1	Evidence for a 200 km thick diamond-bearing root beneath the
2	Central Mackenzie Valley, Northwest Territories, Canada?
3	Diamond indicator mineral geochemistry from the Horn Plateau
4	and Trout Lake regions
5	
6	Stéphane P. Poitras ¹ • David G. Pearson ¹ • Matthew F. Hardman ¹ • Thomas Stachel ¹ •
7	Geoff M. Nowell ² • Scott Cairns ³
8	
9	S.P. Poitras
10	spoitras@ualberta.ca
11	
12	¹ Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth
13	Sciences Building, Edmonton, AB, T6G 2E3
14	² Department of Earth Sciences, Durham University, Science Labs, Durham, UK, DH1
15	3LE
16	³ Northwest Territories Geological Survey, 5310 44 Street, Yellowknife, NT, X1A 1K3
17	
18	
19	Abstract The Central Mackenzie Valley (CMV) area of Northwest Territories is underlain by
20	Precambrian basement belonging to the North American Craton. The potential of this area to
21	host kimberlitic diamond deposits is relatively high judging from the seismologically-defined
22	lithospheric thickness, age of basement rocks (2.2-1.7 Ga) and presence of kimberlite
23	indicator minerals (KIMs) in Quaternary sediments. This study presents data for a large
24	collection of KIMs recovered from stream sediments and till samples from two study areas in
25	the CMV, the Horn Plateau and Trout Lake. In the processed samples, peridotitic garnets

26	dominate (> 25 % at	each location) while eclogitic garnet is almost absent in both regions (< 1
27	% each). KIM chem	istry for the Horn Plateau indicates significant diamond potential, with a
28	strong similarity to I	XIM systematics from the Central and Western Slave Craton. The most
29	significant issue to r	esolve in assessing the local diamond potential is the degree to which
30	KIM chemistry refle	ects local and/or distal kimberlite bodies. Radiogenic isotope analysis of
31	detrital kimberlite-re	elated CMV oxide grains requires at least two broad age groups for eroded
32	source kimberlites. S	Statistical analysis of the data suggests that it is probable that some of
33	these KIMs were de	rived from primary and/or secondary sources within the CMV area, while
34	others may have bee	n transported to the area from the east-northeast by Pleistocene glacial
35	and/or glaciofluvial	systems. At this stage, KIM chemistry does not allow the exact location
36	of the kimberlitic so	urce(s) to be constrained.
37		
38	Key words:	
39	Kimberlite indicator	minerals
40	Garnet	
41	Ilmenite	
42	Hf isotopes	
43	Geothermobarometr	У
44	Diamond exploration	n
45		
46	Character count:	75,799 Characters (with spaces)
47		64,599 Characters (no spaces)

48 Introduction

49

50 Since the discovery of the first diamondiferous kimberlite in the Lac de Gras area in 1991, 51 more than 300 kimberlites - many diamondiferous - have been identified in the Northwest 52 Territories (NT). These discoveries have provided new suites of peridotite and eclogite 53 xenoliths, as well as diamonds, generating considerable interest in the mantle beneath the 54 Slave Craton. Despite the economic significance of diamond mines from the Central Slave 55 Craton, relatively little research has been conducted on the remaining portions of cratonic 56 lithospheric mantle underlying other parts of northern Canada, such as the area west of the 57 Slave Craton margin. The possible existence of thick and cold cratonic lithosphere in the 58 Central Mackenzie Valley (CMV), NT, more than 200 kilometres west of the Slave Craton 59 margin (Fig. 1), is currently poorly constrained. This area, south of Great Bear Lake, has seen 60 limited diamond exploration. Olivut Resources Ltd. is currently exploring this area and have 61 reported the discovery of at least 29 kimberlites (two diamondiferous) since the 62 commencement of their HOAM project in 1993 (Fig. 1; Pitman 2014). The reported 63 kimberlite indicator mineral (KIM) chemistry from these kimberlites (Pitman 2014) differs from data obtained during regional stream sediment and till sampling (Day et al. 2007; Mills 64 65 2008; Pronk 2008) suggesting the possible presence of additional, potentially diamondiferous sources within the CMV or complex mineral transport into the region. 66 67 Although the CMV region is not a traditional Archean "cratonic" setting in terms of its crustal geology - a widely accepted pre-requisite for diamondiferous kimberlites (Janse 1994) 68 69 - discoveries of primary diamond occurrences in North America have been made in similar 70 settings (e.g., Buffalo Head Hills). Furthermore, the LITHOPROBE Slave-Northern 71 Cordillera Lithospheric Evolution (SNORCLE) transect line 1 (e.g., Cook et al. 1999) and 72 more recent regional-scale surface-wave seismic tomography studies (e.g., Schaeffer and 73 Lebedev 2014) indicate the likely presence of thick (~ 200 km), cold lithospheric mantle

74	extending into the diamond stability field, underpinning an area of several hundreds of square
75	kilometres across the CMV (Fig. 1). In this study, we present new geochemical data for a
76	large collection of KIMs sampled from two regions within the CMV: Horn Plateau (25,233
77	km ²) northeast of the Mackenzie River and > 175 km west of Yellowknife and Trout Lake
78	(10,680 km ²) south of the Mackenzie River (Figs. 1-2; for river, lake and place locations see
79	Figures S1-S2). KIM chemistry of grains from these regions will be used to assess their
80	diamond potential and improving our understanding of potential kimberlite sources.
81	
82	
83	Geological Setting
84	
85	Precambrian Geology
86	
87	The Precambrian basement of the Wopmay Orogen (ca. 1.95-1.85 Ga; Davis et al. 2015;
88	Ootes et al. 2015) is known from a few oil and gas exploration wells (Burwash et al. 1993 and
89	references therein) plus inferences made from geophysical survey data in the CMV (Cook et
90	al. 1999; Aspler et al. 2003; Cook and Erdmer 2005). From east to west under the
91	Phanerozoic strata is Precambrian basement from the 1.88-1.85 Ma Great Bear Magmatic
92	Zone, the 1.95-1.89 Ga Hottah Terrane, the ca. 1.84 Ga Fort Simpson Terrane (magnetic high)
93	and the cryptic Nahanni magnetic low (Villeneuve et al. 1991; Aspler et al. 2003; Cook and
94	Erdmer 2005). In the extreme northeast of the CMV, Precambrian crystalline and
95	metasedimentary rocks outcrop on the exposed Canadian Shield (Fig. 1). In the eastern Horn
96	Plateau region, Precambrian rocks occur at only 400 m depth (Burwash et al. 1993) and dip
97	gently towards the west-southwest to depths of greater than two kilometres in the westernmost
98	areas (Gal and Lariviere 2004).

100 Phanerozoic Geology

101

102 The CMV lies in the northern portion of the Phanerozoic Western Canadian Sedimentary 103 Basin known as the Northwest Territories Interior Platform. The nearly horizontal, mostly 104 undeformed Phanerozoic sedimentary rocks are disrupted by highs of underlying Precambrian 105 basement from episodes of uplift, erosion and subsidence (Dixon 1999). In the extreme 106 northeast of the CMV, near Lac la Martre, Cambrian to Middle Devonian strata outcrop (Fig. 107 1). In the northern Horn Plateau, Cambrian rocks overlie the Precambrian basement, except 108 over the Bulmer Lake gravity high (Fig. 1), where they were either eroded and/or not 109 deposited. Elsewhere Cambrian sediments appear to have been largely removed or were not 110 deposited (Meijer Drees 1993). Ordovician and Silurian rocks still exist at depth in the 111 northern part of the Horn Plateau, north of about 62 °N, while south of 62 °N, Middle-Late 112 Devonian strata directly overlies the basement (Fig. 1; Williams 1985; Meijer Drees 1993; 113 Pitman 2014). A prominent series of low escarpments of Devonian limestone located on the 114 southern edge of the Horn Plateau are an exception to the otherwise monotonous, limited 115 outcrop landscape (Craig 1965).

116 Cretaceous strata are only preserved in the extreme northwest and in higher areas 117 where they have not been removed by erosion in the Horn Plateau region (e.g., Horn Plateau 118 and Ebbutt Hills; Fig. 1) and are covered by glacial till and organics, with few recorded 119 outcrops in the CMV (Craig 1965; Meijer Drees 1993). On the Horn Plateau, flat-lying Albian 120 marine shales and minor sandstones unconformably overlie Late Devonian strata (Craig 1965; 121 Meijer Drees 1993; Dixon 1999) with the Albian strata reaching ~ 60 m thick east of Willow 122 Lake on the plateau and ~ 100 m thick east of Ebbutt Hills (Dixon 1999). South of ~ 61 °N, 123 Late Aptian to Campanian strata (Fort St. John Group) are widespread (Fig. 1). East and 124 southeast of Trout Lake, Cretaceous strata lies unconformably, from north to south, on 125 Devonian and Carboniferous strata (Stott et al 1993) whereas to the southwest this unit is

126 completely absent (Dixon 1999). Cenomanian-Turonian aged marine shales are only

127 preserved in the eastern Trout Lake region, with only Early-Middle Cenomanian regressive

128 sandstone beds (Dunvegan Formation) found capping some hills to the northwest and

129 southeast of Trout Lake (Dixon 1999).

130

131 Quaternary Geology

132

133 The CMV is almost entirely covered with a mantle of glacial and post-glacial deposits (Figs. 134 2, S2). Morainal tills blanket most of the CMV and are locally ridged or hummocky, while 135 colluvial deposits and local undifferentiated bare rock outcrops are found along the southern 136 escarpment of the Horn Plateau. To the north and northwest of the Horn Plateau, alluvial 137 gravel and sand occupy flood plains and terraces along streams (Rutter et al. 1993). South of 138 the plateau, organic (fen and bog) deposits overlie a massive till plain (Rutter et al. 1993; 139 Fulton 1995). In the Mackenzie, Liard, Willowlake and other river valleys, fine-grained 140 organic, eolian, glacio- and/or -fluvial and -lacustrine deposits blanket till, older deposits and 141 bedrock below 220 m elevation (Fig. 2). North of the Horn Plateau, glacial deposits are up to 142 81 m thick (Craigie 1991), while in the Fort Simpson area the maximum thickness is 120 m 143 (Ghaznavi et al. 1986). In the western and eastern parts of the CMV on the Liard and Last 144 Stop mineral claims of Olivut Resources, below glaciofluvial outwash, till is between 10-60 m 145 thick (Pitman 2014). In contrast, thinner unconsolidated Quaternary deposits (10-20 m) 146 typically exist throughout the lowlands and major river valleys in the Horn Plateau, as well as 147 most of the Trout Lake (Rutter et al. 1993; Huntley et al. 2006, 2008). 148 Highlights of the CMV Quaternary history include intervals of continental glaciation

149 involving complex frontal retreat and ice stagnation, glacial lake formation and meltwater

150 drainage (Huntley et al. 2006, 2008). At the last glacial maximum (ca. 18 ka), the entire CMV

151 was completely covered by the Laurentide Ice Sheet with a thickness > 1000 m, implied by

152 the appearance of granitic erratic boulders at ~ 1500 m elevation to the west of the CMV 153 (Huntley et al. 2008). The advance of this continental ice-sheet resulted in the erosion, 154 transport, dispersal and deposition of bedrock and pre-existing sediment within the CMV. The 155 highlands of Ebutt and Martin Hills and the Horn Plateau are believed to have slightly 156 deflected the regional advance of the ice-sheet (Rutter et al. 1993; Fulton 1995). To date, the 157 only ice-flow features reported on top of the Horn Plateau are small drumlinoid features on 158 the northeast edge of the plateau (Craig 1965), which mark the youngest ice-flow direction 159 trending west-southwest (~ 255°; Grexton 1995). North and south of the plateau regional ice-160 flow was towards the west, while in the west near Martin Hills, it was deflected northwesterly 161 and southwesterly around it (Fig. 2; Fulton 1995). Throughout the Trout Lake region, a south 162 to southwest directed ice-flow is consistently preserved by drumlins and fluting (Douglas 163 1959; Fulton 1995; Huntley et al. 2008).

164 The subsequent retreat of the ice-sheet broadly re-ordered the drainage systems across 165 the CMV. Between 17-14 ka, the ice-margin on the Horn Plateau retreated towards the east, 166 forming melt-water channels that eventually drained towards the west into an enlarged glacial 167 Bulmer Lake (Huntley et al. 2006). After completely retreating from the Horn Plateau, the 168 ice-margin continued to retreat (12-10 ka) in the Horn Plateau, creating even more meltwater 169 channels with glaciofluvial deltas parallel to them (Huntley et al. 2006). Around the same 170 time (12-11 ka), retreat of the ice-margin towards the north-northeast in the Trout Lake area 171 shifted drainage from the southwest into glacial Lake Liard to the north into the CMV (i.e., 172 glacial Lake Mackenzie; Huntley et al. 2008). Rapid retreat of the LIS continued between 11-173 10 ka, shifting the location of the glacial lakes and subsequent meltwater channels towards the 174 east up the valley near Mills Lake (Duk-Rodkin and Lemmen 2000; Huntley et al. 2006). 175 After ice retreat and final glacial lake drainage, modern fluvial drainage patterns were 176 established, with post-glacial streams draining runoff and sediment radially from the Horn 177 Plateau, Ebutt and Martin Hills into the Horn, Liard, Mackenzie and Willowlake river valleys

178 (Duk-Rodkin and Hughes 1994; Huntley et al. 2006). These major river valleys occupy
179 previously established meltwater channels of the major Late Wisconsinan glacial lakes
180 (Bulmer, Mackenzie, McConnell; Craig 1965; Huntley et al. 2006).

181 Our understanding of the CMV Quaternary history is further hampered by the nature 182 of the cap bedrock. The soft, primarily Cretaceous and Devonian sedimentary rocks and pre-183 existing glacial deposits were prone to intense erosion, glacial deformation and ice-thrusting 184 (e.g., Paulen 2009). As a result, most landforms and other evidence of earlier ice-flows were 185 largely obliterated. Those that remained were extensively eroded, transported and re-186 deposited by colluvial, fluvial, lacustrine and aeolian processes during and following ice 187 retreat. Other potential complexities in understanding the glacial transport and dispersal 188 distance of KIMs in the CMV include palimpsest landscapes (e.g., Parent et al. 1996; Paulen 189 2013), ice streams (e.g., Margold et al. 2015) and regional subglacial meltwater storage and 190 drainage events (e.g., Rampton 2000). Collectively, these many factors result in a complex 191 and incomplete Ouaternary history for the CMV.

192

193

194 Samples

195

In 2003 and 2005, a total of 325 heavy mineral concentrate stream sediment samples (~ 50 m² spacing) were collected in the Horn Plateau region by the Geological Survey of Canada (GSC; Day et al. 2007). GSC and Northwest Territories Geological Survey (NTGS) personnel followed this up in 2006 with the collection of 25 till samples weighing only 2-10 kg in the Horn Plateau region (Mills 2008). Meanwhile, 166 reconnaissance-scale till samples weighing ~ 10 kg each (~ 100 m² spacing) were collected from the Trout Lake region by the NTGS in 2008 (Watson 2010).

203 In total, 3665 (Horn Plateau) and 656 (Trout Lake) potential KIM grains were picked 204 from the 0.25-2.0 mm size fractions and made into grain mounts. The Horn Plateau KIM 205 inventory comprises peridotitic garnet (51 %), ilmenite (30 %), chromite (10 %), Cr-diopside 206 (4%), olivine (3%), low-Cr (< 1 wt% Cr₂O₃) garnet (< 1\%) and rutile (< 1\%). The Trout 207 Lake KIM inventory comprises rutile (45 %), peridotitic garnet (23 %), Cr-diopside (16 %), 208 ilmenite (7 %), chromite (6 %), olivine (2 %) and low-Cr garnet (< 1 %). Sample descriptions, 209 location, collection, heavy mineral concentrate processing and indicator mineral picking 210 details are detailed elsewhere for the Horn Plateau (Day et al. 2007; Mills 2008) and the Trout 211 Lake (Watson 2010). For sample descriptions and locations, the reader is referred to Tables 212 S1-S3.

213 In addition, a collection of Mg-ilmenites from kimberlites with known emplacement 214 ages ranging between ~ 700-30 Ma were used to try to constrain possible crystallization ages 215 or age ranges of Horn Plateau Mg-ilmenites, based on their Hf isotope compositions. The 216 large (1.0-2.0 mm size fraction) Horn Plateau Mg-ilmenite grains (n = 22) were selected 217 based on necessary minimum Hf abundances needed for analysis (~ 0.5 ng). Samples used for 218 Mg-ilmenite Hf isotopic analysis were provided as grain mounts, picked grains, hand samples 219 or drill core. For a complete list of kimberlite sample localities, emplacement ages and 220 kimberlite geochronology methods used for reference, the reader is referred to Table S4.

221 A database of KIM chemistry, primarily of peridotitic garnet, was used for comparison 222 in this study. KIM chemistry for the Southwestern (Drybones Bay), Western (Aquila, Cross, 223 Orion, Ursa), Southeastern (Snap Lake) and Central (Lac de Gras) Slave Craton kimberlites 224 were used for comparison (Schulze et al. 1995; Carbno 2000; Kerr et al. 2000; Carbno and 225 Canil 2002; Creaser et al. 2004; Griffin et al. 2004; Menzies et al. 2004; Aulbach et al. 2007, 226 2011; Roeder and Schulze 2008; Creighton 2009; Creighton et al. 2010; Bussweiler et al. 227 2015). The geochemical database has major element data as oxides (SiO₂, TiO₂, Al₂O₃, Cr₂O₃, 228 FeO, MnO, MgO, CaO) as well as some trace element concentrations (e.g., Ni, Y, Zr, REEs

229	for peridotitic garnet). In addition, a newly filtered (October 2017) NTGS GoData KIMC
230	database was used to evaluate KIM chemistry from Central and Western Slave Craton
231	surficial samples.
232	
233	
234	Methods
235	
236	Sample preparation and elemental analysis
237	
238	Picked indicator minerals from both regions were cleaned, mounted and analyzed for major
239	and minor elements by electron probe microanalysis (EPMA), either previously at the GSC or
240	during this study at the University of Alberta. EPMA analytical conditions, including standard
241	information, are included in Supplementary Methodology. In total, 3153 Horn Plateau and
242	656 Trout Lake supposed KIM grains were analyzed. For complete KIM EPMA results see
243	Tables S5-S10. Following EPMA, 947 peridotitic garnet grains and 53 peridotitic olivine
244	grains from the study regions were analyzed for trace element abundances by in situ sector-
245	field laser ablation inductively coupled mass spectrometry (LA-ICP-MS) at the University of
246	Alberta. For LA-ICP-MS instrument setup, analytical conditions and standards used see
247	Supplementary Methodology and Hardman et al. (this volume). For standard results, see
248	Tables S11-S12 and Figures S3-S4. All external geochemical data were treated in the same
249	way as the CMV KIM data, i.e., filtering of oxide totals, limits of detection, calculation of
250	cations, garnet classification and thermobarometry techniques (e.g., Grütter et al. 2004; Nimis
251	and Taylor 2000). Well-established methodologies for interpreting KIM chemistry were used
252	to compare the Horn Plateau geochemical datasets with external data from potential source
253	regions (i.e., Slave Craton kimberlites).
254	

255 Isotopic analysis

256

257	Radiogenic isotopes were determined for select Trout Lake rutiles (U-Pb) and Horn Plateau
258	Mg-ilmenite (Hf) to infer the age of eroded kimberlites that supplied the detrital kimberlitic
259	material. Trout Lake rutiles grains ($n = 53$) were analyzed by LA-ICP-MS for U-Pb isotopic
260	ratios (e.g., Malkovets et al. 2016) on a Thermo Element IIXR. For complete LA-ICP-MS
261	rutile U-Pb dating instrument setup, analytical conditions and standards used see
262	Supplementary Methodology and Harris et al. (this volume). For Trout Lake rutile U-Pb
263	dating standard results, the reader is referred to Table S13 and Figure S5.
264	Nowell et al. (2004) have shown that Mg-ilmenite Hf isotope compositions potentially
265	are a useful indicator of the broad emplacement age of their kimberlite source. Using a similar
266	approach on Horn Plateau Mg-ilmenite grains ($n = 22$), we classify these kimberlitic ilmenite
267	grains into potential age groups. We recognize that the rutile U-Pb ages offer a more precise
268	technique (e.g., Cooper et al. 2008; Harris et al. this volume), however Mg-ilmenite Hf
269	compositions are the only possibility of providing age constraints for the source kimberlites
270	that supplied the Horn Plateau KIMs. In an attempt to better improve potential age constraints
271	on Horn Plateau grains, the "kimberlite mantle Hf isotope evolution curve" defined by Mg-
272	ilmenites was expanded and evaluated with the larger reference dataset of worldwide
273	kimberlites, primarily from the North American Craton. Details of sample preparation,
274	analysis using multi-collector (MC-)ICP-MS, analytical conditions and relevant reference
275	material data are provided in Supplementary Methodology. For standard results, see Table
276	S14 and Figure S6.
277	

278 Geothermobarometry techniques

280 Thermobarometry of compositionally screened Cr-diopsides from garnet peridotites (criteria 281 of Grütter 2009) were used to generate paleo-geotherms for each of the two study areas (using 282 FITPLOT; Mather et al. 2011), based on the assumption that all KIM grains were sampled 283 penecontemporaneously from their mantle sources. The mean temperature of the Ni-in-garnet 284 thermometers of Griffin et al. (1989) and Canil (1999) was used to constrain the temperature 285 of last equilibration of peridotitic garnet xenocrysts. If possible, the Ni-in-garnet temperatures 286 were projected to their respective pyroxene-based geotherm. The Al-in-olivine thermometer 287 for garnet peridotites (Bussweiler et al. 2017) was used to evaluate whether any different 288 mantle sampling information is captured by olivine versus garnet. Similar to garnet 289 temperatures, the Al-in-olivine temperatures were projected, if possible to their respective 290 pyroxene-based geotherm.

291

292 Statistical analysis

293

294 Peridotitic garnet chemistry from Slave Craton kimberlites and the Horn Plateau populations 295 overlap in many existing bivariate discrimination methods (e.g., Grütter et al. 2004). To 296 investigate these populations statistically, we recast major element data as natural logarithm-297 normalized cation ratios for Ti, Al, Cr, Fe, Mn, Mg and Ca with Si as the denominator (e.g., 298 ln(Ti/Si)). The natural logarithm permits elemental values to be expanded past the limited 299 range created by the unit-sum constraint of geochemical data, shifts distributions closer to 300 normality (Hardman et al. 2018) and helps alleviate problems with closure in geochemical 301 data (Aitchison 1994). Peridotitic garnet chemistry populations from Horn Plateau and Slave 302 Craton kimberlites and surficial samples were tested for normality via the Kolmogorov-303 Smirnov (K-S), Anderson-Darling (A-D) and Shapiro-Wilks (S-W) tests. These normality 304 tests reject the hypothesis of normality when the p-value is ≤ 0.05 . Failing the normality test allows you to state with 95 % confidence the data does not fit a normal distribution while 305

306	passing the tests only allow you to state no significant departure from normality was found.
307	Execpt for $\ln(Mn/Si)$ for the Western Slave Craton kimberlite population (p = 0.09),
308	distributions of the Horn Plateau and Slave Craton peridotitic garnet populations are non-
309	normal for all other elements ($p \le 0.05$; Table S15).
310	Logistic regression (LR) was selected for comparison of our data with garnet
311	chemistry from Slave Craton kimberlites, as it makes no underlying assumptions about
312	distribution or normality. This non-parametric supervised statistical technique linearly
313	transforms data, reduces dimensionality and maximizes the variance of multivariate datasets
314	(Pohar et al. 2004). The LR solutions are derived using the freeware statistics package R using
315	the following log-normalised variables (see Supplementary Methodology for run-stream):
316	ln(Ti/Si), ln(Al/Si), ln(Cr/Si), ln(Fe/Si), ln(Mn/Si), ln(Mg/Si), ln(Ca/Si). Logistic regression
317	solutions are derived for pairs of populations (e.g., the Horn Plateau and Central Slave),
318	which results in a linear equation that assigns a numerical value to all data (Table S15). A
319	density distribution of garnets in the populations based on these values is assessed for the
320	degree of separation or overlap between different groups. The advantages and disadvantages
321	of various statistical techniques are discussed in Supplementary Methodology.
322	
323	
324	Results: KIM chemistry
325	
326	Cr-diopside
327	
328	Major element variations of Cr-diopside grains from the Horn Plateau ($n = 138$) and Trout
329	Lake $(n = 106)$ indicate multiple petrogenetic sources (Fig. 3). Of these, 124 Horn Plateau and
330	19 Trout Lake grains have mg# (molar Mg/(Mg+Fe)) > 0.88 and elevated Cr ₂ O ₃ (> 0.5 wt%)
331	typical of mantle peridotites (Fig. 3). The mg# of Horn Plateau peridotitic Cr-diopsides is

332	higher (mean of 0.92) compared to those from Trout Lake (mean of 0.90). Peridotitic Cr-
333	diopsides from the Horn Plateau can be sub-divided into at least two different groups (criteria
334	outlined by Ramsey and Tompkins 1994; Nimis 1998; Cookenboo and Grütter 2010). The
335	first group contains 120 Horn Plateau and 15 Trout Lake Cr-diopside grains with lower Al_2O_3
336	(<4 wt%) contents and generally higher mg# (mean 0.92), typical of Cr-diopside from garnet-
337	peridotites (Fig. 3). The second group of peridotitic Cr-diopsides consists of four Horn
338	Plateau and four Trout Lake Cr-diopside grains with higher Al_2O_3 (> 4 wt%) contents and
339	variable mg# (0.89-0.95; Fig. 3). The grains from this group are either from off-craton garnet-
340	peridotites or from spinel-peridotites (on- or off-craton). Most of the CMV peridotitic Cr-
341	diopside grains are compositionally indistinguishable from those derived from Central and
342	Western Slave Craton surficial samples (Fig. 3).
343	
344	Low-Cr garnet
345	
346	Of the 30 Horn Plateau low-Cr garnets analyzed, 20 are undefined (G0) and of potentially
347	crustal origin, six are low-Cr megacrysts (G1), three are low-Ca eclogitic (G3) and two are
348	high-Ca eclogitic to pyroxenitic (G4; after Grütter et al. 2004). The crust-mantle method of
349	Hardman et al. (2018) classifies all four G3 and G4 grains as "mantle-derived" (Fig. S7). Out
350	of 17 low-Cr garnet grains collected from the Trout Lake, nine classify as G3 with non-
351	deemed "mantle-derived" using the Hardman et al. (2018) scheme (Fig. S7).
352	
353	Peridotitic garnet
354	
355	Of 1638 peridotitic garnet grains classified using the scheme of Grütter et al. (2004), from the
356	Horn Plateau, lherzolitic garnets (G9) dominate (51 %), followed by high-TiO ₂ peridotitic

357 garnets (G11, 27 %), harzburgitic garnets (G10, 8 %) and wehrlitic garnets (G12, 5 %). A

358 small portion of the Horn Plateau garnets are Cr_2O_3 -rich (10-15 wt%) with only 3 % situated 359 above the graphite-diamond constraint (Fig. 4; Grütter et al. 2006). Conversely, the Trout 360 Lake peridotitic garnets are all G9 (n = 138), except for one G12 grain and generally plot in 361 the high-Ca off-craton portion of the lherzolitic field (Grütter et al. 2004), setting them apart 362 from typically lower Ca lherzolitic garnets from the Horn Plateau (Fig. 4).

363 Based on their chondrite-normalized rare earth element patterns (REE_N) patterns (Fig. 364 5), peridotitic garnets from the Horn Plateau can be classified in three principal groups (see 365 Table S16). (1) HREE-enriched patterns have very low LREE concentrations that increase to 366 chondritic abundances through the MREEs, becoming ~ 10x chondritic in the HREEs (Fig. 5). 367 This is the largest group (55 % of the garnets) and is dominated by G9s (n = 309), followed 368 by 127 G11, four G12 and three G10 grains. Based on their Ni contents, the HREE-enriched 369 group covers the entire temperature range observed for Horn Plateau garnets and have 370 variable Zr, Y, Hf abundances (Fig. S8). (2) Garnets from the MREE-depleted group have V-371 shaped to extremely sinusoidal REE_N patterns with variable, typically super-chondritic LREE 372 abundances, decreasing concentrations from Ce or Nd to Tb or Ho and steep linear positive 373 slopes in the HREE_N with near chondritic Lu concentrations (Fig. 5). This group contains 13 374 G10, seven G11, five G12 and four G9 grains with Ni temperatures < 1100 °C for all garnets 375 (except one). All garnets from this group have very low Zr, Y and Hf concentrations (< 0.024 376 ppm), at or below chondrite abundance (Fig. S8). (3) Garnet REE_N patterns of the sinusoidal 377 group have positive slopes in the LREE_N with a peak at Nd, negative slopes in the MREE_N 378 with a trough between Dy and Er and positive slopes in the HREE_N (Fig. 5). This group 379 consists of 202 G9, 73 G10, 48 G11 and 15 G12 grains with low and high Zr, Y and Hf 380 concentrations, occurring in approximately equal proportions and again extending across the 381 entire temperature range observed for Horn Plateau garnets (Fig. S8).

382

383 Olivine

385	Kimberlite-related (largely mantle-derived xenocrystic) olivine must be differentiated from
386	that originating from "basaltic" sources recovered in surficial samples. Only 38 of the 109
387	Horn Plateau olivine grains have chemistry typical of xenocryst cores of olivine from
388	kimberlites (mg# 0.89-0.94, NiO \ge 0.3 wt%, CaO \le 0.1 wt%, MnO \le 0.15 wt%; e.g.,
389	Bussweiler et al. 2015, 2017). All 15 Trout Lake olivines fall within this mantle range,
390	although they have a less variable, lower mg# (mean 0.91) compared to those from the Horn
391	Plateau (mean mg# 0.92). A few olivine grains from the Horn Plateau ($n = 13$) and Trout
392	Lake (n = 1) have compositions typical for olivine inclusions in diamond with $mg# > 0.91$
393	(Stachel and Harris 2008) and $Cr_2O_3 < 0.03$ wt% (Fipke et al. 1995).
394	
395	Ilmenite
396	
397	Kimberlite-derived ilmenite can be distinguished from non-kimberlitic magmatic ilmenites
398	based on the TiO ₂ versus MgO discrimination plot of Wyatt et al. (2004). Out of 46 Trout
399	Lake ilmenite grains, only four are kimberlitic (i.e., plot to the right of the discriminant curve
400	in Fig. 6) whereas ilmenites from the Horn Plateau are more promising for diamond
401	exploration, with 793 grains (of 948) being of kimberlitic composition.
402	Mills (2008) noted that Horn Plateau Mg-ilmenites document a complex
403	crystallization history with both Cr ₂ O ₃ - and MgO-poor (oxidized) and Cr ₂ O ₃ - and MgO-rich
404	(reduced) suites which define two groups: (1) a less prominent group with 5-7 wt% MgO and
405	very low Cr_2O_3 and (2) a dominant group with > 10 wt% MgO and Cr_2O_3 increasing with
406	MgO-content. All four kimberlitic Mg-ilmenite grains from three Trout Lake samples have
407	similar Nb ₂ O ₅ , TiO ₂ , Cr ₂ O ₃ , MnO and MgO contents to the Cr ₂ O ₃ - and MgO-poor suite of the
408	Horn Plateau. These four Trout Lake grains and 10-25 % of the Horn Plateau Mg-ilmenites
409	are characterized by relatively low TiO ₂ , MgO and Cr ₂ O ₃ values that increase at the low end

of the MgO-spectrum, similar to those from the Drybones Bay kimberlite (Fig. 6; Schulze et
al. 1995; Kerr et al. 2000). Meanwhile, the majority of Horn Plateau grains (75-90 %) have
similar Nb₂O₅, TiO₂, Cr₂O₃, FeO and MgO contents as those from Western and Central Slave
Craton surficial samples (Fig. 6).

- 414
- 415 Rutile
- 416

432

417 Although some studies have attempted to recognize kimberlite-related rutiles based on 418 chemical composition (e.g., based on Cr₂O₃ contents; Malkovets et al. 2016), other studies of 419 rutile from mantle xenoliths show that major elements are less definitive (Harris et al., this 420 volume). CMV rutiles also allow no clear distinction (Table S10). None of the Trout Lake 421 rutiles (n = 291) contain ≥ 1.7 wt% Cr₂O₃, thought to be typical of a cratonic mantle source, 422 while none of the four Horn Plateau rutiles contain > 0.4 wt% Cr₂O₃, thought to be necessary 423 for distinction from crustal sources (Fig. S9; Malkovets et al. 2016). 424 Only rutile from Trout Lake samples were analyzed for U-Pb isotope systematics and 425 most grains have extremely low ²⁰⁷Pb concentrations (in addition to Th and U), as is 426 especially common for accessory minerals (e.g., rutile, zircon) from Mesozoic or younger magmas (e.g., Zack et al. 2011). Thus, accurate ²⁰⁷Pb/²³⁵U ages were difficult to obtain and 427 only the ²⁰⁶Pb/²³⁸U ratios and apparent ages (Table S17), which have the lowest analytical 428 429 uncertainties, were considered for resolving the emplacement age of eroded kimberlites that 430 supplied these detrital rutile grains. Trout Lake rutile 206 Pb/ 238 U ages can be divided into three distinct groups: (1) two 431

grains (4 %) with Archean ²⁰⁶Pb/²³⁸U ages similar to Slave Craton granitoid rocks (2.8-2.5

433 Ga), (2) 47 grains (89 %) with Proterozoic 206 Pb/ 238 U ages similar to the Wopmay Orogen

434 rocks (2.1-1.6 Ga) and (3) four grains from three samples (8 %) with potential kimberlitic

 $435 \quad {}^{206}\text{Pb}/{}^{238}\text{U}$ ages between 429-138 Ma (Fig. S10), based on the lack of evidence for

436	metamorphic events of such young ages in the CMV basement. Of these presumed kimberlitic
437	rutile grains, the two oldest have Silurian and Early Devonian 206 Pb/ 238 U ages of 420.6 ± 8.2
438	Ma and 408.1 \pm 11 Ma (Silurian and Early Devonian). These two rutile grains are from
439	separate samples where they occur with other rutiles defining Paleoproterozoic crystallization
440	ages (Fig. S10). Meanwhile the two youngest kimberlitic rutile grains, again from two
441	separate samples, have Late Triassic to Early Cretaceous $^{206}\text{Pb}/^{238}\text{U}$ ages of 144.6 \pm 6.2 Ma
442	and 227.0 ± 35 Ma (2σ ; Fig. S10).
443	
444	Spinel
445	
446	At least 70 % of the Horn Plateau ($n = 314$ total) and only 12 % of the Trout Lake ($n = 42$
447	total) spinels have major element compositions (TiO2, Al2O3, Cr2O3, MgO) typical of spinels
448	from kimberlites (e.g., Sobolev 1977). On the basis of cr# vs mg# systematics (Roeder and
449	Schulze 2008), potential Horn Plateau KIM grains with typically low mg# (< 0.35) and
450	moderate cr# (0.4 to 0.8) are indistinguishable from spinels from Central and Western Slave
451	Craton surficial samples (Fig. S11).
452	
453	
454	Discussion
455	
456	Geothermobarometry
457	
458	The Horn Plateau Cr-diopsides $(n = 54)$ define a conductive paleo geotherm equivalent to a
459	lithospheric thickness of 200 (\pm 10) km (Fig. 7), assuming a mantle potential temperature of
460	1300 °C. Although the possibility that this geotherm represents mixed datasets (Cr-diopsides
461	from various sources) cannot be excluded, the tight correlation (Fig. 7) makes it highly

unlikely that sources with significantly variable geotherms could have been sampled. This
geotherm has a wide "diamond window" (Fig. 7) and with increasing depth crosscuts the 3538 mW/m² model geotherms of Hasterok and Chapman (2011). Meanwhile, only three Trout
Lake Cr-diopside grains passed compositional screening; they cluster in a narrow pressuretemperature interval within the graphite stability field and do not allow for the derivation of a
reliable paleogeotherm (Fig. 7).

468 Of the 808 peridotitic garnet grains analyzed for trace elements from the Horn 469 Plateau, the majority have Ni-in-garnet temperatures between 850-1350 °C (Fig. S8; Tables 470 S16, S18); while the 138 G9 grains from the Trout Lake extend to lower temperatures 471 spanning a smaller range, between 800-1050 °C (except one grain; Table S19). Projection of 472 Ni-in-garnet temperatures to the pyroxene-based geotherm for Horn Plateau indicates 473 significant sampling in the diamond stability field (Figs. 7 and 8). Based on the P₃₈ Cr-in-474 garnet barometer of Grütter et al. (2006), a minimum (as presence of Mg-chromite in the 475 assemblage cannot be confirmed) maximum pressure of 5.8 GPa can be derived for the most 476 Cr-rich Horn Plateau garnets, equivalent to a minimum lithospheric thickness of ~ 180 km 477 (Fig. 4). This result agrees with the intersection of the pyroxene-based geotherm for Horn 478 Plateau with the mantle adiabat at 200 ± 10 km (Fig. 7). The lack of a reliable geotherm for 479 the Trout Lake precludes projection of Ni-in-garnet temperatures to depth.

480 Application of the Al-in-olivine thermometer requires screening out of olivines from 481 spinel- and garnet-spinel facies peridotites, as the thermometer is only confirmed to work in 482 garnet-facies peridotites. Based on their position on the Al versus V plot for garnet versus 483 spinel facies discrimination (Fig. S12), only 17 of 38 Horn Plateau olivines classify as garnet-484 peridotite-derived. All 15 Trout Lake olivine grains classify as garnet-peridotite-facies (Fig. 485 S12; Table S20). Al-in-olivine temperatures for 16 of the garnet peridotite-derived olivine 486 grains from Horn Plateau are between 950-1200 °C (see Table S18). Projection of these Al-487 in-olivine temperatures to the Horn Plateau paleogeotherm (Fig. 7) indicates that they most

recently equilibrated at or deeper-than the graphite-diamond transition (Day 2012) with a
similar mode in sampling depth as that defined by the garnets (120-180 km; Fig. 8). The Alin-olivine temperatures for the 15 Trout Lake garnet-peridotite derived olivine grains are
much higher (1000-1350 °C) than the temperature obtained from garnet-peridotite derived Crdiopsides at Trout Lake (650-750 °C).

493

494 **Diamond potential of KIMs**

495

496 Pyroxene-based geothermobarometry for Horn Plateau KIMs indicates derivation from a cold, 497 deep (190-210 km) lithospheric mantle root, with a large diamond window that was 498 abundantly sampled (Figs. 7-8). For Trout Lake, the lack of a pyroxene-based geotherm 499 makes it difficult to interpret the thickness of lithosphere sampled by the kimberlite sources of 500 the sampled indicators. The three pressure-temperature estimates based on Cr-diopside grains 501 from this area, however, plot close to the Horn Plateau model-geotherm (Fig. 7) suggesting it 502 is not significantly different from that for the Horn Plateau Cr-diopside grains. 503 Cr_2O_3 -CaO contents of peridotitic ($\geq 1 \text{ wt\% } Cr_2O_3$) garnets analyzed from both study 504 areas (Fig. 4) suggest significantly different compositions of lithosphere sampled and 505 transported to the surface. For Horn Plateau, the peridotitic garnet chemistry suggests 506 derivation from thick and highly depleted lithosphere that extends into the diamond stability 507 field. In stark contrast, for Trout Lake, both the absence of G10 garnets and the overall lower 508 Ni-in-garnet temperatures suggest shallower sampling of a less depleted lithospheric section,

509 likely with less favourable diamond potential.

All four Trout Lake Mg-ilmenites and a smaller portion of Horn Plateau grains (10-25 %) with low Cr_2O_3 and MgO contents (Fig. 6) have elevated $Fe^{3+/}Fe^{2+}$ ratios (calculated from stoichiometry) that indicate less favourable redox conditions for diamond preservation (e.g., Schulze et al. 1995). Castillo-Oliver et al. (2017), however, questioned the utility of Fe-Mg

514	systematics in Mg-ilmenite in defining diamond preservation potential. The extremely Cr_2O_3 -
515	rich Mg-ilmenite grains from the "reducing" suite (75-90 %) are suggested to indicate a very
516	depleted and Cr-rich mantle source with favourable diamond potential (Mills 2008 and
517	references therein). Moreover, 10 Horn Plateau (and no Trout Lake) spinels have > 61 wt%
518	Cr_2O_3 , 10-16 wt% MgO, < 0.60 wt% TiO ₂ , < 8 wt% Al ₂ O ₃ , < 6 wt% Fe ₂ O ₃ , 13-17 wt% FeO
519	(Fe contents calculated based on stoichiometry), i.e., compositions typical of diamond
520	inclusion spinels (e.g., Sobolev 1977; Fipke et al. 1995) and hence indicative of favourable
521	diamond potential.
522	Based on our new data and including previous studies on KIMs from Horn Plateau and
523	Trout Lake (Day et al. 2007; Mills 2008; Pitman 2014), we conclude that Horn Plateau
524	appears to have excellent diamond potential (provided that the indicator sources are local)
525	while Trout Lake does not provide a viable exploration target.
526	
527	Potential source ages of Horn Plateau KIMs
528	
529	Although the relationship between ilmenite Hf isotope composition and kimberlite
530	emplacement age is scattered and hence imprecise, it is very useful in allowing, e.g., to
531	distinguish between Neoproterozoic-Silurian kimberlites and those of Devonian-Paleogene
532	ages (Fig. 9, bottom). Based on the current worldwide kimberlitic ilmenite dataset (Fig. 9,
533	bottom), Horn Plateau Mg-ilmenite Hf isotope compositions can be broadly divided into two
534	age groups (Table S21).
535	The older age group contains nine Mg-ilmenites (from eight samples) with less
536	radiogenic and restricted ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios between 0.2825-0.2826, indicative of
537	Neoproterozoic to Silurian kimberlite emplacement ages (Fig. 9). All the Mg-ilmenites of the
538	older age group belong to the Cr ₂ O ₃ - and MgO-poor oxidizing suite at Horn Plateau (Fig. 6),
539	as outlined by Mills (2008), with similar Nb ₂ O ₅ , TiO ₂ , Cr ₂ O ₃ , FeO and MgO contents as those

540	from the Drybones Bay kimberlite (Fig. 6; Schulze et al. 1995; Kerr et al. 2000). The younger
541	age group contains 12 Mg-ilmenites (from 10 samples) with more radiogenic and less
542	restricted ¹⁷⁶ Hf/ ¹⁷⁷ Hf ratios of 0.2827 to 0.2831, indicative of Devonian to Paleogene
543	kimberlite emplacement ages (Fig. 9). All younger age Mg-ilmenites lie within the dominate
544	MgO- and Cr ₂ O ₃ -rich suite outlined at Horn Plateau by Mills (2008), with similar Nb ₂ O ₅ ,
545	TiO ₂ , Cr ₂ O ₃ , FeO and MgO contents as those from Central and Western Slave Craton surficial
546	samples (Fig. 6).

548 Horn Plateau KIM populations

549

Results from this study support the conclusions of previous studies (e.g., Mills 2008) which suggested that the Horn Plateau KIMs are derived from multiple (at least one proximal and one distal) kimberlite sources. Mg-ilmenites define at least two groups based on distinct compositions and ages (Neoproterozoic-Silurian versus Devonian-Paleogene). The large variability in Hf isotope ratios clearly precludes that the Mg-ilmenites came from a single kimberlite field of restricted age.

Peridotitic garnet major element chemical data from the Horn Plateau has a nonnormal distribution for all major and minor elements. This is typical for regional geochemical
data, even after logarithmic transformation and suggests the likelihood of mixing from
multiple kimberlite sources (e.g., Reimann and Filzmoser 2000). Garnet chemistry from the
NTGS GoData data base for Slave Craton surficial samples also reveals widely varying, nonnormal compositional characteristics suggesting they are also from multiple sources.
Variations in KIM chemistry with geographic location, as can be observed in the Horn

Plateau (Day et al. 2007; Mills 2008) and HOAM property mineral chemistry data (Pitman
2014), also suggest mixing of KIMs from multiple sources. Mg-ilmenites recovered from till
samples (four grains from three samples) on the Horn Plateau are evenly split into the two

566 compositional/age groups previously outlined. Surficial samples principally containing Mg-567 ilmenites of the younger age group were collected from primary or secondary streams with 568 moderate to good drainage, either on or near the edge of the Horn Plateau, suggesting they are 569 sourced from the top of the plateau. Whether this source on the Horn Plateau is primary or 570 secondary remains to be proven. The two stream sediment samples containing Mg-ilmenite 571 grains with Hf isotope compositions from both age groups were taken from tertiary streams 572 north of the Horn Plateau, along an ancient meltwater channel, suggesting at least two 573 kimberlite sources have been mixed within this region.

574

575 Potential sources of Horn Plateau KIM populations

576

577 A key question is whether these Horn Plateau KIM populations were derived from proximal 578 kimberlites within the CMV/Horn Plateau or distal sources, for instance, from diamondiferous 579 kimberlites on the Slave Craton. Following the discovery of economic diamondiferous 580 kimberlites in the Lac de Gras area, it was thought that the Horn Plateau KIMs were glacially 581 transported south-westward from the Central Slave Craton (e.g., Day et al. 2007; Mills 2008 582 and references therein). Besides distinct similarity in the excellent diamond potential 583 indicated by Horn Plateau KIM major element chemistry to the Central Slave Craton data set, 584 one of the main arguments for a distal origin was the large amount of glacial debris, including 585 granitic boulders of presumed Slave Craton origin, throughout the CMV (Day et al. 2007; 586 Mills 2008). Most of these granitic glacial erratics have, however, not been dated, leaving the 587 possibility that they may derive from more proximal source regions, such as the Wopmay 588 Orogen.

589 The logistic regression (LR) solutions for peridotitic garnet chemistry from the Horn 590 Plateau and kimberlites and surficial samples from the Central Slave Craton show sufficient 591 spread in the population density distributions (Fig. 10) to reliably distinguish Horn Plateau

592 and Central Slave Craton derived KIMS where the populations do not strongly overlap. Based 593 on the major element datasets analyzed using LR, it is likely that at least part of the Horn 594 Plateau KIMs were not derived from the Central Slave Craton, as their population density 595 distributions have solutions which do not overlap (Fig. 10). There is, however, significant 596 overlap between peridotitic garnets from the Horn Plateau and surficial samples and 597 kimberlites from the Western Slave Craton in their respective LR solution (Fig. 10). 598 Consequently, the two populations cannot be probabilistically discriminated using LR and 599 hence we cannot reject the possibility that the Horn Plateau KIMs were derived from the 600 Western Slave Craton. In context of the inferences we draw from these LR results and other 601 KIM chemistry results, we explore potential kimberlite sources of the Horn Plateau KIMs. 602

603 Central Slave Craton kimberlites

604

605 The Central Slave Craton kimberlites (> 500 km northeast of the Horn Plateau) were 606 emplaced largely between Late Cretaceous to Eocene times (75-45 Ma; Heaman et al. 2003; 607 Creaser et al. 2004; Sarkar et al. 2015). These kimberlites could be the source of the younger 608 Horn Plateau Mg-ilmenite group. Nine of the 12 analyzed Mg-ilmenites from this age group have ¹⁷⁶Hf/¹⁷⁷Hf ratios that overlap with ilmenites from Diavik and Ekati kimberlites (Fig. 9; 609 610 Table S21). In addition, Cr-diopside chemistry (Fig. 3) and pressure-temperature estimates 611 (Fig. 8) and peridotitic garnet major, minor and trace element chemistry (Figs. 4-5) are 612 remarkably similar to those from the Central Slave Craton kimberlites dataset. 613 Paleogeographic reconstructions indicate fluvial systems transported eroded detritus 614 away from the CMV, east across the Slave Craton towards Hudson Bay, during the Paleogene 615 and Neogene (Duk-Rodkin and Hughes 1994; Dixon 1999; Duk-Rodkin and Lemmen 2000),

616 which rules out fluvial transport of kimberlitic material from these kimberlites into the CMV.

617 Quaternary transport by glacial (-fluvial) activity is the only possible mechanism for

618	transporting material from these kimberlites towards the southwest into the Horn Plateau. Mg-
619	ilmenites from till samples in the eastern Horn Plateau (Last Stop Claims; $n = 56$) are all from
620	the MgO- and Cr ₂ O ₃ -rich suite, suggesting the source of the "younger" (reduced) Mg-ilmenite
621	age group may be outside the CMV, to the northeast. However, studies of indicator mineral
622	glacial dispersal trains/fans indicate typical maximum transport distances of up to 180-200 km
623	(e.g., McClenaghan et al. 2002; McClenaghan 2005) making transport of large concentrations
624	of kimberlitic material (even kimberlitic boulders) from these kimberlites over large distances
625	very unlikely. Ice streams could have influenced dispersal of Horn Plateau KIMs (e.g.,
626	Margold et al. 2015), although there is no field evidence for these features to the east-
627	northeast of the Horn Plateau region or the Slave Craton.
628	Distinct spinel major element chemistry variations and lack of eclogitic garnets (G3)
629	and megacrysts (G1) relative to Central Slave Craton kimberlites, led Mills (2008) to suggest
630	Ekati Lease Block (Lac de Gras area) kimberlites are not the source of the Horn Plateau
631	KIMs. In addition, the re-constructed lithospheric stratigraphy of Horn Plateau garnets is
632	slightly different to that of Central Slave Craton kimberlites; specifically, the Horn Plateau
633	KIM data lacks the distinct ultra-depleted shallow (120-150 km) "layer" chemistry that
634	characterises the mantle beneath that region (e.g., Griffin et al. 1999; Menzies et al. 2004).
635	Further, > 20 % of the Horn Plateau G10 grains equilibrated at depths \ge 150 km (> 1000 °C;
636	Fig. S8; Table S18), whereas relatively few G10s from the Central Slave lithosphere, in
637	published datasets (e.g. Grütter et al. 1999), have yielded depths deeper than the ultra-
638	depleted shallow layer (i.e., ≥ 150 km or > 1000 °C).
639	

640 HOAM project Liard properties kimberlites

641

Besides the HOAM project kimberlites > 20 km southwest of the Horn Plateau and directly
north-northwest of Trout Lake (Fig. 1), there are no other known kimberlites in the vicinity

with possible Devonian to Paleogene emplacement ages. Olivut Resources Ltd. report
intersecting 29 kimberlites (two diamondiferous) from 39 drill holes on their Liard properties
(Pitman 2014), with uppermost diatreme and possibly crater facies (kimberlitic breccias and
tuffs), as well as deeper root zone features (hypabyssal facies and abundant dikes) indicated.
The locations and depths of drill holes that intersected kimberlites in the Liard properties
(Figs. 1; Pitman 2014) when correlated with bedrock stratigraphy suggest Early to Late
Devonian kimberlite emplacement ages.

651 One of the Devonian-Paleogene age Mg-ilmenite grains with the lowest ¹⁷⁶Hf/¹⁷⁷Hf 652 ratio from this group, was recovered just south of the Mackenzie River. This sample collected 653 alluvium from the same watershed that hosts HOAM project kimberlites (< 10 km south; Fig. 654 2). The other Devonian-Paleogene age Mg-ilmenite grain (17961-011) with a similar ¹⁷⁶Hf/¹⁷⁷Hf ratio within uncertainty (see Table S21) was collected approximately 120 km 655 656 northwest of HOAM project kimberlites (near Ebutt Hills), parallel with regional ice-flow 657 directions. Correlations between the two samples containing these younger age group Mg-658 ilmenites with the glacial transport direction (Fig. 2) and distance from the HOAM project 659 kimberlites suggest these two grains are likely sourced from these kimberlites.

660

661 Southwestern and Western Slave Craton kimberlites

662

The Silurian Southwestern (Drybones Bay) and Ordovician Western Slave Craton
kimberlites (Fig. 1) have emplacement ages consistent with the older age Mg-ilmenites (Fig.
9), suggesting possible derivation from kimberlites from these general areas. KIM chemistry
from surficial samples in the immediate area to the Drybones Bay kimberlite indicate other
undiscovered kimberlites likely exist (Kerr et al. 2000). The older age Horn Plateau Mgilmenites, as well as some of the other KIMs, have similar major and minor chemistry to

grains from the Drybones Bay kimberlite and some of the Western Slave Craton surficialsamples (Figs. 3, 4, 6, S8).

671 Present lithosphere thicknesses of 180-200 km, inferred from seismic tomography for 672 the Southwestern and Western Slave Craton (Fig. 1; Schaefer and Lebedev 2014), are nearly 673 identical to lithosphere thickness estimates based on Horn Plateau Cr-diopside (190-210 km; 674 Fig. 7). Viable transport mechanisms (glacial and/or fluvial), distances (< 300 km) and 675 directions (west-southwest), as well as KIM chemistry similarities suggest some of the Horn 676 Plateau KIMs could be sourced from kimberlites in the Western and/or Southwestern Slave 677 Craton areas. Further details of chemical traits between these possible sources, as well as 678 discussion of viable transport mechanisms of KIMs can be found in the Supplementary 679 Discussion.

680

681 Undiscovered Horn Plateau region kimberlites

682

683 Nine younger age Horn Plateau Mg-ilmenites are found on the Horn Plateau itself or in 684 streams directly draining it where till domains with proximal clast lithology are indicated 685 (Mills 2008 and references therein). In direct proximity to these samples near Willow Lake 686 (Fig. S1), below the overburden, Aptian-Albian-aged sediments are preserved, which could 687 host primary source kimberlites for these KIMs. Another viable region for primary source 688 kimberlites for the younger age Horn Plateau KIMs are within Campanian-Maastrichtian 689 clastic sediments, which lie below overburden on the southern portion of the Horn Plateau 690 (Fig. S1). These two regions with preserved Cretaceous sediments have similar present-day 691 lithospheric thicknesses (180-200 km based on seismic tomography; Fig. 1), in perfect 692 agreement with the lithosphere thickness (190-210 km; Fig. 7) derived from Horn Plateau Cr-693 diopsides.

694	The largest quantities of analyzed peridotitic garnets, with extremely high proportions
695	of Ni-in-garnet temperatures > 950 °C, are found in samples proximal (< 25 km) to these
696	Cretaceous clastic sediments on the southern and eastern portions of the Horn Plateau (Fig.
697	S13). Derived from the same watershed are 14 grains (from 13 samples) giving Al-in-olivine
698	temperatures between 950-1100 °C and 17 Cr-diopsides grains (from 12 samples) with
699	temperatures all > 950 °C (Fig. S13). This area coincides with the north-trending Bulmer Lake
700	gravity high (Fig. 1), which is suspected to be a Precambrian faulted contact that was re-
701	activated during the Late Cretaceous. Seismic surveys also indicate dominant northeast-
702	trending and subsidiary northwest-trending faults that were also likely re-activated during this
703	time (Aitken 1993; Gal and Lariviere 2004 and references therein). Such faults may have
704	facilitated kimberlite emplacement in the Horn Plateau region.
705	This same area on top of the Horn Plateau could also be a secondary (sedimentary)
706	source region for the older age KIM population(s). In addition, sub-cropping below
707	moderately thick glacial deposits (50-80 m; Cragie 1991), Cambrian-Silurian aged
708	sedimentary rocks to the north-northeast of the Horn Plateau, near Lac la Martre (north of \sim
709	62 °N), could host primary kimberlites and/or be a secondary source of the older age Horn
710	Plateau Mg-ilmenite group, as they lie directly up-ice of regional ice-flow directions (~ 100
711	km northeast of the Horn Plateau).
712	
713	
714	Conclusions

Analysis of KIMs from two Central Mackenzie Valley study areas has resulted in a large, new
geochemical dataset for an underexplored area of the Northwest Territories. These

718 geochemical data provide new constraints on the diamond potential for future exploration

vithin the area. The kimberlitic source of the KIMs from the Trout Lake region sampled

shallow portions of lithospheric mantle although no constraints on the depth of the lithosphere
can be made from current results. In contrast, KIMs from the Horn Plateau region have
significant diamond potential, with a relatively high proportion of harzburgitic diamond-facies
(G10D) garnets and many of the analyzed KIMs deriving from the diamond stability field. A
ca. 200 km thick lithosphere beneath the kimberlites sourcing the Horn Plateau kimberlites, as
determined from clinopyroxene thermobarometry, is at least consistent with present-day
seismology constraints (Fig. 1).

727 Single grain Hf isotope analyses of Mg-ilmenites from the Horn Plateau show a wide 728 variety of isotopic compositions indicating at least two major age populations in their source 729 kimberlites. These results are consistent with past major-element based studies of Horn 730 Plateau KIMs that suggested the grains were likely sourced from at least two kimberlitic 731 sources (one proximal and one distal) based on their grain morphology, major element 732 chemistry and dispersion patterns (Day et al. 2007; Mills 2008). Comparative geochemistry 733 and statistical tests, coupled with KIM surface textures (Mills 2008), till lithology domains 734 (Mills 2008), pre-glacial bedrock distributions (Meijer Drees 1993; Duk-Rodkin et al. 1994) 735 and ice-flow records (Fulton 1995), allow us to exclude some Slave Craton kimberlites 736 (specifically the Lac de Gras field) as the only possible sources of Horn Plateau KIMs and 737 instead highlight the southern/western Slave Craton area as a potential source for some of the 738 KIMs. The KIM populations are, however, clearly mixed and permit more local sources. The 739 incompletely resolved Quaternary history of the area remains a primary obstacle to locating 740 the kimberlitic source(s) of the proximal, potentially "younger" Horn Plateau KIM 741 population(s). Until Horn Plateau chromite, peridotitic garnet and olivine populations can be 742 distinguished from other Southwestern and/or Western Slave Craton kimberlites, the potential 743 for undiscovered kimberlites within the CMV remains possible and even likely.

744

745	Acknowledgements The authors gratefully acknowledge the permission of the NTGS to
746	publish this data and are grateful for funding student salary and analytical costs associated
747	with this research project. The remainder of funding was provided by an NSERC CREATE
748	grant to Pearson (Grant # 479905-2016). We thank the NTGS, Peregrine Diamonds, Diavik
749	Diamond Mines and Dominion Diamonds for supplying ilmenites for Hf isotope
750	characterization. Andrew Schaefer is thanked for his seismic tomography cross-sections. This
751	manuscript was significantly improved by reviews from Bruce Kjarsgaard and Curtis Brett.
752	The authors also thank Andrew Locock, Chiranjeeb Sarkar, Martin Von Dollen, Mark Labbe,
753	Yannick Bussweiler and Yan Luo for valuable guidance and discussions regarding analytical
754	techniques and publishing the data.
755	
756	
757	References
758	
759	Aitchison J (1994) Principles of compositional data analysis. Multivariate Analysis and its
760	Applications. IMS Lecture Notes – Monograph Series 24: 73-81
761	Aitken JD (1993) Proterozoic sedimentary rocks; Subchapter 4A. In: Stott DF, Aitken JD
762	eds., Sedimentary Cover of the Craton in Canada. Geological Survey of Canada,
763	Geology of Canada, 5:81-95
764	Aspler LB, Pilkington M, Miles WF (2003) Interpretation of Precambrian Basement based on
765	recent aeromagnetic data, Mackenzie Valley, Northwest Territories. Geological
766	Survey of Canada, Current Research 2003-C2
767	Aulbach S, Pearson NJ, O'Reilly SY, Doyle BJ (2007) Origins of xenolithic eclogites and
768	pyroxenites from the Central Slave Craton, Canada. Journal of Petrology 48:1843-
769	1873

770	Aulbach S, Stachel T, Heaman LM, Carlson JA (2011) Microxenoliths from the Slave craton:
771	Archives of diamond formation along fluid conduits. Lithos 126:419-434
772	Burwash RA, Green AG, Jessop AM, Kanasewich ER (1993) Geophysical and petrological
773	characteristics of the basement rocks of the Western Canada Basin; Chapter 3. In: Stott
774	DF, Aitken JD eds. Sedimentary Cover of the Craton in Canada. Geological Survey of
775	Canada, Geology of Canada, 5:55-77
776	Bussweiler Y, Foley SF, Prelević D, Jacob DE (2015) The olivine macrocryst problem: new
777	insights from minor and trace element compositions of olivine from Lac de Gras
778	kimberlites, Canada. Lithos 220:238-252
779	Bussweiler Y, Brey GP, Pearson DG, Stachel T, Stern RA, Hardman MF, Kjarsgaard BA,
780	Jackson SE (2017) The aluminum-in-olivine thermometer for mantle peridotites—
781	Experimental versus empirical calibration and potential applications. Lithos 271:301-
782	314
783	Canil D (1999) The Ni-in-garnet geothermometer: calibration at natural abundances.
784	Contributions to Mineralogy and Petrology 136:240-246
785	Carbno GB (2000) Geochemical and petrological interpretation of mantle structure beneath
786	the southwest Slave Province, NWT. PhD, University of Victoria
787	Carbno GB, Canil D (2002) Mantle structure beneath the SW Slave craton, Canada:
788	constraints from garnet geochemistry in the Drybones Bay kimberlite. Journal of
789	Petrology 43:129-142
790	Castillo-Oliver M, Melgarejo JC, Galí S, Pervov V, Gonçalves AO, Griffin WL, Pearson NJ,
791	O'Reilly SY (2017) Use and misuse of Mg- and Mn-rich ilmenite in diamond
792	exploration: a petrographic and trace element approach. Lithos 293:348-363
793	Cook FA, Erdmer P (2005) An 1800 km cross section of the lithosphere through the
794	northwestern North American plate: lessons from 4.0 billion years of Earth's history.
795	Canadian Journal of Earth Sciences, 42:1295-1311

- Cook FA, van der Velden AJ, Hall KW, Roberts BJ (1999). Frozen subduction in Canada's
 Northwest Territories: lithoprobe deep lithospheric reflection profiling of the Western
 Canadian Shield. Tectonics, 18:1-24
- Cookenboo HO, Grütter HS (2010) Mantle-derived indicator mineral compositions as applied
 to diamond exploration. Geochemistry: Exploration, Environment, Analysis 10:81-95
- 801 Cooper SA, Belousova EA, Griffin WL, Morris BJ (2008) Age of FS66 kimberlite beneath
- 802 Murray basin, South Australia: laser ablation ICP-MS dating of kimberlitic Zircon,
- 803 Perovskite, and Rutile. Extended abstract 9th International Kimberlite Conference,
- 804 Frankfurt, 9IKC-A-00106
- 805 Craig BG (1965) Glacial Lake McConnell, and the surficial geology of parts of Slave River
 806 and Redstone River map-areas, District of Mackenzie. Geological Survey of Canada,
 807 Bulletin 122
- 808 Craigie ER (1991) Diamond drill data, Horn River project, April 9-August 16, 1990. NWT
 809 Assessment File Report 083067
- 810 Creaser RA, Grütter H, Carlson J, Crawford B (2004) Macrocrystal phlogopite Rb–Sr dates
- 811 for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple

812 intrusive episodes in the Paleocene and Eocene. Lithos 76:399-414

- 813 Creighton S (2009) The influence of mantle metasomatism on the oxidation state of the
 814 lithospheric mantle. PhD, University of Alberta
- 815 Creighton S, Stachel T, Eichenberg D, Luth RW (2010) Oxidation state of the lithospheric
- 816 mantle beneath Diavik diamond mine, Central Slave craton, NWT, Canada.
- 817 Contributions to Mineralogy and Petrology 159:645-657
- 818 Davis WJ, Ootes L, Newton L, Jackson VA, Stern RA (2015) Characterization of the
- 819 Paleoproterozoic Hottah terrane, Wopmay Orogen using multi-isotopic (U-Pb, Hf and
- 820 O) detrital zircon analyses: an evaluation of linkages to northwest Laurentian
- 821 Paleoproterozoic domains. Precambrian Research, 269:296-310

- Bay HW (2012) A revised diamond-graphite transition curve. American Mineralogist 97:5262
- 824 Day SJA, Lariviere JM, McNeil RJ, Friske PWB, Cairns SR, McCurdy MW, Wilson RS 825 (2007) National Geochemical Reconnaissance: regional stream sediment and water 826 geochemical data, Horn Plateau area, Northwest Territories (Parts of NTS 85E, 85F, 827 85K, 85L, 95H, 95I and 95J) including analytical, mineralogical and kimberlite 828 indicator mineral data. GSC Open File 5478 / NWT Geoscience Office Contribution 829 0027 830 Dixon J. Mesozoic-Cenozoic stratigraphy of the northern Interior Plains and plateaux. 831 Northwest Territories. Bull./Canada. Geol. survey. 1999. 832 Douglas RJW (1959) Great Slave and Trout River map-areas, Northwest Territories. 833 Geological Survey of Canada, Paper 58-11 834 Duk-Rodkin A, Hughes OL (1994) Tertiary-Quaternary drainage of the pre-glacial Mackenzie 835 Basin. Quaternary International 22:221-241 836 Duk-Rodkin A, Lemmen DS (2000) Glacial history of the Mackenzie region. In: LD Dyke 837 and GR Brooks (eds.) The Physical Environment of the Mackenzie Valley, Northwest Territories: a Base Line for the Assessment of Environmental Change, pp 11-20 838 839 Fipke CE, Gurney JJ, Moore RO (1995) Diamond exploration techniques emphasising 840 indicator mineral geochemistry and Canadian examples. Bulletin/Geol survey of 841 Canada Dep. of natural resources 842 Fulton RJ (1995) Surficial Materials of Canada. GSC Map 1880A, GSC, Ottawa 843 Gal LP, Lariviere JM (2004) Edéhzhíe Candidate Protected Area Non-Renewable Resource 844 Assessment (Phase 1) Northwest Territories, Canada, NTS 085E-FKL and 095H-IJ.
- 845 NWT Open File 2004-01

846	Ghaznavi A, Taylor B, Henry JB (1986) Geophysical Exploration Report, Fort Simpson
847	Survey, Northwest Territories. Exploration Agreement No. 166 by Petro-Canada Inc.
848	National Energy Board Open File Report 9229-P028-006E
849	Grexton L (1995) 1993-1994 Regional Diamond Exploration Compilation Report on
850	Geochemical and Geophysical Surveying, NTS 85L. NWT Assessment File Report
851	083528
852	Griffin WL, Cousens DR, Ryan CG, Sie SH, Suter GF (1989) Ni in chrome pyrope garnets: a
853	new geothermometer. Contributions to Mineralogy and Petrology 103:199-202
854	Griffin WL, Doyle BJ, Ryan CG, Pearson NJ, Suzanne YO, Davies R, Kivi K, Van
855	Achterbergh E, Natapov LM (1999) Layered mantle lithosphere in the Lac de Gras
856	area, Slave Craton: composition, structure and origin. Journal of Petrology 40:705-727
857	Griffin WL, O'Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V,
858	Pokhilenko N (2004) Lithosphere mapping beneath the North American plate. Lithos
859	77:873-922
860	Grütter HS (2009) Pyroxene xenocryst geotherms: Techniques and application. Lithos
861	112:1167-1178
862	Grütter HS, Apter DB, Kong J (1999) Crust-mantle coupling: evidence from mantle-derived
863	xenocrystic garnets. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) The
864	JB Dawson Volume, Proceedings of the VIIth International Kimberlite Conference,
865	vol. Red Roof Design, Cape Town, pp 307-313
866	Grütter HS, Latti D, Menzies A (2006) Cr-saturation arrays in concentrate garnet
867	compositions from kimberlite and their use in mantle barometry. Journal of Petrology
868	47:801-820
869	Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for
870	mantle-derived garnet, for use by diamond explorers. Lithos 77:841-857

871	Hardman MF, Pearson DG, Stachel T, Sweeney RJ (2018) Statistical approaches to the
872	discrimination of crust- and mantle-derived low-Cr garnet – Major-element-based
873	methods and their application in diamond exploration. Journal of Geochemical
874	Exploration 186:24-35
875	Hardman MF, Pearson DG, Stachel T, Sweeney RJ (2018) Statistical approaches to the
876	discrimination of mantle- and crust-derived low-Cr garnets using major and trace
877	element data. Miner Petrol, this volume
878	Harris GA, Pearson DG, Liu J, Hardman MF, Snyder DB, Kelsch D (2018) Mantle
879	Composition, Age and Geotherm beneath the Darby Kimberlite field, West Central
880	Rae Craton. Miner Petrol, this volume
881	Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental
882	lithosphere. Earth and Planetary Science Letters 307:59-70
883	Heaman LM, Kjarsgaard BA, Creaser RA (2003) The timing of kimberlite magmatism in
884	North America: implications for global kimberlite genesis and diamond exploration.
885	Lithos 71:153-184
886	Huntley DH, Little E, Duk-Rodkin A, Sandeman H (2006) Drift geochemistry of south-
887	Central Mackenzie Valley watershed: New hypotheses resulting from Reconnaissance
888	Drift and stream sediment sampling surveys in the NWT. 34th Annual Yellowknife
889	Geoscience Forum poster
890	Huntley DH, Mills A, Paulen R (2008) Surficial deposits, landforms, glacial history, and
891	reconnaissance drift sampling in the Trout Lake map area, Northwest Territories.
892	Geological Survey of Canada, Current Research 2008-14, p. 14
893	Janse AJ (1994) Is Clifford's Rule still valid? Affirmative examples from around the world.
894	In: Meyer HOA, Leonardos OH (eds) Diamonds: characterization, genesis and
895	exploration. Proceedings, Fifth International Kimberlite Conference, vol 2, pp 215-235

Kerr DE, Kjarsgaard IM, Smith D (2000) Chemical characteristics of kimberlite indicator
minerals from the Drybones Bay area (NTS 85I/4), Northwest Territories. Geological

898 Survey of Canada, GSC Open File 3942

- 899 Le Maitre RW (1982) Multiple discriminant analysis. In: Le Maitre RW (eds.) Numerical
- 900 petrology: statistical interpretation of geochemical data, Elsevier pp 141-158
- 901 Malkovets VG, Rezvukhin DI, Belousova EA, Griffin WL, Sharygin IS, Tretiakova IG,
- 902 Gibsher AA, O'Reilly SY, Kuzmin DV, Litasov KD, Logvinova AM (2016) Cr-rich

903 rutile: A powerful tool for diamond exploration. Lithos 265:304-311

- Margold M, Stokes CR, Clark CD, Kleman J (2015) Ice streams in the Laurentide Ice Sheet: a
 new mapping inventory. Journal of Maps 11:380-395
- Mather KA, Pearson DG, McKenzie D, Kjarsgaard BA, Priestley K (2011) Constraints on the
 depth and thermal history of Cratonic lithosphere from peridotite xenoliths, xenocrysts
 and seismology. Lithos 125:729-742
- McClenaghan MB (2005) Indicator mineral methods in mineral exploration. Geochemistry:
 Exploration, Environment, Analysis 5:233-245
- 911 McClenaghan MB, Ward BC, Kjarsgaard IM, Kjarsgaard BA, Kerr DE, Dredge LA (2002)
- 912 Indicator mineral and till geochemical dispersal patterns associated with the Ranch
- 913 Lake kimberlite, Lac de Gras region, NWT, Canada. Geochemistry: Exploration,
- 914 Environment, Analysis 2:299-319
- McDonough WF, Sun SS (1995) The composition of the Earth. Chemical geology 120:223253
- 917 Meijer Drees NC (1975) Geology of the Lower Paleozoic formations in the subsurface of the
- Fort Simpson area, District of Mackenzie, Northwest Territories, Geological Survey of
 Canada, Paper 74-40, p. 65
- 920 Meijer-Drees NC (1993) The Devonian succession in the subsurface of the Great Slave and
- 921 Great Bear plains, Northwest Territories. Geological Survey of Canada

922	Menzies A, Westerlund K, Grütter H, Gurney J, Carlson J, Fung A, Nowicki T (2004)
923	Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property,
924	NWT, Canada: major element compositions and implications for the lithosphere
925	beneath the Central Slave craton. Lithos 77:395-412
926	Mills AJ (2008) Phase II Non-renewable Resource Assessment: analysis and interpretation of
927	regional stream sediment and water results for Edéhzhíe Candidate Protected Area,
928	Northwest Territories, Canada. NWT Geoscience Office Open File 2008-03
929	Morris TF, Sage RP, Ayer JA, Crabtree DC (2002) A study in clinopyroxene composition:
930	implications for kimberlite exploration. Geochemistry: Exploration, environment,
931	analysis 2:321-331
932	Nimis P (1998) Clinopyroxene geobarometry of pyroxenitic xenoliths from Hyblean Plateau
933	(SE Sicily, Italy). European Journal of Mineralogy 22:521-534
934	Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites.
935	Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx
936	thermometer. Contributions to Mineralogy and Petrology 139:541-554
937	Nowell GM, Pearson DG, Bell DR, Carlson RW, Smith CB, Kempton PD, Noble SR (2004)
938	Hf isotope systematics of kimberlites and their megacrysts: new constraints on their
939	source regions. Journal of Petrology 45:1583-1612
940	Ootes L, Davis WJ, Jackson VA, van Breemen O (2015) Chronostratigraphy of the Hottah
941	terrane and Great Bear magmatic zone of Wopmay orogen, Canada, and exploration of
942	a terrane translation model. Canadian Journal of Earth Sciences, 12:1062-1092
943	Parent M, Paradis SJ, Doiron A (1996) Palimpsest glacial dispersal trains and their
944	significance for drift prospecting. Journal of Geochemical Exploration 56:123-140
945	Paulen RC (2009) Sampling techniques in the Western Canada Sedimentary Basin and the
946	Cordillera. In: Paulen RC, McMartin I (eds) Application of Till and Stream Sediment

- 947 Heavy Mineral and Geochemical Methods to Mineral Exploration in Western and
 948 Northern Canada, pp 49-74
- Paulen RC (2013) A Revised look at Canada's landscape: Glacial processes and dynamics. In:
 Paulen RC, McClenaghan MB (eds.) New Frontiers for Exploration in Glaciated
 Terrain, pp 21-26
- 952 Pitman PW (2014) Technical report on the HOAM project, Northwest Territories, Canada
- 953 NTS Map Sheets 85L, 85M, 95A, 95G, 95H, 95I, 95J, 95O, 95P, 96A and 96B. Olivut
 954 Resources Ltd. pp 1-55
- Pohar M, Blas M, Turk S (2004) Comparison of logistic regression and linear discriminant
 analysis: a simulation study. Metodoloski zvezki 1:143-161
- 957 Pronk P (2008) Sambaa K'e Candidate Protected Area, Non-renewable Resource Assessment
 958 Phase I, Minerals. NWT Geoscience Office Open File Report 2008-08
- 859 Rampton VN (2000) Large-scale effects of subglacial meltwater flow in the southern Slave
- 960 Province, Northwest Territories, Canada. Canadian Journal of Earth Sciences 37:81-93
- 961 Ramsay RR, Tompkins LA (1994) The geology, heavy mineral concentrate mineralogy, and
- 962 diamond prospectivity of the Boa Esperança and Cana Verde pipes, Corrego D'anta,
- 963 Minas Gerais, Brazil. Kimberlites, Related Rocks and Mantle Xenoliths 1:329-345
- 964 Reimann C, Filzmoser P (2000) Normal and lognormal data distribution in geochemistry:
- 965 death of a myth. Consequences for the statistical treatment of geochemical and
 966 environmental data. Environmental geology 39:1001-1014
- Roeder PL, Schulze DJ (2008) Crystallization of groundmass spinel in kimberlite. Journal of
 Petrology 49:1473-1495
- Rutter NW, Hawes RJ, Catto NR (1993) Surficial geology, southern Mackenzie River valley,
- 970 District of Mackenzie, Northwest Territories. GSC Map 1693A

971 Sarkar C, Heaman LM, Pearson DG (2015) Duration and periodicity of kimberlite volcanic 972 activity in the Lac de Gras kimberlite field, Canada and some recommendations for 973 kimberlite geochronology. Lithos 218:155-166 974 Schaeffer AJ, Lebedev S (2014) Imaging the North American continent using waveform 975 inversion of global and USArray data. Earth and Planetary Science Letters 402:26-41 976 Schulze DJ (2003) A classification scheme for mantle-derived garnets in kimberlite: a tool for 977 investigating the mantle and exploring for diamonds. Lithos 71:195-213 978 Schulze DJ, Anderson PF, Hearn Jr BC, Hetman CM (1995) Origin and significance of 979 ilmenite megacrysts and macrocrysts from kimberlite. International Geology Review 980 37:780-812 981 Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the Upper 982 Mantle composition. American Geophysical Union p. 259 983 Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral 984 inclusions. Ore Geology Reviews 34:5-32 985 Stott DF, Caldwell WG, Cant DJ, Christopher JE, Dixon J, Koster EH, McNeil DH, Simpson 986 F (1993) Cretaceous. In: Stott DR, Aitken JD (eds) Sedimentary Cover of the Craton 987 in Canada, Geological Society of America, pp 358-438 988 Villeneuve ME, Thériault RJ, Ross GM (1991) U-Pb ages and Sm-Nd signature of two 989 subsurface granites from the Fort Simpson magnetic high, northwest Canada. 990 Canadian Journal of Earth Sciences, 28:1003–1008 991 Watson DM (2010) Sambaa K'e Candidate Protected Area Phase II Non-renewable Resource 992 Assessment –Minerals, Northwest Territories, Parts of NTS 085D,095A,B,H. NWT 993 Geoscience Office Open File 2010-08 994 Williams GK (1985) Proterozoic, Mackenzie Corridor. Geological Survey of Canada, GSC 995 Open File 1273

- Wyatt BA, Baumgartner M, Anckar E, Grütter H (2004) Compositional classification of
 "kimberlitic" and "non-kimberlitic" ilmenite. Lithos 77:819-840
- 998 Zack T, Stockli DF, Luvizotto GL, Barth MG, Belousova E, Wolfe MR, Hinton RW (2011)
- 999 In situ U–Pb rutile dating by LA-ICP-MS: 208 Pb correction and prospects for
- 1000 geological applications. Contributions to Mineralogy and Petrology 162:515-530

Figure captions:

1002	Fig. 1 Bedrock geology map of Northwest Territories showing the Central Mackenzie Valley
1003	(CMV) sample locations for both study areas. Horn Plateau = Horn Plateau study area,
1004	Trout Lake = Trout Lake study area. Diamonds = kimberlites, dashed red line ellipse =
1005	outline Bulmer Lake gravity high. Black line = line of lithosphere seismic tomography
1006	cross-section (on bottom) from Schaefer and Lebedev (2014). See legend for rest of
1007	symbology and Fig. S1 for more detailed bedrock geology map. The prominent Horn
1008	Plateau in the centre of Horn Plateau (it rises 300-450 m above the surrounding plains)
1009	broadly correlates to the Late Cretaceous sedimentary rock outline (green; see cross-
1010	section below). Kimberlite locations after Pitman (2014) and NTGS GoData
1011	Kimberlite Anomaly and Drillhole Data (KANDD). Note pink indicates cold
1012	lithosphere for cross-section which is ~ 200 km thick lithosphere presently under most
1013	of CMV and Slave Craton
1014	Fig. 2 Surficial geology map of Northwest Territories showing the Central Mackenzie Valley
1015	(CMV) sample locations for both study areas. Horn Plateau = Horn Plateau study area,
1016	Trout Lake = Trout Lake study area. Diamonds = kimberlites. See legend for the rest
1017	of symbology and Fig. S2 for more detailed surficial geology map. Surficial deposits
1018	and glacial flowlines after Fulton (1995)
1019	Fig. 3 Clinopyroxene Cr ₂ O ₃ -Al ₂ O ₃ discrimination plot (fields after Ramsey and Tompkins
1020	1994). Grains from both study areas and 95 % contour interval fields for
1021	clinopyroxene from Central and Western Slave Craton surficial samples (grey dashed
1022	lines; data from NTGS GoData KIMC database). See legend for symbols. Note
1023	peridotitic grains have $mg# > 0.88$
1024	Fig. 4 Garnet Cr ₂ O ₃ -CaO classification plot (after Grütter et al. 2004). Grains from both study
1025	areas and 95 % contour interval field for peridotitic garnets from CMV mineral claims

1026 (purple and yellow dashed lines; data from Pitman 2014), Central and Western Slave

1027	Craton kimberlites (black dashed lines; data from variety of sources - see text) and
1028	surficial samples (grey dashed lines; data from NTGS GoData KIMC database). Solid
1029	red line = graphite diamond constraint (GDC). Double dashed green line = P_{38} Cr-in-
1030	garnet barometer (both after Grütter et al. 2006). Note P_{38} estimates 5.8 GPa
1031	(minimum) maximum pressure for Cr-rich garnets from the Horn Plateau
1032	Fig. 5 Chondrite-normalized rare earth element (REE_N) plots for Horn Plateau peridotitic
1033	garnets. Chondrite normalization values after McDonough and Sun (1995). The
1034	garnets display three distinct REE_N patterns: HREE-enriched, an extreme sinusoidal
1035	MREE-depleted pattern and sinusoidal with variable re-enrichment. Mean values for n
1036	< 10, median values for n $>$ 10. Symbol groupings are based on garnet classification
1037	after Grütter et al. (2004). Green triangles = G9, Blue squares = G10, Pink diamonds =
1038	G10D, Red circles = G11 and Purple crosses = G12 grains
1039	Fig. 6 Ilmenite TiO ₂ -MgO discrimination plot (after Wyatt et al. 2004). Grains from both
1040	study areas and 95 % contour interval fields for Mg-ilmenites from Central and
1041	Western Slave Craton surficial samples (grey dashed lines; data from NTGS GoData
1042	KIMC database), as well as the Drybones Bay kimberlite (black dashed lines; data
1043	from Schulze et al. 1995; Kerr et al. 2000). See legend for symbology
1044	Fig. 7 FITPLOT geotherms (following methodology of Mather et al. 2011) and clinopyroxene
1045	P-T data for both study areas and Central Slave Craton (data from Hasterok and
1046	Chapman 2011) using Nimis and Taylor (2000) thermobarometry technique. See
1047	legend for symbols. LDG = Lac de Gras, Solid red line = graphite diamond transition
1048	curve (after Day 2012), Solid black line = mantle adiabat with mantle potential
1049	temperature of 1350 °C. Upper and lower crust thicknesses for Horn Plateau was
1050	constrained from the SNORCLE line 1 transect (Cook et al. 1999). Depth was
1051	determined by multiplying pressure (GPa) by 3.15. Note the similarity between
1052	Central Slave Craton and Horn Plateau Cr-diopside geotherms

1053 Fig. 8 Mantle sampling profiles of garnet peridotite minerals from the Horn Plateau samples. 1054 Left = single grain clinopyroxene barometer results (after Nimis and Taylor 2000). 1055 Centre = projected Ni-in-garnet temperatures (averages of Griffin et al. 1989 and Canil 1056 1999). Right = projected Al-in-olivine temperatures (after Bussweiler et al. 2017). Red 1057 line = graphite-diamond transition curve (after Day 2012) **Fig. 9 Top** - ¹⁷⁶Hf/¹⁷⁷Hf corrected ratios plot for MC-ICP-MS analyzed CMV kimberlitic 1058 1059 (Mg-)ilmenites. Outlined in respective coloured boxes are the two age groups 1060 discussed in text: Yellow = Neoproterozoic-Silurian age group, Green = Devonian-1061 Paleogene age group. Error bars signify internal standard error (2σ) . Bottom – ¹⁷⁶Hf/¹⁷⁷Hf corrected mean ratios for ilmenites from North American Craton 1062 1063 kimberlites, as well as those from the Udachnaya East kimberlite and Malaita alnöitic 1064 breccia. Error bars signify standard deviation at 95 % confidence interval (2σ) . 1065 Coloured boxes represent the Horn Plateau age groups. See Table S4 for kimberlite 1066 localities, geochronology techniques used and sources of data 1067 **Fig. 10** Probability density plots for garnets, X-axis values assigned by logistic regression-1068 solutions for peridotitic garnet major element data between Horn Plateau grains and 1069 those from various populations (see text for details). Increasing degrees of overlap 1070 indicate increasing difficulty in reconciling population, while offset distributions 1071 indicate population differences (see text for details)

Figure 8

