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Abstract

In this paper, hydrodynamic characteristics of two-dimensional submerged breakwaters in water of
finite depth and infinite domain interacting with sinusoidal waves are studied from both analytical and
numerical approaches. Added mass and damping coefficients are obtained following the determination
of radiation potentials in three degrees of freedom (sway, heave and roll). Diffraction problem is then
solved according to the linear wave theory and the resulting forces are derived. To verify the results, a
comparison of the solution from the analytical method with those obtained by the boundary element
method is made and a good agreement is observed. Additionally, high aspect ratio horizontal and
vertical flat submerged breakwaters are proposed and their hydrodynamic characteristics are analyzed
using the numerical and analytical methods. Results show that the horizontal flat submerged break-
water generates low transmitted waves. However, the vertical flat submerged breakwater transmits
almost the entire incident wave energy. A parametric study on the effect of submergence depth and
the width of the structure on the maximum diffraction wave amplitude, which is responsible for the
transmitted wave energy, is carried out and a better understanding of the variation of diffraction wave
amplitudes with respect to dominant parameters and wave frequency is achieved.

1. Introduction1

The development of coastal or inland waters2

may often depend on sea behaviour at a specific3

site. Breakwaters of various dimensions and con-4

figurations have been widely employed to increase5

the use of locations exposed to wave attack. The6

main purpose of installing a breakwater is to re-7

duce wave height to an acceptable level with re-8

spect to usage of the site. The increase in the9

number of private pleasure crafts and small vessels10

has engendered a demand for more sheltered sites.11

Affordability and required level of wave protec-12

tion would often dictate possible breakwater al-13

ternatives. Rubble mound breakwaters have been14

widely used to attenuate surface water waves. In15
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recent years, several floating breakwaters (FBs) 16

are employed in coastal areas all over the world. 17

Submerged breakwaters (SBs) were also a field of 18

interest to many researchers. FBs and SBs usu- 19

ally consist of a floating pontoon with finite draft 20

which are exposed to hydraulic waves. Motions of 21

these breakwaters are usually constrained to three 22

degrees of freedom. That is sway, heave and roll. 23

In the framework of numerical methods to 24

study breakwater’s performance in waves, finite 25

element method (FEM) and boundary element 26

method (BEM) are two popular and effective ap- 27

proaches which have been widely applied to break- 28

water performance analysis. As far as FEM and 29

BEM are concerned, there are many published 30

studies. As examples, Yamamoto et al. (1980) 31

used BEM to solve two-dimensional problems of 32

the response of the moored floating objects to wa- 33

ter waves. They solved the boundary value prob- 34



lem numerically by direct use of Green’s identity35

formula for a potential function. Their results36

mostly focused on mooring configuration effects37

on wave attenuation characteristic of the float-38

ing body. Li et al. (1991) employed finite - in-39

finite element method to obtain hydrodynamic40

exciting forces in regular waves. They utilized41

the inhomogeneous far field boundary conditions42

and the higher order asymptotic solutions to ob-43

tain second order diffraction forces and wave run-44

up profiles on a vertical cylinder. Their method45

showed better agreement with experimental re-46

sults compared to the predictions from the lin-47

ear theory. Sannasiraj et al. (1995) applied FEM48

to investigate the radiation and diffraction prob-49

lem of a horizontal FB under the action of multi-50

directional waves. They evaluated wave exciting51

forces and relative induced responses using linear52

transfer-function approach for a rectangular cross53

section floating structure. The force and response54

ratio were also obtained in their study for fre-55

quency dependent-independent cosine power type56

directional spreading functions. Sannasiraj et al.57

(2001) also used the same finite element tech-58

nique to study multiple floating structures. Wu59

and Taylor (2003) used coupled FEM and BEM,60

based on the combination of their strengths, to61

study nonlinear interactions between waves and62

bodies. They introduced auxiliary functions to63

decouple the mutual dependence of the body ac-64

celeration and hydrodynamic forces. Present-65

ing their results for submerged circular and el-66

liptical cylinder, they asserted that their numer-67

ical scheme could also be used for floating struc-68

tures. Kunisu (2010) compared the results of69

BEM with those from experiments and studied70

the wave forces on a submerged floating tunnel.71

Evaluating exciting forces on a submerged circu-72

lar cylinder using BEM as well as the well-known73

Morison’s equation, they concluded that the in-74

ertia forces are dominant in large circular cylin-75

ders only when the Keulegan–Carpenter number76

is less than 15 for all incident wave frequencies.77

Chen et al. (2016) built FEM based Navier-Stokes78

equation and volume of fluid (VOF) method79

to investigate wave energy extraction by two-80

dimensional oscillating cylinders in linear waves81

for incompressible viscous flows. Based on wave 82

climate off China’s shore and building cost, they 83

suggested that the cylinder diameter must be 84

twice the incident wave height in order to obtain 85

the best energy harvest efficiency. Zhan et al. 86

(2017) applied zonal hybrid Reynolds averaged 87

Navier-Stokes (RANS)/laminar method with a 88

new meshing strategy to investigate hydrody- 89

namic performance of an inverse T-type break- 90

water. They investigated heave and pitch trans- 91

fer functions as well as transmission and reflec- 92

tion coefficients for floating and fixed breakwa- 93

ters in regular and irregular waves. Tabatabaei 94

and Zeraatgar (2018) utilized FEM for studying 95

a moored pontoon type FB considering response 96

amplitude operators (RAOs). They suggested 97

that in spite of the fact that rectangular FBs are 98

more commonly used in industry, circular FBs 99

should also be considered for their better hydro- 100

dynamic performance in a wider range of incident 101

wave frequencies. Masoudi (2019) employed BEM 102

to study inverse T-type FB’s hydrodynamic per- 103

formance in sinusoidal waves. It was concluded 104

that inverse T-type FB has lower transmission co- 105

efficient than rectangular FB over a wide range of 106

incident wave frequencies and so could be consid- 107

ered for practical applications. 108

Analytical methods have also been used in 109

many studies, some of which are mentioned next. 110

Garrett (1970) discussed about the excitation of 111

waves inside a partially immersed open circular 112

cylinder. He considered incident plane wave ex- 113

panded in Bessel functions and for each mode 114

he formulated the problem in terms of the ra- 115

dial displacement on the cylindrical interface be- 116

low the cylinder. He deduced that the phase of 117

the solution is independent of depth and reso- 118

nances are found at wave-numbers close to those 119

of free oscillations in a cylinder extending to the 120

bottom. Garrett (1971) also discussed scattering 121

gravity waves by a circular cylinder in order to 122

determine the horizontal and vertical forces as 123

well as torques on a dock. He discussed that 124

the phase of the solution is independent of depth 125

and so may be obtained from an infinite set of 126

real equations, which were solved numerically by 127

Galerkin’s method. Hulme (1982) derived added 128



mass and damping coefficients and wave force act-129

ing on a floating hemisphere oscillating in incom-130

pressible inviscid fluid. Wu and Taylor (1990) and131

Wu (1993) solved second order diffraction and ra-132

diation problems for a horizontal cylinder in finite133

water depth. They stated that for horizontal os-134

cillation motion of the cylinder, the first-order po-135

tential is asymmetric but the second-order poten-136

tial is symmetric. Berggren and Johansson (1992)137

presented hydrodynamic coefficients of a wave en-138

ergy device consisting of a buoy connected to a139

submerged plate. Lee (1995) studied the heave140

radiation problem of a rectangular structure in141

which non-homogeneous boundary value problem142

is linearly decomposed into a homogeneous one.143

They showed that the presented solution satis-144

fies the non-homogeneous boundary condition in a145

sense of series convergence. They also found that146

smaller structure submergence and larger struc-147

ture width would result in larger waves, radia-148

tion added mass and damping coefficients. Hsu149

and Wu (1997) compared BEM with their an-150

alytical method for analyzing hydrodynamic co-151

efficients of an oscillating rectangular structure152

with a side wall and concluded that the reso-153

nant behavior would appear when the clearance154

between the sidewall and the structure equals155

integer times of half wave length generated by156

the oscillating structure. Abul-Azm and Gesraha157

(2000) used an eigen-function expansion method158

to study a moored FB in oblique waves. They159

deduced that hydrodynamic performance of the160

pontoon type FB in wave reflection or transmis-161

sion has a strong dependence on the relative di-162

mension of the cross section, while dynamic prop-163

erties mostly depend on inertial characteristic.164

Williams et al. (2000) proposed an appropriate165

Green’s function to study hydrodynamic proper-166

ties of a pair of long floating pontoon breakwaters167

of rectangular section restrained by linear sym-168

metric moorings. They showed that wave reflec-169

tion properties of twin pontoons depend strongly170

on their width, draft and spacing and the moor-171

ing line stiffness, while their excess buoyancy is172

of less importance. Zheng et al. (2004a,b) derived173

an analytical solution for radiation and diffraction174

problem of a rectangular buoy and presented ex-175

tensive results from added mass and damping co- 176

efficients and the effect of sidewall. Masoudi and 177

Zeraatgar (2016) employed the method of separa- 178

tion of variables, including eigen-function expan- 179

sion method, in which radiation and diffraction 180

problem is solved in three sub-domains in order 181

to study hydrodynamic characteristics, such as 182

added mass and damping coefficients as well as ex- 183

citing forces, of a two-dimensional rectangular FB 184

in water of finite depth and infinite domain. Deng 185

et al. (2019) used a semi-analytical method to 186

study hydrodynamic performance of a T-type FB. 187

The effects of the height and setup position of ver- 188

tical screen on the dynamic response and hydro- 189

dynamic characteristics of the breakwater are dis- 190

cussed. Mohapatra and Soares (2019) derived the 191

three-dimensional Green’s function and Fourier- 192

type expansion formula for analyzing wave reflec- 193

tion by a rigid vertical wall with a floating and 194

submerged elastic plate. They used linear struc- 195

tural response and thin plate theory to obtain hy- 196

droelastic response of the structure and concluded 197

that mitigation of hydroelastic response of float- 198

ing structures depends significantly on modes of 199

oscillation, mooring stiffness, compressive force, 200

rigidity and suitable positioning of the submerged 201

horizontal flexible membrane. 202

Analytical solution is normally approached by 203

dividing the whole domain to sub-domains and 204

then approximating the velocity potentials in each 205

sub-domain using orthogonal functions. After the 206

boundary conditions are satisfied on the whole 207

domain and on the common boundaries between 208

sub-domains, the unknown coefficients in orthog- 209

onal functions are solved and the velocity poten- 210

tials become explicit in sub-domains. Having de- 211

termined the velocity potentials and wave char- 212

acteristics on both sides of the breakwater body, 213

the transmission and reflection coefficients are ob- 214

tained. Although assumptions are usually in- 215

volved for simplification reasons, the results are 216

explicit. 217

High aspect ratio SBs which could be made 218

by a simple flat thin plate of steel are expected to 219

be good substitutes for other conventional type 220

of breakwaters having larger volume of materials. 221

The former could be moored using typical moor- 222



ings such as catenary lines by adding buoyancy223

aids to the structure. In this study, two types224

of two-dimensional rectangular high-aspect ratio225

flat SBs (horizontally and vertically) submerged226

in water of finite depth and infinite extent sub-227

jected to regular sinusoidal waves are analytically228

studied by solving the velocity potential equations229

using the separation of variables method. Similar230

to other analytical approaches, turbulence effect231

are neglected. The method of separation of vari-232

ables is firstly verified by a typical conventional233

SB geometry Zheng et al. (2007). Additionally,234

BEM using ANSYS AQWA software is employed235

to solve diffraction and radiation problems for236

comparison. Next, hydrodynamic characteristics,237

including exciting forces as well as the reflection238

and transmission coefficients are analyzed. In par-239

ticular, a parametric study on the main parame-240

ters e.g. submergence depth and the width of the241

breakwater are carried out in order to estimate242

their effects on the diffraction wave amplitude,243

which is a dominant parameter of the transmis-244

sion coefficient. Finally, the establishment of the245

diffraction wave is discussed and its effect on hy-246

drodynamic performance is concluded.247

2. Method248

For large breakwater length to the wavelength249

ratios, fluid is assumed to be incompressible, in-250

viscid and irrotational. As such, the velocity po-251

tential φ satisfies the Laplace equation as shown252

in Equation (1). The velocity components and253

pressure can then be expressed by Equation (2)254

and Equation (3), respectively.255

∇2φ = 0 (1)

∂φ

∂x
= u,

∂φ

∂y
= v,

∂φ

∂z
= w (2)

∂φ

∂t
+

1

2
∇φ2 + gz +

P

ρ
= 0, (3)

where u, v and w are velocity components in x, y256

and z direction respectively. P is the dynamic257

pressure, ρ is water density and g is the gravita-258

tional acceleration. Basic problem configuration259

of the breakwater and the coordinate system are 260

shown in Figure 1. It is assumed that a linear 261

wave with amplitude Ai and angular frequency 262

ω = 2π/Ti propagates in a direction at an angle θ 263

to the +x axis. The total potential φ is composed 264

of incident wave potential φi, diffraction poten- 265

tial φd, and radiation potentials φr. The incident 266

wave potential for a regular sinusoidal wave can be 267

written as φi = ϕi(x, z) exp(jky sin θ), in which: 268

ϕi = −
jgAi
ω

cosh[k(z + h1)]

cosh(kh1)
exp(jkx cos θ) (4)

where k is the wave number, j represents unit 269

imaginary number and h1 is the depth of water. 270

Also 271

ω2 = gk tanh(kh1) (5)

is known as the dispersion equation. The diffrac- 272

tion potential φd is induced by the interaction of 273

incident wave and the breakwater. The induced 274

potential from the motions of structure in three 275

degrees of freedom are known as radiation poten- 276

tial φr. 277

Referring to Figure 1, the problem is consid- 278

ered as two-dimensional. That is, motions are re- 279

stricted in heave, sway and roll, denoted as indices 280

1, 2 and 3, respectively. Hence the total potential 281

φt could be expressed as: 282

φt = φi + φd +
3∑

L=1

φLr (6)

where L refers to the assigned motion number and 283

φLr is the radiation potential of the Lth motion. 284

The unknown terms in the above equation are φd 285

and φLr which will be addressed next. 286

The diffraction term φd 287

The linear diffraction term and its boundary
conditions can be expressed by the oscillatory
function

φd(x, z, y) = ϕd(x, z) exp(jky sin θ) (7)

∂ϕd
∂z
− ω2

g
ϕd = 0 (z = 0 ) (8)



Figure 1: Problem configuration and coordinate system for a two-dimensional rectangular SB.

∂ϕd
∂z

= 0 (z = −h1) (9)

∂ϕd
∂n

= −∂ϕi
∂n

(on S0) (10)

lim
x→∞

[
∂ϕd
∂x
± jk cos θ ϕd

]
= 0 (11)

The boundary value for the diffraction poten-288

tial is defined by the governing Laplace equation289

and the boundary conditions are defined from290

Equation (8) to Equation (11), where n is the unit291

normal vector outward the body surface and S0 is292

the wetted surface of the breakwater.293

The radiation term φLr294

In the framework of the linear theory, the ra-
diation term and its boundary conditions can also
be described by the following oscillatory radiation
potential and boundary conditions.

φLr (x, z, y) = −jωALr ϕLr (x, z) exp(jky sin θ)
(12)

∂ϕLr
∂z
− ω2

g
ϕLr = 0 (z = 0) (13)

∂ϕLr
∂z

= 0 (z = −h1) (14)

∂ϕLr
∂z

= δ1,L − (x− x0)δ3,L

(z = −s1 or z = −d , |x| ≤ b) (15)

∂ϕLr
∂x

= δ2,L + (z − z0)δ3,L

(−d ≤ z ≤ −s1 , |x| = b) (16)

lim
x→∞

[
∂ϕLr
∂x
± jk cos θ ϕLr

]
= 0 (17)

where
δx,y =

{
1 x = y
0 x 6= y

(18)

The amplitude of the Lth motion of the body 295

is denoted by ALr and (x0, z0) is the body cen- 296

troid. The boundary value can be defined by 297

Equation (1) and the boundary conditions are de- 298

fined from Equation (13) to Equation (17). 299

Separation of Variables Method 300

Referring to Figure 1 the domain is divided
into four sub-domains denoted by I, II, III and IV.
Applying the separation of variables method gives
the complex spatial potentials in each sub-domain
expressed in terms of orthogonal series as below
(Zheng et al., 2007). For the diffraction term,



velocity potentials are given from Equation (19)
to Equation (22) for regions I to IV, respectively.

ϕd1 =
∞∑
n=1

A
′

1n e
−γn(x−b) cos[λn (z + h1)] (19)

ϕd2 = −ϕi +
∞∑
n=1

[A
′

2n e
µn(x+b)

+B
′

2n e
−µn(x−b)] cos[βn (z + h1)] (20)

ϕd3 =
∞∑
n=1

A
′

3n e
γn(x+b) cos[λn (z + h1)] (21)

ϕd4 = −ϕi +
∞∑
n=1

[A
′

4n e
vn(x+b)

+B
′

4n e
−vn(x−b)] cos[αn (z + s1)] (22)

For the radiation term, velocity potentials are
given from Equation (23) to Equation (26) for re-
gions I to IV, respectively.

ϕLr1 =
∞∑
n=1

AL1n e
−γn(x−b) cos[λn (z + h1)] (23)

ϕLr2 = ϕLr2p +
∞∑
n=1

[AL2n e
µn(x+b)+

BL
2n e

−µn(x−b)] cos[βn (z + h1)] (24)

ϕLr3 =
∞∑
n=1

AL3n e
γn(x+b) cos[λn (z + h1)] (25)

ϕLr4 = ϕLr4p +
∞∑
n=1

[AL4n e
vn(x+b)+

BL
4n e

−vn(x−b)] cos[αn (z + s1)] (26)

In the equations above, eigenvalues301

(γn, µn, βn, λn, υn, αn) are given by:302

λ1 = −jk, k tanh(kh1) =
ω2

g
n = 1 (27)

λn tan(λnh1) = −
ω2

g
n = 2, 3, . . . (28)

α1 = −jk1, k1 tanh(k1s1) =
ω2

g
n = 1 (29)

αn tan(αns1) = −
ω2

g
n = 2, 3, . . . (30)

βn =
(n− 1)π

h1 − d
n = 1, 2, 3, . . . (31)

vn =

{
−j
√
k21 − k20 n = 1√

α2
n + k20 n = 2, 3, ...

(32)

γn =

{
jk cos θ n = 1√
λ2n + k20 n = 2, 3, ...

(33)

µn =

{
k0 n = 1√
β2
n + k20 n = 2, 3, ...

(34)

Furthermore, in Equation (24) and Equa- 303

tion (26), ϕLr2p and ϕLr4p are particular solutions 304

for the Lth radiation motion in sub-domain II and 305

IV, respectively, which are given by Zheng et al. 306

(2007) as follows. 307

ϕLr2p = CF2(z) [δ1,L − (x− x0)δ3,L] (35)

ϕLr4p = CF4(z) [δ1,L − (x− x0)δ3,L] (36)

where: 308

CF2 (z) =
cosh[µ1 (z + h1)]

µ1 sinh(µ1 h2)
(37)



CF4 (z) =

ω2

g
sinh(k0z) + k0 cosh(k0z)

k0
ω2

g
cosh(k0s1)− k0 sinh(k0s1)

(38)
The potentials given from Equation (19) to Equa-
tion (26) describe the fluid in each region and sat-
isfy all boundary conditions except the common
boundaries between the regions. Now, the prob-
lem is to evaluate unknown coefficients AL1n, AL2n,
AL3n, AL4n, BL

2n, BL
4n for the radiation term and A′

1n,
A

′
2n, A

′
3n, A

′
4n, B

′
2n and B

′
4n for the diffraction

term in the series. It should be noted that each
coefficient has a unit which depends on the respec-
tive motion in the radiation term. These coeffi-
cients are found by imposing the boundary condi-
tions that are the pressure continuity and normal
velocity at the common boundaries between the
regions, which are x = ±a and 0 < z < −s1,
−s1 < z < −d1 and −d1 < z < −h1. In mathe-
matical terms, it means that potentials and their
normal derivatives are equal at boundaries. Satis-
fying these boundary conditions form a system of
6 linear equations which need to be solved simul-
taneously. To solve these equations, the orthog-
onal functions must be truncated. If n is trun-
cated to N from Equation (19) to Equation (26),
imposing the boundary conditions in the common
boundaries will lead to a system of 6 × N linear
equations and equal number of unknown coeffi-
cients. Organizing these coefficients in matrices
gives

S ·X = F (39)

in which X is the unknown coefficient matrix.309

There are three radiation and one diffraction po-310

tentials included in Equation (39). It should be311

noted that S is a 6N × 6N matrix which is ob-312

tained from satisfying the boundary conditions313

from Equation (8) to Equation (11) for diffrac-314

tion and from Equation (13) to Equation (17) for315

radiation term. F is a 1×6N matrix which is ob-316

tained from satisfying the common boundary con-317

ditions between the regions and X is a M × 6N318

matrix, in which M is the total number of wave319

frequencies to solve according to the range and320

frequency increments. The detail of this method, 321

including the calculation of F is discussed in Ma- 322

soudi and Zeraatgar (2016). Having known F and 323

S, X is obtained for each of the four potentials. 324

Finally, imposing the coefficients in Equation (19) 325

to Equation (26), the velocity potentials for each 326

region will be obtained. 327

Expressions for Hydrodynamic Coefficients and 328

Wave Forces 329

If we denote the wave force perpendicular to 330

the incident wave as Fwu , which is independent of 331

y and time, it can be calculated from the incident 332

and diffracted wave potentials as 333

Fwu = ρjω

∫
S0

(ϕd + ϕi) nu ds (40)

in which nu is the generalized inward normal to 334

the structure in x−z plane with n1 = nz, n2 = nx 335

and n3 = (z − z0)nx − (x− x0)nz with nx and nz 336

being the unit inward normal to the surface of the 337

body. Also, CFu is the exciting force coefficient 338

which is a non-dimensional form of Fwu given by: 339

CFu =


|Fwu|
2ρbdAi

u = 1, 2

|Fwu |
2ρb3dAi

u = 3
(41)

The hydrodynamic coefficients including the 340

added mass coefficient mL,u and the damping co- 341

efficient NL,u are defined by 342

mL,u = ρ

∫
S0

Re(ϕLr ) nu ds (42)

NL,u = ρ

∫
S0

Im(ϕLr ) nu ds (43)

Also, Cmu and Cdu are the non-dimensional 343

added mass and damping coefficients. 344

Cmu =


mu,u

2ρbd
u = 1, 2

mu,u

2ρb3d
u = 3

(44)

Cdu =


Nu,u

2ρωbd
u = 1, 2

Nu,u

2ρωb3d
u = 3

(45)



Transmission coefficient (Tw) is defined as the
amplitude of the transmitted wave to the ampli-
tude of the incident wave. Reflection coefficient
(Rw) is defined as the amplitude of the reflected
wave to the amplitude of the incident wave. If
breakwaters are assumed to be stationary, using
linearised Bernoulli equation, Zheng et al. (2007)
obtained transmission and reflection coefficients

Tw = |jωA
′
31 cosh(kh1)

gAi
| (46)

Rw = |1 + jωA
′
11 cosh(kh1)

gAi exp(jkb cos θ)
| (47)

Longuet-Higgins (1977) proposed the horizon-
tal drift force (Fd) in terms of the reflection coef-
ficient as

Fd =

(
Ecg
c

)
(1+R2

w−T 2
w) =

(
2Ecg
c

)
R2
w (48)

where cg is the wave group velocity, c is the phase345

velocity, E = 1
2
ρgAi

2 is the wave energy. The346

added mass and damping coefficients will be eval-347

uated using Equation (44) and Equation (45), re-348

spectively. The exciting force coefficients will be349

addressed using Equation (41). The transmis-350

sion and reflection coefficients could be evaluated351

using Equation (46) and Equation (47) for the352

analytical and Equation (48) for the numerical353

method.354

3. RESULTS355

Based on the formulation discussed in section356

2, Equation 39 is solved in MATLAB® with in-357

puts being θ, a, b, h1, h2, s1, d, Ai and the number358

of truncated terms in the orthogonal series being359

N = 12.360

The solution is the unknown coefficients in or-361

thogonal series which determine the velocity po-362

tentials for the diffraction and radiation terms363

according to Equation (19)-(26). Hydrodynamic364

characteristics of the domain are then evaluated365

using Equation (40)-(47). In order to verify the366

analytical method, a rectangular SB of s1/h1 =367

0.2, a/h1 = 0.2, h1/b = 6, θ = 30◦ is consid-368

ered. The model characteristic has been chosen369

similar to Zheng et al. (2007) for validation pur- 370

poses. Furthermore, a BEM numerical simula- 371

tion using ANSYS AQWA is carried out for com- 372

parison. Figure 2 demonstrates the added mass 373

coefficient (Cm), the damping coefficients (Cd), 374

and the exciting force coefficients (CF ) of the 375

proposed breakwater. These are compared with 376

Zheng et al. (2007). Evidently, all results are in 377

reasonable agreement. The divergence between 378

numerical and analytical results are thought to 379

originate from converting three-dimensional re- 380

sults to two-dimensional quantities in numerical 381

simulation. It should be emphasized that in an- 382

alytical solution, the length of the breakwater 383

mathematically assumed to be infinite, however, 384

in numerical simulation the length of the breakwa- 385

ter considered to be 50 m. Table (1) summarises 386

the model characteristics of the geometry, envi- 387

ronmental constants, mass properties and mesh 388

parameters for the numerical model. It should 389

be noted that de-featuring tolerance controls how 390

small details are treated by the mesh in AQWA. 391

If any detail in the structure is smaller than this 392

tolerance, a single element may span over it, oth- 393

erwise the mesh size will be reduced in this area 394

to ensure that the feature is meshed. In AQWA 395

the maximum element size is explicitly related to 396

the maximum wave frequency that can be utilized 397

in the diffraction analysis. If a particular maxi- 398

mum wave frequency is desired, this can be speci- 399

fied as maximum allowed frequency and the asso- 400

ciated maximum element size will be computed. 401

In this study, after testing a number of maximum 402

element size, the nearest value to the desired fre- 403

quency range (fi ≈ 0−0.4 Hz ) is chosen. Desired 404

frequency range is calculated according to the dis- 405

persion equation (Equation 5) with respect to the 406

desired wave number which covers a range of re- 407

sponse similar to Zheng et al. (2007). It should 408

be emphasized that for the radiation term, ac- 409

cording to Equation (44) and Equation (45), Cm 410

and Cd are independent of incident wave ampli- 411

tude. However for the diffraction term and for the 412

evaluation of CF , according to Equation (41), it 413

is assumed that Ai = 1m. 414
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Figure 2: Comparison of numerical and analytical study on (a) exciting forces CFu (b) damping coefficients Cdu
and (c)

added mass coefficients Cmu of heave (u = 1), sway (u = 2) and roll (u = 3) motions/directions (s1/h1 = 0.2, a/h1 =
0.2, h1/b = 6, θ = 30◦)

Horizontal and Vertical Flat SBs415

Two types of high aspect ratio SBs are stud-416

ied in this work and their configurations are pre-417

sented in Figure 3. The first one is denoted as a418

horizontal flat breakwater and the second one as419

vertical.420

Figure 4 displays the exciting force coeffi-421

cients, as defined in Equation (41), of horizon-422

tal and vertical flat SBs at conditions s1/h1 = 423

0.1, θ = 1◦. In the present analytical method, 424

θ = 0◦ is a singular condition, hence θ = 1◦ is con- 425

sidered instead. Analytical and numerical meth- 426

ods are depicted simultaneously and reasonable 427

agreement between the two is evident. 428

According to Equation (48), the mean drift 429

force on the body can be calculated. The trans- 430



Table 1: Breakwater specifications, environmental constants and mesh parameters for numerical simulation
Geometry Environmental Constants
Length (y) 50 m Water Depth 48 m
Width (x) 16 m Water Density 1025 kg/m3

Depth (z) 9.6 m Gravity 9.8 m/s2
Mass Properties Water Size x 1000 m
x0 0 m Water Size y 1000 m
y0 0 m Mesh Parameters
z0 -14.4 m De-featuring Tolerance 1 m
Mass 15744 t Maximum Element Size 2 m
Kxx 29 m Maximum Allowed Frequency 0.431 Hz
Kyy 5.4 m Total Nodes 3922
Kzz 29.2 m Total Elements 3920

Figure 3: Basic configuration and coordinate system for (a) horizontal and (b) vertical flat SBs
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Figure 4: Exciting force coefficients for horizontal (a,b,c) and vertical (d,e,f) flat SBs (s1/h1 = 0.1, θ = 1◦)



mission and reflection coefficients can then be431

derived and the results are shown in Figure 5432

for the vertical and the horizontal flat SBs of433

s1/h1 = 0.1, θ = 1◦. It should be noted that434

for the cases under consideration in Figure 3, the435

horizontal flat SB has a ratio 2a/b = 100 and for436

the vertical flat SB, 2a/b = 0.01.437

4. DISCUSSION438

Figure 4 shows that exciting force coefficient439

CF , which represents the combined effect of the440

incident and diffraction forces, oscillates as a func-441

tion of wave number. Exciting forces for the442

horizontal flat breakwater are shown in Figure 4443

(a,b,c) and that for the vertical flat breakwater444

are shown in Figure 4 (d,e,f). For the horizontal445

flat breakwater (a,b,c), exciting force coefficient446

varies both globally and locally with respect to447

the dimensionless wave number (kh1). Globally,448

as the incident wave frequency increases, the force449

decreases quickly. Local oscillation can also be450

seen. It causes CFu to drop to zero at multiple451

wave numbers with an appeared phase lag from452

CF1 to CF3. For large wave numbers, CFu ap-453

proaches to zero globally. The exciting force coef-454

ficient of the sway motion, CF2, is much smaller455

in magnitude than CF1 (heave) and CF3 (roll).456

Note the different ordinate scales. Physically this457

is owing to the smaller projected area in the sway458

direction for the horizontal flat breakwater. Dis-459

crepancies between analytical and numerical re-460

sults can be observed, which could be a result461

of converting three-dimensional analysis to two-462

dimensional quantities in numerical method.463

The behaviour of the exciting force associated464

with the vertical flat breakwater (d,e,f) appears465

to be very different. Although they also display466

a global decay as kh1 increases, no local oscilla-467

tion is observed. This is believed to be due to468

diffraction force, which is mainly responsible for469

the oscillatory force behaviour, having negligible470

magnitude. The very large exciting force coeffi-471

cient of the roll motion, CF3, is related to the472

large projected area of the breakwater in the roll473

direction. It thus suggests that the vertical geom-474

etry has a high tendency to roll.475

Figure 5 demonstrates transmission and reflec- 476

tion coefficients for both horizontal flat and ver- 477

tical flat breakwaters using numerical method. It 478

can be seen from the behaviour of Tw and Rw that 479

the vertical flat breakwater almost transmits the 480

entire incident wave energy (no reflects). On the 481

contrary, the horizontal flat breakwater effectively 482

attenuates incident wave energy especially for low 483

wave numbers over the range 1 < kh1 < 3, in 484

which transmission coefficient Tw reaches the min- 485

imum value ≈ 0.4 and Rw reaches the maximum 486

value of ≈ 0.84. Those are considerable values 487

comparing to conventional low aspect ratio SB. 488
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Figure 5: Transmission and reflection coefficient compari-
son of horizontal and vertical flat SBs (s1/h1 = 0.1, θ = 0)

An oscillatory behaviour can also be seen 489

for Tw and Rw for the horizontal flat breakwa- 490

ter, which is a direct reflection of the oscillatory 491

diffraction force shown in Figure 4 (a,b,c). Addi- 492

tionally, no oscillatory behaviour is observed for 493

vertical flat breakwater’s Tw and Rw, which is in 494

consistence with the exciting force in Figure 4 495

(d,e,f). It is plausible that diffraction wave forma- 496

tion on the vertical and the horizontal flat break- 497

water is the basic reason for the large difference 498

in their transmission coefficient behaviours. The 499

large size in the x direction of the horizontal flat 500

breakwater leads to a lower transmission coeffi- 501

cient, as has been the main parameter in many 502

previous FB studies. Additionally, it suggests 503

that the breakwater’s dimension in the incident 504

wavelength direction plays the dominant role in 505



the performance of SBs as well as FBs.506

In order to determine the effect of submer-507

gence depth on the reflection and transmission508

coefficients of the horizontal flat SB, Figure 6 is509

presented. First of all, as s1/h1 increases, the re-510

flection coefficient Rw decreases and the transmis-511

sion coefficient Tw increases. For s1/h1 = 0.2 the512

Tw reaches a minimum value of 0.75 at kh1 ≈ 2.5,513

which means 75% of incident wave energy is trans-514

mitted from the breakwater. Secondly, as it can515

be seen, the weak oscillatory behaviour vanishes516

as s1/h1 increases, which suggests that the oscil-517

latory behaviour in diffraction problem of SBs,518

especially for horizontal flat, increases as the sub-519

mergence depth decreases. The physical explana-520

tion of this behaviour might relate to the diffrac-521

tion wave height. As the height increases with522

decreasing submergence depth, for low enough s1,523

the body is influenced (or partially influenced)524

by its own diffraction wave. Because the diffrac-525

tion wave formation is an oscillatory function of526

exp(ix), it reflects itself in CF , Tw and Rw. How-527

ever, when s1 is large enough, the body and the528

produced diffraction wave will not collapse and529

parameters like CF , Tw and Rw do not show os-530

cillatory trends.531

Figure 7 shows the formation of the diffrac-532

tion wave amplitude Ad alongside the breakwa-533

ter’s width on the horizontal flat breakwater for534

θ = 0◦ and s1/h1 = 0.1 using numerical method.535

Firstly, Ad increase with 2b/h1. Such an increase536

is much more appreciable in (a) and (b), com-537

pared to (c) and (d). Secondly, diffraction wave538

length decreases quickly with increasing breakwa-539

ter width b.540

Figure 8 shows the dependence of the maxi-541

mum diffraction wave amplitude |Admax| on the542

submergence depth s1 and breakwater’s width 2b.543

According to Figure 7, |Admax| occurs at x = b544

where Ad start to decrease afterwards. |Admax |545

is normalised by the amplitude of the incident546

wave Ai. Figure 8 (a,b,c) present the results547

from the incident wave’s frequency fi = ω/2π548

of 0.2 Hz, 0.15 Hz and 0.11 Hz, respectively,549

and the curves in each subfigure are different by550

changing the values of s1/h1. It can be seen551

that at fixed s1/h1, increasing 2b/h1 (breakwater’s552

width) results in a smooth increase in |Admax|/Ai 553

for all incident wave frequencies. On the other 554

hand, at fixed 2b/h1, as s1/h1 (the submergence 555

depth) decreases, |Admax|/Ai increases and the in- 556

crement rate diminishes quickly from fi = 0.2Hz 557

to 0.11Hz. Actually, all of s1/h1 trends, almost 558

collapse each other in fi = 0.11 Hz. It perhaps 559

can be expected that at very low incident wave 560

frequencies, the curves would become flat and the 561

amplitude |Admax| would be independent of s1/h1. 562

Figure 8 (d,e,f) show the dependence of 563

|Admax|/Ai on s1/2b. Firstly, it can be seen clearly 564

that for a given value of s1/2b, increasing 2b/h1, 565

i.e. decreasing the overall water depth, would 566

lead to diminishing |Admax|/Ai. Secondly, it is 567

observed, especially in (e) and (f), that as s1/2b 568

decreases to very low values, i.e. for very low 569

submergence depth, the normalised diffraction 570

wave amplitude |Admax|/Ai tends to converge to a 571

specific value ≈ 3.0, regardless of the 2b/h1 value, 572

i.e. regardless of the overall water depth at least 573

for the range tested. Physically, the converged 574

|Admax|/Ai value infers zero transmission coeffi- 575

cient in which all incident wave energy is reflected 576

due to high amplitudes of diffraction waves and 577

after this point, according to the conservation of 578

energy law, increasing the breakwater’s width (or 579

decreasing the parameter s1/2b) would not results 580

in an increase in diffraction wave amplitude any 581

more. This result, perhaps surprisingly, shows 582

that even for SBs, if the geometric characteristics 583

of the body is appropriate, zero transmission 584

coefficient can be achieved. Furthermore, the 585

convergent value (≈ 3.0) seems to be indepen- 586

dent of the incident wave frequency. It should 587

be noted that because of the shortcomings of the 588

numerical method, some results in low s1/2b was 589

not achievable (especially for Figure 8 (d)), how- 590

ever, the global trends show foreseeable order, 591

reaching the convergent value of |Admax|/Ai ≈ 3. 592

5. CONCLUSIONS 593

In this study two-dimensional SBs with rect- 594

angular cross section in finite water depth in reg- 595

ular waves are studied and verified for further im- 596

plementation. Two new breakwaters, horizontal 597



2 4 6 8 10

kh
1

0.4

0.5

0.6

0.7

0.8

0.9

1

T
w

   s
1
 / h

1
 = 0.12

   s
1
 / h

1
 = 0.14

   s
1
 / h

1
 = 0.16

   s
1
 / h

1
 = 0.18

   s
1
 / h

1
 = 0.20

2 4 6 8 10

kh
1

0

0.2

0.4

0.6

0.8

1

R
w

   s
1
 / h

1
 = 0.12

   s
1
 / h

1
 = 0.14

   s
1
 / h

1
 = 0.16

   s
1
 / h

1
 = 0.18

   s
1
 / h

1
 = 0.20

(a) (b)

Figure 6: Reflection and transmission coefficients of horizontal flat SB in different submergence depths θ = 0
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and vertical flat SBs of high aspect ratio, are pro-598

posed and their hydrodynamic characteristics are599

studied by the analytical and numerical methods.600

Furthermore a parametric study on the diffraction601

wave amplitude, which is the dominant basic pa-602

rameter in breakwater’s transmission coefficient,603

is carried out. The following conclusions can be604

drawn from this study:605

• It is shown that the vertical flat SB pro-606

duces almost no diffraction wave and trans-607

mits most of the incident wave energy. On608

the other hand, the horizontal flat SB shows609

relatively low transmission capability, which 610

is desirable for many practical applications. 611

• The horizontal flat SB may be applied as 612

an alternative to the existing breakwaters 613

such as conventional submerged or float- 614

ing breakwaters, subjected to the considera- 615

tion of construction, installation and main- 616

tenance factors etc. 617

• Diffraction wave formation associated with 618

the two-dimensional rectangular SBs is a de- 619

caying or a growing function of x, exp(±jx), 620
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Figure 8: None-dimensional absolute maximum diffraction wave amplitude of horizontal flat breakwater (θ = 0◦) for
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which reaches the maximum value at free621

surface and on one of the edges of the break-622

water, depending on the incident wave di-623

rection. Additionally, larger breakwaters624

(breakwaters with high aspect ratios in the625

direction of incident wave) produce smaller626

diffraction wavelengths for a given incident627

wave frequency.628

• Diffraction wave amplitudes tend to con-629

verge to a specific value at small submer-630

gence depth to total width ratio. This max-631

imum amplitude corresponds to zero trans-632

mission coefficient and shows that SBs at633

appropriate circumstances can reflect all in-634

cident wave energy. Also, this maximum635

amplitude occurs at x = b for θ = 0 and636

x = −b for θ = 180 and seems to be inde-637

pendent of the incident wave frequency.638

Nomenclature639

αn eigenvalue of region IV640

βn eigenvalue of region II641

γn eigenvalue of region I and III642

λn eigenvalue of region I and III643

µn eigenvalue of region II 644

ω Incident wave circular frequency 645

ρ Water density 646

θ Incident wave angle to +x axis 647

υn eigenvalue of region IV 648

ϕd Diffraction potential 649

ϕi Incident wave potential 650

ϕt Total potential 651

ϕLr2p Particular potential for Lth radiation mo- 652

tions in region II 653

ϕLr4p Particular potential for Lth radiation mo- 654

tions in region IV 655

ϕLr Radiation potential of the Lth motion 656

a Breakwater height 657

Ad Diffraction wave amplitude 658

Ai Incident wave amplitude 659

Admax Maximum diffraction wave amplitude 660



A
′
in Unknown coefficients for diffraction prob-661

lem662

ALin Unknown coefficients for radiation problem663

ALr Amplitude of the Lth motion of the body664

b half of breakwater width665

c Phase velocity666

cg Wave group velocity667

Cdu Dimensionless damping coefficient in y di-668

rection669

Cmu Dimensionless added mass coefficient in y670

direction671

CFu Exciting force coefficient in u direction672

d Breakwater draft673

E Incident wave energy674

F a 1 × 6N matrix obtained from satisfying675

the boundary conditions between the re-676

gions677

Fd Drift force678

fi Incident wave frequency679

Fwu Exciting force in u direction680

g Gravitational acceleration681

h1 Water depth682

h2 (h1 − d)683

j Imaginary unit684

k Wave number685

k0 ksin(θ)686

M Number of incident wave frequencies687

mL,u Added mass coefficient in y direction688

N Number of truncated series in orthogonal689

functions690

nu Generalized normal inward to the sructure691

NL,u Damping coefficient in y direction 692

P Dynamic pressure 693

Rw Reflection coefficient 694

S a 6N × 6N matrix obtained from satisfy- 695

ing the boundary conditions between the 696

regions 697

S0 Wetted surface 698

s1 Submergence depth 699

Ti Incident wave period 700

Tw Transmission coefficient 701

u Velocity component in x direction 702

v Velocity component in y direction 703

w Velocity component in z direction 704

X a M × 6N matrix of unknown coefficients 705

x0 centroid of the breakwater in x direction 706

y0 centroid of the breakwater in y direction 707

z0 centroid of the breakwater in z direction 708
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