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Abstract 
 

The trapdoor problem is a useful model to understand the stress distribution around geo-

structures. This paper focuses on evaluating the conditions of maximum arching (minimum 

loads on trapdoors) developing during the lowering of plane-strain active trapdoors in 

cohesionless granular materials. A parametric study using finite element analysis has been 

performed to investigate various factors affecting the maximum arching conditions in active 

trapdoors, with a particular focus on the effect of soil dilatancy. The paper also presents 

rigorous upper bound limit analysis solutions. Previously published solutions dealing with 

soil non-associativity have been discussed and compared with the finite element results. The 

finite element analysis shows that using a Mohr Column model with the associative flow rule 

and reduced strength parameters, overestimates the load reduction on trapdoors compared 

with a non-associative model with full soil strength parameters. 
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Introduction 
 

The classical trapdoor problem provides a useful tool to understand the stress redistribution 

occurring around geotechnical structures such as tunnels, buried pipes, retaining structures, 

pile-supported embankments and plate anchors.  It could also be useful to provide insight into 

the process of cavity propagation towards the surface resulting in sinkhole formation. The 

experimental setup usually comprises a horizontal trapdoor below a geomaterial with 

downward (active) or upward (passive) movement of the trapdoor to model the deflection of 

support relative to the adjacent soil mass. The trapdoor problem has been investigated by a 

considerable number of researchers. Engnesser [1] pioneered the experimental studies of 

trapdoors under normal earth gravity. His tests included strip trapdoors underlying sands of 

varying heights. Terzaghi [2], Ladanyi and Hoyaux [3], Evan [4] and Tanaka and Sakai [5] 

reported plane-strain active tests in sand while McNulty [6] reported tests on circular 

trapdoors with surcharge loads. These experimental studies have shown that the soil load on 

the trapdoor is substantially lower than the initial geostatic loads when the trapdoor is moved 

even slightly in the download direction (in the active mode). In granular materials, the 

amount of load reduction is a function of the overburden depth, the trapdoor size, the friction 

angle, the granular medium’s dilation angle and the relative displacement between the soil 

and the trapdoor. Stress redistribution or arching occurs when load is transferred to the 

adjacent stiffer parts of the soil in response to lowering of the trapdoor, with the state of so-

called maximum arching being reached as the minimum load on a trapdoor is mobilised.  

 

Centrifuge tests under elevated acceleration levels have also been used to model trapdoor 

problems. Abdulla and Goodings [7] studied the effects of pre-existing voids in weakly 

cemented sand and clay. Stone and Wood [8] tested controlled movement of trapdoors in 

sands and clay. Costa et al [9] studied the presence of presence of pipe inclusions directly 
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above active trapdoors in sand. The focus of these centrifuge tests was the mechanism of 

deformation in the soil above the trapdoor and the load on the trapdoor was not measured.  

Iglesia [10] and Iglesia et al. [11] measured the load on trapdoors in the centrifuge and 

studied factors affecting the amount of load reduction in plane-strain trapdoors. Dewoolkar et 

al. [12] carried out centrifuge tests on circular trapdoors underlying sand. Rui et al [13] 

presented a series of plane-strain centrifuge experiments to study the interaction between 

multiple trapdoors.  Jacobsz [14] studied the evolution patterns of the shear bands in deep 

trapdoors in the centrifuge to gain insight into the propagation of cavities towards the ground 

surface, ultimately leading to sinkhole formation.  

 

The scaling challenges to achieve complete similarity between centrifuge models and 

prototypes of trapdoors in sand have been discussed in detail by Iglesia et al. [15].  A 

parametric study to investigate the effects of g-level, grain-size, trapdoor width and 

overburden depth has been conducted. It was found that the particle-size scaling becomes 

unnecessary when the trapdoor width is greater than 20 times the grain size.  

 

Several theoretical studies on trapdoors have also reported in the literature. Closed form 

solutions for load reduction of trapdoors were developed by Engesser [1], Terzaghi [2], 

Bierbaumer [17] and Krynine [18] using limit equilibrium methods. Detailed validation and 

discussion of the assumptions used in these methods can be found in [11]. Rui et al [19] used 

limit equilibrium to study the evolution of soil arching which considers interaction between 

multi-trapdoors. Solutions based on limit analysis have been developed by Davis [20], Gunn 

[21] and Martin [22] for plane-strain trapdoors in undrained clay and by Smith [23][24] for 

shallow trapdoors in sand.  Sloan and Assadi [25] used Finite Element Limit Analysis 

(FELA) to study trapdoors in undrained conditions. In their formulation linear stress (lower 

bound) and linear velocity (upper bound) triangular finite elements were used to discretize 
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the soil mass. Every node in the FELA mesh is unique to a particular element so that 

statically admissible stress (LB) and kinematically admissible velocity discontinuities (UB) 

can occur along shared edges between adjacent elements. Wang et al. [26] used FELA with 

adaptive re-meshing to obtain lower bound solutions to the minimum load on trapdoor. Wang 

et al. [26] also obtained upper bound solutions using a discontinuity layout optimisation 

(DLO) algorithm [27]. The DLO algorithm makes use of mathematical optimisation 

techniques to define a critical layout of slip lines. Finite element (FE) analysis of trapdoors 

has been carried out by Koutsabeloulis and Griffiths [28] to study the displacement response 

and minimum load on trapdoors in a range of geometries and soil properties. Tanaka and 

Sankai [5] back analysed their experimental data using finite element analysis. FE was also 

performed by Nakai et al. [29] but the focus was on shear bands and the development of slip 

surfaces. In the theoretical studies mentioned above, there is limited discussion on the effect 

of dilatancy of granular materials on the state of maximum arching, with the exception of 

Smith [24] who developed limit analysis solutions for shallow trapdoors in non-associative 

soil.  

 

This paper focuses on evaluating the conditions of maximum arching developing during the 

lowering of plane-strain active trapdoors in granular materials. The paper presents results of 

350 finite element analysis simulations aimed to investigate various factors affecting the 

maximum arching conditions in active trapdoors, with a particular focus on the effect of soil 

dilatancy. The paper also presents rigorous upper bound limit analysis solutions which 

provide a further check on the results obtained using finite element analysis. 
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Methodology 

Finite element analysis 

ABAQUS/Explicit finite element software [30] was used to simulate trapdoor experiments.  

A plane-strain idealisation was adopted for the vertical penetration of the trapdoor 

experiment. The trapdoor width (B) is taken to be 2.032m, and the width of the soil mass is 

taken to be 26.4m. These dimensions correspond to the prototype scale for 80g acceleration 

centrifuge models of trapdoors at carried out at MIT and reported by Iglesia et al. [11].  The 

geometry and the mesh of the finite element model are shown in Fig. 1. Due to symmetry, 

only half of the whole model is considered. Only the base of the strongbox is modelled since 

the strongbox in trapdoor experiments is wide, and the details of the side walls will have a 

negligible effect on the dominating behaviour. In the finite element analyses, a perfectly rigid 

strongbox is assumed. Roller conditions are assumed at the outer vertical side and the 

centreline. The vertical faces are constrained from moving in the normal direction. Full fixity 

boundary conditions are applied to the rigid strongbox. A constraint is imposed such that the 

motion of the nodes and the surfaces are governed by a single rigid body reference node. The 

positions of the nodes and the surfaces of the rigid body remain constant throughout the 

simulation. 

 

In typical trapdoor experiments, a piston connected to the trapdoor is lowered at a constant 

rate and the soil particles flow under the gravity. It would, therefore, be overreaching to 

assign any particular velocity profile for the soil in the trapdoor zone. Since the interest is not 

in the flow of the sand in the piston compartment, the trapdoor level is assumed to be lower 

than the base of the strongbox at the beginning of the analysis by 0.2B and an imposed 

vertical displacement is applied to the bottom nodes of the sand. The bottom nodes are 

restricted to move in the vertical direction only. Rounded corners are assumed at the 
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connection between the piston compartment and the strong as shown in Figure 1 to avoid 

numerical problems. The corners are trimmed with a radius of the fillet equal to 0.1B. This 

value was selected following preliminary analyses to ensure stability during the large 

deformation contact analysis.  

 

 Bilinear plane-strain quadrilateral, reduced integration, hourglass control elements are used 

to simulate the granular material. Adaptive re-meshing with the Arbitrary Lagrangian 

Eulerian algorithm [31] are activated. Since the use of bilinear elements will require the use 

of dense meshes to achieve an accurate solution in elasto-plastic materials, the finite element 

mesh is selected to have an element size of B/40 near the trapdoor and size of B/4 at the far 

boundary. The strongbox is modelled with discrete rigid elements. It should be noted that no 

high order elements are available in ABAQUS/Explicit with adaptive re-meshing. Small 

displacement analysis without adaptive re-meshing has shown that, with the adopted mesh 

geometry and element sizes, the bilinear quadrilateral elements give almost identical results 

to the built-in six nodded triangular elements.  

 

Explicit solution procedures were used in the finite element analysis. An advantage of the 

explicit procedure compared to the implicit procedure is the increased ease with which it 

resolves complex contact problems. The interaction between the soil and trapdoor is 

calculated using a frictional interaction, with the sand characterised by a coefficient of 

friction  of 0.2. This value is based on the back analysis of centrifuge tests of trapdoor in 

sands carried out the University of Pretoria. Ideally, the coefficient of friction should not be a 

constant and it should depend on the relative motion between the surfaces in contact the angle 

of friction of sand. However, using a constant coefficient of friction could represent a 
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reasonable approximation since the focus here on the maximum arching in the sand above the 

trapdoors.  

This contact algorithm incorporates a finite-sliding formulation, allowing for arbitrary motion 

of the surface.  

 

The analyses were carried out into two steps. In the first step geostatic stress, initial 

conditions are applied with zero movement of the trapdoor. A gravity load of 10 m/s2 is 

applied to the whole model. The value of 10 m/s2 represents a reasonable approximation for 

gravity.  In the second step, a vertical displacement-rate of 0.013 m/s is imposed on the 

trapdoor nodes. The explicit solution method represents a true dynamic procedure which was 

originally developed to model high-speed impact events in problems in which inertia plays a 

dominant role in the solution. In the solution procedure, out-of-balance forces propagate 

between neighbouring elements as stress waves while solving for a state of dynamic 

equilibrium. The minimum stable time increment is normally small so that most problems 

require a large number of increments. Applying the explicit dynamic procedure to quasi-static 

problems requires certain special considerations. ABAQUS includes a built-in smooth step 

amplitude curve that automatically creates smooth velocity amplitudes, where the 

displacement rate increases from zero to 0.013 m/s in 1 second. Using this type of smooth 

step amplitude allows performing a quasi-static analysis, avoiding the generation of waves 

due to discontinuity in the rate of applied displacement.  

 

The soil is taken to be linear elastic-perfectly plastic. The Mohr-Column yield criterion is 

adopted in the analyses. Unless otherwise stated, Young Modulus (E) is taken to be 100 

MN/m2 and the Poisson’s ratio is taken to be 0.4. The soil mass is assumed to have a density 

of 1600 kg/m3.  
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Upper bound rigid-block analysis  

This study also considered a rigid-block mechanism to model the upper bound stability of 

trapdoors. This provided a further verification of the solutions from the finite element 

analysis and was developed to visualise the deformation mechanisms associated with 

minimum loads in trapdoors. The triple rigid-block mechanism considered is shown in Fig. 2. 

This mechanism could be regarded as an extension to Gunn’s mechanism [21] which was 

developed for trapdoors in undrained clay.  In Fig. 2, Ai refers to the area of rigid-block I, vi 

refers to the kinematically admissible velocity of the rigid block, vij to the velocity jump 

along the discontinuity between blocks i and j, Lij to the length of segments between blocks i 

and j, while , , and  represent the unknown angular parameters defining the rigid block 

mechanism geometry. The soil mass is assumed to be governed by the Mohr–Coulomb 

failure criterion and an associated flow rule are assumed so that the dilation angle  is taken 

to be equal to the friction angle . The compatible velocities vi and vij can be calculated from 

the hodograph shown at the right side of the block mechanism. The upper bound solutions 

derived from the mechanism is given by: 

 

    
 

10 1 20 2 21 21 32 32 1 1 3 3 2 2

3

,

  +   

/ 2
V trapdoor
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B v




        


        






 (1) 

where 
,V trapdoor

 is the average vertical stress at the trapdoor level, B is the width of the 

trapdoor,   is the unit weight of soil and c is the soil cohesion. Since the focus here is active 

trapdoors in sand, the soil is taken to be cohesionless (c=0).  
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The state of maximum arching (or minimum load on trapdoor) is often expressed in terms of 

the load ratio (P/Po), where P represents the average vertical load on a trapdoor and Po refers 

to the free field vertical load. Therefore, the load ratio (P/Po) can be expressed as: 

                                                      ,V trapdoor

o
H

P

P




                                                         (2) 

 

where H is the height of the soil mass above the trapdoor.  

 

The minimum upper bound solution is obtained by optimising the geometry of the rigid block 

mechanism using the MATLAB Optimization Toolbox. The geometry of rigid blocks is 

allowed to vary subject to the constraint that the areas of the rigid blocks and lengths of the 

discontinuity lines remain positive. 

 

Results and discussion 

Maximum arching 

Fig 3 shows the minimum load ratio (P/Po) in active trapdoors at different normalised depths 

(H/B) obtained from finite element analysis, the upper bound rigid block mechanism of Fig 2. 

The results are shown for different friction angles for associative soil (=). The finite 

element analysis and the upper bound solutions are compared with the limit analysis solutions 

of Wang et al. [26]. Wang et al. [26] used the discontinuity layout optimization (DLO) 

algorithm [27] to obtain an upper bound (UB) and finite element limit analysis FELA [32] 

with adaptive re-meshing to obtain lower bound solutions. Figure 3 shows that the finite 

element analysis is in good agreement with the limit analysis of Wang et al. The simple upper 

bound rigid block mechanism solution is consistent with the advanced DLO-UB, although it 

slightly overestimates the maximum arching in trapdoor for deeper trapdoors (H/B> 5) at 
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small friction angles. It should be noted that the advanced computational DLO-UB does not 

require a priori assumptions regarding the kinematics or location of a collapse state. While 

the number of rigid blocks in the mechanism of Figure 2 is limited to three, there is no such 

limit in DLO-UB in Wang el [26] and the number of slip lines is optimised using 2000 nodes.  

 

Figure 4 shows the pattern of the plastic engineering shear strain contours at maximum 

arching at a shallow trapdoor with a normalised depth (H/B=1). The strain contours are 

shown for two angles of friction: =20 and =40. For each angle of friction, the shear 

strain contours are plotted for two extreme cases of dilatancy:  = (associative MC) and 

=0. The plastic engineering shear strain p

s
 is defined as: 

 

                                                                    1 3

p p p

s
                                                            (3) 

where 
1

p and 
3

p are the major and the minor plastic principal strain, respectively.  

 

Figure 4 shows that the shear bands characterised by an inclination to the vertical 

approximately equal to the dilation angle with the exception to areas near the free surface and 

the centreline where the inclination is greater than the dilation angle. It should be 

remembered that in reality the dilation angle depends on stress level and varies during the 

plastic deformation preceding failure and that it tends towards zero at the critical state (see 

[33] for example). However, a constant rate of dilation is often assumed in practice in the 

absence of suitable laboratory or field data.  

 

Figure 5 shows that plastic engineering shear strain contours at a deep trapdoor (H/B=10) at 

conditions of maximum arching. The contours are shown for =40 for four dilation angles 
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=0, , and. The dotted lines have inclination from the vertical approximately equal 

to the angle of dilation. Comparing Figure 5 with Figure 4, it can be concluded that the 

deformation mechanism and shear band patterns in deep trapdoors are different from shallow 

trapdoors. At maximum arching in a deep trapdoor, the deformation mechanism is localised 

and even at zero dilation angle the shear bands do not propagate to the soil surface. The shear 

bands initiate from the edges of the trapdoor at an inclination equivalent to the dilation angle; 

however, the bands curve inwards towards the centerline. In non-associative soils, more than 

one shear band or (slip surface) can be observed.  

 

Figure 6 shows that the rigid block mechanism of Figure 2 is capable of replicating different 

modes of plastic deformation mechanism trapdoors. It should be noted that the finite element 

method is a continuum approach in which the locations of the slip lines (the dotted lines) can 

be inferred from plastic strain shear bands. For =20 and H/B=1, the optimum upper bound 

solution obtained with angular parameters =32.4, =110 and = 30.0. At these angular 

parameters, the velocity jumps along the discontinuities between the rigid blocks vanish (v21 

= v32=0) and the mechanism collapses to a single rigid block as shown in Figure 6a. For a 

deep trapdoor H/B=10 and for =40, the optimum geometry is achieved with =50, = 

69.2 and = 65.1. At this geometry, the velocities v1 and v2 vanish and the mechanism 

reduces to a single slip line with v32 = v3 as shown in Figure 6b. The associative flow rule 

finite element results for H/B=10 and =40 show a slip curve rather than a line with an 

initial inclination from the vertical equal to the dilation angle and an increasing inclination 

towards the centreline. This might explain the slight discrepancies in predicting the maximum 

arching conditions between the finite element method and the rigid block mechanism.  
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Effect of soil dilatancy 

Figure 7 shows the minimum load at conditions of maximum arching (or minimum load on 

trapdoor), expressed in terms of the load ratio (P/Po) plotted against normalised depth (H/B). 

The effect of the dilatancy was investigated for friction angle values between 20 and 40 at 

5 intervals. For each angle of friction, the results are shown for four values of dilation angles 

equal to 0, , and. Figure 7 shows that the effect of dilatancy is more significant in a 

shallow trapdoor and reduces with the increase of overburden soil. For 40, for example, in 

the case of H/B=1, the load ratio with zero dilation is about 34% higher than that calculated 

assuming associative flow rule, while the difference reduces to about 14% at a normalised 

depth H/B=10.  

 

Smith [24] developed equilibrium limiting stress fields and compatible velocity fields for a 

shallow anchor/trapdoor problem in non-associative cohesionless soils. The limiting loads are 

expressed as: 

                                                         1
P

H

H

B B
                                                           (4) 

 

where the sign depends on whether the displacement is active (-) or passive (+) and the non-

dimensional function  , in Smith’s analysis [24], is evaluated entirely from the angle of 

friction   and the dilation angle . 

 

In this paper  is back-calculated from the results of the upper bound rigid block mechanism 

and finite element method. In active trapdoors Equation 4 can be re-written as: 

 

                                                      1
o

P H

BP

   
   

 
 


                                                       (5) 
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Figure 8a plots the value of  back-calculated from optimum load ratio (P/Po) obtained from 

the rigid block mechanism of Figure 2 assuming the associative flow rule. The soil is taken to 

have self-weight and there is no surface load. The results are plotted against the normalised 

depth H/B. It can be seen from these results that  in associative soil cannot be evaluated 

entirely from   (and  ) unless the trapdoor depth is less than 0.6B in case of 40 and 1.2 

B in case 20. At these shallow depths,  becomes equal to tan  in associative soils as 

shown in Figure 8b. Beyond these shallow depths (0.6-1.2B),   varies with the height of the 

soil above the trapdoor.  

 

Figure 9 shows the variation of the value of  back calculated from finite element analysis 

for an active trapdoor underlying associative and non-associative cohesionless soils. For 

40 °, for example, in the case of H/B=1,   in non-dilating soil is about 13.5% lower than 

that calculated assuming associative flow rule, while the difference reduces to about 0.8% at 

H/B=10. It can be concluded from the figure that effect of the angle of dilation on the value 

of  is insignificant for H/B>3 (the differences are less than 3%) and  can be 

approximated as a function of andH/B at the condition of maximum arching.  

 

Figure 10 shows the finite element results for non-dimensional dimensional function 

plotted for a wide range of normalised depth H/B for for 20and 40.   These results are 

consistent of the results of rigid-block mechanism shown in Figure 8. At very shallow depths 

H/B<1,  becomes independent of normalized depths. Therefore, direct comparison with the 

solution developed by Smith [24] for  is only possible at very shallow normalised depths. It 

might be possible to compare the two methods at H/B=0.5 for 20 and 40 (see Figure 8 



14 
 

and Figure 10). Smith analysis gives values of between 0.363 and 0.366 for 20 and 

between 0.616 and 0.858 for 40(estimated from the graph in his paper) while the FE 

gives a range of 0.374-0.433 for 20 and 0.697-0.841 for 40.  

 

Approximate analysis for non-associative soils 

In soils with high friction angles, the use of an associated flow rule predicts unrealistically 

large amounts of dilation during shear failure which raise questions about the validity of limit 

load estimates determined from the bound theorems. Davis [20] reported that the choice of 

the flow rule will not have a significant influence on limit loads for frictional materials 

provided that the problem is not statically indeterminate. In the absence of strain-softening, 

the collapse load for a statically determinate mechanism will not be affected by non-

associativity. For an examination of the failure behaviour on slip-lines for a non-associated 

Mohr– Coulomb material, Davis [20] determined that the shear stress  and normal stress n 

can be related by: 

 

                                                   * tan *
n

c                                                                (6) 

 

where c* and * are ‘reduced’ strength parameters, defined as:  

 

                                                

cos cos
*

1 sin sin

cos cos
tan * tan

1 sin sin

c c
 

 

 
 

 







                                                       (7) 

 

 

Drescher and Detournay [34] showed that the limit load determined from a rigid block 

mechanism using the associative flow rule using Davis’ discontinuity strengths c* and *, 

defined by equations (7), provides an upper bound on the true limit load for non-associated 
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materials with parameters (c, , ). The use of Davis’s reduced strengths could provide a 

practical way for handling non-associated flow in limit analysis. The trapdoor problem is a 

statically indeterminate problem as the horizontal stresses are not constrained to a single 

value at collapse [24].  

 

The validity of the approximate model given by equation 7 in active trapdoors was 

investigated. Figure 11 compares the results obtained using an equivalent associative Mohr 

Column model with a reduced angle of friction * and those obtained with and a dilation 

angle =0. Figure 11 shows that the use of an equivalent associative model with reduced 

friction angle generally corresponds well with  the load ratio from the non-associative model 

based on actual soil strength parameters, but that it tends to overestimate somewhat. The 

discrepancy between the two models increases with the increase of depth of the trapdoor. In 

the case of H/B=10, and =0 °, for example, the discrepancy is about 21%.  



Limitations 

The finite element results reported in this paper is obtained by taking the soil to be a linear 

elastic perfectly plastic material. Mohr-Column yield criterion is adopted with a constant 

value for the dilation angle. The analyses reported above are carrying out with Young 

Modulus (E) of 100 MN/m2 and the Poisson’s ratio  of 0.4. The selected values for the 

elastic parameters might affect the transition mechanisms and the displacements (and the 

magnitude of the strains) in the soil mass, these parameters would not affect significantly the 

maximum arching condition (the maximum load reductions in the trapdoors. Figure 12(a) 

shows results of parametric analyses for a trapdoor with a normalised depth H/B=5 and 

associated soil with  for values of Young Modulus (E) ranges between 50 and 200 

MN/m2 while Figure 12(b) compares the results of load-reduction versus trapdoor 
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displacement for Poisson’s ratio () 0.4 and 0.2. This figure shows that the variation in the 

maximum arching results is less than 5%.   

 

In real sand, the soil stiffness is not constant as it depends on the stress and strain levels. 

Furthermore, the dilation depends on the plastic strains and it vanishes in the critical state.  

However, it should be emphasised that the focus of this paper is the condition of maximum 

arching above trapdoors in sands where Mohr-Column model could represent a simple and 

useful tool to shed light into this complicated phenomenon.   

 

Conclusions 

The classical trapdoor problem provides a useful tool to understand the stress distribution 

around a variety of geotechnical structures. The static indeterminacy in trapdoor problems 

provides an example by which the non-associative and associative solutions can differ. The 

finite element method presents a viable means of evaluating these types of problems. Explicit 

finite element solution procedures with the ALE algorithm have been used to investigate the 

trapdoor mechanism and conditions of maximum arching, with a particular focus on the 

effect of soil dilatancy. The soil was modelled using the Mohr Column failure criterion with 

both associative and non-associative flow rules. The associative model shows excellent 

agreement with previously published computational limit analysis solutions.  

 

A simple rigid-block mechanism for trapdoors in cohessionless soil has been developed for 

comparison with finite element results and to serve as a practical tool for geotechnical 

practitioners. Comparison of upper bound solutions obtained from the rigid-block analyses 

with solutions of the finite element and numerical limit analyses shows consistent results. 
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The finite element results show that the load ratio with zero dilation can be about 34% higher 

than that calculated assuming the associative flow rule in a shallow trapdoor while the 

difference reduces with the normalised depth.  The finite element analysis shows that using 

the MC model with the associative flow rule and Davis’ reduced strength parameters, 

somewhat overestimate the load ratio compared with a non-associative model with full soil 

strength parameters. The discrepancy between the two models increases with the increase in 

the depth of the trapdoor and can be as much as 21%.  


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Figure 1: Finite Element Mesh 
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Figure 2: Upper bound rigid block mechanism 
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(a)                                                                                 (b) 

  

 

(c)                                                                                   (d)                 

 

(e) 

  

Figure 3: Mobilised trapdoor loads at conditions of maximum arching on trapdoors in associative MC 

soil (  ): (a) (b) (c) (d) (e)  
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 (a) 

 

 (b) 

Figure 4: Contours of plastic engineering shear strain (shown at equal intervals) above a shallow 

trapdoor (H/B=1) at conditions of maximum arching: (a) (b) 
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Figure 5: Contours of plastic engineering shear strain above a deep trapdoor (H/B=10) at conditions 

of maximum arching 
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 (a) 

 

 (b) 

Figure 6: Contours of plastic engineering shear strain (shown at equal intervals) in (a) shallow 

trapdoor H/B=1 (b) deep trapdoor H/B=10 
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(a)                                                                                    (b) 

   

(c)                                                                                                (d) 

 

(e) 

Figure 7: Effect of soil dilatancy on mobilised trapdoor load at conditions of maximum arching: (a) 

(b) (c) (d) (e)  
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(a) 

 

Figure 8: Variation of value of   back calculated from the upper bound rigid block 

mechanism for an active trapdoor underlying an associative cohesionless soil (a)  vs H/B 

(b) / tan vs H/B 
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(a)                                                                                  (b) 

 

(c)                                                                                           (d) 

 

(e) 

Figure 9: Variation of the value of   back calculated from finite element analysis for an 

active trapdoor underlying an associative and nonassociative cohesionless soils: (a) (b) 

(c) (d) (e)  
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Figure 10: Variation of the value of   back calculated from finite element analysis for an 

active trapdoor for a wide range of normalised depths 
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(a)                                                                                   (b) 

  

(c)                                                                                             (d) 

 

(e) 

Figure 11: Comparison between non-associative MC model and associative MC with reduced 

strength parameters: (a) (b) (c) (d) (e)  
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(a) 

 

 

(b) 

Figure 12 Effect of elastic soil parameters on maximum arching (a) Young Modulus (b) 

Poisson’s ratio 


