.17 4.34 3.25 4.49 5.47 5.86
Avg. time (s) 0.11 0.1 0.11 0.11 0.11 0.1 0.95 0.99 1.04 0.92 0.94 0.96
Gflop/s 0.6 3 9.4 0.6 3 8.6 0.5 3.8 15.6 0.2 1.1 2.8
L2 request rate (%) 9.62 9.91 8.32 8.32 14.37 18.76 3.61 3.03 6.45 3.37 5.32 8.07
L2 miss ratio (%) 17.18 16.42 17.15 16.65 16.07 19.71 20.43 20.08 5.29 23.54 20.26 21.85
L3 request rate (%) 0.10 0.05 0.05 0.17 0.30 0.28 0.08 0.05 0.02 0.09 0.10 0.16
L3 miss ratio (%) 30.97 21.59 12.72 33.23 18.92 9.96 24.76 23.86 19.27 28.34 26.17 14.61
Mem. bandwidth (GB/s) 2 2.9 4.3 1.66 2.4 3.31 3.7 3.32 2.71 3.36 3.51 3.62
Avg. time (s) 0.11 0.14 0.18 0.14 0.14 0.18 1.13 1.55 2.1 1.1 1.27 1.72
Gflop/s 2 6.6 12.5 1.8 6.4 13 1.2 5.3 15.6 0.6 2.1 5
L2 request rate (%) 5.61 6.51 8.10 16.06 19.20 25.79 3.69 3.53 7.22 5.59 9.01 13.64
L2 miss ratio (%) 22.32 19.64 14.67 26.43 20.56 17.73 25.49 21.58 7.54 26.93 23.27 21.36
L3 request rate (%) 0.10 0.05 0.05 0.32 0.34 0.42 0.08 0.08 0.04 0.13 0.24 0.26
L3 miss ratio (%) 39.82 34.55 33.17 61.23 46.50 41.84 35.39 38.22 32.61 37.58 43.81 39.93
Mem. bandwidth (GB/s) 7.2 15.9 21.7 8.4 18 26.8 4.6 7.3 9.9 3.8 7.2 11.6

aIn the columns, scalar denotes no vectorization (-no-vec -no-simd) and no generation of vectorized inline assembler code. The table is vertically split
into four blocks. The top block presents the whole code characteristics if all three different task types are merged into each other. Three blocks follow
which break down all measurements into the phases prediction, Riemann solves and solution correction.

Charrier et al. 7

is of small memory footprint, Riemann solves are not arith-

metically intense, and our AMR data structures associate

face data with the cells. This scatters the Riemann input/

output data in memory.

We have not been able to observe any significant

impact of the task character homogenization on the AVX

downclocking in our experiments. One might expect that

intermixing computationally heavy with cheap tasks

implies that not all cores run AVX at the same time, and

the node thus does not throttle the speed as significantly.

This however seems not to happen significantly. Figure 4

remains representative.

To characterize the cache usage, we measure per cache

level the request and the miss rate (Table 1). Request rate

means number of requests divided by number of instruc-

tions. Miss rate means number of requests not served by a

cache divided by number of instructions. From both rates,

we can derive the miss ratio which is the ratio of cache

accesses which have not been served by a particular cache.

The request rate of both L2 and L3 increases with

increasing polynomial order. Furthermore, it is signifi-

cantly higher for AVX-enabled code, while the request rate

decreases rapidly over the cache levels. Our code’s aggres-

sive cache blocking renders the dominating predictor

cache-efficient. The predictor’s data do not fit into L1, but

barely any misses hit through the last-level cache (LLC).

For all programme phases and both for the vectorized

code base and without AVX, our miss ratio is high: Every

time a piece of data is not found in the L2, the LLC cannot

serve this request either with high probability. Although the

miss ratio decreases with increasing polynomial order, high

ratios imply that we are neither bandwidth- nor compute-

bound. This problematic behaviour stems from the Rie-

mann solves. They pollute the caches through their low

arithmetic intensity, small input data cardinality and

NUMA effects and thus both are cache-inefficient them-

selves and pollute the following correctors. It is the

re-filling of the caches with small chunks of data for the

corrector/predictor steps which slows down the code. It is

dominated by memory latency. The two steps themselves

are memory-efficient.

The Intel Xeon Scalable chip amplifies all observed

trends. The chip delivers higher performance – also due

to the increased core count – and benefits from a decreased

L2 miss ratio (Table 2), as the L2 cache per core is

increased. However, changing from inclusive to noninclu-

sive caches and reducing the cache-per-core size makes the

code yield an even higher L3 miss ratio. This results in a

significantly increased memory bandwidth.

5.3.1. Observation 3. The code suffers from memory latency.

We obtain a reasonably high percentage of peak per-

formance for a dynamically adaptive grid through the

high-order space-time predictor. The necessity to inter-

wave it with cheap tasks however implies that we are

overall neither compute- nor bandwidth-bound. We are

latency-bound.

6. Frequency and energy analysis

Modern chips regulate their frequency actively: Notably

AVX operations induce a frequency reduction if the chip

exceeds its energy/temperature thresholds (Figure 4). Our

results (Table 3) validate that the reduction in time-to-

solution compensates for problematic impact: With AVX,

the executable delivers the results faster at lower energy

footprint. The higher the polynomial order, that is, the

higher the arithmetic intensity of the heavy compute tasks,

the stronger this effect.

We continue with experiments on our Xeon test bed and

manually modify the frequency of the chip. Frequency

alterations affect all standard components’ maximum

speed, while intense AVX usage still might reduce the

frequency. Our data track the time-to-solution and the

energy consumption per simulation run (Figure 6).

6.1. Observation 4

Running a chip at maximum frequency and high poly-

nomial degree is best in terms of time-to-solution. If

energy per simulation however is the optimality condi-

tion, a significant reduction of the frequency is

advantageous.

Table 2. Measurements from Table 1 for the Intel Xeon Scalable gold running with all 36 cores.a

Regular Dyn. adaptive

Scalar AVX2 Scalar AVX2

p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7

Avg. time (s) 0.28 0.38 1.15 0.27 0.32 0.95 2.32 3.01 6.48 2.52 3.19 5.36
Gflop/s 14.6 62.5 86.7 22 100.9 156.4 7.3 32 74.6 8 32.8 95.3
L2 request rate (%) 4.82 5.55 7.64 9.31 15.64 21.68 5.81 5.66 8.76 11.06 18.78 22.00
L2 miss ratio (%) 8.25 4.10 11.46 9.25 7.35 12.27 12.86 4.31 9.27 11.41 3.70 12.44
L3 request rate (%) 0.03 0.02 0.03 0.11 0.06 0.16 0.06 0.01 0.03 0.15 0.08 0.17
L3 miss ratio (%) 55.04 60.71 14.22 85.55 75.49 59.23 37.52 45.68 11.69 56.32 63.04 47.92
Mem. bandwidth (GB/s) 9.7 13.7 20.4 13.5 23.5 89.7 6.6 6.7 12.1 7.4 9.7 64.2

aWe show only data for the fused scheme without a breakdown into individual phases.

8 The International Journal of High Performance Computing Applications XX(X)

Our results are in line with reports on the best-case

efficiency for Linpack if the total energy consumption has

to be minimized (Glesser, 2016). They also agree with

ADER-DG experiments on tetrahedral meshes (Breuer

et al., 2015). More detailed studies however uncover three

more insights: (i) a frequency alteration does not change the

character of our latency challenge. We observe no flatten-

ing of the speed curve when we reduce the frequency.

Notably, we have not been able to observe any statisti-

cally significant impact on the cache counters and thus

latency effects when we did alter the memory speed

against the CPU (not shown). The memory’s auto mode

choosing an appropriate memory speed is not outper-

formed by any manual memory frequency tuning. (ii)

For our heterogeneous task graphs, turbo boost tech-

niques which allow cores to temporarily upclock yield

significantly improved performance at a limited increase

of energy hunger. (iii) As cache capacity grows, as

caches become noninclusive and as the core count rises,

our cache-optimized algorithm also makes the chip

spend more energy on the cores rather than the memory,

and the total energy cost per degree of freedom (DoF)

grows (Table 3).

6.2. Observation 5

Core frequency reductions – whether manually imposed or

triggered through AVX – are insufficient to mitigate

latency effects.

6.3. Observation 6

Larger caches and higher core counts do not automatically

improve the energy efficiency.

The latter observation results, to some degree, from a

saturated scalability of the benchmark code.

7. Pinning, hyperthreading and latency
hiding

Many HPC codes report pinning to be essential to achieve

reasonable performance and to avoid NUMA pollution. We

have not been able to confirm that TBB’s task pinning pays

off for our code. No data are presented here, as no statisti-

cally pinning impact could be observed:

7.1. Observation 7

Runtimes with and without thread pinning can hardly be

distinguished.

As our code is extremely cache efficient, data reside in

the cache close to the core. If the system should decide to

1.2 1.5 1.9 2.3 2.7 2.7+

0.4

0.6

0.8

1

1.2

Maximum Frequency (GHz)

Energy: 273, regular
Energy: 273, adaptive
Energy: 813, regular
Performance: 273, regular
Performance: 273, adaptive
Performance: 813, regular
norm.

Figure 6. Filled symbols: Energy results for various CPU fre-
quencies on the Intel Xeon Scalable machine for p ¼ 6. Empty
symbols: Time-to-solution results. We normalize the results
against the default frequency of 2.7 GHz. The label 2:7þ denotes a
base clock of 2.7 GHz with 3.7 GHz TurboBoost enabled. The
memory frequency is determined by the chip (auto modus).
Larger y values denote higher energy hunger or faster code,
respectively.

Table 3. Energy consumption per DoF on Broadwell (24 cores) and Xeon Scalable (36 cores) for a typical run with a regular and a
dynamic grid.a

Regular Dyn. aadaptive

Scalar AVX2 Scalar AVX2

p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7 p ¼ 3 p ¼ 5 p ¼ 7

Total energy (kJ) 1.46 5.24 15.54 1.29 3.02 9.01 27.57 41 96.84 22.24 28.42 53.7
Total energy per DoF (mJ) 1.16 1.23 1.54 1.02 0.71 0.89 3.16 1.39 1.39 2.55 0.97 0.77
Energy DRAM (kJ) 0.49 1.25 3.06 0.43 0.78 1.79 6.96 9.03 19.12 5.42 6.62 10.64
Energy DRAM per DoF (mJ) 0.389 0.294 0.304 0.341 0.183 0.178 0.799 0.307 0.274 0.622 0.225 0.153
Total energy (kJ) 3.24 6.41 17.77 2.85 4.63 13.32 36.46 46.68 123.74 51.75 46.49 91.48
Total energy per DoF (mJ) 2.57 1.51 1.76 2.26 1.09 1.32 4.19 1.59 1.78 5.94 1.58 1.31
Energy DRAM (kJ) 0.17 0.25 0.69 0.17 0.25 0.87 1.83 2.04 4.95 2.72 2.42 4.9
Energy DRAM per DoF (mJ) 0.135 0.059 0.068 0.135 0.059 0.086 0.210 0.069 0.071 0.312 0.082 0.070

DoF: degree of freedom.
aThe total energy plus the energy spent on the memory are given.

Charrier et al. 9

migrate a running task, the cache content has to be moved,

too. However, a code with such extremely localized data

access usually does not run into traditional cache conflicts

and false sharing. In contrast, it might be reasonable to

improve the affinity-awareness of the thread scheduler.

This option is not explored further here.

Hyperthreading and oversubscription are a popular tech-

nique for deep memory hierarchies (Figure 2) or systems

where floating point units are shared between physical

threads: Whenever a data request cannot be served, the

system issues a cache transfer. At the same time, the system

swaps this thread with another compute thread until the

data eventually have arrived. The cores thus do not idle.

This is similar to the streaming/high throughput compute

paradigm in CUDA. While one thread uses the floating

point capabilities, other threads can fetch/prepare all data

for the subsequent AVX usage and queue to continue once

the first thread ‘releases’ the vector units.

On Broadwell, the techniques do yield performance

improvements in our case (Figure 7). Starting from the Intel

Xeon Scalable (Skylake) hardware generation however,

they are counterproductive. They decrease the perfor-

mance. This holds for all problem sizes.

7.2. Observation 8

Our code’s performance suffers from hyperthreading and

thread oversubscription on systems with noninclusive

caches. Oversubscription is not a way forward to mitigate

latency effects here.

The result is not a surprise once we take into account

that the code relies heavily on data access localization and

that individual tasks with their high arithmetic intensity

already fill the close caches. Within one task, the code

streams data through the AVX components. Switching

tasks is expensive: It interrupts the AVX usage pattern of

the current thread and induces further capacity misses on

the close-by caches. If the data then still reside in a next-

level cache, these runtime penalties are eventually

compensated by the gain in vector facility utilization. If

swapped-out data however are not contained in a close-by

cache – a situation likely with noninclusive caching – swap-

ping out logical threads becomes too expensive to be com-

pensated. The effect is amplified by overhead necessary to

administer the task queues and sequentialization and synchro-

nization effects stemming from work stealing, for example.

8. Additional deep memory (Intel Optane
technology)

Finally, we scale up our problem size such that it does not

fit into our conventional memory anymore. We use Intel

Optane technology to accommodate this larger memory

footprint. Hence, the conventional memory becomes a fully

associative L4 cache. Intel’s hardware is responsible for

bringing data into and out of the cache. Agnostic of the

particular data movement strategy, we may assume that

high temporal and spatial locality (Kowarschik and Weiß,

2003) in the memory accesses continues to be advanta-

geous. Agnostic of the specific hardware properties, we

may assume that ‘main memory cache misses’ suffer from

higher latency.

For the benchmarking, we start from two regular grids:

273 and 813. These regular grids are denoted by D‘ ¼ 0, as

we add 0 levels of dynamic adaptivity. Different to previ-

ous setups where, for reasonably large setups, memory

constrains the dynamic adaptivity criterion and allows it

to add at most one level of grid refinement, we now also

conduct experiments with up to two additional resolution

levels of dynamical adaptive meshes (D‘ 2 f1; 2g). All

data are normalized against the real DoFs and the number

of time steps, as explicit hyperbolic equation solvers

require the time step size to scale with the (adaptive) mesh

size. We measure the cost per DoF updates per time step.

As we found the large setups to crash with multicore sup-

port – the per-thread call stack was exceeded – we made

each thread outsource its significant temporary local data

structures to the heap. This is less efficient than on-stack

storage and reduces the scalability, yet has to be done for all

experiments here to obtain consistent data. Future versions

of TBB will fix this stack size problem.

We spot a v-shaped cost profile for the setups fitting

completely into memory (Figure 8). The cost per DoF

update increases with p, an effect in practice more than

compensated through the higher order of the approxima-

tion. Furthermore, we see that this increase is more than

made up as long as p � 6. Vector units are used more

efficiently (Tables 1 and 2). Once p � 7, the increase in

cost also materializes in increased runtimes. The memory

of the individual compute steps exceeds close caches (cf.

L2 Request Rate in 2). We start to suffer from L2 or L3

cache misses. The v-pattern translates into energy per DoF

update, too.

Broadwell
(regular)

Broadwell
(adaptive)

Skylake
(regular)

Skylake
(adaptive)

0

0.5

1

1.5

2
10−7

T
im

e
pe

r
D

oF
U

pd
at

e
(s

) 1 thread per core
2 threads per core
4 threads per core

Figure 7. Characteristic p ¼ 7 runs for both regular and adaptive
meshes on the 36 cores of the Intel Xeon Scalable. We bench-
mark a one thread per core setup to oversubscribing with two
(hyperthreading) or even four threads. The latter overbooks each
hyperthread with two logical threads. The label Skylake identifies
the Intel Xeon Scalable processor.

10 The International Journal of High Performance Computing Applications XX(X)

Once our regular grid setup exceeds main memory, we

experience a runtime penalty. For the low-order experi-

ments, this penalty is significantly below a factor of three

which would mirror the fact that the hardware has higher

latency, too. With increasing orders, the penalty increases.

8.1. Observation 9

Trading bandwidth for latency does not work for our code.

We suffer directly from increased latency.

With the Intel Optane technology, the v-pattern is dis-

torted. The higher our bandwidth demands, the higher also

the LLC misses and the higher the runtime penalty of the

Intel Optane technology. We observe that the most aggres-

sive adaptivity pattern D‘ ¼ 2 now yields a better cost per

DoF update ratio than the more regular discretizations. The

higher the polynomial order, the more significant this effect.

As the dynamically adaptive mesh intermixes memory-

intense and arithmetically demanding tasks stronger, the

runtime penalty induced by the Intel Optane technology is

more significant for the other grid setups. For D‘ ¼ 1, we

have not been able to reproduce this effect which might be

due to the fact that we ran into memory limits.

8.2. Observation 10

We find the simulation for dynamically adaptive meshes

being better suited to Intel Optane technology than a reg-

ular grid/fixed mesh setup.

We consider it to be a pattern of many important HPC

codes: data access exhibits stream access behaviour close to

the compute core – here notably for high orders. On a higher

abstraction level, codes however rely on flexible, dynamic

tasks and thus do not fit to hardware tailored to stream access.

Yet, with many cache levels, the arising non-local data

accesses do not hammer the last level memory. As long as not

too many codes access the memory concurrently, the latency

penalty remains under control. Runtimes should thus intermix

computationally heavy- and memory-demanding tasks.

While our code exhibits no clear correlation of adaptiv-

ity pattern and polynomial order to energy cost in the main

memory, we do observe that the usage of Intel Optane

technology increases the energy footprint. Future work will

have to analyse whether persistent memory modes can

bring down these increased energy cost.

9. Summary and conclusion

Our manuscript studies a non-trivial solver for PDEs. We

consider it to be characteristic for many upcoming simula-

tion codes: it relies on many tasks of different compute

character; the runtime of the tasks and the task composition

are hard to predict – AMR plays a major role here and the

situation might become more severe once non-linear equa-

tions are solved which require localized Newton or Picard

iterations; finally, the efficiency of the solve hinges on the

opportunity to use high polynomial orders and fine meshes.

The solver requires massive memory.

Computer memory designers operate in a magic triangle

of size, bandwidth and latency. Under given energy and

cost constraints, not all three of these characteristics can

be improved. While caches optimize for bandwidth and

latency, the new Intel memory optimizes for size and band-

width. At the same time, a core increase amplifies NUMA

effects for low-order and cheap (Riemann) tasks. As we

find our code suffers from memory latency in general, we

hypothesized that it may pay off to reduce the core

Figure 8. Intel Xeon Scalable experiments for various problem
sizes. Setups left of the dotted line use no Intel Optane technology
as everything fits into the DRAM, so we switch if off. Top: Time
per DoF update. Bottom: Total energy usage. Each setup is, as
long as it fits into the memory, computed multiple times (from left
to right): We start from a base grid of 27� 27� 27 (circles) and
test six polynomial orders p 2 f4; 5; 6; 7; 8; 9g with p � 6
denoted through empty symbols. We then add one level of
adaptivity (D‘ ¼ 1, squares). We next rerun the regular grid
experiment with a base grid of 81� 81� 81 (circles) and one
level of adaptivity (squares). A base grid of 27� 27� 27 with two
levels of adaptivity (triangles) already requires Intel Optane
technology unless we choose p ¼ 3. DoF: degree of freedom.

Charrier et al. 11

frequency relative to the memory frequency, to use core

oversubscription, to hide latency penalties and to regularize

and homogenize all computations, that is, to work with as

regular data structures and task graphs as possible. We have

not been able to confirm these hypotheses in general. How-

ever, we have found or confirmed attractive alternative

solutions or solution proposals per diversity axis.

An increasing flexibility and heterogeneity of clock fre-

quencies allows chips to alter the frequencies for individual

system parts. We have not been able to exploit this feature

to soothe the impact of latency, although we have con-

firmed the well-known insight that drastically decreased

frequencies improve the energy efficiency of the simula-

tion. Yet, our data suggest that the turbo boost feature of

modern chips is of use for very heterogeneous task graphs.

It significantly improves the runtime while the energy

demands remain under control. It might be reasonable to

downclock chips overall, but to allow the runtime to

increase the frequency of particular cores starting from the

reduced baseline up to the turbo boost frequency. Those

cores producing further tasks and running computationally

cheap tasks would benefit from such a feature. Such a fine-

granular frequency alteration feature – likely coupled with

a task runtime – seems to be promising.

An increasing core count and thus NUMA heterogeneity

amplify NUMA effects which we label as growing hori-

zontal diversity. Our data suggest that it might be reason-

able to subdivide large shared memory chips into logically

distributed memory systems. ExaHyPE is written as MPIþ
TBB code relying on tasks. Here, it makes sense to have at

least one rank per node per socket to keep NUMA effects

under control. Our benchmarks furthermore clarify that

existing cache optimization techniques – notably a high

data access localization – continue to pay off. They help

to soothe the impact of massively increased latency. In

return, however, overbooking is not an option to hide

latency/NUMA effects as vendors give up on inclusive

caching. It is future work to study whether runtimes expli-

citly copying data from persistent/large-scale memory into

the ‘right’ part of the main memory – which effectively

becomes the LLC – can help to eliminate NUMA effects

(Kudryavtsev, 2018). In this case, future runtimes have to

be equipped with the opportunity to predict the task exe-

cution pattern and to replace classic prefetching with expli-

cit memory moves.

In the case of ExaHyPE, a homogenized task parallelism

which mixes tasks of different compute characteristics

allowed us to hide some latency of the Intel Optane tech-

nology. Our code has been able to cope with the increased

vertical memory diversity. We show that it is absolutely

essential to equip tasking systems and algorithms with the

opportunity to run memory-intense and compute-bound

tasks concurrently, while the majority of compute-intense

jobs has to exhibit data access locality. If we get the balance

between bandwidth and compute demands right, latency

effects remain under control. The access pattern has to be

homogenized. Future task systems should internally be

sensitive to the compute character of the tasks. They have

to mix compute-intense jobs with memory-intense jobs to

avoid that a whole node waits for slow deep memory. This

naturally can be mapped onto job priorities and mechan-

isms ensuring that not too many jobs of one priority are

launched. To the best of our knowledge, current runtimes as

found with OpenMP, TBB or Cþþ11 lack mature support

for such priorities or constraints.

Machines equipped with Intel Optane technology pro-

vide ample memory. It is an appealing alternative to classic

‘fat nodes’; also in terms of procurement cost. Once the

exascale era makes the total power budget of computers

grow to tens of megawatts, it is an option to trade, to some

degree, the DRAM for an energy-modest extra layer of

memory. This article’s experiments navigate at the edge

of ‘fits into the memory’ and thus provide too few experi-

mental samples to support claims through frequently

observed patterns. We need to run more experiments with

more hardware configurations and more applications. Yet,

our results suggest that the way forward into the massive-

memory age might not be a naive rendering of the main

memory into an additional cache layer; at least not for non-

trivial/non-streaming codes. Instead, we ask for three archi-

tectural or software extensions: fine-granular frequency

control, runtimes with explicit data prefetching and run-

times with mature task priorities; the latter perhaps even

guided by the availability of task data in close caches.

Acknowledgements

The authors appreciate support received from the European

Union Horizon 2020 research and innovation programme.

This work made use of the facilities of the Hamilton HPC

Service of Durham University. Particular thanks are due to

Henk Slim for supporting us with Hamilton. Thanks are due

to all members of the ExaHyPE consortium who made this

research possible; notably J.-M. Gallard for integrating

aggressively optimized compute kernels into ExaHyPE and

K. Duru, A.-A. Gabriel as well as L. Rannabauer for realiz-

ing the seismic benchmark on top of ExaHyPE. The authors

are particular thankful to L. Rannabauer for the support on

running the seismic benchmarks. All underlying software is

open source (Bader et al., 2014–2019).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest

with respect to the research, authorship, and/or publication

of this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work was supported by the European

Union Horizon 2020 research and innovation programme

under grant agreement no. 671698 (ExaHyPE).

12 The International Journal of High Performance Computing Applications XX(X)

ORCID iD

Tobias Weinzierl https://orcid.org/0000-0002-6208-

1841

References

Bader M, Dumbser M, Rezzolla L, et al. (2014–2019) Exa-

HyPE—an exascale hyperbolic PDE solver engine. Available

at: http://www.exahype.eu (accessed 2 April 2019).

Boyandin K (2018) Guest post: Intel Optane and in-memory data-

bases. Available at: https://blog.selectel.com/guest-post-intel-

optane-and-in-memory-databases (accessed 29 August 2018).

Breuer A, Heinecke A, Rannabauer L, et al. (2015) High-Order

ADER-DG Minimizes Energy- and Time-to-Solution of Seis-

Sol. In: Kunkel J and Ludwig T (eds.) High Performance

Computing. ISC High Performance 2015, Lecture Notes in

Computer Science. Cham: Springer, pp. 340–357.

Charrier D, Hazelwood B and Weinzierl T (2018) Enclave tasking

for discontinuous Galerkin methods on dynamically adaptive

meshes (arXiv:1806.07984).

Charrier D and Weinzierl T (2018) Stop talking to me—a

communication-avoiding ADER-DG realisation (arXiv:1801.

08682).

Day S and Bradley C (2001) Memory-efficient simulation of ane-

lastic wave propagation. Bulletin of the Seismological Society

of America 91(3): 520–531.

Dubey A, Almgren A, Bella J, et al. (2016) A survey of high level

frameworks in block-structured adaptive mesh refinement

packages. Journal of Parallel and Distributed Computing

74(12): 3217–3227.

Dumbser M and Käser M (2006) An arbitrary high-order discon-

tinuous Galerkin method for elastic waves on unstructured

meshes - II. The three-dimensional isotropic case. Geophysical

Journal International 167(1): 319–336.

Glesser D (2016) Road to exascale: improving scheduling perfor-

mances and reducing energy consumption with the help of

end-users. PhD Thesis, Grenoble Alpes.

Hutchinson M, Heinecke A, Pabst H, et al. (2016) Efficiency of high

order spectral element methods on petascale architectures. In:

Kunkel Julian M., Balaji Pavan and Dongarra Jack (eds.) High

Performance Computing. ISC High Performance 2016, Lecture

Notes in Computer Science. Vol 9697. pp. 449–466. Cham:

Springer International Publishing.

Kowarschik M and Weiß C (2003) An overview of cache optimi-

zation techniques and cache-aware numerical algorithms. In:

Meyer U, Sanders P and Sibeyn JF (eds.) Algorithms for Mem-

ory Hierarchies 2002, Lecture Notes in Computer Science. Vol

2625. pp. 213–232. Cham: Springer.

Kudryavtsev A (2018) Optane and Intel memory drive technol-

ogy, big surprise. Available at: https://itpeernetwork.intel.

com/optane-intel-memory-drive-technology (accessed 10

December 2018).

McCalpin J (1995) Memory bandwidth and machine balance in

current high performance computers. In: IEEE Computer Soci-

ety Technical Committee on Computer Architecture (TCCA)

Newsletter. pp. 19–25.

Microway (2018) Detailed specifications of the Intel Xeon E5-

2600v4 Broadwell-EP processors. Available at: https://www.

microway.com/knowledge-center-articles/detailed-specifica

tions-of-the-intel-xeon-e5-2600v4-broadwell-ep-processors

(accessed 14 December 2018).

Reinders J (2007) Intel threading building blocks. O’Reilly. The

SPICE Code Validation (2006) Problem wp2_loh1. Available

at: http://www.sismowine.org/model/WP2_LOH1.pdf (accessed

2 April 2019).

Treibig J, Hager G and Wellein G (2010) LIKWID: A lightweight

performance-oriented tool suite for x86 multicore environ-

ments. In: Proceedings of the 2010 39th international confer-

ence on parallel processing workshops, ICPPW ‘10 (eds Lee

WC and and Yuan X), San Diego, California, USA, 13–16

September 2010, pp. 207–216. IEEE Computer Society.

Weinzierl T (2018) The Peano software—parallel, automaton-

based, dynamically adaptive grid traversals. ACM Transac-

tions on Mathematical Software (accepted; arXiv:1506.

04496).

Weinzierl T and Mehl M (2011) Peano—A traversal and storage

scheme for octree-like adaptive Cartesian multiscale grids.

SIAM Journal on Scientific Computing 33(5): 2732–2760.

WikiChip (2018) Intel Xeon Gold 6150. Available at: https://en.

wikichip.org/wiki/intel/xeon_gold/6150 (accessed 10 Decem-

ber 2018).

Author biographies

Dominic E Charrier is a PhD student at Durham Univer-

sity’s Department of Computer Science, where he studies

ADER-DG under the direction of Tobias Weinzierl. He is

predominantly interested in high-performance computing

aspects and adaptive mesh refinement for this family of

high-order finite element methods. His research is funded

by the EU Horizon 2020 project ExaHyPE.

Benjamin Hazelwood received a masters by research

degree from Durham University under the direction of

Tobias Weinzierl. His research orbits around redundancy

in MPI codes to support resiliency and classic perfor-

mance engineering of the ADER-DG method. His

research is funded by the EU Horizon 2020 project

ExaHyPE.

Ekaterina Tutlyaeva is an engineer programmer at the Sci-

entific and Application Research Department of the com-

pany RSC Technologies in Russia. She started a

professional high-performance computing career in 2006

in the Research Center for Multiprocessor Systems of the

Program System Institute of the Russian Academy of Sci-

ence and obtained a Specialist Degree in applied mathe-

matics and informatics at the Pereslavl University in 2009.

The RSC Group is an industry partner in the EU Horizon

2020 project ExaHyPE.

Charrier et al. 13

https://orcid.org/0000-0002-6208-1841
https://orcid.org/0000-0002-6208-1841
https://orcid.org/0000-0002-6208-1841
https://orcid.org/0000-0002-6208-1841
http://www.exahype.eu
https://blog.selectel.com/guest-post-intel-optane-and-in-memory-databases
https://blog.selectel.com/guest-post-intel-optane-and-in-memory-databases
https://itpeernetwork.intel.com/optane-intel-memory-drive-technology
https://itpeernetwork.intel.com/optane-intel-memory-drive-technology
https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-intel-xeon-e5-2600v4-broadwell-ep-processors
https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-intel-xeon-e5-2600v4-broadwell-ep-processors
https://www.microway.com/knowledge-center-articles/detailed-specifications-of-the-intel-xeon-e5-2600v4-broadwell-ep-processors
http://www.sismowine.org/model/WP2_LOH1.pdf
https://en.wikichip.org/wiki/intel/xeon_gold/6150
https://en.wikichip.org/wiki/intel/xeon_gold/6150

Michael Bader is an associate professor at the Department

of Informatics at the Technical University of Munich. He

works on hardware-aware algorithms in computational

science and engineering and high-performance computing.

In particular, he focuses on challenges imposed by latest

supercomputing platforms, and the development of suitable

efficient and scalable algorithms and software for simula-

tion tasks in science and engineering. He is the PI of

ExaHyPE.

Michael Dumbser became an associate professor for numerical

analysis at the University of Trento in 2011. Since November

2018, he is a full professor of numerical analysis. His current

research interests are adaptive mesh refinement with time-

accurate local time stepping, high-order DG finite element

schemes with a posteriori limiters for hyperbolic partial differ-

ential equations, Lagrangian schemes on moving unstructured

meshes and novel structure-preserving semi-implicit schemes

for continuum mechanics. He collaborates with Michael Bader

and Tobias Weinzierl on the ExaHyPE project.

Andrey Kudryavtsev is an SSD Solution Architect at Intel

and has more than 15 years of total server experience. He

holds a Computer Science degree from Nizhny Novgorod

State University in Russia and is currently based in Folsom,

CA, USA, where he is a member of the Solution Architecture

team at the Non-Volatile Memory Solutions Group at Intel.

Alexander Moskovsky is the CEO and co-founder of RSC

Technologies, part of the RSC Group. RSC is the leading

Russian innovative HPC solution provider and developer.

He received an MSc and PhD degrees from Moscow State

University in 1997 and 2001, respectively. Prior to RSC, he

held research positions at the Russian Academy of Sciences

and worked in software engineering at VDI (now EPAM) and

the Digital Equipment Corporation. The RSC Group is an

industry partner in the EU Horizon 2020 project ExaHyPE.

Tobias Weinzierl is an associate professor for high perfor-

mance and scientific computing at Durham University. He

holds a PhD and habilitation from the Technical Univer-

sity of Munich, where he also served as Scientific Pro-

gramme Manager for the Munich Centre of Advanced

Computing. He works primarily on efficient multiscale

methods, adaptive mesh refinement and parallelization

approaches for large-scale partial differential equation

solvers. He collaborates with Michael Bader and Michael

Dumbser on the ExaHyPE project.

14 The International Journal of High Performance Computing Applications XX(X)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

