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ABSTRACT 9 

Estimation of the volumes of potential future debris flows is key for hazard assessment 10 

and mitigation. Worldwide, however, there are few catchments for which detailed volume-11 

frequency information is available. We (1) reconstruct volume-frequency curves for 10 debris-12 

flow catchments in Saline Valley, California, USA, from a large number of well-preserved, 13 

unmodified surficial flow deposits, and (2) assess the correlations between lobe-volume quantiles 14 

and a set of morphometric catchment characteristics. We find statistically significant correlations 15 

between lobe-volume quantiles, including median and maximum, and catchment relief, length 16 

(planimetric distance from the fan apex to the most distant point along the watershed boundary), 17 

perimeter, and Melton ratio (relief divided by the square root of catchment area). These findings 18 

show that it may be possible to roughly estimate debris-flow lobe-volume quantiles from basic 19 

catchment characteristics that can be obtained from globally available elevation data. This may 20 

assist design-volume estimation in debris-flow catchments where past flow volumes are 21 

otherwise unknown.  22 



 

 

 23 

INTRODUCTION 24 

Debris flows are dense masses of sediment and water that are common in mountainous 25 

terrain, and that create low-gradient (<15°) sediment fans through repeated deposition over time. 26 

Such debris-flow fans are preferred locations for development in many mountainous regions 27 

(Jakob, 2005). Estimation of both past and potential future flow volumes on fan surfaces is 28 

critical for assessment of flow hazard and design of mitigation measures, because flow volume is 29 

a prime control on flow velocity, peak discharge, and inundation area (e.g., Iverson et al., 1998; 30 

Rickenmann, 1999; Griswold and Iverson, 2008). A global analysis of debris-flow hazards 31 

between 1950 and 2011 shows that the number of fatalities increases exponentially with flow 32 

volume (Dowling and Santi, 2014). Ideally, we should know the full flow volume-frequency 33 

distribution, because maximum volumes are relevant for hazard assessment while median 34 

volumes are relevant for sediment budget estimation (Bovis and Jakob, 1999). 35 

Worldwide, however, there are very few catchments for which detailed volume-36 

frequency information is available (e.g., Jakob and Friele, 2010; Bennett et al., 2014). The 37 

debris-flow volume reaching a fan depends on the amount of sediment available and the potential 38 

of the flow to mobilize and transport this sediment, and is thus a function of catchment 39 

morphometry, morphology, and geology as well as hydroclimatic conditions (e.g., Hungr et al., 40 

1984; Bovis and Jakob, 1999). In most systems, debris rather than water availability is the 41 

dominant control on flow volume (e.g., Jakob and Bovis, 1996; Bovis and Jakob, 1999). Many 42 

researchers have therefore attempted to correlate debris-flow volume with morphometric 43 

catchment characteristics, predominantly catchment area and slope and channel length (e.g., 44 

Hungr et al., 1984; Jakob and Bovis, 1996; Marchi and D’Agostino, 2004; Ma et al., 2013). A 45 



 

 

major shortcoming of these correlations is that they are based on only one to a few debris flows 46 

per catchment, inhibiting estimation of key flow-volume quantiles such as the median and 47 

maximum. It has been difficult to overcome this issue because of both the brevity of 48 

observational records relative to typical debris-flow return periods and the difficulty of 49 

determining flow volume directly, even in well-instrumented catchments with frequent flows 50 

(Schürch et al., 2011).  51 

Fan surfaces are a potential archive of volume information for a large number of flows 52 

(e.g., Jakob et al., 2016). Debris flows deposit sediment levees and lobes (e.g., Blair and 53 

McPherson, 2009) whose dimensions may scale with the volume or peak discharge of the flow 54 

(Berti and Simoni, 2007). Unfortunately, debris-flow deposits are often reworked by post-55 

depositional sediment transport processes or buried by subsequent flows, both of which obscure 56 

the original deposit dimensions and hinder volume estimation (e.g., Jakob and Bovis, 1996; Blair 57 

& McPherson, 2009; De Haas et al., 2014). In addition, large debris flows tend to spread out to 58 

form multiple lobe deposits, making it difficult to reconstruct the entire flow volume – especially 59 

if parts of the deposit are later reworked. As a result, the links between fan deposits, flow-60 

volume quantiles, and the potential controls on flow volumes have not yet been comprehensively 61 

explored.  62 

Here, we use the surfaces of 10 remarkably well-preserved debris-flow fans in Saline 63 

Valley, southwestern USA, which host numerous unmodified flow deposits, to: (1) create lobe 64 

volume-frequency curves from hundreds of well-preserved surficial debris-flow deposits; and (2) 65 

use these to assess the correlation between lobe-volume quantiles and a set of morphometric 66 

catchment characteristics, in order to explore and develop a method for debris-flow design 67 

volume estimation.  68 



 

 

 69 

STUDY AREA 70 

Saline Valley is a closed extensional basin located at the boundary between the Mojave 71 

and Great Basin deserts in southeastern California, USA (Fig. 1). The southern and western 72 

valley margins host a series of well-exposed debris-flow fans that have developed in response to 73 

accommodation generation by slip on the Hunter Mountain and Saline Valley faults (Oswald and 74 

Wesnousky, 2002). We focus on 10 of those fans whose surfaces preserve abundant debris-flow 75 

deposits with clear primary flow features and negligible secondary modification.  76 

Eight fans, S01-08, originate from the Nelson Range in the southern part of the valley 77 

(Fig. 1). The Nelson Range is underlain by the Early Jurassic Hunter Mountain quartz monzonite 78 

batholith (Oswald and Wesnousky, 2002). Fan S03 is fed by two subcatchments, each of which 79 

contributes sediment to a separate part of the fan surface. We treat those two subcatchments and 80 

their corresponding fan surfaces as individual systems in the analyses presented here. 81 

A ninth debris-flow fan, N01, originates from the Inyo Mountains in the northern part of 82 

Saline Valley (Fig. 1). The catchment of this fan consists mostly of Paleozoic marble, quartzite, 83 

and chert with a small area of quartz monzonite in the catchment headwaters (Conrad and 84 

McKee, 1985).  85 

Saline Valley is located in the rain shadow of the Sierra Nevada and Inyo Mountain 86 

ranges to the west, with mean annual precipitation of 100-200 mm (PRISM, 2015). Historical 87 

records in nearby Owens Valley show that recent debris flows in the region have been 88 

predominantly triggered by high-intensity summer rainstorms (e.g., Beaty, 1963; Blair and 89 

McPherson, 1998).  90 
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DATA COLLECTION AND ANALYSIS 92 

We estimated debris-flow lobe volumes from a gridded LiDAR dataset with 0.5 m 93 

horizontal cell size (Suppl. Fig. 1), collected in April 2007 by the National Center for Airborne 94 

Laser Mapping (NCALM). Debris-flow lobe deposits were manually identified and mapped 95 

using hillshade, curvature, and local slope maps (cf. Staley et al., 2006; Roering et al., 2013), 96 

cross-checked by field measurements in September 2017 (Suppl. Fig. 2). Lobe thickness h [m] 97 

was measured by defining the maximum thickness of a lobe extracted from elevation cross- and 98 

long-profiles, assuming a planar bed underneath the lobe deposits (Suppl. Fig. 1). Lobe width w 99 

[m] was defined as the maximum width of the lobe deposit. The cross-sectional area of each 100 

debris-flow lobe Al [m2] was then calculated by assuming a trapezoidal cross-section (cf. De 101 

Haas et al., 2015): 102 

𝑨𝒍 = 𝟎. 𝟕𝟓 𝒉 𝒘      Eq. 1 103 

We assumed a conservative uncertainty on Al of 50%, accounting for variation between 104 

triangular and rectangular cross-sections and deviations from a planar bed. Iverson et al. (1999) 105 

and Griswold and Iverson (2008) showed that the cross-sectional area of a debris flow is a semi-106 

empirical function of its total volume V [m3]:  107 

𝑨𝒍 = 𝜺 𝑽𝟐/𝟑       Eq. 2 108 

Based on 15 recent non-buried debris flows we find ε  0.1 for the Saline Valley fans (R2 109 

= 0.82; Suppl. Fig. 3), similar to the ε found by Griswold and Iverson (2008) for 50 non-volcanic 110 

debris flows worldwide. The estimated debris-flow volumes are accurate within a factor 2 111 

(Suppl. Fig. 3). For our calculation we assume ε = 0.1 ± 0.025. We used eq. 2 to convert the 112 

measured cross-sectional areas to total lobe volumes, propagating the errors in Al and ε.  113 



 

 

Direct measurement of total flow volumes is generally not possible for all but the most 114 

recent flows due to burial by more recent deposits. For the same reason, we typically cannot 115 

identify whether individual flows deposited one or multiple lobes. Note that the volume of the 116 

largest debris flows, which are most likely to have formed multiple lobes, may thus have been 117 

underestimated (e.g., Blair and McPherson, 1998; De Haas et al., 2016; 2018).  118 

We compared the inferred debris-flow lobe volumes to a wide range of morphometric 119 

catchment characteristics (Table 1). The LiDAR dataset does not cover the full fan catchments, 120 

and therefore we used ASTER Global Digital Elevation Model (GDEM) data to infer these 121 

catchment characteristics. This elevation data set is globally available and has a 30 m horizontal 122 

resolution, ensuring worldwide applicability but limiting our analysis to simple catchment 123 

characteristics. We assessed the correlations between catchment characteristics and the 25, 50, 124 

75, and 99 percentiles and maximum lobe-volume quantiles through linear regression. 125 

 126 

RESULTS 127 

 The number of individual debris-flow lobe deposits identified on the fans ranges from 84 128 

on fan S03b to 851 on fan S06 (Fig. 2). The smallest reconstructed median debris-flow lobe 129 

volume, 140 ± 55 m3, was found on fan S03b. The largest median lobe volume, 830 ± 330 m3, 130 

was found on fan S04. The reconstructed maximum lobe volumes range from 4400 ± 1750 m3 on 131 

fan S02 to 92000 ± 37000 m3 on fan S07. The volume distribution curves highlight that the lobe 132 

volumes on a single fan can vary by four orders of magnitude. 133 

 Overall, median lobe volume is the quantile that shows the best correlation with 134 

catchment characteristics (Fig. 3). There are statistically significant correlations (p < 0.05) 135 

between median lobe volume and catchment area, relief, length, perimeter, and Melton ratio 136 



 

 

(Suppl. Tab. 1). The goodness-of-fit (R2) of these correlations ranges between 0.39 and 0.51, 137 

where Melton ratio performs best. There are also statistically significant relations between 138 

maximum lobe volume and catchment relief, length, and perimeter, while the relation with 139 

Melton ratio is close to significant with a p-value of 0.07. Catchment perimeter, length, relief and 140 

Melton ratio generally show statistically significant correlations with most other lobe-volume 141 

quantiles, and where correlations are statistically insignificant the p-values are nonetheless still 142 

typically smaller than 0.1.  143 

We find no statistically significant correlations and poor goodness-of-fit values, generally 144 

below 0.20, between lobe-volume quantiles and mean catchment slope, relief ratio, form factor, 145 

elongation ratio, and circularity index (Suppl. Tab. 1).  146 

 Our dataset shows two outliers in the relationships between lobe volume and catchment 147 

area, relief, Melton ratio, perimeter and length, corresponding to the two smallest watersheds, 148 

S02 and S03b (Fig. 3). These outliers have relatively small lobes, which for maximum volume 149 

are almost one order of magnitude lower than would be expected based on the correlations with 150 

catchment characteristics.  151 

 Based on our very limited sampling, differences in catchment lithology do not seem to 152 

affect the lobe volume-catchment characteristic relationships in our dataset. The flow volumes 153 

on fan N01, with a catchment that consists predominantly of metasedimentary rock, follow 154 

similar relationships with catchment characteristics as those fed from the quartz monzonite 155 

catchments (Fig. 3).  156 

 157 

DISCUSSION 158 



 

 

Our results show that, at least in climatically- and tectonically-similar areas, it may be 159 

possible to predict debris-flow lobe-volume quantiles, including median and maximum, based on 160 

catchment relief, perimeter, length, area and Melton ratio. These findings may assist in debris-161 

flow hazard assessment and mitigation where data on lobe or flow volumes are otherwise 162 

unknown, which holds true for the vast majority of catchments. Moreover, our findings may help 163 

to estimate sediment budgets where such data are otherwise unavailable (Bovis and Jakob, 164 

1999). Although our data do not show how climatic and lithological conditions may affect lobe-165 

volume quantiles, we suggest that, where the flow-volume distribution of a debris-flow system is 166 

known, flow volume quantiles in neighboring catchments may be reasonably estimated based on 167 

a catchment relief, perimeter, length, area or Melton-ratio correction. 168 

A number of studies have used catchment characteristics to discriminate between the likely 169 

predominance of debris-flow and streamflow sediment transport. In particular, catchment area 170 

(e.g., de Scally and Owens, 2004), length (e.g., Wilford et al., 2004), and Melton ratio (e.g., 171 

Bertrand et al., 2013) have demonstrated skill in discriminating the formative fan process. Not 172 

surprisingly, these are the same catchment characteristics as those found here to be capable of 173 

predicting debris-flow lobe-volume quantiles.  174 

So why do these catchment characteristics determine process and lobe volume? Debris-flow 175 

volume is a function of two elements: (1) the volume of the initiating failure or failures, and (2) 176 

the volume changes, by entrainment and deposition, along the transport path (Jakob, 2005). In 177 

the simplest case, debris flows may initiate on the steep slopes of the upper catchment, after 178 

which they can grow in volume by eroding sediment while traversing through the catchment to 179 

finally deposit on the fan. As such, for a given initial failure volume, the flow volume entering a 180 

fan depends on the erosional potential of the debris flow and the amount of material available for 181 



 

 

entrainment (e.g., Jakob et al., 2005). The entrainment rate at the base of a debris flow likely 182 

increases with bed slope (e.g., Iverson & Ouyang, 2015), and therefore flow volume is likely to 183 

increase with catchment relief (Fig. 3). Similarly, the larger the distance a debris flow traverses 184 

through steep channels in a catchment, the larger the potential for net entrainment (assuming that 185 

sufficient bed sediment exists and that its density and saturation are sufficient to promote 186 

entrainment; Iverson, 2012), and the larger the flow volume may become. This may explain the 187 

increasing flow-volume quantiles with catchment area, perimeter and length (Fig. 3). One should 188 

note, however, that these effects are partly damped because the average catchment gradient 189 

decreases with catchment area. Similarly, catchment length, perimeter and relief are strongly 190 

related and increase logarithmically with basin area and the square-root of catchment area scales 191 

linearly with basin relief, which defines the Melton ratio (R2 > 0.9: Suppl. Fig. 4).  192 

It is important to remember that our estimated volumes are based on the cross-sectional areas 193 

of individual lobes, and will therefore underestimate the volume of large flows that form 194 

multiple depositional lobes (e.g., Beaty, 1963; Blair and McPherson, 1998; 2009). Volume 195 

estimates for flows forming multiple lobes, however, are only possible by direct measurement or 196 

for the most recent events on a fan surface which have not been buried by subsequent flows. As 197 

such, it is currently not possible to obtain large datasets of debris-flow volumes corrected for 198 

multiple lobe formation. It is important to realize, however, that for some hazard applications 199 

(such as damage to infrastructure) it is volume of sediment deposited at a point, rather than the 200 

total flow volume that is most relevant. Our approach describes the probability to find a lobe of a 201 

given size on a debris-flow fan, but for hazard assessment and mitigation it is also important to 202 

understand the frequency of such flows. To advance the novel catchment-morphometry based 203 

method to estimate debris-flow quantiles presented here, future research should thus focus on 204 



 

 

direct estimation of flow volume-frequency distributions from a number of debris-flow 205 

catchments in diverse climatic and lithological settings. 206 

 207 

CONCLUSIONS 208 

We have reconstructed debris-flow lobe-volume distributions from a large number of well-209 

preserved flow deposits on 10 fans in Saline Valley, California, USA, and compared lobe-210 

volume quantiles to a set of morphometric catchment characteristics. Our results show that, when 211 

controlled for climatic and tectonic setting, lobe-volume quantiles, including 25, 50, and 75 212 

percentiles and the maximum, depend on catchment area, length, perimeter, relief, and Melton 213 

ratio. This implies that simple catchment characteristics, which can be extracted from globally-214 

available elevation datasets, may be used to obtain rough estimates of minimum flow design 215 

volumes for sediment budgets as well as for hazard assessment and mitigation. While these 216 

relationships are promising, future research should focus on the generation of flow volume-217 

frequency distributions from different climatic and lithological settings worldwide against which 218 

to test the wider application of these estimates. 219 
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TABLES. 298 

Table 1: Morphometric catchment characteristics. 299 

Catchment 

attribute 

Dimensions Symbol and definition 

Area m2 𝑨𝒄 

Relief m 𝑯𝒄 

Length m 𝑳𝒄 

Perimeter m 𝑷𝒄 

Mean slope degrees 𝑺𝒄 

Melton ratio - 𝑴𝒓 = 𝑯𝒄/√𝑨𝒄 

Relief ratio - 𝑹𝒓 =  𝑯𝒄/𝑳𝒄 

Form factor - 𝑭𝒇 = 𝑨𝒄/𝑳𝒄
𝟐 

Elongation ratio - 𝑬𝒓 = (𝟒𝑨𝒄/𝝅)/𝑳𝒄 

Circularity index - 𝑪𝒓 = 𝟒𝝅𝑨𝒄/𝑷𝒄 

 300 

FIGURE CAPTIONS 301 

 302 

Figure 1. Debris-flow fans studied here. (a) Fans S01-08, on the southern margin of Saline 303 

Valley. Fan apex of S05 is located at 6°34'28.85"N, 117°38'20.06"W. (b) Fan N01, on the 304 

northern margin of Saline Valley. Fan apex is located at 36°49'31.66"N, 117°55'21.73"W. (c) 305 

Detail of well-preserved debris-flow deposits on the surface of fan S06.  306 



 

 

 307 

Figure 2. Cumulative lobe volume-frequency distributions for each fan. The gray bands indicate 308 

the volume error range. 309 

 310 

Figure 3. Catchment area, length, perimeter, relief, and Melton ratio plotted against median 311 

(circles) and maximum (triangles) debris-flow lobe volumes. Vertical lines indicate the volume 312 

error range. Black symbols are from quartz monzonite catchments S01-S08, while red symbols 313 

are from catchment N01 underlain by metasedimentary rock. Linear regression lines are shown 314 

for median and maximum lobe volumes. 315 


