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Neutrino nonstandard interactions as a portal to test flavor symmetries
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Imposing non-Abelian discrete flavor symmetries on neutrino nonstandard interactions (NSIs) is
discussed for the first time. For definiteness, we choose A, as the flavor symmetry, which is subsequently
broken to the residual symmetry Z, in the neutrino sector. We provide a general discussion on the flavor
structures of NSIs from higher-dimensional operators (d < 8) without inducing unnecessary tree-level four-
charged-fermion interactions. Both A4- and Z,-motivated NSI textures are obtained. UV completions of
higher-dimensional operators lead to extra experimental constraints on NSI textures. We study the
implementation of matter-effect NSIs in DUNE from a phenomenological point of view, and discover that
DUNE can test A, with a high level of statistics. We also present the exclusion limits of sum rules suggested
by UV-complete models. Our results show that the NSI effects, though predicted to be small for DUNE,
could provide useful information that might extend our understanding of the flavor symmetry.

DOI: 10.1103/PhysRevD.99.035039

I. INTRODUCTION

Neutrino oscillation experiments have achieved great
success in the last two decades [1-4]. Two neutrino
mass-squared differences (Am3,, |Am3,|) and three mixing
angles (0,, 6,3, 013) have been measured in the standard
three-neutrino framework. Several next-generation oscilla-
tion experiments are proposed, such as the long-baseline
(LBL) accelerator experiments DUNE [5] and T2HK [6],
the intermediate-baseline reactor experiment JUNO [7.8],
the SBN program [9], and the muon-decay experiments
NuSTORM [10], MOMENT [11], and Neutrino Factory
[12]. They are aimed at answering the remaining questions
about neutrino oscillations: if CP is violated in neutrino
oscillations, what is the value of the Dirac-type CP-violating
phase &, and which mass ordering (Am3, > 0 or Am3; < 0)
is true? In addition, the already known oscillation parameters
can be measured to the percent level and the octant of 6,5
(B3 < 45° or 0,3 > 45°) will be determined [13,14].

These experiments will also test the standard three-
neutrino mixing scenario and might unveil new neutrino
couplings beyond the Standard Model (SM). Neutrino non-
standard interactions (NSIs) provide a model-independent
framework for studying new physics in neutrino oscillation
experiments (for some reviews, see Ref. [15]). They are
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usually considered as effective descriptions of contribu-
tions from higher-dimensional operators mediated by
heavy mediators [16-19], although they may also be
induced by light mediators with very weak couplings
(see, e.g., Refs. [20,21]). In neutrino oscillation experi-
ments, NSIs may appear at neutrino sources, detectors, or
during neutrino propagation. There are no experimental
hints for NSIs at the source and the detector [15,22].
Current global-fit results for NSIs during neutrino propa-
gation, i.e., matter-effect NSIs, have reached precisions
from a few to tens of percent of the strength of the standard
matter effect induced by the weak interaction [23]. Due to
precision upgrades and because of non-negligible matter
effects, the testability of NSIs in DUNE and T2HK (as well
as its alternative, T2ZHKK) and the influences on measure-
ments of mass ordering and CP violation have received a
lot of attention (see, e.g., Refs. [24-28]). For the study of
NSIs in other future experiments, see, e.g., Refs. [29-33].

One important theoretical development promoted by
neutrino oscillations is the application of flavor symmetries
to understand lepton flavor mixing. It is directly triggered
by the measured values of the mixing angles sin® 6, ~ 1/3
and sin” 0,3 ~ 1/2. In the framework of flavor symmetries,
it is assumed that an underlying discrete flavor symmetry
Gy that unifies the three flavors exists at some high energy
scale. After the flavor symmetry is broken at a lower energy
scale, special flavor structures arise. The most famous
group used as a flavor symmetry is the tetrahedral group A,4
[34]. Most A4 models naturally predict sin?6;, = 1/3 and
sin 0,5 = 1/2, but sin? §,3 = 0 [35-37], i.e., the so-called
tribimaximal (TBM) mixing [38]. One important feature of
these models is the correspondence between the mixing and
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the existence of the residual symmetries Z5 and Z, after A4
breaking (for some reviews, see, e.g., Ref. [39]). Z; and Z,
are subgroups of A,. They are approximately preserved in
the charged lepton and neutrino sectors, respectively, acting
on charged leptons and neutrinos separately as

i2n/3 .

Zyie—se, u—e 2By e

1 1
Zy: v, —>§(—ue +2u,+2v,), v, —>§(—yﬂ +2u,+2v,),

IJT—>%(—UT+2UE+2U#). (1)
A slight breaking of the residual symmetries provides
small corrections to the mixing, specifically generating a
nonzero 63 and making all mixing parameters compatible
with oscillation data. The preferred parameters of these
models will be tested by the future neutrino oscillation
experiments.

Imposing flavor symmetries may not only influence
the flavor mixing measured by neutrino oscillation experi-
ments, but also contribute to other flavor-dependent phe-
nomenological signatures, such as charged lepton flavor
violation (CLFV). The influence of flavor symmetries on
CLFV processes has been discussed in Refs. [40—46]. In
particular, the essential contribution of A, and Z5 to the
CLFV decays of charged leptons have been carefully
analyzed in Ref. [45]. The branching ratio sum rules of
these processes were obtained therein, which can be
regarded as specific features of flavor symmetries. In the
neutrino sector, as the couplings are too weak, the phe-
nomenological signatures of flavor symmetries beyond
the standard neutrino oscillation measurements have been
rarely discussed.

Previous discussions of NSIs in flavor symmetries have
been limited to the Abelian case [20,21,47-49]. In these
papers, by assuming a gauged U(1) flavor symmetry,
relatively sizable NSIs were generated via flavor-dependent
gauge interactions mediated by a gauge boson with a
mass around or below the GeV scale. Note that the U(1)
symmetries proposed in these works were not supposed to
explain lepton flavor mixing. Thus, we do not expect any
connection between NSIs and lepton flavor mixing.

In the non-Abelian case, e, i, and 7 lepton doublets are
arranged as a triplet in the flavor space, which both
complicates the NSI construction and strengthens experi-
mental constraints. However, if the non-Abelian discrete
symmetry is a true symmetry, a combined study of the flavor
symmetry and NSIs will be required in the future neutrino
experiments. Regarding the A, case, the measurement of
NSIs in neutrino oscillations provides an excellent oppor-
tunity to study the connection with A, and the residual
symmetry Z, in the neutrino sector, as we will see later.

This work is aimed at discussing how to look for
flavor symmetries and residual symmetries in the NSI
measurements in neutrino oscillation experiments. We fix

the flavor symmetry A, and residual symmetry Z, for
definiteness. It is complementary to studies of A, and Z5 in
CLFV processes and in the standard neutrino oscillation
measurements. By imposing the flavor symmetry in the
fermion sectors, interesting NSI textures or sum rules of
NSI parameters are obtained. Both NSIs from higher-
dimensional operators in the effective field theory (EFT)
approach with respect to the electroweak symmetry and
those mediated by specific beyond-the-SM particles will be
discussed. The rest of this paper is organized as follows. We
briefly review the TBM mixing realized in A4 models in
Sec. II. Section III is devoted to a systematic analysis of
how to impose A, or Z, on higher-dimensional operators
(with the dimension d < 8) which result in NSIs. A class of
NSI textures based on A, and Z, are obtained. We only
require that the three lepton doublets form a triplet of Ay;
there are no requirements for the representations of other
fermions in the flavor space. In Sec. IV we consider the
UV completion of these operators. New particles in the UV
sector impose additional experimental constraints on NSI
parameters, and thus some textures are less constrained
than others. We suggest that these textures have a priority to
be discussed in the context of NSI measurements. In Sec. V,
based on DUNE’s experimental setup, we analyze the
discovery potential of these textures. We summarize our
paper in Sec. VI. In the main text of this paper, we focus on
NSIs in matter. Connections between flavor symmetries
and NSIs at the source and detector are strongly dependent
upon the representations of the other fermions.

II. FLAVOR SYMMETRIES AND RESIDUAL
SYMMETRIES IN LEPTON MIXING

We briefly review the realization of the TBM mixing in
A, models and residual symmetries after A4 is broken. A, is
generated by two generators S and 7 with the requirements
8§? =73 = (8T)? = 1, and it contains 12 elements. It has
four irreducible representations: three singlet representa-
tions 1, 1’, and 1”, and one triplet representation 3. The
Kronecker products of two irreducible representations are
reduced in the following way:

Ix10M =107 Ux1 =1/,
1”x1" =1 'x1"=1
3x10M =3, 3x3=1+1+1"+35+3,, (2)

where the subscripts ¢ and , stand for the symmetric and
antisymmetric components, respectively.

We work in the Altarelli-Feruglio (AF) basis [36], where
7 and S are, respectively, given by

1 0 O . -1 2
T=10 &* 0|, S:§ 2 -1 2 1. (3)
0 0 w 2 -1
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This basis is widely used in the literature since the charged
lepton mass matrix invariant under 7 is diagonal in this
basis. The products of each two triplet representations a =
(ay,a,,a3)" and b = (b, by, b3)T can be expressed as

(ab)y = aib; + aybs + azb,,

(ab)y = asby + aiby + asby,

(ab)yr = ayby + a by + azby,
2a,b; — ayby — azb,

1
(ab)s, = 3 2a3b3 — a1by — aby |,
2Clzb2 - Cl3bl - a1b3
absz — azb,
(db)z.A == | aiby—axb; |. (4)
(13b1 - dlb3

The A, symmetry is broken at a certain lower scale. After
the A, breaking, the residual symmetries Z; and Z, (which
are generated by 7 and S, respectively) are approximately
preserved in the charged lepton and neutrino sectors,
respectively. The residual symmetries constrain the lepton
mass matrices and lead to the TBM mixing [38]. A sketch
of how to realize the TBM mixing from A, is shown
in Fig. 1.

The Lagrangian terms for generating charged lepton and
neutrino masses are effectively realized by some higher-
dimensional operators. In the flavor space, the lepton
doublets L = (vo.er), Ly = (v,.p1), and Ly = (v,,71)
are often arranged as a triplet, L = (L, L,,L;)". This
arrangement holds for most flavor models with non-
Abelian discrete symmetries, not just for A, models, in
which the flavor symmetry contains a triplet irreducible

[ Tri-bimaximal]

FIG. 1. A sketch of how the TBM mixing is generated in A,
models. After A, is broken, residual symmetries (Z; in the
charged lepton sector and Z, in the neutrino sector) are preserved.
These symmetries constrain the charged lepton and neutrino mass
matrices, respectively, and finally result in the TBM mixing. The
residual symmetries are just approximative symmetries in the
model. Besides, there may be additional accidental symmetries in
the model, which are not shown here.

representation [39]. In A4 models, the right-handed charged
leptons ey, ug, and 7 are often assigned as singlets 1, 1/,
and 1”, respectively [35,36]. The relevant Lagrangian terms
are effectively written as

ye ¥ y T yT T
-L; = X(L(P)IERH + Xﬂ (Lo)yurH Ly (Lo)ytrH

+ H.c.,
—L, = =L (CLAATL), y); + = (LHATL),
YT 2AAy s 2Ayw
+ H.c., (5)

where the Higgs H ~ 1 of A, and H = io, H*. We apply the
dimension-five Weinberg operator (L H H” L°) to generate
neutrino masses and Ay is the corresponding UV-complete
scale. The operators in Eq. (5) involve flavons, denoted by
@ and y, and a new scale A corresponding to the decoupling
of some heavy A, multiplets.

Flavons play the key role in the flavor mixing. They
gain vacuum expectation values (VEVs), leading to the
breaking of the flavor symmetry and leaving residual
symmetries in the charged lepton and neutrino sectors,
respectively. The flavon VEVs ¢ and y preserving Z; and
Zy, respectively,1 ie.,

To=9. Sy=r. (6)
take the following forms:
¢ =(1,0,0)"v,, x=01.1)",. (7)

The resulting lepton mass matrices are represented as

vy 0 O
M=|o0 y, 0|2
1 — M )
2
0 0 vy, V2
2a +b —a —a
M, = —a 2a —a+b |, (8)

—a —a+b 2a

where v =246 GeV is the Higgs VEV, a=yv,0*/
(4AAw), and b = y,v?/(2Aw). It is straightforward to
check that the lepton mass matrices M; and M, satisfy Z;
and Z,, respectively,

TMM T =MM],  SM,ST =M,  (9)
They are consistent with the residual symmetries satistied
by the flavon VEVs in Eq. (6). The charged lepton mass
matrix M, is diagonal, and the neutrino mass matrix M, is
diagonalized by the unitary matrix

'In the following, we do not specify the notation of flavons
with flavon VEVs.
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P
Urpm = _\/Lg \/Lg % (10)
and has eigenvalues m; = |3a + b|, m, = |b|, and m; =

|3a — b|. The mixing matrix is identical to Urgy. This is
the so-called the TBM mixing pattern, from which we
obtain sinf;; = 0, sin@, = 1/4/3, and sinfy; = 1/v/2.
Figure 1 presents a sketch of how the TBM mixing is
generated in A, models.

The TBM mixing should only be considered as a leading-
order result since it is not consistent with neutrino oscillation
data. Deviations from the TBM mixing have to be included
in flavor model construction. The deviations are usually
obtained from certain subleading interactions which break
the Z; or Z, residual symmetries. It is crucial to obtain
suitable deviations that are all compatible with current data.
(For very recent A, models consistent with current oscil-
lation data, see, e.g., Refs. [50,51] and references therein.)
These deviations may contribute to NSIs as subleading
effects. However, there are various successful flavor models,
and the deviations are usually model dependent. In addition,
these subleading effects are negligible in current NSI
measurements. Therefore, we will not consider small cor-
rections to NSIs resulted from small deviations from the
TBM mixing.

III. NSI TEXTURES PREDICTED BY FLAVOR
SYMMETRIES IN EFT

In neutrino oscillation experiments, NSIs may appear in
processes of neutrino production at the source, propagation
in matter and detection at the detector. The matter-effect
NSIs are customarily described by a 3 x 3 Hermitian matrix
€ added to an effective Hamiltonian H in the flavor basis,

0 0 0 1 00
H:é ulo amj 0 |U +Al0 0 0O
0 0 Amj 000
€ee 66[4 €er
+A| € € €ur , (11)
€re em €

where €5 = €}, holds, and A = 2v/2GyN,E is the usual
matter effect where N, is the electron number density in the
Earth and E is the neutrino beam energy. The effective
Hamiltonian for antineutrino oscillation is obtained after
the replacements U — U*, A - —A and ¢, — e;ﬂ. In
this section, by assuming NSIs obtained from higher-
dimensional operators, we embed A, or its residual
symmetry Z, into these operators and systematically
analyze how to obtain NSI textures from the symmetry.

A. NSIs from higher-dimensional operators

We assume that NSIs arise from effective higher-dimen-
sional operators and these operators satisfy the following
conditions:

(1) Lorentz invariance and the SM gauge symmetry
SU(2). x U(1)y around or above the electroweak
scale are required.

(2) Since neutrino oscillation experiments cannot test
lepton-number-violating (LNV) or baryon-number-
violating processes, we select lepton- and baryon-
number-conserving operators.”

(3) We only focus on operators with four fermions.
The simplest operators have dimension d = 6, and
the operators with d > 6 consist of four fermions
and d — 6 Higgs fields.” In the following, we briefly
denote the remaining SM fermion contents as

Ug = (ug. cr. tr)",

Q: (Ql’ Q2’ Q3)T’ (12)

Er = (eR,ﬂRJR)T,
Dy = (deSR’bR)Ta

where Q) = (ug,dp), Oy = (e, 51), Q3 = (1, by).

(4) For neutrinos propagating in matter, at least two L’s
must be involved in the relevant operators. As a
comparison, operators for neutrino production and
detection involve at least one L.

(5) Furthermore, we impose one more requirement: we
only consider NSIs that avoid the strong constraints
from four-charged-fermion interactions, e.g., rare
lepton-flavor-violating decays of leptons and ha-
drons. Since left-handed charged leptons and neu-
trinos belong to the same electroweak doublet in the
SM, any NSI effects from higher-dimensional oper-
ators are related to an interaction involving at least
one charged lepton. Once all final and initial states of
the latter interaction are electrically charged fer-
mions, i.e., charged leptons and quarks, the operator
and the relevant NSI parameters should have been
strongly constrained by these “visible” processes.
For example, the nonstandard v, + (e, u.d) = v, +
(e, u, d) propagation in matter may be constrained by
u+(e,u,d)—e+(e,u,d) in CLFV measurements.

The following classes of operators and their conjugates

are allowed by the first four requirements:

LExDRQ., LEgQUp, LLFF, with F=L,
ERa Q? UR’ DR (13)

*This does not mean that the lepton number or baryon number
cannot be broken at the UV-complete scale, as will be discussed
in the next section.

3Operators modifying neutrino kinetic terms may also con-
tribute to the NSIs through the nondiagonal Z mediation. These
effects are small (<1073) due to the nonunitarity of the PMNS
matrix [28,52], and will not be considered here.
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for d = 6 and
LLDRURH*H*, LERURQHH, LERODrHH, LERLERHH,
LERDyQH*H, LERQURH"H, LLFFH*H, with F=L, Eg, Q, Ug, Dy (14)

for d = 8. Here we have not written out the necessary I" matrices, gauge indices, and flavor indices. Lepton and baryon
number conservation forbids any dimension-seven operators involving four fermions. After the Higgs acquires a VEV

(H) = (0,1)7(2y/2G;)~'/2, these operators can be classified into two types: those that preserves electroweak symmetry
and those that do not. Taking the last requirement into account, we extract the following operators:
(1) The first class is explicitly given by

gacgbd(LaayMLbﬁ)(LcyY/ALdé)’ gacgbd(L_aa}/”Lb/f)(L_C}'J//ALdé)H%H? (15)

wherea, 5,7, = 1,2, 3 are flavor indices, a, b, ¢c,d = 1,2 are SU(2), doubletindices, and nonvanishing entries of ¢,
are given by €1, =—e&,, = 1. Specifically, we denote the flavor indices in the lepton sector as (1,2, 3) = (e, u, 7). Using
the relation €,,.€.4 = 6,504 — 04405 and the Fierz identity, we expand the first term of the above equation and obtain

(LaayMLaﬁ)(LcyyMLcé) - (Laay”Laé) (LcyyMLcﬁ)’ i'e"
Tarr" v ) (EpLyuEo) + Ty vas ) (EaLtuEpL) = Tar?*vsL ) (ELvuEpL) — Gy vpL) (EaLvuEsL ) (16)

which we denote as O, 5. Note that Oy s = O, s = =Ols 5 = O}, is satisfied. This term can lead to NSIs of
neutrinos interacting with electrons (v,e — ve) during neutrino propagation, but it has no influence on four-charged-
lepton interactions, such as the scattering yre — ee or the rare decay u — eee, and thus are not directly constrained by
the latter. The second term in Eq. (15) gives the same information as O(llﬁy 5» and thus itis not necessary to consider them
separately.

(2) The second class of operators are

(Lo Hy"H Ly)(Upry, Usk). (L Ay"H Ly)(D,ry,Dix). (L Hy"H Ly)(ERy,Es).

(Lo HyH'Lp)(0,7,Q5). (Lo Hy"H'Ly)(Lyy,Ls),

(Lo Hy*Lig) Qv H' Q). epe(Lo Hy"Lys)(0,Hy,Qcs)-

(Lo Hy"H'Lg)(D,ry,Usr). (Lo H 6" Eg)(Q,Ho,, Us).

(Lo H Egr) (D, H' Q5), (Lo H Egr)(Q,HUsg). (17)

After the Higgs acquires a VEV, the above operators are effectively reduced to 11 four-fermion interactions:

War?'vpL) (UprvuUsr)s  (Var?*vpL) (DyrYuDor)s  Tal?"vpL) (EyrYuEsr )

eV vp) Uy r,Us +DyryuDs). Ty vol) @iy ubsr + ELy,Es)

Tar"vp ) (ULruUs) + @i r* Ep) (DyrvuUs) s (ZarV*vpL)(DyLvuDst) = (Tarr* EpL) (DyLy,Usy)

(TaV"Ep)(Dyr7,uUsr):  (Tar.0" Egr)(Dy10, Usr).

(T Egr) (DR Us1). (Ve Egr) (D yUsw).- (18)
In the above operators, the first five terms, denoted by Oig;g‘sﬁ, respectively, contribute to NSIs in matter during

neutrino propagation. The next two terms, denoted by (9{71’/2 5 respectively, contribute to and correlate between NSIs at

the neutrino source and detector and NSIs for neutrino mediation in matter. The final four terms, denoted by
Ozbly%l 112 respectively, contribute to NSIs in the neutrino production and detection processes. For more discussions

on textures of NSIs in these processes, please see Appendix B.
The effective operators describing neutrino NSIs for neutrino propagation can be expressed as

8
’CNSI = 2\/§GF Z cgﬁyé(’)gﬁ},& + H.C., (19)
p=1
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where two same-flavor indices should be summed. The
operators in Eqgs. (16) and (18) form a full list of NSI
operators with d < 8 before electroweak symmetry break-
ing. We have checked that all of the other NSIs with d < 8
operators can be represented as a linear combination of
these Oiﬂy&' Matching with the effective NSI matrix € in

Eq. (11), we obtain

N N
Cap = €ap T (2 + ﬁ’:)egﬂ + <1 + ZN_Z)egﬁ’ (20)
where N, is the neutron number density and

e _ 1 4 6

€ap = Capi1 T Capi1 T Copit
uo_ 2 5 7

€ap = Capr1 T Capi1 t Coprr

d _ .3 5 8
€ap = Capt1 T Capt1 T Capri- (21)

I e [N B
For O, it is easy to confirm that ¢35 = —C, 5,5 = Cp5,50

and thus ¢}y, and c},,, always vanish. Therefore, O}, 5

will not contribute to the first column or first row of e.

B. NSI textures predicted by A4

We consider how neutrino NSIs from the higher-
dimensional operators are constrained by A,;. We require
that the higher-dimensional operators are invariant under
the symmetry A, and consider which kinds of NSI textures
we could gain from the symmetry. As we only care about
matter-effect NSI textures, we limit our discussion to the
operators O'8. In Appendix B, we list the NSI textures at
the source and detector from the operators O7~12,

We follow Sec. II in which the lepton doublets L =
(Ly,L,,L3)T are often arranged as a triplet 3 of A4.4
Besides, we do not specify the representations for the
other fermions in the flavor space. In other words, the right-
handed charged leptons, left-handed quarks, and right-
handed quarks could be any irreducible representations of
Ay, 1,1,17, or 3. Tt is worth noting that we do not specify
whether A, can be responsible for the quark mixing in this
work. If all quarks are arranged as the singlet representation
1, quark flavor mixing is totally independent of A,. We scan
for all of these possibilities, and find the following NSI
textures:

1 00 2 0 0
T,=1=|0 10|, Tp=[0 -1 0|,
00 1 0 0 -I
00 0
Ty=]0 1 0 (22)
00 -1

B “In the AF basis, the conjugate of L should be arranged as
L= (L, L3, Ly)".

In the following, we explain how to get these textures.
The first operator ¢l 5045 ie., the dimension-six
€ac€pdCpys(LaaV"Lop)(LeyyyLas), satisfies the antipermu-
tation property of two L’s and two L’s, as shown in
Eq. (16), which results in c} 5, = c;,y, = 0. There are five
independent A -invariant operators:

(LL)y(LL)y, :
(LL)3,(LL)3,. (LL)3((LL)s,. (23)
Here we have ignored the unnecessary flavor-independent
notations, including the SU(2); indices, I' matrices, and the
Higgs field. The subscripts are the same as in Eq. (4).

Taking account of the Clebsch-Goldan (CG) coefficients in
Eq. (4), we obtain
C,]mu = Clru’ C}?ell = C{]x/m =0 fora#p (24)

for the first four operators, which lead to the NSI texture

X 2—|]—11 _—l]—12' (25)

- O O

0 0
T,=|0 1
0 0

The last operator gives a vanishing c;ﬁ” and thus does not

contribute to NSIs.

For the second entry in Table I, ¢Z, ;0% 5, ie., the
dimension-eight (L, H y*H'L)(Uy,Usz), the Ay-
invariant operators depend on the flavor representation
of Ug:

(1) If Uy is arranged as a singlet 1) of A,, there is

only one A4-invariant operator:

(LL))(URUr)1- (26)
It leads to the following relations of the coefficients:

2 2 .2 2
Ceell = Cup11 = Crri1s Ca[ﬂl_o fora#p.  (27)

Representations of U,z and Usg are irrelevant for
our discussion since U,g and Usg do not contribute
to the low-energy NSIs.

(2) If Ug = (U, Usg, Usg)" is a triplet 3 of A,, there
are seven independent A -invariant operators:

(LL);(UrUR)y, (LL)y (UrUR)yrs (LL) 1 (UrUR)ys
(LL)3,(UrUg)s,, (LL)3, (UrUR)s,,

(LL)3,(UrUR)3,, (LL)3, (UrUg)s, - (28)
The first operator gives the same correlation

as in Eq. (27), while (LL); (UrUg);, and
(LL)3, (UrUg)s, give rise to

035039-6
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TABLE I. Higher-dimensional operators (d < 8) that may contribute to NSIs in neutrino oscillation experiments.

S, M, and D represent NSIs at a source, in matter, and at a detector, respectively.

Label Before EW breaking After EW breaking Observation

o €ac€ba(Laa?"Log)(Ley¥uLas), War" vp ) (Epy,Es) + (Vr*veL) (Eqry,Ep)— M

€ac€bd(Laa?"Lip)(Leyy,Las)H'H War"vaL)(EpvuEp) — WLr*vp ) (Eq v, Es)

o? (Lo Hy"H'Ly)(Ury, Usg) (var?"vpL) (UyrY, Usr) M

o’ (Lo Hy"H'Ly)(D,ry,Dsx) (Varr"vp) (DyrY, D) M

o (Lo Hy"H'Ly)(Ery,EsR) (Varr"vp ) (ERrYuEsr) M

o (L Hy"H L) (0,7,05) Warr"vp) (U v, Us, + Dy, Dar) M

e (L Hy"H Ly)(L,y,Ls) War'vp) WLy uvs + Exv,Es.) M

o’ (Lo Hy"Li)(Opy1, H O5) War?"vp ) Uy, Ust) + (War " Ep)(Dyry,Us) S.M,D

o® €pe(Ly Hy"Lyyg)(0,Hy,Q.s5) (var?vpL) (DyLy, Do) = (War " EpL)(DyLy,Ust) S.M,D

(o epe(Ly Hy"Lys)(Q,Hy,Q.5) (VaL?"Ep)(Dyr7,Usr) S.D

o (LyHo"Eg)(Q,Ho,,Usg) (Var0" EgR) (D16, Usp) S,D

o" (Lo H Egr)(D,rH'Q5) (VaLEpr) (D yRUéL) S.D

or (Lo HEgR)(Q,HUg) (VaLEgr)(DyLUsR) S.D
ool = 20,4,411 =-2¢Z, 0(21/111 =0 fora#p; aﬁy& Claﬂyé or Claﬁy& + CZaﬁy& + c3aﬁy6 (32)
5,24,411 :_sz’ Cgell :Ca/m =0 fora#p, (29)

respectively, where all nonvanishing values are
real. The rest [(LL)y(UrUR)yr, (LL)y(UrUR)y,
(LL)3,(UrUr)s,. and (LL)3, (UrUg)3,1 do not
contribute to ¢Z;.

The correlations of the coefficients Ci/m directly determine

the flavor structure of matter-effect NSIs. In particular,
Eq. (27) directly gives rise to Ty, and Eq. (29) leads to T,
and T3. The discussion of O}, ; applies to O;%. In other

words, the NSI textures T;;, Tq,, and T3 can be derived
from

(LL)(FF)y,  (LL)3(FF)y,  (LL)3 (FF)s,  (30)

respectively, where F' represents any fermions in the SM.

C. NSI textures predicted by the residual
symmetry of A,

In order to break A, and obtain residual symmetries, we
include the flavon VEV in the NSI operators. We consider
that the operators ¢}y ;OF, 5 are effectively realized via’

‘/’P

x-P )( ad p
Co ap; 76 O

o (z/}y(S apys:

¢“0 or ¢ (31)

afyd

These operators are A4-invariant before flavons get VEVs.

Taking the VEVs in Eq. (7), we obtain ¢/, ;07 5 with

>Since the conjugates of ¢ and y are identical to ¢ and y,
respectively, it is not necessary to write out operators realized by
@* or y* separately.

They are no longer A,-invariant, but they only preserve a Z5
or Z, symmetry, since ¢ and y preserve Z; and Z,
symmetries, respectively. The Zs-invariant operators @O
do not give any new information, and we recover Eq. (22).
The reason is that the generator of Z3, 7, is diagonal, and
the predicted NSI textures must also be diagonal. In the
following, we will not consider the Z;-invariant operator
@O anymore.

Now we focus on the A4-breaking Z,-invariant operators
xO. We first define the following nondiagonal textures:

0 1 1 0o -1 -1
Ty=11 0 1], Typ=1]1-1 0 21,

1 1 0 -1 2 0

0 1 1
Tyz=1-1 0 0],

0 O

0 —i i 0 i —=i
Tyo=1i¢i 0 —-i], Typ,=1|—-i 0 =2i],

- i 0 i 2i 0

0 i i
Tyzs=1|—-i 0 O (33)

-i 0 0

T,, represent nondiagonal real NSI textures, while Tj,
represent Ipure 1mag1nary NSI textures.

For ¢/ wpyXd a/,yé, there are nine Z,-invariant operators
that can contrlbute to NSIs:
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(34)

Because both a and y, and f and & are antisymmetric,
Copt = Chery = 0 for all cases. The other coefficients
satisfy the following relations, respectively. Taking the
CG coefficients in Eq. (4) into account, we obtain

2",14,411 =207, = C}nn = Ciﬂn (35)
f0f_ )(((Z_L)ss (LL) 1y 1)3:
x((LL)3, (LL)3, )3, and

X((LL)3 (LL)3 )3, and

1 _ 1 1 _
Cuptl = —Crr1rs Cpell = C‘ryll =0 (36)

for Z((ZL)sA(ZL)l.l',l”)a» Z((ZL)ss (ZL)3A)3S, and
X((LL)3 (LL)3, )3, The first two relations give

1
3 (2T = Ty + 2Ty +2Ty3) =

o O O

0
1
2

— N O
—
W
~
~—

and T3, respectively.

X2
For Co afy

ator (L, Hy"H'Lg)(U,ry,Us), depending on the repre-

sentation of Uy, there are several Z,-invariant operators:

(1) If U,y is a trivial singlet 1, 1’, or 1” of A4, there are
two Z,-invariant operators:

X Onp 5 1.€., the first dimension-eight oper-

X(LL)3 (U1rU r)y, X(LL)3 (UrUr)y- (38)

They lead to the following relations of the coeffi-

cients:
2 ) _ 2
Ceell = C;n'll - C‘mll - Zcﬂull - 261111
2ceﬂ11 = 2Cﬂe11 2Ce111 2C1e11’
2 _ 2 _ 2 _ 2 _ 2 _ 2
“Cuutt = o1l = Coutt = Cuetl = TCeri1 = Crerns
2 _ 2 ) _
Ceell = Cer11 = Cre1l — 0’ (39)

respectively. They give rise to two textures, T, =
Ty, + Ty, and T3 = T3 + Tss, respectively.

(2) If U,g is arranged as one component of a triplet
UR = (UlR’ U2R7 U3R)T ~3 of A4, there are six
independent Z,-invariant operators contributing to
NSIs:

X(LL)3 (UrUg)1, X(LL)3, (UrUg)y,
)(((ZL)ss (_RUR)SS)Z*:S’

X((LL)3 (UrUg)3,)s, » X((LL)3, (UrUR)3,)3,»
X((LL)3, (UrUR)3,)s3, - (40)

The first two give the same two correlations as in
Eq. (39). The remaining four give rise to

Ceell - 2C/4;411 - 261‘:1] - Zc/rrll 2C‘L';t]l
2 _ .
_4Ce/411 —4Cﬂe11 =Cer11 _4C1e11’
2 _ 2
Chut1 = _Crrll 2Ce/411 2c;tell - 2C€‘L'11 2C‘re11’

2 _ 2 _.2
ceell_ce‘rll_crell_o

ic,%fn =—i03ﬂn = 2’%,411 —Zlc,wll
—2’%111 = 21C1411v
zell _Cﬁﬂll _C‘r‘rll O lceﬂll - iclztell
=ics,y, :—lC%eH,

2 _2 _2 _2 _2 _
Ceell_cﬂyll _CTTell_CﬂTell_CTﬂll_O’ (41)
respectively, where all nonvanishing values are real
(as required by the Hermitian of the Lagrangian).
They give rise to

4 1 1
M,-Tp=|1 -2 -2,
1 -2 =2
0 ~1
Ma-Tu=| 1 2 0 [, (42)
-1 0 =2

and Ts, and Ts3, respectively.

A similar discussion applies to O°~%, and the same textures
as predicted by % are obtained from these operators.

The nine textures T,,, in Egs. (22) and (33) form a
complete basis for a Hermitian 3 x 3 matrix. Any two of
these textures are orthogonal in the Hilbert-Schmidt inner
product, tr(Thn T ) & Sy G- Matter-effect NSIs con-
tribute to the effective Hamiltonian term via the matrix

€ee €eu €er €ee |€gﬂ|ei(/)e" |€e,,|ei(/)”
€E=| €ue €y €4 | = |€ue|e_i¢"’” € | em|e"¢w
€re 61;4 € |€e‘t|e_i¢” |€’uT|e_i¢W €rr
= Z amn-n—mn/lew (43)
m,n=1,.2,3
where N,,, are the normalization factors N; = \/?_, Ny, =

V6, N3 = V2, Ny = N3; = V6, Ny = N3y = 2V/3, and
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TABLEII. NSItextures in matter predicted by A4 and the residual symmetry Z,, where F represents any SM fermion. The textures T,
are defined in Eq. (22), T,, and T, are defined in Eq. (33), and y is defined in Eq. (7).

Representations Ay-invariant operators NSI textures
o' L~3 (Z_‘L)I(Z‘_L)l’ (Z‘[_‘)l’(i‘L_)l”’ 2T =T
(LL)3(LL)3, (LL)3, (LL)3,
0*3 L~3,F~1,1,1"3 (LL){(FF), Tu
L~3.F~3 (LL)3 (FF)s, T
(LL)3, (FF),, T3
Representations Z,-invariant operators NSI textures
20! x~3.L~3 X((LL)3, (Z‘L)l,ll,l”)fi’ {((EL)z,S (LL)3, )3, 32T =Ty + 2Ty + 2Tx)
~ B )(((LL)sA (LL)_sA)ss B
X((LL)3, (LL)q g 17)3» x((LL)3,(LL)3, )3, T3
y~3,L~3F~11,1"3 )((_L)3S(FF)1 T+ Ty
)((_L)sA(_F)l Ti3+To
y O3 x~3.L~3 F~3 ;{((I:L):,S (17"F)3S)35 2T, = Toy
)(((ZL)sA (FF)ss)ss 2T15 — Tos
)(((I;L)ss (I?F)ss)sA T3
x(( L)sA (FF)ss)sA Tss

Ny3 = N33 = 2. The relations between €, and a,,, are
shown in Table III, and the following properties are
satisfied:

tr(ee’) = Z leas* = Z az,. (44)

af=eu,t m,n=1,23

Note that T;; = 1 is unobservable in neutrino oscillations
experiments.

We list all A4~ and Z,-motivated matter-effect NSI
textures predicted by A4- and Z,-invariant operators OF
and yOP in Table II, where y is the flavon VEV inducing
A, breaking to Z,. As seen in the table, an NSI texture
predicted by an A,-invariant (Z,-invariant) operator usually
does not preserve A4 (Z,). This is because the matter-effect
NSIs have specified the first-generation charged fermions.
These charged fermions, if not arranged as a singlet 1 of Ay,
are not invariant in A4 (Z,), and thus the NSI texture does
not respect A4 (Z,). In a specific A, model, the NSI matrix ¢
could be a linear combination of T,,,,. However, it is notable
that T;; cannot be obtained directly from the above
analysis. The analysis based on higher-dimensional

operators cannot determine which texture is more important
and dominant in oscillation experiments. However, as we
will discuss in the next section, once we consider UV
completion for these textures and include experimental
constraints, some of them are suppressed and cannot be
measured in neutrino experiments.

IV. NSI TEXTURES REALIZED IN
RENORMALIZABLE FLAVOR MODELS

In this section, we consider how to realize higher-
dimensional operators in UV-complete models. We follow
the widely used technique in Refs. [16,17], where the
dimension-six operator is mediated by singly charged
gauge-singlet scalars and the dimension-eight operators
can be realized with the help of singly charged gauge-
singlet scalars and neutral fermions. Imposing the Ay
symmetry changes the analysis in the following ways.
1) It requires extending the heavy particles as relevant
multiplets of A4. 2) The mass matrices of these particles
gain special structures constrained by A, or Z, (if the
Z,-invariant flavon VEV y is included), which further
contribute to the NSI structure. 3) Although experimental

TABLE IIl.  Expressions for the conventional parameters ¢, in terms of the texture parameters a,,, according to

Egs. (22), (33), and (43).

€ee (Eeee - 6;414)
€

Ht

30’12/\/6—0!13/\/5

é"r‘r(E T emt) —2(113/\/§

€en 1 /V6 = an /V12 = ay3 /2 + i(—a31 /V6 + a3/ V12 + a33/2)
€er 1/ V6 = a0 /V12+ a3 /2 + i(as /V6 — az /V12 + a33/2)
€

a1/ V6 + 200/ V12 + i(—a3, /V6 — a3,/ V12)
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constraints on the heavy particles have been studied in
Refs. [16,17] and later work (e.g., Refs. [18,53]), the non-
Abelian flavor symmetry connects channels of different
flavors and may result in stronger constraints. Due to these
differences, NSIs with A,-invariant UV completion deserve
a careful consideration.

A. UV completion of the dimension-six operator

We first consider the UV completion of O,
€ac€bd(Laa?*Lig)(LeyvuLas). The only way to do this is
to introduce a singly charged scalar S which is a SU(2),
singlet with ¥ = +1 and assume that it couples to L in an
“antisymmetric” form [16]. Together with the kinetic and
mass terms of S, we write down the renormalizable
Lagrangian terms as

‘CS = (DyS)T<D”S) - (Mé)a/}SZzSﬂ

+ dapr€arLSaLlypS, + Hee., (45)
where 4,3, = —Ag4,- In the framework of A4, S cannot be

arranged as a singlet representation (1, 1’, or 1”) of A4 since
the symmetric CG coefficients of A, and the antisymmetric
property of 4 lead to S(LCL),w,) = 0. Similarly, by arrang-
ing S ~ 3 we obtain S(LCL)3S = 0. The only term that can

contribute to the operator in Eq. (45) is S (L_CL)3A for § ~ 3.
All nonvanishing coefficients satisfy

Aoz = Ao31 = 312 = —imo = —Ayiz = =4 = 4o (46)

After S decouples and by using the Fierz identity, we obtain
O' and the resulting NSI parameters are obtained as

1

€y = \/_Z—GF/lﬂe(Mg)‘l/lge, (47)

where each 1,5 is a 1x3 matrix given by A, =
(j'(l/fl ’ )*(1/}2’ /1(1/)’3 ) .

The structures of eg; are fully determined by the flavor

structure of M%. We constrain the M3 structure as follows.

(1) An A4-invariant mass term for the charged scalar can

only take the form p%(S*S); = u3>_ ,SiS, with

M% > 0, leading to the charged scalar mass matrix

M?% = p31. From this mass matrix, we obtain the

2
. K
xture €¢ = ayTh, with ay = —=5—.
texture € ap '}, with VTR

(2) In order to obtain nonvanishing off-diagonal NSI
entries, A, has to be broken. As shown in the last
section, the key is to introduce a flavon with the
Z,-preserving VEV y. We add the following renor-
malizable couplings to the Lagrangian:

21
e

* 2 *
3 ()((S S)SS)I _%hA(X(S S)SA)I ) (48)

Uy

where hg and h, are real dimensionless coefficients
as required by the Hermiticity of the Lagrangian.
Then, the S mass matrix is nondiagonal and the
resulting NSI matrix becomes

0 0 0
1
€e:a0 —l]—/12+§ 0 hs-h% 2hs+h§
0 2hg+h3 hs—h}
0 0 0
1
w30 Vaa-r R . (49)
0 —V/3hy—h}

where ay = |1|?/[V2Gpu3(1 — hg — h3)]. € con-
tains three real parameters: €,,, €., and |e,|. The
renormalizable quartic terms ((y )3, (S*S)3,); and
((x2)3,(S*S)3, )1 are also allowed by the symmetry,
as such terms do not modify the flavor structures of
M? and € except by redefinitions of g and 4.
However, it is difficult to realize sizable NSI textures in
this approach due to the strong constraint from the radiative
charged LFV measurements. Although the tree-level four-
charged-fermion interactions have been avoided, radiative
decays E, — Egy involving § and neutrinos in the loop are
triggered by the interaction LCLS, and the relative branch-
ing ratios are o<|G;1/1ay(M§)‘1/l}§y|2, where y # a, 8. The
general upper bounds of the 7 — ey and 7 — uy branching
ratios are around 107% [54,55], and that of u — ey is
4.2 x 10713 [56]. Without flavor symmetries, the coeffi-
cients 4,4, and mass terms (M g)aﬁ are free parameters, and
7 — ey and u — ey do not provide direct constraints on
NSIs [16]. Once the flavor symmetry is included, relations
such as Egs. (46) and (48) are satisfied. In the limit
hg, hp — 0, all radiative decays are forbidden. However,
off-diagonal NSIs are also forbidden in this case, becoming
less interesting in oscillation experiments. On the other
hand, by assuming hg or hy ~ O(1), the very strong
constraint [e¢,| < 7 x 107 is obtained from the upper limit
of u — ey.

B. UV completions of dimension-eight operators

In the following, we will only consider NSIs from UV
completions of dimension-eight operators. Before perform-
ing a detailed analysis, we directly state our main result that
in UV-complete models with the Z, residual symmetry
only linear combinations of the following NSI textures are
worth studying in neutrino oscillation experiments:
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| 2 -1 -1 | 2 -1 -1
T, ==-1-1 2 -1 T,==-1 -1 -
1 3 ) 2 3 1 1 2 )
-1 -1 2 -1 2 -1
| 0 -1 1 | 0 —i i
Ty=—| -1 1 0 |, Ty=— i O i
3 \/g 4 \/g
1 0 -1 —i i

(50)

We refer to them as “major NSI textures.” They are
combinations of some T,,, T, :%(ZTFH -Ty), T, =

T+ Ty), Ts= \/%(TB + Tp3), and Ty = %Tm- As

discussed later in this section, the other NSI textures T,,
Ty3, T3, T33 and their combinations are strongly con-
strained by nonoscillation data. Therefore, we call them
“minor NSI textures.” Here, we classify them into “major”
and “minor” due to their testability. In the former case,
although they are small, we may still have the opportunity
to detect them, while in the later case, we will have no
chance to test them in the next-generation neutrino experi-
ments. Throughout this paper, we focus on the “major NSIs
textures.”

1. Major NSI textures realized
in UV-complete A, models

We consider how to realize the major NSI textures in the
renormalizable A, models and consider their experimental
constraints. Before electroweak symmetry breaking, the
operators O?~% take the form of a dimension-eight operator
(LHy"H'L)(Fy,F). A popular way to realize large NSIs
is to introduce a vector boson Z’. Then, the four-charged-
fermion interaction (Fy*F)(Fy,F) is unavoidable. In order
to be consistent with experimental data, the coupling
must be very small. Here, we will carefully avoid the
four-charged-fermion interactions introduced after the
decoupling of the new particles in the UV sector. Thus,
interactions mediated by Z’ will not be considered.

We focus on O by using a singly charged scalar ¢ and a
neutral fermion N to realize major NSI textures. The
renormalizable interactions are given by

Lyn = (D) (D) - (Mia)a/;fﬁ(*zfﬁp’ + NidN
- MN(z/}mN[)’L - K(l/}ymNﬂqu;
— VapLo HNjg + Hec., (51)

where D, = 0, + ieA,. The charged scalar is a SU(2)
singlet with Y = —1. In order to distinguish it from S in the
last subsection, we denote it as ¢. There is no LNV
coupling in the above interactions. For the neutral fermion
N, we require a vector-like mass term MyNgN; as shown
above. If there is an additional small LNV mass term

uNENy and hierarchical masses y//Gp < My, we re-
cover the inverse seesaw model [57]. But here we do not
specify whether N is related to the origin of active neutrino
masses. Regardless of whether there is a small LNV mass
term, we can always arrive at a dimension-eight operator

~ A;ZZ jy‘;z (L HER)(ERH'L) after the decoupling of the
»MN

charged scalar and sterile neutrinos, from which we obtain

O*. Once the flavor structure is included, the 3 x 3 NSI

parameter matrix € is expressed as

1 3.
€ = —5 (YMy'c)(M3) " (yMy'k.)',  (52)
8G7

where k, is a 3 x 3 matrix defined via (k,);, = Kqp, for
a=e,u, .

We now discuss how the A, symmetry can constrain
NSIs originating from this renormalizable model. We first
consider A,-motivated NSI textures without the involve-
ment of flavons. In the flavor space, since we have arranged
L ~ 3, the fields Ny, Ny, and ¢ must be triplets to ensure
the invariance of the Lagrangian in A,. We follow the setup
of most A, models in which E |, is fixed as a singlet 1 of A,.
An A,-invariant mass term for the charged scalar can only
take the form 3 (¢* )y = 3> b7 i» With pg, > 0, ie., the
charged scalar mass matrix M} = p;1. Similarly, to be
invariant under transformations of A,, the Dirac mass
matrix of the sterile neutrinos M and the Yukawa coupling
between L and Ng, y is also proportional to the identity
matrix, My = uyT1, y = yol. The structures of the cou-
plings y and x depend on the representations of Ey.
Interactions involving ¢ and N are given by

KoE1R(NL¢" )y + yo(L H Ng), + H.c. (53)

Thus, both coupling matrices x and y appear to be
proportional to the identity matrix: k = k1 and y = y,1.
After ¢p and N are integrated out of the Lagrangian, we find
that the O* takes the form (LL),(FF);, as listed in Table Il
for F = Eg. Finally, we obtain the NSI texture ¢ = a1,
where

|yoxol*
Ay =—5—"5>- 54
T 8GHA] (54)
Since 1 is the identity matrix, ¢° in this special case has no
observable signatures in neutrino oscillation experiments.
The involvement of y breaks A, to Z, and modifies the
correlation relations of the NSI parameters. In order to
realize relatively large and measurable NSI effects, we only
consider the contribution of renormalizable couplings of y.
There are cases [as shown in Figs. 2(b) and 2(c)] where y
couples to ¢ and N and modifies their mass matrices.
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FIG. 2. Diagrams that give rise to sizable NSI textures corresponding to the dimension-eight operator O* in leptonic A, models.

(1) The charged scalar ¢ mass matrix is modified by the
coupling between y and ¢. We add the following
renormalizable coupling to the Lagrangian:

2
V3

where fg and f, are real dimensionless coefficients
as required by the Hermiticity of the Lagrangian. The
relevant higher-dimensional operators after ¢ and N
are integrated out take the forms y(LL); (FF); and
X(LL)3, (FF);, respectively. The modified ¢ mass
matrix turns out to be

2
/:i %fs()((ﬁb*éf’)ss)l— fA(Z(¢*¢)3A)1 ., (55)

X

MG/ ug =T+ fsTy + faTs. (56)
Terms such as ((J()()ss (45*47)35)1’ (()()()35 (¢*¢)3A)1
are also renormalizable and should be considered for
completeness. These terms will not induce new
structures different from Eq. (56).

The Dirac mass matrix of N is modified by cou-
plings between y and N. The related renormalizable
Lagrangian term is given by

(@)

iy |2 N 2 N.
1)71;, ggS()((NLNR)3S)1 _%gA()((NLNR):’A)I
+ H.c., (57)

where gq and g, are in general complex parameters.
The Dirac mass matrix M is modified as

My/puy =T+ gsTs + gaTs. (58)
Taking the flavon-modified mass matrices of ¢ and N into
account, we state that the final detectable (i.e., ignoring the
undetectable 1) NSI matrix €€ in Eq. (52) is always a linear
combination of T; for i = 1, 2, 3, 4. This is guaranteed by
the algebra of T, and can be straightforwardly proven by
implying Egs. (C2) and (C3) in Appendix C. From Table II,
one can expect to find the textures T, and T5. The other
two textures, T; and T,, which do not arise from higher-
dimensional operators, are obtained from the inverse

transformations of Mgp and My and the matrix product
T,T; = —iT,. T, and T, appear at the second order of
fs, fa and gs, ga. If fs, fa, 95, ga << 1 is satisfied, the T,
and T, parts are negligible compared with the T, and T;
parts. However, these coefficients, as coefficients of renor-
malizable terms, may take O(1) values, and thus in this
case T and T, may have NSI effects comparable to those
of T, and Tj.

The flavor structures of NSIs can be further discussed in
the following scenarios, dependent on the role of the flavon
VEV py:

(1) With the assumption of additional symmetries, y

may only couple to ¢, and not to N, i.e., g, gs = O.
The resulting detectable NSI matrix is explicitly
expressed as

e =ao[(f3+ )T — fsTa— faT3]. (59)

Here, only Ty, T,, and T5 appear, and ; has been
redefined.

On the other hand, if y only couple to N, we obtain
the following NSI matrix:

2

¢ = ap{[=(2 + |gs* + lgal*) (lgs* + |ga*)
+ 4Re(g5 + g3) + 4[Im(g5ga)’] T,
— 2Re(gs) T — 2Re(ga) T3 — 2Im(g59a) Ta}
(60)

where a has been redefined. It is a linear combi-
nation of all four T;, but T, is important only if both
|gs| and |ga| are sizable and there is a relative phase
between gg and gu.

If the antisymmetric couplings f, and g, are for-
bidden, the NSI matrix can be simplified to a linear
combination of T; and T,. On the other hand, if the
symmetric couplings fg and gg are forbidden, the NSI
matrix is a linear combination of T; and T3. These
two cases are valid if the group A, is replaced by
larger groups. For example, in the hexahedron group
S4 [58], there are two triplet irreducible representa-
tions, and the symmetric and antisymmetric products

3
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35 and 3, correspond to two different representa-
tions. By arranging y to be one of the triplets, the
antisymmetric (or symmetric) products can be for-
bidden, and thus only the symmetric (or antisym-
metric) couplings are left.

Naively, one may expect that NSIs from the UV
completion of the dimension-eight operator are more con-
strained than those of the dimension-six operator, but this is
not the case in the framework of flavor symmetry. First of
all, no tree-level CLFV interactions have been introduced
by the Lagrangian in Eq. (51), as required. Although
radiative CLFV processes are induced by the coupling
ExN_¢, they essentially rely on the coupling with the
second- or third-generation charged lepton E,i or E;3r. By
arranging Er, Eog, and E5g as different singlets of Ay, the
relevant coefficients are theoretically independent of those
involved in matter NSIs [59,60]. Constraints on CLFV do
not apply to NSIs. Regarding collider searches, with a
careful treatment of ¢ decaying to e/p plus missing
transverse momentum or 7 plus missing transverse momen-
tum, the existing LEP and LHC data still allow a singlet
charged scalar as light as 65 GeV [61]. The main constraint
in this model is the bound of the nonunitarity of the lepton
mixing. The decoupling of sterile neutrinos contributes to

the active neutrino kinetic mixing as ]‘fl—zz(flfl)ﬁ(I:ﬁL).
N
After rescaling the kinetic terms of active neutrinos, the

nonunitarity of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix is

1
= ViV —1=——— (MM OMM. (61
n PMNS ¥ PMNS 5 \@GF (v N YooMy') (61)

The nonunitarity bound from a global analysis of LFV
decays, probes of the universality of weak interactions,
Cabibbo-Kobayashi-Maskawa unitarity bounds, and
electroweak precision data is around 7~ 1073 [52].
Combined with the above constraints, we see that it is
still possible to achieve the major NSI textures with
coefficients ~;/(GpMj) at the 107> or 107 level.
These values may be measured by the next-generation
accelerator neutrino oscillation experiments.

In the above, we have constructed UV-complete models
for O* and yO* A similar discussion can be directly
extended to O**° and y(O>3> by replacing the singly
charged scalar ¢ by ¢y, p, 0. Which are an SU(2)_
gauge singlet, singlet, and doublet with hypercharges
Y =-2/3,+1/3, and —1/6, respectively, and replacing
the singlet F = E|g with F = U, Dy, and Q,, respec-
tively. The resulting NSI matrix is also a linear combination
of the textures T, T,, T3, and T,4. The textures T, T,, T3,
and T, are obtained by assuming that the charged fermions
are singlets of A4. This treatment can avoid strong con-
straints from the second- and third-generation charged

fermions. These textures are less constrained than the other
textures discussed below, and thus we call them major NSI
textures.

2. Minor NSI textures realized
in UV-complete A, models

The minor NSI textures T;,, T3, T3, and T33 and their
combinations cannot be realized in the above discussions.
This is compatible with Table II, where the minor textures
are obtained by setting F' ~ 3. To achieve these textures, as
shown in Table II, F has to be assumed to be a triplet of A,4.
Then F cannot be chosen as right-handed charged leptons
and not realized in the O* and yO* series. We will discuss
how to realize them in UV-complete A, models.

To realize the A,-motivated T, and T3, we choose F =
Ur = (U, Usg, Usg)" ~3 of A, and consider the UV
completion of 2. The latter is obtained by replacing the
singly charged scalar ¢ with a fractionally charged scalar
¢y, i.e., a scalar leptoquark, with hypercharge ¥ = —2/3,
and couplings to Ny and Ug. The renormalizable couplings
are given by

k§* (UrNL)3, 87 )1 + ka8 (UrNL)3, #, )1 + Hee.  (62)

Then, the coupling matrix « is modified as ky;, = Kg T +
KXRTB and the A4-preserved NSI texture

1

eu
8G2

(yMy'ky ) (MG, )™ (3My kg, )" (63)

is obtained as a linear combination of T, and T 5. Finally,
we include the A4-breaking effect in the ¢, and N mass
matrices, as in Egs. (56) and (58). Nonzero T5, and T35 can
be extracted in principle.

The minor textures T;,, T3, T3,, and T3 are expected to
receive stronger constraints. The main reason is that Uy =
(Uir, Usg, Usg) is arranged as a triplet of A4 and con-
straints from the second- and third-generation charged
fermions should be included. The neutrino kinetic mixing
leads to the coupling U—Rngb}‘jR. It further modifies the SM
predictions of certain processes, e.g., (semi)leptonic decays
U, = Upv at tree level, radiative decays U, — Upgyy at
loop level, and flavor-changing neutral-current processes
u,->U ﬂFyUg at loop level. As a consequence, precision
measurements of charm mesons and baryons can give
strong constraints on €¢“. A detailed discussion of these
constraints is the subject of this paper. Realizations of
sizable NSI textures Ty, T3, T3y, and T33 via UV
completions of the other dimension-eight operators are
also hard. Those via 0378 gain strong constraints from K
and B decays, and those via O° gain constraints from E, —
Egy decays. Since it is hard to generate sizable NSI for

035039-13



TSECHUN WANG and YE-LING ZHOU

PHYS. REV. D 99, 035039 (2019)

textures Tj,, T3, T3, and T3 or their combinations, we
refer to them as minor NSI textures.

V. TESTING NSI TEXTURES AT LBL
EXPERIMENTS

Long-baseline experiments with wide-band beams and
sizable matter effects are expected to measure more than
one €,43, which implies that the flavor dependence of NSIs
€qp can be tested. As a result, an experiment of this kind is
able to study the flavor symmetry model through the
operators ('8, In this section we will study the matter
NSI effects for the DUNE experiment under the flavor
symmetry A, or Z,. We summarize the connection between
the texture parameters «,,, and the conventional parameters
€q4p in Table III. There are some benefits to considering
matter-effect NSIs under flavor symmetries. When we
assume that A4 symmetry is not broken, only two types
of NSIs can be seen, both of which are flavor conserving. If
A, symmetry is broken and the residual Z, symmetry is
preserved, there are no such benefits as all textures are
predicted under this symmetry, until we impose a UV-
complete model. Therefore, we expect good performance
from DUNE in studying these scenarios. We test the NSI
textures from the A, symmetry without assuming any UV-
complete model in Sec. V B. In Sec. V C, we study the Z,
testing, following the discussion in Sec. IV B. The approxi-
mation to oscillation probabilities with NSI matter effects is
presented in Appendix D; the true values used for the
oscillation parameters throughout the simulation in this
section are given in Table IX.

The current global fit for matter-effect NSIs [23] includes
solar, atmospheric, reactor, and LBL neutrino data. With the
assumption that all NSIs come entirely from up quarks or
down quarks to avoid NSIs at the source and the detector, the
current global fit to the standard NSI parameters €ap and eff/,
was performed in Ref. [23]. We adopt these results to

estimate the bounds for a,‘ﬁ{,‘f. ‘We only take the bound for each
eg'ﬁd, i.e., the results of a 1D projection. Furthermore, we
neglect underlying corrections between any two or among
more than two parameters, which are €,43, mixing angels, or
mass-squared differences. Assuming Gaussian distributions

and taking the 90% C.L. limits from Ref. [23], the bounds on
e(‘;b,d at 1o are shown in Table IV. Since in their analysis the
imaginary part was assumed to be 0 or z, we directly
translate their bounds to o' and a4’ by setting the
imaginary a4 = 0, and the results are shown in Table V.
NSIs with down quarks e(’;bd have very similar constraints as
those with eZ},d . As we neglect some correlations among the

parameters, our results can be viewed as optimal. In Table V,
we see that most parameters are constrained around or below
the percent level of weak interactions, except for a'y’, for
which 16 bounds are around 15%.

TABLE IV. Taken from the current global fit results [23] for 6(’;/}
and ezﬂ. In these results, the authors [27] assume that off-diagonal
elements €, are real, consider that NSIs is only contributed by u
(d) quarks for €}, (e(‘iﬂ), but do not include NSIs at the source and
the detector.

1o bounds of global fit results

€ee [0.188, 0.376] é, [0.203, 0.384]
é [~0.003,0.012] & [-0.003,0.012]
e, [-0.046,0.002] e, [-0.048, 0]

€l [—0.038,0.065] e [-0.036, 0.066]
e [~0.004, 0.003] el [~0.004,0.003]

TABLE V. The 1o bounds for ¥, (a%,), a¥; (ads), and a%; (a4,),
with fixed a4 =0 (a4, = 0), from the global fit results [23]
shown in Table IV. See text for details.

1o bounds by global fit results

al [0.089, 0.247] ol [0.099, 0.26]
al [~0.003. 0.007] ol [~0.003, 0.007]
@, [~0.045.0.049] a, [~0.045, 0.047]
ay, (-0.037,0.03] o, [—0.035,0.0302]
a3 [~0.019, 0.096] o, [—0.0154,0.096]

The matter-effect NSIs are predicted to be small, as we
see in Table IV. Fortunately, DUNE can improve the
sensitivity and it is possible to detect these effects. In this
section, our goal is to see whether these minor features®
appearing in DUNE can provide any extra information
about the flavor symmetry. We first discuss how matter-
effect NSIs a,,, affect neutrino oscillations in DUNE, and
then we study the physics capacity for DUNE to test A4
symmetry and Z, residual symmetry via NSI measure-
ments. We emphasize that the results in Secs. VB and V C
are from a general point of view; we consider all possible
correlations by using the conventional parametrization
(three mixing angles, one Dirac CP phase, and two
mass-squared differences) instead of implementing any
possible flavor model for the oscillation parameters. The
final note is that for a given model that consistently predicts
values for both oscillation and NSI parameters, we should
further adopt Wilks’ theorem that the A y? value for nested
hypothesis testing asymptotically follows a y* distribution,
where the number of degrees of freedom is equal to the
difference between the number of free parameters in the
two models [63]. Therefore, we will further study two cases

6Assuming an equal amount of NSI effects with u, d quarks
and electrons, the 1o size of the total NSI matter effect in the
Earth is roughly 3 times that of the 1o region shown Table IV.
This estimate will be applied in the following (Tables VI and
VIII) for comparison.
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with the maximum and minimum possible number of
degrees of freedom for a y? distribution.

A. Oscillation probabilities in DUNE

As mentioned in the Introduction, matter-effect NSIs in
DUNE have been widely discussed. Because of the long
propagation distance (1300 km) of neutrinos in the Earth,
the non-negligible matter density, and the GeV-energy-
scale neutrino beam, matter effects play a substantial role in
oscillations. Before discussing the physics potential of
understanding any flavor symmetries, we first study the
impact of a,,, on the oscillation probability in DUNE.

The DUNE experiment consists of a neutrino source
known as the Long Baseline Neutrino Facility (LBNF), a
detector based at Fermilab, and a liquid argon time-
projection chamber (LArTPC) detector complex located
at Sanford Underground Research Facility a distance of
1300 km away. The beam design is based on both long
baseline neutrino experiment (reference design) and LBNF
studies (optimized design). The beam is optimized accord-
ing to the physics capability of 6 discovery. The 1 MW
beam generates a large amount of v, (POT/year ~10%!). At
the other end, the detector configuration consists of four
10-kiloton LArTPC detectors. LArTPC technology has a
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FIG. 3.

particularly strong particle identification capability as well
as good energy resolution, which are both crucial to
provide high-efficiency searches and low backgrounds.
DUNE covers the first maximum of the appearance
channel (0.5-5 GeV), and the wide-band design and
LArTPC technology allows it to observe the behavior of
P(v, = v,) at energies around the first maximum of the
appearance channel with high precision.

We show the difference between oscillation probabilities
with one nonzero «,, and those without NSIs,
8Pns1 (Ve = vp) = P(vy = vg) — Po(v, = vp), in Fig. 3.
The coefficient a,,, is fixed at 0.1, but the other NSI
parameters are fixed at zero. The Dirac phase 6§ = 270° and
the normal mass ordering is assumed.

For the appearance channels in the upper two panels of
Fig. 3, we see that the NSI parameters nontrivially modify
the oscillation probability. NSIs modify the amplitude of
the oscillation probability and distort the oscillation behav-
ior against L/E. a3, @31, and a3 have larger impacts on
0Png; than the other NSI parameters, and §Pyg; around the
first maximum reaches up to or over 0.01 for the neutrino
mode. These impacts are slightly larger in the neutrino
mode than in the antineutrino mode, and this is due to our
assumption of the normal mass ordering. DUNE’s wide-
band-beam fluxes (grey shaded regions) observe a variation
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Oscillation probabilities 6Pyg;(v, — v,) (upper left), 6Pyg (D, — 7,) (upper right), 6Pys(v, — v,) (lower left), and

6Pnsi (D, = 7,) (lower right) against L/E [km/GeV] for the case with one a,,,, fixed at 0.1. We use the oscillation parameters from the
current global fit results [62] (shown in Table IX) for the normal ordering with § = 270°, and the oscillation baseline is 1300 km. In the
left (right) panels, the grey shaded regions show the v (D) flux of the two-horn-optimized design for DUNE at the far detector without

oscillations.
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of 6Pyng; around the first maximum. As a result, the
complex behavior in the appearance channel around the
first maximum plays the role of distinguishing different
textures.

In the lower two panels of Fig. 3, we observe the
oscillation behavior of §Pyg; in L/E in the disappearance
channels, and except for a3 it goes to O at the first and
second minima. As a result, it is clear that we will not see
the NSI effects if we focus on the first minimum, which is
the approximate location of DUNE’s flux peaks. The wide-
band-beam feature of DUNE (grey shaded regions) pro-
vides more information about how much «,,, affects the
disappearance channels around the first minimum. Further,
it is obvious that the disappearance channels can be
sensitive to a,; and a,, as their impacts 6Pygy are
significantly larger than the others. An interesting feature
is that for neutrino and antineutrino modes §Pyg; behaves
oppositely, i.e., 6Pnsi(v, = v,) & —6Pnsi(U, = U,). This
is because P(v, —v,;6,A) = P(y, - 7,;—6,—A), and
also due to the fact that the contribution of «,,, is propor-
tional to A in the leading approximation for the disappear-
ance channel. We see this correlation in Fig. 4, in which the
event rates with a,; = 0.1 (green curve), ay, ~ 0.7 (blue
circles), and those without NSIs (red curve) are presented in
the v and v disappearance channels. The overlap of the blue
circles and the green curve demonstrates the difficulty of
distinguishing @,; and a,, in the disappearance channels.

We conclude that the wide-band-beam feature of DUNE
is an advantage for detecting NSI textures. Different NSI
textures result in different distortions of the probabilities in
the appearance channel. Therefore, we can distinguish
different textures by reading out the variation of
P(v, = v,) with energy. In addition, this feature helps
us to measure the size of the NSI effects in the disappear-
ance channel.

B. Testing “A4 symmetry” in DUNE

Matter NSI effects predicted by A,-invariant operators
only allow diagonal entries. After the breaking of A, by the

Z,-preserving flavon VEV y, the textures T,,,, T3,,, or their
linear combinations are involved in the NSI matrix e.
Equations (D1) and (D2) indicate that accelerator LBL
experiments can be sensitive to off-diagonal terms in e,
because of the fact that ¢,, is the leading term in the
disappearance channel, and €., and €, are the leading
terms in the appearance channel. As a result, experiments of
this kind can test the conservation of A, symmetry.

Throughout this section, we adopt the General Long
Baseline Experiment Simulator (GLOBES) library [64,65].
To simulate probabilities with matter-effect NSIs, we
modify the default probability engine of GLOBES by
simply adding the matrix Ae to the Hamiltonian. For the
simulation in DUNE, we implement the simulation package
in Ref. [66], with a total run time of 7 years (corresponding
to 300 MW x kton x years) and a two-horn-optimized
beam design with 80 GeV protons. The other sets of
oscillation parameters are described in Appendix A.

We study the capacity for DUNE to rule out the “Ay
symmetry” hypothesis. The statistics quantity that we
study is

A)(fu = )(2|a2”:a3n:0 - )(%,f,’ (64)

where x|, _,. _ois the y* value with the assumption that

=as3,
Ay, = a3, =0(n=1,2,3),and yi , is the y* value for the
best fit. The expression for y? is

2 — min |:2 < i @, - n; + n; In ik >
Y zl: n(®.4) n:(0,¢)

1

+ pe.o) +P<®osc>] (65)

The sum in this expression is over the i energy bins of the
experimental configuration, with simulated true event rates
n; and simulated event rates 7;(®, &) for the hypothesis
2., NSI parameters} and system-

parameters © = {Gij, Amij,
atic error parameters £. Based on different conventions or
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FIG. 4. The event rates with a,; = 0.1 (green curve), a,, ~ 0.07 (blue circles), and the case without NSIs (red curve). The overlap of
the green curve and blue circles represents the correlation between a; and ay,.
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assumptions, we may adopt different parametrizations for
the NSI parameters; in this subsection, we use @,,,. The
systematic errors of the experiments are treated using the
method of pulls, parametrized as &, for the signal error and
&, for the background error. These parameters are given
Gaussian priors which form the term p(&0)=
& /ot + & /o3, where ¢ = {o,,0,} are the sizes of the
systematic errors given in Ref. [66]. P(@ggc) comprises a
sum of Gaussian priors for the oscillation parameters
®psc., except for 4. For the central values and widths
we use the best-fit and 1o width NuFit results, respectively,
which are given in Table IX. The value of yZ, is always 0,
as the best fit is exactly the true value. In the following
results, we allow a;, and a3 to vary freely. While varying
the true value for one of {@,;, ay,, @23, A3y, 32, @33 }, We set
the true values of a, and a5 to be 0.

We scan all possible true values for the targeted
parameter to test the “A, symmetry” hypothesis, i.e., @, =
a3, =0 (for n =1, 2, 3) in Fig. 5. The solid curves and
dashed curves correspond to oscillation parameters fixed at
their best-fit values and values varying in lo ranges, as
given in Appendix A. The solid (dashed) curves represent
the cases with minimum (maximum) correlations with the
oscillation parameters. This is for all possible correlations
among the parameters. For any flavor model consistent
with oscillation data, the A )(i4 value is located between
these two curves. We summarize the above setting in
Appendix A 1. The larger A )(3&4 values are seen for oy,

9 T frele 71777
’I
8 / .
|
7F / 1
!
]
6 / :
/
aT 0T T
>
< 4t |
3| (€55 m—
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O Il Il
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True «,,
FIG. 5. A )(i4 to exclude the “A; symmetry” hypothesis
(ay, = a3, = 0) over the true value from —0.3 to 0.3. a,, or
as, are forbidden under the flavor symmetry A,. Normal mass
ordering with § = 270° is assumed. The solid (dashed) curves
represent the fixed (free) oscillation parameters, which can been
seen as the cases with the minimum (maximum) correlation with
the oscillation parameters. More details about the setting can be
seen in Table X. The oscillation parameters are taken from the
current global fit results [62] (shown in Table IX).

0y, Ap3, and az3. For the other two parameters asz; and a3,,
which don’t perform as well, a minor asymmetry feature is
seen. az; <0 has a slightly higher significance than
az; > 0. At az; = 0.1, the exclusion level can reach
1<A )(i4 < 6; however, at a3, = —0.1, A )(1244 ranges from
2.5 t0 9.5. We see the opposite asymmetry for az,, as 1.6 <
A)(/%4 <63 (04< A;(fh <4.8) at a3 = 0.1 (-0.1).

To understand the statistical meaning of the result in
Fig. 5, we need to look at Table VI. Given a flavor model
that predicts both oscillation and NSI parameters, we
should adopt Wilks’ theorem. Considering the maximum
and minimum of the possible number of degrees of freedom
for the y? distribution, in Table VI we show the average
statistical significance No to exclude the A, symmetry by
simply using Wilks’ theorem in the case with a matter effect
corresponding to the 1o bounds in Table V. The exclusion
level for a5 is from 76 to about 100, while that for a,; and
ay, ranges from ~4¢ to ~60.

We conclude this subsection by noting that DUNE has a
high potential to test textures predicted by the “A,
symmetry” hypothesis, which only predicts diagonal
entries of e.

C. Testing “Z, symmetry” in DUNE

From the EFT point of view, combining dimension-eight
operators with the Z,-preserving flavon VEV can predict
plenty of off-diagonal NSI textures. Therefore, testing
the “Z, symmetry” by using Z,-motivated NSI textures
is more complicated than testing the “A, symmetry.”
Fortunately, some of them have stronger constraints
than others if UV completions of these operators are
accounted for, and only T, T,, T3, and T, may reach
the percent level, as shown in Sec. IV B. To simplify
our discussion, we will only focus on these textures.
For clarity, we reparametrize their linear combination as
follows:

TABLE VI. The averaged statistical significance to exclude
the A, symmetry at the 1o bounds in Table V for two cases with
different degrees of freedom (d.o.f.) using Wills theorem. These
two cases are considered to be the maximum and minimum of the
possible degrees of freedom. The range is for all possible
correlations. The maximum (minimum) number of d.o.f. corre-
sponds to the case with six free oscillation parameters and eight
free NSI parameters, compared to the A,-symmetry-preserved
case with zero (six) free oscillation parameters and two free NSI
parameters: | (6 + 8) — (0 + 2)| = 12 for the maximum, while for
the minimum |(6 + 8) — (6 + 2)| = 6.

Parameter
d.o.f. (2531 (¢5%) a3
6 4.80-5.70 4.80-5.5¢ 7.80-10.20
12 3.70-4.60 3.70-4.40 6.96-9.4¢0
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TABLE VII. The 1o bounds for x4, y*“ and z*“ from the
global fit [23] shown in Table IV, and expected 1o bounds on w,
x, y, and z for DUNE with fixed oscillation parameters, assuming
true values w = x = y = z = 0. The superscripts « and d denote
NSIs with only u and d quarks, respectively. For both fittings, we
allow the other NSI parameters to vary, except for w in the fit
using the global fit results. To avoid conflict with the “real €,.5”

assumption of the global fit, we set w = 0 in the second and
fourth columns.

Global Fit Global Fit DUNE sensitivity
wh e wd e w  [-0.013,0.025]
x"  [-0.034,0.013] x4 [-0.035,0.012] x [-0.1,0.1]

y* [-0.004,0.003] y¢ [-0.004,0.003] y [-0.01,0.01]
Z"  [-0.002,0.005] z¢ [-0.002,0.005] z [-0.007,0.017]

—X X+y—z—iw x+y+z+iw
X—z+iw 4 y—iw (66)
X +z—iw y+iw -z

where x = ay, ys—% 32—:75 ZE\‘%, and w:“—\/%. This

parametrization applies two strong constraints Ae,, and
A€, to y and z, respectively. As we will see later, this helps
us to focus on a simple but not highly excluded structure for
the NSI matrix.

Table VII shows the 1o constraint on x, y, z, w in Eq. (66)
translated from Table IV, and the predicted sensitivity for
DUNE with fixed oscillation parameters, assuming
w =x =y = z = 0. For both cases, we test one parameter
and allow the others to vary, except for w in the fitting with
global fit results. Keeping in mind that x*¢, y*< and 74
should be multiplied by a factor ~3 when comparing with
x, vy, and z, we find that the precision for x, y, and z for
DUNE is competitive with current global fit results.
Besides, DUNE is sensitive to the imaginary part w, which
however is assumed to be zero in the global fit.

We find that the result in Table VII imposes very
restrictive bounds on y and z around zeros through the
elements €, and €, and the possibility of a nonzero x. This
result leads to the structure

0 x «x
e=|x x O (67)
x 0 «x
Two sum rules can be read from Eq. (67),
€y = €or = —€ee> (68)
€y = €, =0. (69)

In the following, we study the exclusion level for DUNE
to exclude the matter-effect NSIs in the form of Eq. (67).
The statistical quantity that we study is

Osc.‘ ﬁxe‘d frlcc ———=

<
I==—

1 1 1 1

-
=" | 1 1 1
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True €,43

FIG. 6. A ;{%2 value [defined in Eq. (70)] to exclude the sum
rules in Egs. (68) and (69) over the true value of
—0.65 < €,5 < 0.65, for normal mass ordering with § = 270°.
The solid (dashed) curves represent the fixed (free) oscillation
parameters, which can been seen as the cases with the minimum
(maximum) correlation with the oscillation parameters. Also, we
consider all possible numbers of degrees of freedom. In the right
panel we show the average statistical significance No to exclude
this model using Wilks’ theorem with the 1o bounds in Table IV.

Ay =2 - xie (70)

where y?|, is the y? value defined in Eq. (65), assuming &
satisfies the structure in Eq. (67). Thus, for y?|, we use x
for the NSI parameters, while for Ig.f.» the parametrization
€qp 18 used.

In Fig. 6, we show A )(%2 for all possible correlations
from €, or €,5 = —0.65 to 0.65. We vary the true value of
one certain €44, but fix the others to be zero. We use the

TABLE VIII. The averaged statistical significance to exclude
the texture in Eq. (67) for the value of €, or ¢,4 corresponding to
the 1o bounds in Table IV for two possible numbers of degrees of
freedom, approximated by adopting Wilks’ theorem. These two
cases are considered to be the maximum and minimum of the
possible number of degrees of freedom. The range is for all
possible correlations. For the number of d.o.f., the maximum
(minimum) is the case with six free oscillation parameters and
eight free NSI parameters, compared to the hypothetical holding
pattern in (67) for NSIs with zero (six) free oscillation parameters
and one free NSI parameter: |(6 +8) — (0 + 1)| = 13 for the
maximum, while for the minimum |(6 +8) — (6 + 1)| = 7.

Parameter
d.o.f. €pe €.r €ep €or €ur
7 2.20-4.Tc ~0 3.16-6.10 5.70-9.4¢ ~0
13 1.16-3.70 ~0 20-5.10 4.706-8.60 ~0
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same experimental setting and the same oscillation param-
eter values as in Sec. V B. For the first sum rule, in Eq. (68),
within the range [-0.05,+0.05], €, and €, can reach a
significance A )(%2 > 10. The performance of the ee com-
ponent is the worst one. For the second sum rule, in
Eq. (69), a “A )(%2 < 17 significance covers roughly
—0.05 < &, < 0.05 and —0.03 < ¢,, < 0.03.

As discussed in Sec. VB, we show the statistical
significance of every element of the NSI matrix with
two possible degrees of freedom, at values of €,, and
€45 corresponding to the 16 bounds in Table IV. These two
cases again are for the maximum and minimum of the
possible number of degrees of freedom. We find that for the
77 and pt elements, there is no chance to exclude this
model. This is because of the tight constraint on these two
elements in the global fit results. We see a high exclusion
level for €,,; it ranges from 4.76 to 9.4¢. In the following
for ¢,,, the significance is expected to be from 26 to 6.16.
For the ee element, we also see a high significance from
1.1c to 4.76.

VI. CONCLUSION

Non-Abelian discrete flavor symmetries, originally pro-
posed to explain lepton flavor mixing, may contribute to
other phenomenological signatures beyond the standard
case of third-generation neutrino oscillations. The tests of
flavor symmetries have been discussed for a while in the
charged lepton sector, but they have not been mentioned in
the neutrino sector so far. In this paper, under the
assumption of an A4 flavor symmetry, we investigated
the constraints on matter-effect NSIs imposed by Ay
symmetry and, after its breaking, those imposed by the
residual symmetry Z,. We established connections between
NSIs and flavor symmetries on two levels: the effective
field theory level and the UV completion level.

On the effective field theory level, we imposed A,
symmetry on higher-dimensional operators (d < 8),
which results in NSIs in neutrino oscillations. We only
considered operators involving four SM fermions. We have
carefully removed those operators that introduce
tree-level four-charged-fermion interactions to avoid the
strong constraints from the relevant flavor-violating
processes. Only one dimension-six operator [O!=
€ac€ba(Laa?"Lip)(Ley7"Las)] and seven dimension-eight
operators  [O*3436 = (T rytug )(F,y,Fs) (for F =
Ug.Dr.Eg. Q. L), O" = (L, Hy"Lys)(Qp,7,H Q5), and
O = ¢&,,.(Ly Hy"Lys)(0,Hy,Q.5)] contribute to matter-
effect NSIs, as shown in Table I. Following the general
approach used in flavor models, the three lepton doublets
Ly, L,, and L; were arranged as a triplet of A4. For any
other SM fermions, we performed a scan of all possible
representations in the flavor space. By including a flavon
with a Z,-preserving VEV, A, is broken to Z,, and we

obtained Z,-motivated NSI textures. Both A,-motivated
textures and Z,-motivated textures have been systemati-
cally investigated in this work, with the main result listed in
Table II.

Then, we considered how to realize these operators by
introducing new particles in renormalizable models of A,.
The dimension-six operator is realized by introducing
electroweak singly charged scalars as mediators.
However, this case is strongly suppressed since couplings
for Ly, L,, and L3 in A4 are correlated with each other, and
thus strong constraints from CLFV measurements cannot
be avoided. Dimension-eight operators are realized by
including heavy sterile neutrinos and charged scalars.
The operators (O>3*° involve extra fermions F =
Ug, DR, Eg, Q. By arranging F as singlets of Ay, the
couplings for different generation fermions, i.e., F; and
F; (for i # j), are not correlated with each other, and the
constraints from CLFV measurements or quark-flavor-
violating processes do not apply to NSIs. Imposing Ay
does not give interesting observable NSI textures. After A4
is broken to Z,, four interesting textures T, T,, T3, and Ty,
were obtained, as shown in Eq. (50). We refer to them as
major textures. The main constraints to these textures are
from the measurement of the nonunitary effect of the lepton
mixing. Including the experimental constraints, the coef-
ficients of these textures may maximally reach the 10~2 or
1073 level. Arranging F as triplets of A, gives additional
NSI textures, all strongly constrained by experiments, and
we refer to them as minor textures.

To understand what we can do with NSI textures in the
near future, we used the A4- and Z,-motivated NSI textures
to analyze how to test the flavor symmetry by measuring
NSIs in DUNE. We considered all possible correlations and
the maximum and minimum numbers of free parameters,
which affect the corresponding statistical significance. Two
applications were studied. One was a test of “A, sym-
metry.” The off-diagonal entries of the NSI matrix are
forbidden by A4 Symmetry, i.e., Ay = Oxp = O3 = 3] —
az, = a3y = 0. Excluding this hypothesis would allow us
to exclude the “A, symmetry,” and we predict that DUNE
will be able to accomplish this. For the cases with the
maximum and minimum numbers of degrees of freedom
for the y? distribution, in Table VI we show the average
statistical significance No to exclude the A, symmetry
using Wilks’ theorem in the case with a matter effect
corresponding to the 16 bounds in Table V. The exclusion
level for a3 is from 76 to about 100, while that for a,; and
ay, ranges from ~4¢ to ~60. High exclusion levels for as,
(n =1, 2, 3) are also expected. DUNE can constrain NSI
parameters competitively with current global data. In
particular, it can measure the imaginary part w with percent
precision. We also suggested testing the two sum rules of
the NSI parameters, as shown in Egs. (68) and (69). We
showed the statistical significance to exclude the texture in
Eq. (67) for every element of the NSI matrix at values
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corresponding to the 1o bounds in Table IV, in the cases
with the maximum and minimum numbers of degrees of
freedom. We found that, although for the zr and ur
elements there is no way to exclude this model, the high
exclusion level of ¢,, ranges from 4.7¢ to 9.4¢. For ¢,, and
€,., the significance is expected to be from 26 to 6.16 and
1.16 to 4.70, respectively. We now see good performance
for both applications in DUNE.

To summarize, NSIs in neutrino oscillations have been
studied in the framework of non-Abelian discrete flavor
symmetries for the first time. The textures of NSIs were
predicted using flavor symmetries. Measuring these tex-
tures can in principle provide a new way to test flavor
symmetries and residual symmetries. It is a complimentary
to the studies of flavor symmetries in standard neutrino
oscillation measurements and CLFV processes. Our sim-
ulation results show that even though matter NSI effects are
predicted to be small for DUNE in general, these could
provide extra information that might extend our under-
standing of flavor symmetries. And, we showed how useful
they are. What we wished to show in this article was
not only the theoretical features of flavor symmetries, but
also the idea that we cannot waste these small but useful
effects. In particular, we note that if A, is conserved at the
NSI level, it could be hard to see matter-effect NSIs in
DUNE. This is because DUNE is less sensitive to the
flavor-conserving effects. Therefore, the null result for the
matter-effect NSIs in DUNE could mean that “A, sym-
metry” is conserved at the NSI level. And this could still
extend our knowledge of flavor symmetries at higher
energies.
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APPENDIX A: NEUTRINO
OSCILLATION PARAMETERS

In the standard case, neutrino oscillations are described

by the mass-squared differences Am3,, Am3,, and Am3,,
where Am3; = m7 —m; and the mixing matrix U is para-

metrized by three mixing angles 6;; and a CP-violating
phase 6 as

TABLE IX. The true values used in this work, unless otherwise
stated explicitly, with their uncertainties (the 1o range of the priors
we have used in our fit). These are based on NuFit 3.0 (2016) [62].
The definition of Am%l is as the same in NuFit 3.0, for normal
ordering Am%l = Am%l, while for the inverse one Am%l = Am%z.

Parameter Normal ordering Inverted ordering
61, [°] 33.561077 33.561077
015 [°] 8461012 8.49703
053 [°] 41.6%13 50.011
Am3, [x1075 eV?] 7.491019 7.491 012
Am?, [x1073 eV?] +2.524700% —2.514150.
5[] 270 270

1 0 0 C13 0 S13e_i6
U= 0 Co3 8§23 0 1 0

(A1)

where s;; =sin6);; and c¢;; = cos®;;. Except for 6, we
generally adopt the last global fit results in Table IX, taken
from Ref. [62], for the true values and the priors. For
consistency, we should assume a flavor model for both the
oscillation and NSI parameters. However, we do not expect
that this will make a large difference since the flavor model
should be allowed by global fit results. Further, as the current
global result is not significantly changed after including
NOvA data, which may have the impact of NSIs, our results
do not lose predictability. Except for §, we implement priors:
we assume Gaussian distributions, centred at the true value
with the width taken as the 1o bound from the current global
fit results, shown in Table IX.

TABLE X. Summary of the settings for the true and tested
values used to study A )5314' The oscillation parameters (Osc.
Para.) are fixed at the best fit (b.f.) values from the global fit
results in Table IX for the true values. We study both scenarios
with fixed and varying oscillation parameters with priors, con-
sidering all possible correlations. The widths of the priors for the
oscillation parameters are the sizes of the 1o uncertainties from
the global fit results in Table IX. The flavor symmetry A4 only
allows {a;,, a3}, which are fixed at 0 for true values, but are
allowed to vary freely for tested values. The parameters {a,,
a3, + are not allowed by A,. For their true values, we study each of
them by changing one value from —0.3 to 0.3, but fixing the other
at 0. For the tested values, we fix all of them at 0.

Osc. Para. iy, A3 0y, A3,
True values Fix them Fix them at 0  Change one; fix
at b.f. the other at 0
Tested values  All fixed Allow them Fix all at 0
or free varying
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1. Parameter settings for the A, symmetry study

In Sec. VB we study the potential to exclude the
hypothesis of A; symmetry preservation in DUNE. The
settings for the oscillation and NSI parameters in the
simulation are summarised in Table X.

APPENDIX B: TEXTURES OF NSIS AT THE
SOURCE AND DETECTOR PREDICTED BY A,

In this Appendix, we list the textures of NSIs at the
source and detector in the framework of A, symmetry.
These textures are directly dependent on the fermion
representations in the flavor symmetry.

NSIs at the source and detector are expressed as 3 x 3
complex matrices €’ and €, respectively, contributing to the
superpositions of flavor states,

L i
) = 55 () + el ).
@ p
1
o =g (1l + ete).

(B1)

where 5, = \ /" 518,5 + €557 and nfy = \ /37,645 + €54/

(for a # f # y # @) are normalization factors. Replacing
eds with €%, we obtain NSIs for antineutrinos. The
effective operators describing NSIs for neutrino produc-
tion at the source and measured at the detector can be
expressed as

12
ENSI = 2\/§GF Z cgﬁyé(’)gﬂyﬁ + H.c. (B2)
p=7

Given the higher-dimensional operators in Eq. (19), the
relations between the NSI parameters at the source and the
detector (¢, and egﬂ) and the higher-dimensional operators

are given by

12 12

R s,p AP d __ d,p .P

Cap — E " Copils €ap — E :” Cap11> (B3)
p=7 p=T

where n%” and n%? are order-one coefficients related to the
number densities of electrons and neutrons.

We only require that the lepton doublets L =
(Li,L,,L3)T be a triplet 3 of A, (L3) to realize large
mixing angles, but we do not specify the representations of
A, for the rest of the fermions. In other words, they could
have any of the following representations:

(1) Three right-handed charged leptons Er, Esr, Esr
are arranged as different singlets of A4 or form a
triplet 3. The former case is helpful for realizing
hierarchical charged lepton masses. Without loss of

generality, we consider two cases (Ex1l) and (Eg3)
for right-handed charged leptons:

(Erl) Elg ~1,Exp ~ 1, Ep~1",

(Er3) Er = (E\r. Exr. Esg) ~ 3. (B4)

(2) The left-handed quarks Q;, Q,, Q3 may also be
arranged as different singlets or form a triplet. We
consider four cases:

(Ql) Q1 ~1,
(Q1/> Ql ~ 1/9
(Q1//> Q1 ~ 1//’
(Q3) 0= (Q1, 0, Qs)T ~3.
Since O, and Q5 do not contribute to NSIs in
neutrino oscillations, we do not care about their
representations.

(3) Similarly, we consider two cases for up-type and
down-type right-handed quarks, respectively:

(BS)

(Url) Ujg ~ 1, (Dg1) Dig ~ 1,
(Url') Ug ~ 1, (DY) Dig ~ 1,
(Url") Uig ~ 1", (Dr1") Dig ~ 1",

(Ur3) Ug = (Uir, Upr, Usg)" ~ 3,

(Dr3) Dg = (Dig, Dog, D3g)" ~ 3. (B6)

All of the above possibilities are considered in this
Appendix.

1. A4-invariant operators

We scan all A-invariant operators ¢//sO]2)2, which
contribute to NSIs at the source and detector. Besides Ty,
T2, and T3 in Eq. (22), we find six additional NSI
textures:

01 0 0 -1 0
T,=|0 0 1|. T,=|l0 o0 2],
100 -1 0 0
0 -1 0
T,=|0 0 o],
1 0 0
00 1 0 0 -1
T=|100| Th=|-10 o],
01 0 0 2 0
0 0
T, =|-1 0 (B7)
0 0
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TABLE XI.

Operators preserving A, symmetry and the predicted NSI textures at the neutrino source and detector, where F' represents

any fermion content in the SM and 1° = 1, D, are arbitrary diagonal matrices. Regarding the notation of the representations, for instance,
(L3,E3, 0107, U3)means L ~3,e~3,0 ~ 1)y ~ 3, and Dy can take arbitrary representations of A,. The textures Tg’,;//) are shown

in Eq. (B7).
Representations A-invariant operators NSI textures
or-? (L3) (I;L)I(F_F)l Ty
(L3, F3) (LL)3 (FF)s, T
(LL)3, (FF)s, T3
oo (L3, ER3, 03, Ur3) (LER);(QUR); Ty
(LER)3,(QUr)3, T
(LER)3, (QUR)3, T3
(L3, Eg3. 03, Ug1!") or (L3, Ex3. 011", Ug3) (LER)3,(QUR)s T
(LEr)s, (QUr)s 3l
(L3, ER3, 01, URI(,'”))? (L3, Eg3, 07, URI/(//’())) (Z‘ER)W” ( 0 UR )y ﬂ’i”)
or (L3, Eg3, 01", Ug1"(®) )
(L3, Eg1, 03, Ug3) (LER)3(QUr)s, DTy
(L3, Ex1, 01U") Ug3) or (L3, Exl, 03, Ugl"") (LER)3(QUg)s DT
o Results are obtained from those of 0012 after the replacements O — Dy and Ug — Q.

The operators that may result in these correlations are listed
in Table XI.
For ¢/7507 5%, the same discussions on ¢ 5Oz 5 apply

10-12(7)10-12 ;
to these operators. Copys Oaﬁy 5~ provides more textures for

NSIs at the source and detector. Here we take O'2

oy @S an

example to obtain these textures in detail.

(1) If L~ER~Q ~ Uy ~ 3, the Ay-invariant combina-
tions (LEg)3,(QUR)3, and (LEg); (QUy)s, result
in Ty, and T3, respectively.

2) f L~Eg~Q~3 and U ~1, the As-invariant
combinations (LEg); (QUg)3 and (LEg);, (QUg);
result in T}, and T);, respectively. Replacing
Ugr ~1 by Ug ~ 1" leads to another two textures,
T{, and T{;, respectively. These relations are
also valid for L~Ezx ~Ug~3, O0~1", and 1/,
respectively.

(3) If L~ ER ~3 and Q1 ~ UIR ~ 1, 1/, 1//, the A4—
invariant combinations (LER);(QUy); result in
Ty,. If Q; and U r belong to different singlets of
Ay, we obtain T/, and T}, for Q,U g ~1’ and 1",
respectively.

@D If L~Q~Ur~3, Er~1,ERx~1,Exg~1",
we obtain the Au-invariant combinations
Y Vi(LER)3(QUg)s and > ViH(LER)3(QUr)s,
which we denote as (LER);(QUgr); and
(LER)3(QUR)3,, respectively. Here, y; and y; are
arbitrary parameters. For the first term we find

Caﬂll =0 fora Sﬁ ﬂ (BS)

Then, the NSI matrix %9 can be reexpressed as
DTy, where D, is an arbitrary diagonal matrix.
The second operator does not contribute to the NSIs.
(5) If L~Ug~3, Elg~1,E;x~1',Ezg~1" and Q ~ 1,
the A,-invariant combinations (LEg)3;(QUy )3, only
result in an arbitrary diagonal matrix, just like the
former item, and we express the NSI matrix e*¢ as
D, T, where D, is an arbitrary matrix. Once we
change the representation of Q to be 1”(), the order
of the three components of the triplet (QUR)SS will

be changed, and we arrive at DZ'I]'/I(I//).
Since O ; is only different from Oy ; by the Lorentz

indices, it gives the same types of correlations as the latter.

Olj,5 has a different particle arrangement than O}7 5. By

making the replacements Q — Dy and Q — Uy, all of the
discussions regarding O}5 5 apply to OLp 5.

The textures in Eq. (B7) only appear at the neutrino
source and detector and the NSI matrices e¢ may be
combinations of some of /;, I/, and I/, depending on the
choices for the representations of A4 to which Eg, Q, Ug,
and Dy belong. For instance, if Ejg~1, E,;x~1,
Esxr~1", Q~3, Ugr~1, Dig~1, we get the same
combination of NSI textures at the source and the detector
as in matter,

sd _ s.d s.d s.d
€ ——ﬂ—“a“ +T12a12 +T13a13, (B9)

where aﬁf are complex parameters. Changing the repre-

sentation of Ug to 1, we arrive at
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sd __ s,d s,d s,d 7 Jsd
€ _-[l—l]all ‘|‘-[|—12012 +-ﬂ—13a13 +-ﬂ—11a11

/s.d

+ T + Tyady, (B10)

(1)s,d

where a;,,

are complex parameters.

2. Z,-invariant operators
Once the operators O'~'2 couple to the flavon VEV,
x= (l,l,l)Tvl, new NSI textures at the source and
detector are predicted, as summarized in Table XII.
;{a,OZlgfé give rise to the same textures as in Eq. (33).
For 4O} 17, we follow the same procedure as in the last
section, taking y C’)i%yﬁ as an example:

(1) If L~Egx~Q~Ug~3, the Z,-invariant opera-
tOfS_)(((LElﬁss(QUR)ss)ss’ Z((EER)3A(QUR)35)3S’
X((LER)3,(QUR)3,)3,» and x((LERr)3, (QUr)3,)3,
result in the textures 3T, — Toy, 3T i3 + Tasz, T3o,
and Ts3, respectively. By changing the representa-
tions to L ~Ex~Q~3 and U;g ~1"") or L ~
Ex ~Ug ~3 and Q; ~ 10", we arrive at the same
textures.

TABLE XII.

(@)

3

If L~ ER ~3 and Ql’ UlR ~ 1, 1/, 1//, the Z2—
invariant - combinations  y((LER)3 (QUR)yy.17)3»
X((LER)3, (QUR)yy4r)3 Tesult in T and To,
respectively.
If L~ Q ~ UR N3, ElR ~ lvEZR ~ 1/7E3R ~ 1//, the
operator Y ;y! y(LEr)3(QUy); requires
Ceell = Ceull = Cerlls Cuell = Cupil = Curlts
Crell = Crﬂll = Crrl1> (Bll)
where there is no correlation between c,p;; and
cyp11 once a # o', It gives rise to the NSI texture
i yi 00
y» v v | =] 0y 0 |TiTy, (B12)
Y5 Y5 Y5 0 0 5
where

Operators preserving the residual symmetry Z,, Z, C A4, and the resulting NSI textures at the neutrino source and

detector, where F represents any fermion content in the SM. The NSI parameter correlations T,, and T3, are shown in Eq. (33). D; are

arbitrary diagonal matrices.

Representations Z,-invariant operators NSI textures
ZOT0 (L3) X(LL)3 (FF), T+ Ty
X(LL)3, (FF), Tz + Ty
(L3,F3) )((@L)ss(__F)ss)sg 2T, =Ty
)(((_14)3,\(1_”:)35)3g 2T3 =Ty
Z((éL)ss (IfF)ss)sA LE)
X((LL)3, (FF)3,)3, LES
201012 (L3, Eg3, 03, UR3) X((LER)3,(QUR)3, )3, 2T, =Ty
X((LER)3, (QUR)3,)3, 2T3— Ty
}{((_ER)ss( _UR)35)3A T3
X((LER)3,(QUr)3,)3, Ts3
(L3, ER37 Q3, URI(I’N)) or (L3, ER35 Ql(/'”), URS) }{((_ER)3S( 0 UR)3)3S 2"]—12 — -[I—zz
Z(({‘ER)SA(_ Ur)3)3, 2T3 = Ty
Z((éER)ag( < UR)3)3A T3
x(( ER)SA( UR)S)SA Ts
(L3, Eg3, 01, Ugl""), (L3, Eg3, OV, Ug1'""?) X (LER)3(QUR)yp1)3 T+ Ty
or (L3, ER37 Ql”, UR1H<0',>) }((( _ER)3S (QUR)] 1 1//)3 -[I—l3 + -[I—23
(L3, Er1, 03, Ug3) }((I:_ER)?:(Q_UR)I DyTy Ty
Z(({‘ER)S(QUR)?’S)SS DT\ Ty,
}(((%ER)S(QUR)3S)3A DsT\ T3
(L3, Ex1, 010", Ug3) or (L3, Egl, 03, Upl"") ¥((LER)3(QUR)3)s DeT1T1
X((LER)3(QURr)3)3, D;T T3
4OU Results are obtained from those of yO'*1? after the replacements Q — Dy and Ug — Q.
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1 1 1
=111 (B13)
1 1 1
X((LER)3(QUR)s,)3, and  y((LER)3(QUR)s,)3,
lead to
Ceell = _zceﬂll = —=2Cer11>
Cuell = —20,4,411 = —20,4111»
Crell = —201,411 = =2¢115
Cep1l = —Cerll> Cup1l = —Cyurlls
Coull = —Crrlls (B14)

respectively, and there is no correlation between
Copr1 and cppyy for a # @ in each case. From these
two operators, we obtain the NSI textures

D, T\ Ty, DsT| T3, (B15)
respectively, where D; are independently arbitrary
diagonal matrices. Replacing the representation
|

of Q by any singlet 1, 1/, or 1”, we obtain the
Zy-invariant - operators y((LEg)3(QUg)3)3, and
X((LER)3(QUR)3)s,» which give the similar tex-
tures DT Ty, and D, T} T3, respectively, with Dg
and D, being arbitrary diagonal matrices.

APPENDIX C: MATHEMATICAL
PROPERTIES OF T;

The textures T, satisfy the following interesting math-
ematical properties. They are helpful for our discussion
in Sec. IV.

(1) T; (for i =1, 2, 3, 4) form the following “closed”

algebras:
—l]—lz = —l]—lv —l]_l—l]—i == —l]—iv —l]—z—l]—:; == —i—|]—4,
—l]—z—l]—4 - iT3, —[|—3—|]—4 - —l—n_z (Cl)

(2) Given two 3 x 3 coupling matrices or mass matrices
My=ap1 4+ o T; and My = o1+ 331, BT,
their product MM, is a linear combination of 1
and T,,

MM, = apfyl + (apfy + a1y + a1y + aofpy + a3 fp3 + aufa) T,
+ (apfs + wmfy + aify + aafpy + iy — iozfy)T,
+ (apf3 + asfy + a1 fps + azfpy + iy — iaufr) T3

+ (apfs + auPo + a1fy + aufpy + iasfy — iy fp3) Ty

(3) If M, is reversible, the inverse matrix M 1‘1

M-l - ap detAﬂ+ 2+ _detA T
' detA | o 0T a; !

-l —asls = 05474] ; (C3)

where detM | =ay(a3+2apa; +a}—a5—a3—a3) is

also a linear combination of 1 and T,.
By setting some of ¢; or 3; to zero, the following corollaries
are obtained:

(1) 1 and T, form a closed algebra: if M, M, are linear
combinations of 1 and T}, their product and inverse
matrices (if reversible) are also linear combinations
of 1 and T;.

(2) 1, Ty, and T, form a closed algebra: if M, M, are
linear combinations of 1, T;, and T,, their product
and inverse matrices (if reversible) are also linear
combinations of 1, T,, and T,.

(3) 1, Ty, and T form a closed algebra: if M|, M, are
linear combinations of 1, T, and T,, their product
and inverse matrices (if reversible) are also linear
combinations of 1, T, and Tj;.

(€2)

APPENDIX D: OSCILLATION PROBABILITIES
WITH MATTER-EFFECT NSIS

To understand the impact of aj;, (in the following, we
simply use «,,,) on neutrino oscillation probabilities, we
consider the probabilities with nonzero €ap (in the follow-
ing, we simply use €,5). Therefore, we first study the
probability including the NSI matter effects in terms of €,
and then, by using the relations between the two parameter
sets in Table III, we can extend our understanding of how
the flavor symmetry model realizes the oscillation proba-
bility through matter-effect NSIs.

. Am?
Assumin 1~ \/le, s ~ 513 as the first-order per-
g ant, | aﬁ| 13 p

turbation terms &, we expand the disappearance oscilla-
tion probability P(v, — v,) and appearance oscillation
probability P(v, — v,). These equations are given with
the leading-order coefficient for each €,4 to understand

how each element affects the probability at the leading
order:’

"Our results are consistent with those of Ref. [67].
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P(Uﬂ d l/”) = P0<l/” e I/M) + 5PNSI(U/4 — Uﬂ)

L 1
~ Po(l/ﬂ - IJ'u) — AG”T COS ¢/H (sin3 2923 i sin 2A31L + 4 sin 2923 COS2 2923 Amz Sill2 A31L>
31

L 1
— A€, 33535 (c3 — 533) <8_E sin2A5, L — A sin? A31L)
31

+ C}c—»e;euleeul + C/14—>e;er|€e1| + C;%—)e;eeéew (Dl)

P(’/y - I/e) = PO(D/I - I/e) +6PNSI(I/;¢ - I/e)
2

Am
~ Py(v, = v,) + 8513/€0|523 ——5——sin A4, L
" e 131€eul°23 2 31
Amz, — A

A , AL
x <s§3 mcos (64 ¢e,) sin Af| L + 3 sin - cos (6+ ey — A31L)>

Am3
2 31 in AA
+ 8s513]€0c|C23 sin A%, L
| er| 23 A %1 A 31

A AL
X | —5——c0s (6 + ¢,,) sin A, L — sin— cos (6 + ¢, — A L)>
2 et 31 et 31
<Am3 1 —A 4FE
+ C/24—>e;/,n|€;n| =+ C;%—»e;eeéee =+ C;%—»e;rrgrr’ (D2)
[
where Py (v, — Vﬂ) is the transition probability for v, — v TABLE XIII.  The leading coefficient of each e,,/;.apd a;j, for
A A Amd A v, = vyandy, = v, RC, s 5 (ZC; 5. 5 is the coefficient for the
i = 31 — 31 ; g
without NST matter effects, A3} = —z*, and A3, = —5—. real (imaginary) part of yd as a — f3, which is of the order x.
Here, for the coefficient Cecr . emen: the upper index
gives the order of this coefficient, and the lower one gives ~ Channel Y = Y Y~ Ve
the channel and the element. oo Coce Covree
In Eq. (D1), the coefficients of €,, and &, appear at &, Co e Coonr
leading order, i.e., at the order Cg_%elemem. However, € C}f_,,,;e,, C};—»e;eu
the coefficient of &, 1is proportional to the factor — €er C/(;—m;er C/;—»L’;er
(¢33 —s3;), which is suppressed since 03 ~45°. The € Comspipr Cmerpr
coefficients of é,,, €,,, and €,,, which are of second, first, apn Coice Coeree
and first order, respectively, have less influence on a3 V200 e 1C e =V2C e
Py, = v,). Ehereliqe, dthe 'impa(lictbof NSIsO on hthe cﬁs— o, e Ch e TeRC)ecen + I RChscer
appearance channel is dominate €,.- On the other 10 | 1 | |
pp o ) y Ut ax 7§Cﬂ—>ﬂ:ﬂf ﬁRcﬂ_,g;w‘F\/—l—zRC”_,e;”
hand, from Eq. (D2), it is obvious that the largest LRC! LRC! L Rel LRel
. . .- J a3 ) H—p,ep +§ p—per T3 H—eep + 2 u—eetr
contributions to the transition probability are from e,, " L7l Loze 70l Le
and e,,, with coefficients of the first order. In Table XIII, we o VOTTHTIE T T THTIer o e T e T hmeer

. L7101 —_L7c! _L7c! —_L7C!
present the coefficients for a,,, based on Egs. (D1) and %3 \/EICM—'/M’# \/ﬁzcﬂ—m.ef mZCﬂ—m;w mzcu—w;er

(D2) and Table III. 33 %Icli—»y,e,u + %IC/E—W,er %IC[II—)E;EM + %Icllt—w;er
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