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Abstract 
This paper proposes an effective computational tool for brittle crack propagation problems based on a 
combination of a higher-order phase-field model and a non-conforming mesh using a NURBS-based 
isogeometric approach. This combination, as demonstrated in this paper, is of great benefit in reducing 
the computational cost of using a local refinement mesh and a higher-order phase-field, which needs 
higher derivatives of basis functions. Compared with other approaches using a local refinement mesh, 
the Virtual Uncommon-Knot-Inserted Master-Slave (VUKIMS) method presented here is not only 
simple to implement but can also reduce the variable numbers. VUKIMS is an outstanding choice in 
order to establish a local refinement mesh, i.e. a non-conforming mesh, in a multi-patch problem. A 
phase-field model is an efficient approach for various complicated crack patterns, including those with or 
without an initial crack path, curved cracks, crack coalescence, and crack propagation through holes. The 
paper demonstrates that cubic NURBS elements are ideal for balancing the computational cost and the 
accuracy because they can produce accurate solutions by utilising a lower degree of freedom number 
than an extremely fine mesh of first-order B-spline elements. 
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1. Introduction 

In computational solid mechanics, the accurate prediction of crack formation and propagation remains a 
crucial challenge applicable in many areas of engineering practice. Over the years, there has been a wide 
range of studies undertaken to predict fracture failure mechanisms. While the pioneering work by 
Griffith [1] laid the foundation for modern fracture mechanics, his method itself cannot determine the 
shape of the crack pattern, or predict crack branching and interaction. Similarly, the concept of the stress 
intensity factor (SIF), first proposed by Irwin [2], determines the intensity of the stress in the zone nearly 
by the crack tip, however, the energy of the whole domain is not involved. This can be overcome by 
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several methods based on minimised energy as set out in the works by  Francfort [3], Buliga [4], Dal 
Maso [5], and Bourdin [6]. 
A crack is a discontinuous zone in an otherwise continuous material, and both discrete and smeared 
approaches have been proposed to model a crack pattern using finite elements. In the discrete methods, a 
discontinuity is created within elements by an enriched formulation of displacement variables using a 
partition of unity methods (PUMs). The extended finite element method (XFEM) [7] is an outstanding 
candidate; however, it has some drawbacks. For instance, it not only is a criterion for crack propagation 
needed, but it also faces difficulties in the cases of crack merging and branching between multiple 
cracks, especially in three-dimensional fracture. Rabczuk [8] has proposed a simplified meshfree 
method, such as cracking particles, to improve some drawback of XFEM. It can treat complex patterns 
involving crack branching and crossing and the nucleation of cracks, but its limitation is less accurate 
than the others. A combination of the screened Poisson's equation and local mesh refinement is proposed 
by Areias and co-workers [9, 10] to compute damage and fracture problem on both 2D and 3D crack 
propagations. On the other hand, smeared methods attempt to avoid these issues by using a scalar 
auxiliary variable to model the appearance and vicinity of a sharp crack surface. This scalar is often 
termed a phase-field variable which has values in both the continuous and discontinuous zones. Miehe 
[11] first proposed such a phase-field model for modelling complicated fracture patterns, including 
multiple cracks, crack merging, branching, kinking and nucleation without using any criterion and 
coupling with finite element analysis as a multi-field problem. Some modifications of the basic phase-
field formulation are proposed by Ambati [12] in order to decrease computational time, and phase-field 
brittle fracture has been extended to ductile fracture models in several papers [13-15]. In addition, the 
approach has been validated and demonstrated on several complicated fracture problems fatigue 
problems [16], thermo-elastic solids [17, 18], fluid-saturated porous media [19], piezoelectric and 
ferroelectric materials [20], microstructures [21] and multi-scale problems [22]. In particular, the phase-
field model can be applied successfully to solve crack propagation in complicated material structures, for 
instance, composite materials [23], fibre-reinforced composite materials [24], functionally graded 
materials [25] and multi-phase materials [26]. Moreover, the phase-field approach is applied successfully 
to simulate the crack propagation on thin shells [27, 28]. These and many other recent studies 
demonstrate clearly that the phase-field approach has much promising potential a wide scope of 
applications. However, a key drawback in the standard finite element method-based phase-field model is 
the need for an extremely fine discretisation (i.e. mesh) in the predicted crack zone in order to capture 
complex crack patterns represented by the gradients of the phase-field variable. In order to deal with 
these sometimes excessive computational costs, some techniques applied to other finite element 
modelling have been proposed, such as adaptive re-meshing [29-32]. 

A similarly significant advance in computational mechanics in recent years has been the move to close 
the gap between Computer-Aided Design (CAD) and Finite Element Analysis (FEA) using isogeometric 
analysis (IGA) as first described by Hughes and co-workers [33]. The key idea is to imply Non-Uniform 
Rational B-splines (NURBS), widely used to represent geometry in CAD software, as basis functions for 
the finite element analysis step. The benefits of NURBS basis functions are that they produce the exact 
conic geometry at a coarse level and therefore re-meshing can be carried out from this level, without 
further geometry information. They have also been shown to have advantages of flexibility [34] in order 
to refine and elevate their order. Last but not least, the arbitrary high-order continuity delivered 
automatically between elements leads to numerous advantages in problems requiring higher derivatives. 
In the last decade, IGA has been studied and applied widely across computational mechanics, including 
phase-field fracture modelling, and successfully. The high-order of the NURBS basis functions gives a 
promising approach for higher-order phase-field theory, specified by Borden [35] leading to an improved 
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convergence rate. Usually, a NURBS mesh can be refined to reach an extremely fine level, but this is 
global refinement, and one cannot mesh in a local zone of a multi-patch problem. Very few solutions 
have to date been proposed for IGA methods applied to computational fracture mechanics which 
overcome this cost, including the use of T-splines [36, 37] and hierarchical refinement meshes [38]. 
However, although they can help to reduce the number of variables, their implementations are very 
complicated due to the demands of  Bézier extraction for NURBS and the need for complex data 
structures. A non-conforming mesh or local refinement of a multi-patch problem may be the solution to 
overcome this issue. There are many recent papers on production of a local refinement mesh within a 
larger coarse discretisation often referred to non-matching approaches, for instance using a penalty 
formulation [39], Lagrange multiplier method [40], and Nitsche¶s method [41]. However, each method 
has drawbacks which will be familiar. Users of the penalty method need to choose a sufficient penalty 
number to gain a correct solution without leading to ill-conditioning. The Lagrange multiplier method 
will increase the number of variables while  Nitsche¶s method can be affected by the need for many 
iterations to establish the coupling between two non-matching meshes. 

A recent paper provides a way to achieve the goal of local refinement without some of the drawbacks of 
existing methods, and it is the approach proposed here for the first time, for phase-field fracture 
modelling. Virtual Uncommon-Knot-Inserted Master-Slave (VUKIMS) coupling proposed in [42] and is 
described in more detail below. In this paper, we aim to exploit an efficient computational approach of 
crack propagation computation in brittle fracture problems by adopting higher-order elements with the 
NURBS non-matching mesh and higher-order phase-field formulations. VUKIMS is an excellent 
approach to obtain a local refinement mesh using NURBS geometry in many cases of complex 
behaviour of crack patterns, such as crack propagation adjacent to a hole or interaction of multiple 
cracks. No previous studies using these non-matching NURBS mesh methods in order to solve the 
fracture problem by using phase-fields. High computational cost is addressed here on two fronts, the use 
of a local refinement mesh and a higher-order phase-field. A variety of numerical examples is considered 
not merely to verify the solution in comparison with several published studies but also to demonstrate 
the efficiency of this approach. 
 
2. Non-conforming multipatches in a NURBS-based finite element approach 

2.1. A brief review of NURBS functions 
A brief review of the non-uniform rational B-spline (NURBS) formulation is presented in this section. 
More detailed formulations are described in [43]. Firstly, a NURBS surface, � �,[ KS , in case of order p 
in ȟ-direction and order q in Ș-direction, can be depicted as 

� �,
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where � �,
, ,p q

i jR [ K  are the bivariate NURBS basis functions which are determined from the univariate B-

spline basis functions, for instance, Ni,p and Mj,q. They are determined on the Ȅ and H knot vectors which 

are in the ȟ-direction and Ș-direction, respectively, 
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and Pi,j stand for the n × m control points, and wi,j are the corresponding weights. 

The univariate B-spline basis function, � �,i pN [ , can be expressed an open, non-uniform knot vector, 

^ `1 2 1, , , n p[ [ [ � � }Ȅ  with ȟi ≤ ȟi+1 and i = 1,2,...,n + p, where n is a control point number, p is the order of 
a function with non-decreasing sequence numbers in a parametric space of [0,1] by the Cox-de Boor 
formulation for p = 1,2,3,... 
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In particular, the basis function is described in the case of zero-order, p = 0, as 

� � 1
,0

1     if 
0     otherwise

i i
iN [ [ [
[ �d � ®

¯
 (4) 

where, 1 ≤ i ≤ n, p ≥ 1, and 0
0

 is considered as zero. For instance, the quadratic order B-spline basis 

functions which are constructed from an open knot vector of ^ `0, 0, 0, 0.25, 0.5, 0.75, 0.75, 1, 1, 1 Ȅ  are 
plotted in Figure 1. 

 
Figure 1. Quadratic basis functions for the knot vector of Ȅ = {0, 0, 0, 0.25, 0.5, 0.75, 0.75, 1, 1, 1}. 

A NURBS basis function can be used as a finite element shape function by applying the isoparametric 
paradigm for phase-field and displacement field approaches. In IGA, the displacement and phase-field 
variable formulations are described as 
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where ui,j and ,i jI  are displacement and phase-field variables at control point Pi,j on the NURBS surface 
geometry, respectively. 
The first-order derivative of � �,

, ,p q
i jR [ K , concerning each parametric coordination, e.g. ȟ, is derived from 

Eq.(2) as 
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with 
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For more detail, Figure 2 displays the univariate B-spline basis functions tensor product in the case of 
two knot vectors Ȅ= {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1} and H = {0, 0, 0, 0.25, 0.5, 0.75, 0.75, 1, 1, 1}. 

 
Figure 2. The tensor product of cubic and quadratic basis functions. 

2.2. Non-conforming multipatch 

While the phase-field modelling approximates a crack and its growth, to be successful, the mesh of the 
region surrounding the crack path needs to be highly refined. In most cases, the proportion of length 
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scale, l0, to the adequate element size, h, is chosen as two, which supplies a sufficiently accurate solution 
without over-resolving the crack [36]. A nonconforming mesh of multiple patches (a ³multi-patch´) can 
be applied to deal with this issue, that of providing sufficient refinement for a propagating crack. There 
are numerous methods for the coupling of nonconforming mesh patches proposed in recent years, for 
instances, the penalty formulation [39], the mortar method [40, 44], Nitsche¶s method [41]. However, 
these methods have some drawbacks that need to be modified [42]. Virtual Uncommon-Knot-Inserted 
Master-Slave (VUKIMS) coupling proposed by Coox and co-workers [42] is based on master-slave 
interface constraints and is a robust and straightforward method for a multi-patch model. These master-
slave couplings depend on the mesh, which is generated in a geometry-creating step. These couplings are 
created by establishing a constraint between two interfaces on two patches. Typically, in traditional IGA 
using NURBS basis functions, two faces must be contained in a two matched control point set. 
Moreover, if the mesh needs to be refined, all control points must be changed to maintain one-to-one 
matching of the refined control points. It is a global refinement. 

On the other hand, VUKIMS can perform a local refinement using virtual refinement operators. This 
idea is similar to Bézier extraction operators [45] and gives VUKIMS coupling flexibility and simplicity. 
This method is valid not only for nonconforming interfaces but also for conforming interfaces. In the 
conforming patches, the VUKIMS coupling automatically couples one-to-one the interface variables. 
The VUKIMS patch coupling is established on a mathematical level by a coupling matrix between the 
master and slave degree of freedoms. In a multi-patch geometry, as shown in Figure 3, the corresponding 
degree of freedoms (DOFs) is combined for each interface with a master-slave relationship depicted as: 

s sm m d T d  (10) 

where Tsm is the coupling matrix with ns × nm dimension, nm and ns are the numbers of control variables dm 

and ds on each interface in the master and slave patches, respectively. Coox et al. proposed that the slave 
patch is chosen to be finer than the master patch with the same order. This choice keeps the number of 
unknown independent variables to a minimum.  

 
Figure 3. A conceptual illustration of nonconforming patches. 

The coupling matrix Tsm is described in more detail in [42]. From the relationship in Eq. (10), the 
coupling matrix can be converted into one linking master and slave DOFs, uM and uS, respectively. These 
interface constraints are described as follows as 

S SM M u T u  (11) 



7 

where TSM  establishes both dependencies and independencies of all DOFs selected from Tsm in Eq. (10). 
All DOFs can be split into three groups, uO, uI and uD, representing DOFs belonging to the control points 
and not belonging to any interfaces, independent and dependent DOFs, respectively. In general, 
dependent DOFs are slave DOFs while independent DOFs which are master DOFs do not slave any 
others. The coupling matrix TDI between independent and dependent DOFs is  

D DI I u T u  (12) 

where TDI can be extracted from TSM. In general, the global system of equations is expressed as 
 Ku f%  (13) 

where K is the stiffness matrix, u is the unknown variable vector, and f is the force vector. Eq. (13) can 
be rewritten in terms of the three groups of unknown variables as follows 

, ,
O O

I I

D D

ª º  ½  ½
° ° ° °« »   ® ¾ ® ¾« » ° ° ° °« »¬ ¼ ¯ ¿ ¯ ¿
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Using Eq. (12), Eq. (13) can be transformed to c c c K u f% , where 
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A reduced system of equations represents the key benefit of using VUKIMS because it can reduce the 
total number of unknown variables. The dependent DOFs uD, are determined after independent DOFs uI, 
are solved by the reduced system of equations through Eq. (12). Moreover, it is clear to see that by using 
the VUKIMS, the mesh located at the predicted crack propagation region can be refined locally. The 
finer mesh must be used locally in the predicted fracture regions, while elsewhere a coarser mesh can be 
used to save computational time and memory. 

3. Phase-field formulation 

This section presents the formulations of second- and fourth-order phase-field theories in order to 
describe a brittle fracture of isotropic elastic materials. In this study, the anisotropic formulation of the 
phase-field method is used for staggered schemes. 

3.1. Phase-field approximation 
Phase-field formulations are proposed by Francfort and Marigo [3], and Bourdin et al. [46] for quasi-
static brittle fracture. A sharp crack causing a discontinuous displacement field is replaced by a smeared 
crack utilising the phase-field variable (I ) as presented in Figure 4. With Griffith¶s theory, the total 
energy function suggested for brittle fracture in a variational formulation is a combination of both of 
elastic energy and fracture energy.  
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(a)                                                                                                   (b) 

Figure 4. Two ways describe an internal crack: (a) sharp crack and (b) smeared crack. 

The energy function is  

0

Elastic energy Fracture energy

( , ) ( d)de C\
: *

3 *  :� *³ ³ε ε
1 4 2 4 3 14 2 43

G  
(16) 

where CG   is the critical energy release density. The infinitesimal strain tensor, which is defined in the 
case of small strain, is given as 

� �1
2

T � ��ε u u . (17) 

The undamaged elastic energy, assuming isotropic linear elasticity is given as 

� �2
0

1( ) ( ( )) :
2e tr\ O P �ε ε ε ε , (18) 

in which µ and Ȝ are shear modulus and Lamé¶s first parameter, respectively. By finding a minimizer of 
Eq. (16), the propagation of cracks can be predicted as a variational problem. For discrete cracks in the 
structure, finding the numerical solution of this variational approach can be difficult because of the 
changing of the crack path in the time-domain requiring re-meshing of the solid domain around the 
cracks. A scalar-valued phase-field, [0,1]I� , is used to approximate a smeared crack in order to solve 
this issue. Particularly, 0I   represents the entire domain, while 1I   depicts the fractured domain. For 
the the fracture energy part, Bourdin et al. [47] introduced a crack density functional, ,nI\  to 
approximate the phase-field  

,d dC C nI\* :
*| :³ ³G G  (19) 

where n depends on the order of phase-field theory is chosen to approximate phase-field variable c. A 
stress degradation function, ( )g I , proposed to approximate the discontinuity zone, is defined from [11] 
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as 2( ) (1 )g I I N � � . In the case of a fully broken system ( 1I  ), we chose a small constant for 
parameter ț to avoid ill-conditioning. However, Borden [35] proved that this parameter was unnecessary 
in all calculations, so ț was set zero in this paper. The total energy can be rewritten as 

0 ,( , ) ( ) ( )d de C ng II I \ \
: :

3  :� :³ ³ε ε G . (20) 

Eq. (18) is an isotropic formulation assumpted asymmetry of the fracture for both of tension and 
compression parts. Miehe [48] modified the bulk energy density into a distinction between tension and 
compression parts to represent a decomposition of elastic energy, ȥe, as follows 

( ) ( ( ) ( ) ( ))d de e eg\ I \ \� �

: :
: � :³ ³ε ε ε  (21) 

where ȥ+
e and ȥí

e represent the positive and negative components of the strain energies defined as 

2 2( ) ( tr( ) ) tr[( ) ]
2e
O\ Prr r �ε ε ε . (22) 

The strain tensor is decomposed into positive and negative strain tensors as follows: � � �ε ε ε  and 

1

d

a a a
a

rr

 
 �¦ε ε n n , where aε  and an  are the eigenvalues and eigenvectors of the strain tensor, ε, in the 

d spatial dimensions, respectively. The Macaulay brackets are defined as: 1 ( )
2

x x xr  r . 

Figure 5 illustrates both second-order and fourth-order phase-field approximation of a one-dimensional 
crack with length-scale l0 = 0.1 as a size damaged zone. These higher-order phase-field theories are 
depicted in the next section. 

 
Figure 5. The phase-field approach of the one-dimensional fracture surface. 
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3.1.1. A formulation of a second-order phase-field theory 

The fracture energy part of the second-order phase-field theory is given as 

,2d dC C I\* :
*| :³ ³G G . (23) 

The crack density functional of the second-order phase-field theory which has been proposed by Bourdin 
[46] and utilised by Miehe [11] has the form 

� �
2

20
,2

0
( )

2 2
l

lI
I\ I � � . (24) 

This formulation is denoted as a second-order phase-field theory because Eq. (24) possesses the second-
order derivative of the phase-field variable, I , described as follows 

0
( ) ( )x ax exp

l
I

� �
 . (25) 

3.1.2. A formulation of the fourth-order phase-field 

In order to describe the crack, Borden [35] introduced a higher-order phase-field formulation which 
supplied an additional solution regularity. This study proved that this formulation helps to approach not 
only a better accuracy but also a higher convergence rate for numerical solutions than the second-order 
phase-field formulation. Hence, the fracture energy part of the fourth-order phase-field theory is 
determined as 

,4d dC C I\* :
*| :³ ³G G . (26) 

The crack density functional of phase-field variable, I , is described as 

� � � �
32

2 20 0
,4

0
( )

2 4 32
l l

lI
I\ I I � � � '  (27) 

where the phase-field variable, I , is represented as 

0 0

2 2( ) exp 1x a x ax
l l

I
§ ·§ ·� � �

 �¨ ¸¨ ¸
© ¹© ¹

. (28) 

3.2. Governing equations 

Governing equations can be formulated with the constitutive law of the total energy in order to 
determine the displacement field, u, and the phase-field, I , in a fractured domain outlined Eq. (20). The 
internal total energy variation is depicted as 

( , ) :intWG G I GI G
I

§ ·w3 w3§ · 3  �¨ ¸ ¨ ¸w w© ¹© ¹
ε ε

ε
. (29) 

Eq. (29) can be derived in two cases of phase-field theories as 

• For the second-order formulation: 
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G IGI I GI I \ GI G�
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 :� � �� :� � � :� :³ ³ ³ ³ σ εG G  (30) 

• For the fourth-order formulation: 

3
0 0

0
d d d d2(1 ) d

2 16
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int e
l lW

l
G IGI I GI I\ GI I GI G�

: : : : :
 :� � �� :� � � :� ' �' :� :³ ³ ³ ³ ³ σ εG G G

 (31) 

where the stress tensor is depicted as 
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� �

2 2

2

1 1

1 ( tr( ) 2 ) ( tr( ) 2 )

e e\ \I N I N

I N O P O P

� �
� �

� �� �

w wª º ª º � � �  � � �¬ ¼ ¬ ¼w w
ª º � � � � �¬ ¼
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 (32) 

where I is the identity tensor. 
Furthermore, the external work variation, depending on the external mechanical loading because there is 
no prescribed external crack phase-field I  loading, is represented as 

d d
t

ext tWG G G
: w:

 � :� � w:³ ³b u t u  (33) 

where b is a body force and t is a traction vector which is applied to ∂Ωt. 
For quasi-static process, the equilibrium of the internal and external work increment establishes for 
deriving the governing equations under a weak form is described as 

0int extW WG G�  . (34) 

By substituting the Eq. (33) combining with Eq. (30) or (31) to Eq. (34), the virtual work statement is 
given as 
x For the second-order formulation: 

0
0

d d 2(1 )

d d 0

d

d
t

C
C e

t

l
l
IGI I GI I \ GI

G G G

�

: : :

: : w:

:� � �� :� � � :

� :� � :� � w:  

³ ³ ³
³ ³ ³σ ε b u t u

G G
 (35) 

x For the fourth-order formulation: 
3

0 0

0
d d d2(1 ) d

2 1
d 0d d

6
.

t

C C C
e

t

l l
l
IGI I GI I \ GI I GI

G G G

�

: : : :

: : w:

:� � �� :� � � :� ' �' :

� :� � :� � w:  

³ ³ ³ ³
³ ³ ³σ ε b u t u

G G G
 (36) 

Gauss theorem is applied to Eq. (35) and (36) becoming as 

• For the second-order formulation: 
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• For the fourth-order formulation: 
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where n demonstrates the unit normal vector of the surface ∂Ω. The governing balance equations under a 
strong form for displacement field can be expressed as 

0 on �� �  :σ b  (39) 

with the Neumann-type boundary conditions belong to the displacement field 

 on t�  w:σ n t . (40) 

The coupled-fields balance equations under the strong form are presented as 

x For the second-order formulation: 

0
0

2(1 ) 0 on C l
l
I I I �ª º
� ' � �  :« »

¬ ¼
G H  (41) 

with the Neumann-type boundary conditions 

0 on I� �  w:n  (42) 

x For the fourth-order formulation: 
3

0 0

0
( ) 2(1 ) 0 on 

2 16C
l l

l
I I I I �ª º
� ' � ' ' � �  :« »

¬ ¼
G H  (43) 

with the Neumann-type boundary conditions 

2
0 ( ) 0 and 0 on 
8
lI I Iª º

� � � ' �  '  w:« »
¬ ¼

n  (44) 

where : max ( )e\ H� � H  is a history-field variable which is a maximum value of positive strain energy 
[48]. This variable couples weakly the displacement field and the phase field. The history-field variable 
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must be satisfied by the Karush-Kuhn-Tucker conditions for unloading and loading conditions [49], 
which are depicted as 

. .
0,   0,    ( ) 0e e\ \� � � �� d t �  H H H H . (45) 

3.3. Variational principles of phase-field formulations 
Using variational principles of the strong form of displacement in Eq. (39) and phase-field in Eq. (41) or 
(43), the weak form formulations are expressed as 

• For the displacement field: 

( 0d) d
t

tG G G
: w:

� � :� � w:  ³ ³σ ε b u t u  (46) 

• For the second-order phase-field theory: 

0
0

1 2( d1 ) 0C l
l
IGI I GI I GI�

:

 ½ª º° °� � �� � � : ® ¾« »
° °¬ ¼¯ ¿
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or for the fourth-order phase-field theory: 
3

0 0

0

1 2(1 )
1

d 0
2 6C
l l

l
IGI I GI I GI I GI�

:

 ½ª º° °� � �� � ' �' � � : ® ¾« »
° °¬ ¼¯ ¿

³ G H . (48) 

For isogeometric analysis, the displacement field variable, u, and the phase-field variable, I , are 
approached as 

1

1

m

i i
i
m

i i
i

NI I

 

 

 

 

¦

¦

uu N u
 (49) 

where Ni is a NURBS basis function which corresponds with control point i of NURBS surface, m is the 
number of control points per element, and ui = {ux, uy}T and iI  are displacement and phase-field 
variables of control point ith, respectively. Here, a shape function matrix is denoted as 

0
0

i
i

i

N
N

ª º « »
¬ ¼

uN . (50) 

The corresponding derivatives can be computed as 

1 1 1
,  and 

m m m

i i i i i
i i i

DI II I I I
   

 �  '  ¦ ¦ ¦u
iB u Bò  (51) 

where the strain-displacement matrices are depicted as 
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where Ni,x and Ni,y are the first derivatives of the shape function, and Ni,xx and Ni,yy are the second 
derivatives of the shape function with respect to x and y directions, respectively. Hence, the variations of 
both fields and their derivative variables are described as 

1 1

1 1 1

, ,

,   and   .

m m
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 (53) 

3.4. Staggered scheme algorithm for a phase-field fracture 

A staggered solution algorithm which was first proposed by Miehe [48] is the common procedure for 
crack propagation problems [50-53] to solve the coupled phase-field/elasticity problem. Both fields are 
solved by minimising the internal potential energy by a Newton-Raphson iteration algorithm with 
displacement control. The displacement field is solved by the weak form equation which is described in 
Eq. (46) while the weak form equations of the second- and fourth-order of phase-field theories [35] 
which are as given in Eq. (47) and Eq. (48), respectively. 
The staggered solution scheme for brittle crack propagation in [tn,tn+1] using a phase-field fracture model 
is outlined as follows: 

(1) Initialisation: The history-field, n
�H , phase-field, nI , and displacement field, un,  at nth loading 

step are known. 
(2) Computing history-field: Updating the maximum history-field depending on displacement un 

belongs to : max ( )e\ H� � H  and stores them as a history-field value �H . 

(3) The displacement field and phase-field solutions: Updating the current displacement field 
1{ } { } { }n n�  � 'u u u  and phase-field 1{ } { } { }n nI I I�  � ' . The increments of the displacement field and 

phase-field vector, {   }TI' 'u , are computed from linear algebraic equations 

0
0

iij

i
III I

 ½'ª º � ½ ° ° ® ¾ ® ¾« » ' �° °¯ ¿¬ ¼ ¯ ¿

uuu u rK
rK

 (54) 

in which the tangent stiffness matrix and the residual of the displacement field are computed as 

( ) dT
ij i

j
:

w  
w ³

u
uu u ui

j
rK B CB ȍ
u

, (55) 
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ª º � � � :� :� w:¬ ¼³ ³ ³u u u ur B σ σ N b N t . (56) 
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The fourth-order tensor C is defined as [51] 
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 (57) 

where H(x) is the Heaviside function, and a fourth-order tensor, Jijkl, is defined as Jijkl = Iij ⊗ Ikl. 
Projection tensors P± are described as [54] 
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The tangential stiffness matrix and the phase-field residual vector are computed as 
x Second - order theory: 

0
0

( ) 2 dTi C
ij C i i j

j

r l N N
l

I
II I I

I
�

:

 ½ª ºw ° °  � � :® ¾« »w ° °¬ ¼¯ ¿
³ jK B B GG H , (60) 

0
0

1 ( ) d2(1 )T
i C i ir N l N

l
I II I I �

:

 ½ª º° ° � � � � :® ¾« »
° °¬ ¼¯ ¿

³ iBG H . (61) 

x Fourth - order theory: 
3
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Figure 6 shows the staggered scheme algorithm of crack propagation using phase-field theory. 
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Figure 6. A Flow chart algorithm of the staggered scheme for the phase-field model. 

4. Numerical examples 

In this section, several numerical examples are used to demonstrate the efficiency of the proposed 
nonconforming mesh IGA approach in modelling crack propagation problems. For all of the numerical 
examples, the stress state is assumed to be under a plane strain condition, and a Newton-Raphson 
solution method with displacement control is used to solve the non-linear problems. The convergence 
criteria for the Newton-Raphson method is given as: 

42 2

2 2

( , ) 1 10i i

n n

u
max

u
I
I

�' '
d  uò  (64) 
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where iu'  and iI'  are the iterative changes in the displacement and phase-field, respectively, obtained 
from Eq. (54) at ith iterator of (n+1)th loading step. nI  and un are the phase-field and displacement values 
from the nth load step, respectively. Both second- and fourth-order phase-field theories are considered, 
including problems with and without the initial cracks, curved crack paths, crack coalescence and crack 
propagation through holes. In all of the analyses, full (p+1)×(q+1) Gauss quadrature is used to 
approximate the integrals over each element, where p and q are the orders of basis functions 
corresponding to the ȟ- and Ș-direction, respectively. 

4.1. Single edge notched under mode-I loading 

In the first problem, a square plate with a side length of 1mm has a single edge notched on the left side 
with a length of 0.5mm, as illustrated in Figure 7a. The plate is subjected to tensile loading by applying a 
vertical displacement on the top edge and fixing the bottom edge. The material parameters used are the 
same as Miehe [48], include a shear modulus µ = 80.77 kN/mm2, Lamé¶s parameter Ȝ = 121.15 kN/mm2 

and critical fracture energy density CG   = 0.0027 kN/mm. In closely model a sharped crack, a length-
scale parameter of l0 = 0.0075 mm was chosen. Both second- and the fourth-order theories were used to 
analyse the problem. The incremental monotonic top edge displacement was ∆u = 1 × 10í4 mm for the 
second-order model in the first 50 loading steps. In subsequent loading steps, the displacement increment 
was set to ∆u = 1 × 10í6 mm. For the fourth-order model, displacement increments of ∆u = 1 × 10í4 mm 
were applied in the first 40 loading steps and ∆u = 1 × 10í6 mm in remaining loading steps. 

             
(b)                                                                                                   (b) 

Figure 7. Boundary conditions and geometry of a single edge notched specimen under (a) mode-I 

and (b) mode-II loading. 

In a crack propagation problem using phase-field model, the size of the mesh suggested by Miehe [11, 
48] was very small to obtain an accurate solution when recovering the crack length. Here, by using IGA, 
a multipatch approach was used to build the model for this problem. The model used eight patches, 
which are illustrated in Figure 8a. In order to describe a strong discontinuity of the initial crack path, 
there was an interaction of the three variables (two displacement variables, ux and uy, and phase-field 
variable, I ) of control points located on the interface edge between the second patch and the third patch. 
Figure 8b shows the control point set in case of the coarsest mesh. From this coarsest mesh, patches 2, 3, 
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6 and 7 were refined to generate different meshes. Figure 9 displays a refined mesh with effective size 
level of h = l0/2. The maximized element mesh size was proposed to be one half of the length-scale by 
Miehe [11] in order to aid the accuracy of the results. However, the ratio of the effective element size to 
the length-scale was chosen at approximately 7.5:1 in some practical problems [11]. The second-order 
phase-field theory is used in this part to compare the proposed approach with Miehe¶ solutions [48]. It 
should be remarked that the Q4 element in the finite element method is a particular case of IGA using 
first-order basis functions. Here, a first-order of B-spline element is considered with multiple sizes 
located in the predicted crack propagation zone, for instance, h = l0/2, l0/4, l0/6, in order to estimate the 
accuracy of the proposed method. Figure 10 shows that the finer mesh, the more accurate the results. The 
first-order mesh with the effective size h = l0/6, which is assumed as a converged solution, shows close 
matching to the results published by Miehe [48]. However, the analysis involves a large number of 
DOFs (179364-DOFs), which is a result of a large memory requirement. 
 
 
 

             
(a)                                                                        (b) 

Figure 8. Multi-patch of single edge notched problem under mode-I loading: (a) patch definition and 

(b) the cubic NURBS control points for the coarsest mesh. 
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Figure 9. A refinement mesh of single edge notched problem under mode-I loading with the 

effective size of h = l0/2. 

 

 
Figure 10. Reaction force versus displacement for various size of mesh of first-order B-spline 

elements. 

In order to demonstrate the advantages of IGA in comparison with the traditional FEM, the results, 
higher-order B-spline elements, including cubic (p = 3) and quartic (p = 4) B-spline elements, are also 
used to analyse this problem. Various mesh sizes of higher-order B-spline elements are considered to 
estimate the accuracy of the present method, for instance, h = 2l0, l0, l0/2. The results of the several 
orders B-spline elements are illustrated in Figure 11, whilst Table 1 provides the number of DOFs and 
the computational time for the different meshes. The obtained results of the crack path are in good 
agreement with the published results from Miehe [48]. However, the number of DOFs and 
computational time should be noted. It is easy to realise that a higher-order element has a higher 
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computational cost due to the increase in the number of degrees of freedom. However, the solutions from 
the higher-order element can be more accurate than lower-order one when the number of DOFs is 
approximately the same. Specifically, the cubic B-spline element with an effective size of h = l0/2 is 
seemly a good choice because of the above reason. Furthermore, the different orders of B-spline 
elements depicted in Figure 12, are considered to point out the exact solution because they have 
converged similar to the solution with the element size of h = l0/2. In this case, it is clear to see that the 
higher-order elements provide more accurate solutions than the lower-order ones. Although the quartic 
B-spline element may gain a more accurate solution, it takes much more computational time with the 
same size of the mesh for relatively little improvement in accuracy, as shown in Table 1. Therefore, 
cubic-order B-spline elements with the effective size of h = l0/2 will be used for all subsequent numerical 
analyses in order to balance the computational cost and the accuracy of the solutions. This choice has a 
much lower the number of DOFs and run-time than the first-order elements with the effective size of h = 
l0/6.  
 

Table 1 
Computational time and number of DOFs in the different cases of order 
B-spline elements. 

Order B-spline elements Number of DOFs Computational time 
(min) 

linear IGA (h = l0/2) 22224 140 
linear IGA (h = l0/4) 81720 560 
linear IGA (h = l0/6) 179364 1074 

cubic IGA (h = 2 ∗ l0) 4464 96 
cubic IGA (h = l0) 9432 220 

cubic IGA (h = l0/2) 26352 654 
quartic IGA (h = 2 ∗ l0) 5292 192 

quartic IGA (h = l0) 10704 420 
quartic IGA (h = l0/2) 28488 1276 
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Figure 11. Reaction force versus displacement for various size of mesh of higher-order B-spline 

elements in IGA. 

 

 
Figure 12. Reaction force versus displacement for various size of mesh of higher-order B-spline 

elements in IGA with the effective size of h = l0/2. 

The crack propagation for a single notched edge under mode-I loading is illustrated in Figure 13 by 
using cubic-order B-spline elements with the effective size of h = l0/2 for two cases of phase-field 
theories (second- and fourth-order phase-field formulations). It is easy to realise that the latter illustrates 
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more narrow crack than the former. Furthermore, for numerical solutions, Borden [35] proved that the 
fourth-order phase field formulation improves the rate of convergence, but it requires second derivatives 
of the underlying basis functions, which is satisfied by cubic-order B-splines. The difference between the 
two theories, depicted in Figure 14, has been shown as the same behaviour by Weinberg [55]. Last but 
not least, it should be noted that methods using enriched formulations, for instances, the extended finite 
element method (XFEM) [7], the extended isogeometric analysis (XIGA) [56] and the extended 
isogeometric boundary element method (XIBEM) [57], will face numerical difficulties in case of the 
cracks propagating to the boundary of the domain. In contrast, this situation can be studied easily by 
using the phase-field model, as shown in Figure 13b and Figure 13d. 
 

             
(a)                                                                                                  (b) 

             
(c)                                                                                                  (d) 

Figure 13. Crack propagation for single edge notched under mode-I loading with length-scale l0 = 

0.0075 mm for (a) near fully separated plate, (b) fully separated plate in the case of second-order 

theory and (c) near fully separated plate, (d) fully separated plate in the case of fourth-order theory. 
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Figure 14. Reaction force versus displacement of single edge notched problem under mode-I loading 

in two cases of phase-field theories. 

 
4.2. Single edge notched under mode-II loading 

The second example is a single edge notched unit square under pure shear loading – the boundary 
conditions are depicted in Figure 7b. According to Ambati [12], there are two formulations, hybrid [12] 
and anisotropic [11] formulations, that can be used to distinguish the positive and negative components 
of the strain energies under tension and compression. Here, the anisotropic formulation in Eq. (22) is 
used for all the following problems. Moreover, the parameters of material properties and the length scale 
are chosen the same as those used in Section 4.1. The coarsest mesh is illustrated in Figure 15, whereas 
Figure 16 displays a refinement mesh covering the predicted crack propagation zone. The model is 
divided into 16 patches in which seven patches are chosen to be refined (patches of 5, 6, 7, 9, 10, 11 and 
13). As in the previous example, the VUKIMS coupling algorithm is used to locally refine the mesh and 
decrease the computational cost, including computational time and the required memory. 
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Figure 15. The coarsest mesh and patch numbering of single edge notched under mode-II loading. 

 

 
Figure 16. A refinement mesh of single edge notched under mode-II loading. 

Based on the findings from the previous section, an effective element size is chosen as half of the length-
scale value, and cubic B-spline elements are used for this example. For both the second- and fourth-order 
theories, the top edge is displaced by a monotonic horizontal displacement increment of ∆u = 1 × 
10í4mm for the first 80 loading steps and the increments are chosen as ∆u = 1 × 10í6mm for subsequent 
loading steps. Both order phase-field results which are illustrated in Figure 17 are a well-matched 
solution in comparison with the results from [29, 48]. It should be noted that the proportion of the length 
scale parameter to the effective element size was approximately 3.75:1 in [48], and 1.88:1 in [29]. The 
former element size is smaller than the current elements, while the later is approximately equal. As a 



25 

result, the result of the second-order solution is close to the result from Ref. [29]. Meanwhile, the result 
of the fourth-order solution is in good agreement with the result from Ref. [48]. Figure 17 reveals that 
the fourth-order solution is not only more accurate one but also predicts a more narrow crack than the 
second-order formulation, as shown in Figure 18. In addition, the topology of the crack path using the 
phase-field model is a smoother curve than these enriched formulations [7, 56, 57], which often use a 
multiple-line approximation to represent a crack propagated path. 

 
Figure 17. Reaction force versus displacement for a single edge notched problem under mode-II 

loading in two cases of phase-field theories. 

             
(a)                                                                                                  (b) 

Figure 18. A crack propagation for single edge notched problem under pure shear loading with 

length-scale l0 = 0.0075mm for (a) the second- and (b) the fourth-order phase-field theories. 

4.3. Symmetric three-point bending problem 

In this section, an asymmetric three-point bending example, which is a well-known benchmark problem, 
is considered. The material properties were chosen as follows: shear modulus µ = 8 kN/mm2, Lamé¶s 
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parameter Ȝ = 12 kN/mm2, critical fracture energy density CG = 0.0005 kN/mm and a length-scale 
parameter of l0 = 0.03 mm. The boundary conditions and geometry of this example are shown in Figure 
19. In this problem, the model illustrated in Figure 20a is divided into four patches, in which the second 
and third patches of the model are selected to be refined in the expected crack propagation zone using 
the VUKIMS algorithm. The locally refined mesh is shown in Figure 20b. The effective element size is 
half of the length-scale number with cubic-order B-spline elements. Vertical displacement is applied to 
the top middle point of the beam with increments of ∆u = 1×10í3 mm in the first 42 loading steps and ∆u 
= 1 × 10í5 mm in remaining loading steps for both phase-field orders. The obtained solutions are 
illustrated in Figure 21 and are in good agreement with the solution published by Aldakheel [58]. Due to 
the symmetry of the geometry and boundary conditions, the crack propagation pattern displayed in 
Figure 22 is a straight, vertical path between the notch and the applied displacement. This path has been 
confirmed from some literature [12, 48, 58, 59]. 

 
Figure 19. Symmetric three point bending specimen: boundary conditions and geometry. 

 

 
(a) 

 
(b) 

Figure 20. Three point bending: (a) coarsest mesh and patch numbering and (b) refined mesh. 
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Figure 21. Reaction force versus displacement curves of symmetric three-point bending in two cases 

of phase-field theories. 

 

 
Figure 22. A crack propagation for symmetric three-point bending with the fourth-order formulation 

of the phase-field model at displacement u = 0.1 mm. 

4.4. Asymmetric double notched tensile specimen 

In this section, an asymmetric double notched of a rectangular plate is loaded under tension. The 
technique of pre-existing cracks is proposed by Borden et al. [36] in order to describe a simulation of 
arbitrarily multi-cracks. This method requires the initial strain-history field to be determined at each 
Gauss-point which located nearby the initial crack(s). The strain-history value at Gauss-point ith can be 
defined as 
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where B is a scalar defined by 
1

cB
c

 
�

, c should be approximately 1 (here taken to be c = 0.9999), di is 

the closest distance from Gauss-point ith to the initial crack(s). Eq. (65) can be used to define multiple 
arbitrary cracks easily. If the initial cracks are nearly intersection or intersection each other, the strain-
history field will be the maximum value of the strain-history values computed crack by crack. The 
boundary conditions and geometry of the analysed problem are shown in Figure 23. The problem is split 
into three patches, as shown in Figure 24a. In these patches, the middle patch is the predicted crack 
propagated zone and is refined, as shown in Figure 24b. The material properties are as follows: Young¶s 
modulus E = 210 kN/mm2, Poisson¶s ratio Ȟ = 0.3, a length-scale parameter of l0 = 0.2 mm and critical 
fracture energy density CG  = 0.0027 kN/mm. The tensile loading is applied to the upper edge of the plate 
as via ∆u = 1 × 10í3 mm in the first 32 loading steps and ∆u = 1 × 10í6 mm in subsequent loading steps. 
Figure 25 plots the reaction force results of both phase-field model theories. The obtained crack path 
solution displayed in Figure 26 is in good agreement with many previous published solutions [52, 59, 
60]. 
 

 
Figure 23. The asymmetric double notched tensile problem: boundary conditions and geometry [52]. 
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(a)                                                                                     (b) 

Figure 24. Asymmetric double notched tensile specimen: (a) coarsest mesh and patch definition and 

(b) refined mesh. 

 

 
Figure 25. Reaction force versus displacement curves of the asymmetric double notched tensile 

problem in two cases of phase-field theories. 
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(a)                                                                                     (b) 

Figure 26. Double-crack propagation for an asymmetric double notched tensile specimen 

corresponds the fourth-order phase-field theory at the (a) initial and (b) ending step. 

4.5. Notched plate with holes 

In order to illustrate the ability of the method to model curved and branching crack paths, a more 
complicated problem is considered in this section. The boundary conditions and dimensions of the 
problem are shown in Figure 27. Experimental data for this problem is available in Ambati et al. [12]. 
The specimen contains three holes which are conic geometries. NURBS elements are used to model 
these circles exactly (see Piegl [43]). In this case, the specimen is split into 43 patches and uses the cubic 
NURBS elements, as shown in Figure 29a. According to the predicted crack propagation zone from the 
experimental result revealed in Figure 28 from Ambati [12], six patches were refined (patch numbers of 
4, 15, 23, 24, 32, 40), as illustrated in Figure 29b. The effective element size of these patches was set to 
be half of the length-scale number. The material properties were similar to Ambati [12]: shear modulus µ 
= 2.45 kN/mm2, Lamé¶s first parameter Ȝ = 1.94 kN/mm2, critical fracture energy density CG   = 0.00228 
kN/mm, as well as, a length-scale parameter of l0 = 0.3 mm. The small lower hole is fixed while the 
small upper hole is displaced via a vertical displacement increment of ∆u = 1 × 10í3 mm for all loading 
steps. Figure 30 illustrates the propagated crack path, which is solved by the current approach with the 
fourth-order phase-field model. Due to use phase-field model, the extraordinary benefit is observed that 
the second crack path propagated without any initial fracture, whereas this is not possible using enriched 
formulations, for instance, XFEM, XIGA and XIBEM. The current solutions are an excellent agreement 
with the results published in [12, 59] and the observed crack zone from four samples from Ambati¶s 
work in Figure 28b. Especially, the crack path in Figure 30d is the same in comparison with the 
experimentally crack patterns in Figure 28a. There is no significant difference between the results from 
the two phase-field theories, as shown in Figure 31. 
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Figure 27. The notched plate with holes: boundary conditions and geometry. 
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(a)                                                                                     (b) 

Figure 28. The experimentally crack patterns of the notched plate with holes problem from Ref. [12]. 

(a) Fractured sample and (b) the observed crack path. 
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(a)                                                                                     (b) 

Figure 29. The mesh of notched plate with holes example: (a) the coarsest mesh and patch 

numbering and (b) the refined mesh. 
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(a)                                             (b)                                          (c) 

 
(d) 

Figure 30. A notched plate example with holes: (a) the initial crack, (b) the propagated crack to the 

hole, (c) new appearance crack and (d) separated plate. 
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Figure 31. Reaction force versus displacement curves of the notched plate with hole example in two 

cases of phase-field theories. 

4.6. Asymmetrically three-point bending 

In the last example, an asymmetrically three-point bending test, which is a well-known benchmark test in 
order to verify the solution of the proposed methods, is considered. For this study, parameters of a and b  
(see Fig. 32) are chosen as 6 mm and 1 mm, respectively. In addition, the material properties are chosen 
from [12] as follows: Lame¶s first parameter´ Ȝ = 12kN/mm2, shear modulus µ = 8kN/mm2, critical 
fracture energy density GC = 0.001kN/mm and a length-scale parameter of l0 = 0.043mm. The boundary 
conditions and geometry of this problem are illustrated in Figure 32. Furthermore, the multi-patch model 
is shown in Figure 33a, while Figure 33b displays the locally refined mesh. Vertical displacement is 
applied to the middle point on the top edge of the plate via a displacement increment of ∆u = 1 × 
10í2mm in the first 12 loading steps and ∆u = 1 × 10í5mm for the subsequent steps. The obtained results, 
which are displayed in Figure 34, are in excellent agreement with the solution from Patil [29]. In 
addition, Figure 35a and 35b show that the predicted fracture pattern is in good agreement with the 
experimentally observed fracture path from [61]. Additionally, the benefit of the anisotropic phase-field 
formulation is demonstrated by the crack which propagated through the second hole, while enriched 
formulations are unable to predict such behaviour without crack tip insertion.  
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Figure 32. An asymmetrically three-point bending test: boundary conditions and geometry. 

 
(a) 

 
(b) 

Figure 33. The mesh of asymmetric notched three-point bending problem: (a) the coarsest mesh and 

patch definition and (b) refined mesh. 
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Figure 34. Reaction force versus displacement results of the asymmetrically three-point bending test 

in two cases of phase-field theories. 

 

 
(a)                                                                              (b) 

Figure 35. The asymmetrically three-point bending test: (a) crack path corresponds to the fourth-

order formulation of the phase-field model, (b)experimentally observed crack pattern [61]. 

5. Conclusion 

In this paper, we have proposed, validated and demonstrated an effective computational tool for brittle 
crack propagation based on a high-order phase-field model, combined with a non-conforming mesh of 
NURBS elements. In order to produce a locally refined mesh, a VUKIMS algorithm is proposed as an 
approach to deal with the computational cost of phase-field approximation.  The algorithm allows for 
very small elements to be used to accurately model the damaged regions whilst allowing for coarser 
elements elsewhere. In addition, higher-order elements facilitate the use of higher-order phase-field 
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theories which are proved to speed up the convergence rate for the numerical solutions. We found that 
the cubic NURBS elements are a good choice in terms of balancing the computational cost and the 
achieved accuracy, as demonstrated in Section 4.1. Several numerical examples have demonstrated the 
performance the approach in various crack geometries including with and without initial cracks, curved 
crack paths, crack coalescence and crack propagation through the holes. The combination of the phase-
field approach and IGA is promising for the analysis of complicated problems in engineering practice. 
  
Acknowledgements 

The authors acknowledge the financial support of VLIR-UOS TEAM Project, VN2017TEA454A103, 
µAn innovative solution to protect Vietnamese coastal riverbanks from floods and erosion¶, funded by 
the Flemish Government and RISE-project BESTOFRAC (734370) is gratefully acknowledged. 

References 

[1] Griffith AA. VI. The phenomena of rupture and flow in solids. Philosophical transactions of the royal society 
of london Series A, containing papers of a mathematical or physical character. 1921;221:163-98. 
[2] Irwin GR. Analysis of stresses and strains near the end of a crack transversing a plate. Trans ASME, Ser E, J 
Appl Mech. 1957;24:361-4. 
[3] G.A.Francfort, J.-J.Marigo. Revisiting brittle fracture as an energy minimization problem. Journal of the 
Mechanics and Physics of Solids. 1998;46:1319-42. 
[4] Buliga MJJoE. Energy minimizing brittle crack propagation. 1998;52:201. 
[5] Dal Maso G, Toader RJAfRM, Analysis. A Model for the Quasi-Static Growth of Brittle Fractures: Existence 
and Approximation Results. 2002;162:101-35. 
[6] Bourdin B, Francfort GA, Marigo J-JJJoe. The variational approach to fracture. 2008;91:5-148. 
[7] Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Journal for 
Numerical Methods in Engineering. 1999;46:131-50. 
[8] Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. 
International Journal for Numerical Methods in Engineering. 2004;61:2316-43. 
[9] Areias P, Msekh MA, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and 
local remeshing. Engineering Fracture Mechanics. 2016;158:116-43. 
[10] Areias P, Reinoso J, Camanho PP, César de Sá J, Rabczuk T. Effective 2D and 3D crack propagation with 
local mesh refinement and the screened Poisson equation. Engineering Fracture Mechanics. 2018;189:339-60. 
[11] Miehe C, Welschinger F, Hofacker M. Thermodynamically consistent phase-field models of fracture: 
Variational principles and multi-field FE implementations. International Journal for Numerical Methods in 
Engineering. 2010;83:1273-311. 
[12] Ambati M, Gerasimov T, De Lorenzis L. A review on phase-field models of brittle fracture and a new fast 
hybrid formulation. Computational Mechanics. 2014;55:383-405. 
[13] Ambati M, Kruse R, De Lorenzis L. A phase-field model for ductile fracture at finite strains and its 
experimental verification. Computational Mechanics. 2015;57:149-67. 
[14] Borden MJ, Hughes TJR, Landis CM, Anvari A, Lee IJ. A phase-field formulation for fracture in ductile 
materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Computer 
Methods in Applied Mechanics and Engineering. 2016;312:130-66. 
[15] Dittmann M, Aldakheel F, Schulte J, Wriggers P, Hesch C. Variational phase-field formulation of non-linear 
ductile fracture. Computer Methods in Applied Mechanics and Engineering. 2018;342:71-94. 
[16] Alessi R, Vidoli S, De Lorenzis L. A phenomenological approach to fatigue with a variational phase-field 
model: The one-dimensional case. Engineering Fracture Mechanics. 2018;190:53-73. 
[17] Miehe C, Schänzel L-M, Ulmer H. Phase field modeling of fracture in multi-physics problems. Part I. 
Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids. Computer 
Methods in Applied Mechanics and Engineering. 2015;294:449-85. 
[18] Badnava H, Msekh MA, Etemadi E, Rabczuk T. An h-adaptive thermo-mechanical phase field model for 
fracture. Finite Elements in Analysis and Design. 2018;138:31-47. 



39 

[19] Miehe C, Mauthe S. Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces 
in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media. Computer Methods in Applied 
Mechanics and Engineering. 2016;304:619-55. 
[20] Abdollahi A, Arias I. Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials 
with different electromechanical crack conditions. Journal of the Mechanics and Physics of Solids. 2012;60:2100-
26. 
[21] Nguyen TT, Yvonnet J, Zhu QZ, Bornert M, Chateau C. A phase-field method for computational modeling of 
interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. 
Computer Methods in Applied Mechanics and Engineering. 2016;312:567-95. 
[22] Chakraborty P, Zhang Y, Tonks MR. Multi-scale modeling of microstructure dependent intergranular brittle 
fracture using a quantitative phase-field based method. Computational Materials Science. 2016;113:38-52. 
[23] Patil RU, Mishra BK, Singh IV, Bui TQ. A new multiscale phase field method to simulate failure in 
composites. Advances in Engineering Software. 2018;126:9-33. 
[24] Yin BB, Zhang LW. Phase field method for simulating the brittle fracture of fiber reinforced composites. 
Engineering Fracture Mechanics. 2019;211:321-40. 
[25] Hirshikesh, Natarajan S, Annabattula RK, Martínez-Pañeda E. Phase field modelling of crack propagation in 
functionally graded materials. Composites Part B: Engineering. 2019;169:239-48. 
[26] Zhang P, Hu X, Yang S, Yao W. Modelling progressive failure in multi-phase materials using a phase field 
method. Engineering Fracture Mechanics. 2019;209:105-24. 
[27] Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. 
Theoretical and Applied Fracture Mechanics. 2014;69:102-9. 
[28] Areias P, Rabczuk T, Msekh MA. Phase-field analysis of finite-strain plates and shells including element 
subdivision. Computer Methods in Applied Mechanics and Engineering. 2016;312:322-50. 
[29] Patil RU, Mishra BK, Singh IV. An adaptive multiscale phase field method for brittle fracture. Computer 
Methods in Applied Mechanics and Engineering. 2018;329:254-88. 
[30] Tian F, Tang X, Xu T, Yang J, Li LJIJfNMiE. A hybrid adaptive finite element phaseဨfield method for 
quasiဨstatic and dynamic brittle fracture. 2019;120:1108-25. 
[31] Pramod A, Annabattula R, Ooi E, Song C, Natarajan S. Adaptive phase-field modeling of brittle fracture 
using the scaled boundary finite element method. Computer Methods in Applied Mechanics and Engineering. 
2019;355:284-307. 
[32] Nagaraja S, Elhaddad M, Ambati M, Kollmannsberger S, De Lorenzis L, Rank EJCM. Phase-field modeling 
of brittle fracture with multi-level hp-FEM and the finite cell method. 2019;63:1283-300. 
[33] Hughes TJR, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry 
and mesh refinement. Computer Methods in Applied Mechanics and Engineering. 2005;194:4135-95. 
[34] J. Austin Cottrell TJRH, Yuri Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA: Wiley; 
2009. 
[35] Borden MJ, Hughes TJR, Landis CM, Verhoosel CV. A higher-order phase-field model for brittle fracture: 
Formulation and analysis within the isogeometric analysis framework. Computer Methods in Applied Mechanics 
and Engineering. 2014;273:100-18. 
[36] Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM. A phase-field description of dynamic brittle 
fracture. Computer Methods in Applied Mechanics and Engineering. 2012;217-220:77-95. 
[37] Goswami S, Anitescu C, Rabczuk T. Adaptive fourth-order phase field analysis for brittle fracture. Computer 
Methods in Applied Mechanics and Engineering. 2020;361. 
[38] Hesch C, Schuß S, Dittmann M, Franke M, Weinberg K. Isogeometric analysis and hierarchical refinement 
for higher-order phase-field models. Computer Methods in Applied Mechanics and Engineering. 2016;303:185-
207. 
[39] Lei Z, Gillot F, Jezequel L. A C0/G1 multiple patches connection method in isogeometric analysis. Applied 
Mathematical Modelling. 2015;39:4405-20. 
[40] Dornisch W, Vitucci G, Klinkel S. The weak substitution method - an application of the mortar method for 
patch coupling in NURBS-based isogeometric analysis. International Journal for Numerical Methods in 
Engineering. 2015;103:205-34. 
[41] Guo Y, Ruess M. Nitsche¶s method for a coupling of isogeometric thin shells and blended shell structures. 
Computer Methods in Applied Mechanics and Engineering. 2015;284:881-905. 



40 

[42] Coox L, Greco F, Atak O, Vandepitte D, Desmet W. A robust patch coupling method for NURBS-based 
isogeometric analysis of non-conforming multipatch surfaces. Computer Methods in Applied Mechanics and 
Engineering. 2017;316:235-60. 
[43] Piegl L, Tiller W. The NURBS book: Springer Science & Business Media; 2012. 
[44] Brivadis E, Buffa A, Wohlmuth B, Wunderlich L. Isogeometric mortar methods. Computer Methods in 
Applied Mechanics and Engineering. 2015;284:292-319. 
[45] Borden MJ, Scott MA, Evans JA, Hughes TJR. Isogeometric finite element data structures based on Bézier 
extraction of NURBS. International Journal for Numerical Methods in Engineering. 2011;87:15-47. 
[46] B.Bourdin, G.A.Francfort, J-J.Marigo. Numerical experiments in revisited brittle fracture. Journal of the 
Mechanics and Physics of Solids. 2000;48:797-826. 
[47] Bourdin B, Larsen CJ, Richardson CL. A time-discrete model for dynamic fracture based on crack 
regularization. International Journal of Fracture. 2010;168:133-43. 
[48] Miehe C, Hofacker M, Welschinger F. A phase field model for rate-independent crack propagation: Robust 
algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering. 
2010;199:2765-78. 
[49] Singh N, Verhoosel CV, de Borst R, van Brummelen EH. A fracture-controlled path-following technique for 
phase-field modeling of brittle fracture. Finite Elements in Analysis and Design. 2016;113:14-29. 
[50] Schillinger D, Borden MJ, Stolarski HK. Isogeometric collocation for phase-field fracture models. Computer 
Methods in Applied Mechanics and Engineering. 2015;284:583-610. 
[51] Liu G, Li Q, Msekh MA, Zuo Z. Abaqus implementation of monolithic and staggered schemes for quasi-
static and dynamic fracture phase-field model. Computational Materials Science. 2016;121:35-47. 
[52] Molnár G, Gravouil A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for 
modeling brittle fracture. Finite Elements in Analysis and Design. 2017;130:27-38. 
[53] Patil RU, Mishra BK, Singh IV. A local moving extended phase field method (LMXPFM) for failure analysis 
of brittle materials. Computer Methods in Applied Mechanics and Engineering. 2018;342:674-709. 
[54] Zhou S, Zhuang X, Rabczuk T. Phase-field modeling of fluid-driven dynamic cracking in porous media. 
Computer Methods in Applied Mechanics and Engineering. 2019;350:169-98. 
[55] Weinberg K, Hesch C. A high-order finite deformation phase-field approach to fracture. Continuum 
Mechanics and Thermodynamics. 2015;29:935-45. 
[56] Luycker ED, Benson DJ, Belytschko T, Bazilevs Y, Hsu MC. X-FEM in isogeometric analysis for linear 
fracture mechanics. International Journal for Numerical Methods in Engineering. 2011;87:541-65. 
[57] Peake MJ, Trevelyan J, Coates G. Extended isogeometric boundary element method (XIBEM) for two-
dimensional Helmholtz problems. Computer Methods in Applied Mechanics and Engineering. 2013;259:93-102. 
[58] Aldakheel F, Hudobivnik B, Hussein A, Wriggers P. Phase-field modeling of brittle fracture using an 
efficient virtual element scheme. Computer Methods in Applied Mechanics and Engineering. 2018;341:443-66. 
[59] Bhowmick S, Liu GR. A phase-field modeling for brittle fracture and crack propagation based on the cell-
based smoothed finite element method. Engineering Fracture Mechanics. 2018;204:369-87. 
[60] Y.Sumi, Z.N.Wang. A finite-element simulation method for a system of growing cracks in a heterogeneous 
material. Mechanics of Materials. 1998;28:197-206. 
[61] T.N.Bittencourt, P.A.Wawrzynek, A.R.Ingraffea, J.L.Sousa. Quasi-automatic simulation of crack propagation 
for 2D LEFM problems. Engineering Fracture Mechanics. 1996;55:321-34. 
 


