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Fibre Homogenisation

Shane Cooper*and Marcus Waurick

Abstract

In this article we present a novel method for studying the asymptotic behaviour,
with order-sharp error estimates, of the resolvents of parameter-dependent operator
families. The method is applied to the study of differential equations with rapidly oscil-
lating coefficients in the context of second-order PDE systems and the Maxwell system.
This produces a non-standard homogenisation result that is characterised by ‘fibre-
wise’ homogenisation of the related Floquet-Bloch PDEs. These fibre-homogenised
resolvents are shown to be asymptotically equivalent to a whole class of operator fam-
ilies, including those obtained by standard homogenisation methods.

Keywords: resolvent estimates, fibre homogenisation, Gelfand transform, oscillating co-
efficients, second-order PDE systems, Maxwell’s equations

1 Introduction

This article is concerned with the asymptotic analysis of parameter-dependent operators
that admit a fibre decomposition. Such families appear for example in the asymptotic
analysis of differential operators with rapidly oscillating periodic coefficients B, defined in the
whole space L?(R?). In this example context, the period of the coefficients is the parameter
¢ and a typical goal is to understand the behaviour of solutions u., for a given force f, to

Bsus = f

for small €.

A well-known approach to determine the asymptotic behaviour of u. is the process of ho-
mogenisation (for which there is a vast body of literature available, see for example [1], [18]
for an introduction to the field). In this process, the sequence u. is typically determined to
converge, in an appropriate sense, to a limit v and then one aims to establish the existence
of an ‘homogenised’ operator for which the identity v = B~!f holds. Upon establishing the
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homogenised operator, one can subsequently ask about the magnitude, in an appropriate
metric, of the difference u. —u = (B-' — B™)f. Quantifying this error, uniformly in e
and f, is important, for example, in determining the asymptotic behaviour of the spectral
properties of the family B, and in the study of evolution problems (%)O‘ua + Bou. = f,
a e {1,2}.

In the context of second-order differential periodic operators, error estimates of the order
v/ have been known for some time, see for example [18]. While, the expected (order-
sharp) order ¢ error estimates for L?(R?) right-hand side where first obtained in the works
of Birman-Suslina [2]. Therein, they utilise the fact that L?*(R¢) is unitarily equivalent,
via the Gelfand transform, to the space L*([—, )% L?([0,1)%)), and that the operator B.
is unitarily equivalent to the fibre integral fg B.(0)dd where B.(0) is the second-order dif-
ferential operator accompanied with quasi-periodic boundary conditions. Their subsequent
analysis then focuses on this decomposition and a spectral study of the resolvents of B.
in a neighbourhood of the bottom of the spectrum. The idea of a spectral study via the
Gelfand transform had been used previously in the works [5, 17| to obtain error estimates in
homogenisation; although these works did not obtain order-sharp estimates in the uniform-
operator topology. Very recently, in [11] the homogenisation with order-sharp operator-norm
error estimates is established for second-order periodic operators with non-selfadjoint coeffi-
cients that admit global slowly varying and local rapidly oscillating dependence. We mention
for completeness, that in context of second-order elliptic systems with periodic coefficients in
bounded domains, error estimates in homogenisation of the order ¢|Ine|*, a > 0, have been
obtained by different techniques in the works [8, 19]; order-sharp estimates were obtained
in bounded domains: for scalar equations using periodic unfolding in [7], and for systems,
using combinations of the techniques in [2] and [19], in [12, 13].

On the subject of evolution(ary) problems, we make comments relevant to this arti-
cle on the works [14, 15, 16]. In these works, the homogenised systems for various time-
dependent problems posed in bounded domains are obtained by an interesting projection
based technique. This projection technique was recently combined with the Gelfand trans-
form to provide order-sharp error estimates between resolvents of the full time-dependent
one-dimensional visco-elastic operator and its homogenised limit, see [4]. Therein, the
method of proof relied on the one-dimensional nature of the problem and the so-called
Schur complement.

In this article, our main focus of study is the behaviour of resolvents of parameter-
dependent families of fibre-integral operators féB B.(6)df on a space fge Hdf, where

B.(6) = M(0) + LA(®0),

for bounded linear M (6) and possibly unbounded linear skew-selfadjoint A(#). We are in-
terested in studying the behaviour of B.(#)~! in the uniform-operator topology, uniform in
0, for small €. Unlike in standard homogenisation approaches, where one would determine
a so-called homogenised limit operator B for a given B. and then determine bounds on the
difference B! — B! (via the fibre-integral representation or otherwise), we emphasise here
that we directly analyse the behaviour of B.(0)~! for sufficiently small, non-zero, €. The rea-
son we adopt this approach is that, in general, the point-wise (in #) homogenised limits (in
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¢) of the operators B.(f) are not the uniform limits. As such, to obtain error estimates one
would need to come up with an approach to reconcile this difference and produce uniform
in @ error bounds. (We mention in passing that in the context of high-contrast homogenisa-
tion of second-order differential operators, order-sharp operator-norm error estimates where
obtained, in [3], upon the recovery of uniform limits from point-wise limits by an operator-
theoretic analogue of matched asymptotic expansions.) Here, we develop a new method of
studying the uniform in fibre behaviour of resolvents to fibre-integral families in terms of the
small parameter. This method, exposed in Section 2, is based on the observation that the
lack of uniformity of the point-wise asymptotics of B.(6) is due to the fact that spectrum of
the operator family (A(f))y intersects zero for certain values of §. Therefore, to study the
asymptotics, our method revolves around decomposing the underlying Hilbert space H into
a space R(0) in which this operator A(6) is uniformly invertible and its orthogonal comple-
ment N(#). Subsequently, we can decompose the operator B.(f) into uniformly invertible
and singular parts; this decomposition is based on developing the projection technique used
in [14, 15, 16] and [4]. (We comment though that our approach does not need to rely on exis-
tence of the inverse to the Schur-complement. This improves the constants-of-error obtained
in the uniform-operator norm bounds.) Upon such a decomposition, it is a simple task to
then determine that the uniform leading-order behaviour, for small ¢, of the family B.(f) in
the uniform-operator topology is given by the projection of B.(0) to N (), see Theorem 2.2
and Proposition 2.11. Remarkably, and the reason why we coin this method fibre homogeni-
sation, is that this projection in the context of differential operators with rapidly oscillating
coefficients gives rise to a fibre-dependent analogue to the standard homogenised coefficients,
from classical theory, that is asymptotically equivalent to but, in general, different to the
traditional homogenised matrix. This is the subject of Sections 3 and 4. Additionally, as a
bi-product of this analysis we determine a whole family of operators that are asymptotically
equivalent (in terms of resolvents) to the operator B.; these operators are characterised by
being equal to B.(f) on the space N(f); this statement is made precise in Theorem 2.4.

In closing, a consequence of the analysis in this article is that we present new results
which capture the leading-order singular behaviour, in operator-norm, of the resolvents of
fibre-integral operator families depending on a small parameter. These results in turn allow
one to describe a whole class of asymptotically equivalent operator families, including those
found by standard homogenisation methods (in the context of differential operators with
rapidly oscillating coefficients). The method presented in this article is not confined to the
study of self-adjoint operator families arriving from second-order PDE systems; the scheme
admits for example second-order PDE systems with non-selfadjoint coefficients, see Section
3 as well as the Maxwell system, see Section 5. Moreover, our study easily fits into the static
variants of the framework of evolutionary equations developed by Picard et al., see, e.g., [9,
Chapter 6] or [10]. In particular, we provide quantitative estimates for the first time to static
variants of the systems in [14, 15, 16].



2 Abstract fibre homogenisation

Let © be a non-empty set. For a given family of Hilbert spaces (Hp)peo, ¢ € (0,00),
M(0) € L(Hy) with ||M||« = supgee ||M(0)|| < oo, and A(f): dom(A(F)) C Hy — Hy
densely defined and closed, we consider the operator family

B.(0) := M(0) + L A(0).
Under the assumptions that there exists a ¢ € (0,00) such that

Voe®: ReM(O):=5(M@O)+MO))=>c, and  A(0) =—-A(0)", (1)

1
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the operator B.(0) is invertible for all £, 0, cf. Lemma 2.5 below. Typically, in homogenisation
problems, fibre integral operators of the form f(;B B.(0)df appear. For example via the
Gelfand transform for differential operators with periodic coefficients, see Sections 3 and 5.
A means to address the asymptotics, as € tends to zero, of such operators is to consider the
behaviour of the resolvents for small €. For this reason, we are interested in studying the
uniform in 6 behaviour for small e for the inverse operators B.(6) .

We now provide a general set of assumptions that, if satisfied, allow one to construct
such asymptotics.

Hypothesis 2.1. Assume for all § € O, there exists a closed subspace N(0) C Hy with
R(0) := N(#)* such that, for the canonical embeddings ty): N(0) — Hy, tp@): R(9) — Hy
and the orthogonal projections 7y ) = ¢ N(Q)L*N(e) TR(6) = LR(6) L}‘%(Q), the following conditions

hold:

(a) A(0)mN(g) is bounded for all # € ©.
(b) Tre)A(0) € A(0)mRe@) for all § € O.
(€) thioA(0)Lre) is, uniformly in ¢, boundedly invertible:

. ~1
Cr = 2161(1; H (LR(Q)A(H)LR(Q)) ||L(R(9)) < 00. (2)

The main theorem of this section is as follows.

Theorem 2.2. Assume (1) and Hypothesis 2.1. Then, for all e € (0,1/2Ck||M|«), 0 € ©
one has
L

1B-(0)" = (mnioyM(O)mno) + LA©0)) | < £(|M |loo) Ci, e,

where 2
K([|M||oo, Cr,c) = 20R<1 + HMCHOO) 4O

Remark 2.3.
(a) The existence of (my )M (0)my ) + T A(0)) ~!is addressed in the proof of Theorem 2.2.



(b) For convenience of the reader and to keep the statements that follow as accessible as
possible, we do not record the explicit number k(|| M ||, Cr,¢) in front of € and just
write k. We emphasise, however, the following asymptotic properties:

lim sup ®k(|| M || oo, Cr, ¢) = 2Cr|| M| o < o0,

c—0

. 2

lgn sup —”(HMHC(Z’CR’C) =2(1+ —”MC“"") +1 < oo, and
R—>00

3 M o0 )

lim sup ull ||]|\|4||2CR 9 — 2?;12 < Q.

1M ]| oo —00 -

Most prominently, the last equality becomes important, if one wants to study time-
dependent problems, see [4]. The decisive observation frequently used in the present
text is that k(|| M|/, Cr, ¢) is independent of ¢ > 0 (if sufficiently small) and all 6§ € ©.
(¢c) We remark here that ||B-(0) |1, < 1/¢, see Corollary 2.6 below. Moreover, it is
possible to show that || (7 M (6)7n@e) + %A(G))_IH < max{,eCr} for all € > 0 and
0 € O, also see Proposition 2.9. Hence, it is possible to prove an estimate of the form
il

1B-(0)"" = (nnoyM (O)mno) + 2 A0)) || < &(|M]loo, Cr, c)e

with & satisfying a similar asymptotic behavior as x:

AIMlso.CrC) 1
s lim sup

[[M]loc—00

E(IM|lo0,Cr,

lim sup & (|| Moo, C, ©), lim sup i < oo

c—0 Cr—o0

For this reason, we may also drop the condition that ¢ has to be sufficiently small. We
choose to do this for the remainder of the manuscript.

Theorem 2.2 does not only provide us with leading-order asymptotics of BZ'!, it presents a

way of comparing two operator families that ‘coincide’ on N(6). More precisely, the following
result holds.

Theorem 2.4. Assume (1) and Hypothesis 2.1. Consider, for 6 € O, M(@) € L(Hy) such
that || M||e < 00, with V8 € © : Re M(0) > c. Furthermore, assume that

—~

WN(Q)M(Q)WN(Q) = WN(Q)M<9)7TN(9) (9 € @)
Then, there exists k > 0 such that for all @ € © and € > 0 one has
1B-(0)~" = (M(0) + LA(0)) || < re.

Proof. The operator B.(f) := M(@) + LA(0) satisfies the assumptions of Theorem 2.2 and
then the desired result follows from the triangle inequality and the fact

o) (M(0) — M(0))mne) =0 (0 €6). O



The remainder of this section will be dedicated to the proof of Theorem 2.2. We begin
with providing a series of relevant preliminary results.

Lemma 2.5. Let H be a Hilbert space, M € L(H) and A: dom(A) C H — H be skew-
selfadjoint. Assume that there exists ¢ > 0 such that Re M > ¢. Then, the operator M + A
15 continuously invertible and the inequality

1M+ A)7H < ¢

C

holds.

Proof. The observation that Re(M + A) = Re(M + A)* = ReM > c on dom(M + A) =
dom(A) = dom(A4*) = dom((M + A)*) implies, via a simple application of the Cauchy-
Schwarz inequality, that the range of M + A is closed, M + A is boundedly invertible on
its range and the kernel of (M + A)* is trivial. Then, we conclude the assertion from the
orthogonal decomposition H = ran(M + A) & ker(M + A)*. O

Corollary 2.6. Under the assumptions (1), B.(0) is boundedly invertible and the inequality

sup [|B.(0) || < ¢
0cO

C

holds.

Lemma 2.7. For a given Hilbert space H and A: dom(A) C H — H densely defined, assume
that there exists a closed subspace U C H such that 7y A C Any, where my: H — H is the
orthogonal projection on U. Then, for my = (1 — my) we obtain my A C Amy and

myAmy = g Amy = 0.
Proof. We compute myA = (1 —my)A = A — Any C A(1 — my) = Amy. Hence, we obtain
7TvA7TU Z A?T\/ﬂ'U =0 and 7TUA7TV - A7TU7TV =0.

The assertion now follows from the fact that both myAmy and 7y Amy are densely defined;
indeed, the respective domains contain the domain of A. O]

Lemma 2.8. Let H be a Hilbert space and A: dom(A) C H — H skew-selfadjoint. Assume
that there exists U C H closed such that my A C Any and Amy bounded, where ny: H — H
denotes the orthogonal projection to U and my = (1 — wy). Then (;Awy and i, Avy are
skew-selfadjoint in U and V = U™, respectively, where 1yp: U < H, 12 V — H.

Proof. First of all, note that the assertion that ¢j;Auy (resp. ¢}, Avy) is skew-selfadjoint is
equivalent to my Amy (resp. my Amy) being skew-selfadjoint.

It is easy to see that my Ay is skew-Hermitian. Moreover, the inclusion 73 A C 7y Ay
implies that 7y Amy is densely defined and, thus, skew-symmetric.

By Lemma 2.7, the same reasoning applies to myAmy. Thus, as Amy is bounded we
deduce that my Amy is skew-selfadjoint.



We now prove that 7y Amy is skew-selfadjoint. Note that ¢ € dom(A) if, and only if,
e € dom(A). Indeed, the necessary implication follows from 7y A C Amy; sufficiency
follows from Amy being bounded which, in turn, implies that 7y ¢ € dom(A) for all ¢» € H.
Therefore, we infer that A = Anmy + Ay, and consequently, upon utilising Lemma 2.7, we
calculate

A= (7TU + Wv)A(ﬂ'U + 7Tv) = 7TUA7TU + 7TvA7Tv.

Finally, since A and my,Am, are skew-selfadjoint, and my Ay is bounded, it follows that
myAmy is skew-selfadjoint. O

We now aim to provide a formula for B.(6)~!, in terms of the space N(#) and R(f) =
N ()%, that will be utilised in the proof of Theorem 2.2. First, some a priori observations.

Proposition 2.9. Assume (1), Hypothesis 2.1 and recall Cr from (2). Let B.n(0) €
L(N(9)), B.r(0) : dom(B. g(0)) C R(0) — R(0) be given by

B n(0) = tyoyM(0)ino) + Lia G)ALN and

Bg’R<9) = L*R(G)M<9) (9) + —LR ALR
Then, the following assertions hold.

(a) Let ey = 1/(2CR||M||x). Then, for all e € (0,e9) and 6 € ©, the operator B: r(0) is
continuously invertible and

sup [|Be r(0) || < 2Ckge.
0cO

(b) For all e >0 and § € O, the operator B. x(0) is continuously invertible, and

sup || B-.v (0) |
9€6

Proof. For (a), we proceed as follows. By Hypothesis 2.1, the operator Ag(0) = t} ) A(0)¢r(e)
is continuously invertible. Hence, we obtain

BE,R(Q) — %AR(Q) (EAR(G) LR(@)M(Q)LR(G) + 1)'
From the inequality
leAR(0) iy M (0)tre) || < eCrlIM || < 3,

we deduce via a Neumann series argument, for the inverse of 1 + 8AR(0)_1L}}(9)M (0) LR,
that

Bor(0) ™' = (—eAr(0) hoy M (0)ire)" Ar(0)™!
k=0

Thus,

[e.e]

|1B.r(0)7H]| < Z = 20pe.

k=



For the proof of (b), we observe that, by Lemma 2.8, the operator Ay ) = L}kv(e)A(9>LN(9) is

skew-selfadjoint. Hence, Re B. x(6) > ¢ and, thus, Lemma 2.5 implies that B. x(6) ' exists
with [|B.n(0)7 < 1/c. O

The following result holds.

Proposition 2.10. Assume (1), Hypothesis 2.1 and let €y be as in Proposition 2.9. Then,
for all e € (0,g9) and 0 € ©, the following assertions hold.

(a) Tne)B:(0)"! = LN(G)Be,N<8)_1(L7V(9) - LE(@)M(Q)WR(G)Be(G)_l)Q
(b) WR(Q)BE(Q)_I = LR(Q)B&R(G)_I (L}Fz(e) — L*R(Q)M(Q)WN(Q)BE(H)_I).
Proof. Fix, €,0 and f € Hp, and let w = B.(0)"'f. Then u = ty@yun + tre)ur, where
uyN = L*N(e)u and up = L*R(e)u. Now, by Lemma 2.7, one has
WR(Q)A(Q) = TR(Q)A(G)WR(Q), WN(Q)A(Q) = WN(Q)A(G)WN(Q).
Consequently, with Ag(6) =t} A(0)Lr()
Tro)f = Tre)B:(0)u
= mr(e) M (0)mx()u + Tri6) M (0)TRe)u + ZLre) Ar()ur
= WR(Q)M(Q)WN(Q)U + LR(Q)B&R(Q)UR
and, therefore,
UR = Bs,R(e)fl(b*R(e) - L*R(e)Mw)WN(@)BE(@)*l)f-
Similarly, we deduce that
unN = B&‘,N(@)_l (L}kv(g) ' 4 L*N(Q)M(Q)’]TR(Q)BE<0)_1>JC,
and the desired identities follow. O
We are now in the position to study the behaviour of the inverse of B.() for small €.

Proposition 2.11. Assume (1), Hypothesis 2.1 and let €y be as in Proposition 2.9. Then,
for all e € (0,g9) and 6 € O, the inequality

1B-(6)F — ixio Ben (6) iy || < 20m (1 + 1)
holds. Here Cg is given in Proposition 2.9 (a).
Proof. The inequalities in Corollary 2.6 and Proposition 2.9 (a) imply that

sup 00 Bo(0)™ (1) = iy M(O)m0/Bo(0) )| < 201 + 14=)z,

By Proposition 2.10 (b), Proposition 2.9 (b) and the above assertion, we deduce that

sup e57(6) Be (0) ™ Uiy M (0) () Be(0) ™' || < 21| M || o2CR (1 + Ml
S

The proof of the proposition now follows from Proposition 2.10 and the identity B.(0)™! =
(’/TN(Q) + WR(Q))BE(Q)_I. ]



Remark 2.12. Proposition 2.11 is one particular choice of the leading-order asymptotics
for the inverse B.(f)~! and could be taken in the place of those presented in Theorem 2.2.
That being said, the reason we choose to demonstrate the equivalent asymptotics given by
Theorem 2.2 is to present leading-order asymptotics for the resolvents of the operator B.(0)
that preserve A(0).

To complete the proof of Theorem 2.2 is now a simple task.

Proof of Theorem 2.2. To show that (my )M (0)mn ) + %A(@))_l exists, observe that

T M©O) TN + LA0) = (inw tre) (BE’]S(Q) 1,42(9)) (LM>’ &

0

and that by Hypothesis 2.1, Ar(f) = i A(0)Lr() is continuously invertible on R(¢) and
by Proposition 2.9 (b), B. y is continuously invertible on N(#) for all ¢ > 0 and 6 € ©.
We compute with the help of (3)

mro) (T M ()T + LA0) " = etnoyAr(0) i, and

o) (T M (0) ey + LA0) ' = tni)Ben (0) o).

Then, the proof of the theorem follows by Hypothesis 2.1 (¢) and Proposition 2.11. m

Remark 2.13. Note that as an upshot of the method of proof, we observe that the leading-
order asymptotics are in fact determined by the behaviour of the resolvent on the space N ()
only, cf. Proposition 2.11. In particular, it is possible to replace Az(6)~! by any uniformly
bounded linear operator acting in R(f) in order to obtain an asymptotically equivalent
answer to the assertion in Theorem 2.2. In order to see this, one has to simply refer to (3).
In more formal terms, we have also proven the following result: Let (7p)y be a family acting
in (L(Hp))y be such that supyeg |[t;g)T'(0)re)|| < oo. Then, for all £ > 0 small enough and
0 € © we have

_ Be N(Q)_l 0 > <L}<V
B0 ’ ) (9)
’ ( ) (LN(g) LR(e)) < 0 5LR(0)T(‘9)LR(9) s

Rr(o)

< (20801 + =2 + sup li0) T (@)1 ) =
S

In applications it may happen that A(6) and M (0) are realisations of a direct-fibre de-
composition. Such a case presents no additional difficulty from the perspective of the above
approach and one can argue in a similar manner as follows.

Hypothesis 2.14. Let Hj be a Hilbert space, © C R? measurable. For each § € © let Hy be
a Hilbert space and assume there exists a Hilbert space H such that Hy = fge Hand H)yC H
closed; set 1p: Hyp — H. For every 6 € O, let M(6) € L(Hyp), A(f): dom(A(#)) C Hy — Hy.
We assume the following properties:



(a) for all 8 € ©, A(0) = —A(0)",
(b) Re M (0 )>cfora110€@
(c) A(0), 0 € O, satisfies Hypothesis 2.1,

(d) assume that 6 — 5(M(0) + iA(H))f 14 is weakly measurable.
For € > 0, consider

&
C. = / vo (M(0) + %A(G))_l Lyde.
S}

Theorem 2.15. Assume Hypothesis 2.14. Then, there exists k > 0 such that for all € > 0,
the following inequality

@
C. — / Lo (WN(Q)M(H)T(N(@) + %A(@))_l LZCZ@H < RE
©

holds.

Proof. The proof follows from Theorem 2.2. In fact, note that

@
c.— / o (o M(B) ) + LA0)) " 6
(S

® 5]
_ / to (M(0) + LA(0)) ™" 150 — / to (T M (0)Tne) + LAB)) " 15df
C) ©
®
_ /@ Le((M(eHgA(e))*l— (WN(Q)M(Q)WN(Q)+§A(0))*1) 1sdo.

Thus, the asymptotic analysis requires estimating

-1 -1

(M(Q) + %A(@)) — (WN(Q)M(Q)WN(Q) + %A(Q))
uniformly in #, which is done in Theorem 2.2. O]

The analogue of Proposition 2.11 is as follows.

Theorem 2.16. Assume Hypothesis 2.14. Then, there exists k > 0 such that for all € > 0,
the following inequality

®
" -1
C. — /9 LoLN (6) (LN((,) (M(0) + LA0))ine) ¢ G)LedQH

holds.

Proof. Arguing as in the proof of Theorem 2.15, the asymptotic analysis requires estimating
the difference

(M(0) + LAW®) ™ = 0 (o) (M(0) + 2A0)) we) e

uniformly in 6, which is given by Proposition 2.11. O]
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3 Fibre homogenisation of second-order PDE systems
with rapidly oscillating periodic coefficients

In order to put the abstract result exposed in Section 2 into perspective, we shall study
a classical example of homogenisation theory: an elliptic system of n equations posed on
R? with rapidly varying periodic coefficients. For this, we denote Y = (0,1)¢, and for a
vector space V, denote 1y := (V 2 v+ v € V). For a subspace V C L*(Y) and functions
g,h € L*(Y), we denote

gLh:= (g, h)r2(vy = 0, and VLh:={veV;(v,h)ry) =0}
We set
Mﬁd ={a e L*R%LIC™)a(-+ k) =a(-) (k € Z%),3v > 0: Rea = vieaxa},
de = {s € L®(RY L(C"); s(- + k) = s() (k € Z%), v > 0 : Res > viea |,

aijr = {ae; ® ej, e, @ e))onxa € L°(RY)  (a € Mf:d, ike{l,....,n},5,l €{l,...,d}),

and
sij = (sei,e;)en € L¥(RY) (s € de, i,7€{1,...,n}),

where ¢e; is the j-th Euclidean basis vector.
For given a € Mﬁd, s € Sff s [ € [LARY)]™ and £ > 0, we consider the elliptic problem

{ﬁnd ue € [H'(RY)]" such that n

—diva (g) grad u. + s (g) Us = f.

Let U. be the Gelfand transform, see Definition 3.3, and divy and grad, denote the diver-
gence and gradient differential operators, respectively, on function spaces of #-quasi-periodic
Sobolev functions, see Definition 3.4. Then, the main result of the section for the class of
problems (4) is as follows.

Theorem 3.1 (Fibre homogenisation theorem). Let a € Mﬁd, s € S,jff 4- Then, there exists

k > 0 such that for all € > 0, the inequality

®
H( —diva (2) grad+s (%) )_1 ~ Ut / (— e *divg a"™(0) grad, + m(s))_ld%{6
e

< ke

holds. The constant matriz m(s) € S;ffd and constant fourth-order tensor a™™(0) € M:ﬁd,
0 €O :=[-m m) are given as follows:

m(s),; = /Y sy)dy (g€ {L,....n}),
and
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n d

aje(0) = / ijkl (&N(,(,ZS) (y) + €7Y65,.015) eV dy
Y

k=1 =1

(t,r €{1,...,n},5,s € {1,...,d}),
where NS € [HAY) L é®)ea]" uniquely solves
(a[VN™ + e®lcte, @ e, Vi) =0, (p € [Hy(Y) L @) (6)
0 T sy V@ ) ¥ 0
with €r = (5ri)i€{1

Remark 3.2.
(a) The well-posedness of (4) follows from noting the equivalence of this problem with a
first-order formulation, see Proposition 2.15 below, and Lemma 2.5.
(b) The well-posedness of (6) is presented for the reader’s convenience at the end of the
section, cf. Proposition 3.18.
(c) Tt is instructive to compare the homogenisation result here to the standard result

available in the literature; the standard result states that (—diva(-/e) grad +s(-/¢)) -

is e-close in operator-norm to ( div a"*™ grad +m(s ))71 where

?ﬁfg = ZZ/ azykzl 81 (rs) )+(5kr(5ls) d (i,T S {1, .. ,n},j,s € {1, .. ,d}),

k=1 l=1

for N € [HL(Y') L 1] the unique solution to

@VNYY +e,@e), Vo) =0,  (pe [HLY) L.
A quick inspection determines the equality a"™ = a"™ ()]s, and one can deduce
that the equivalent leading-order asymptotics presented in Theorem 3.1 lead to the
standard homogenisation result by comparing the difference a"™ () — a"°™(0) with
respect to 6. This is the subject of Section 4.

The remainder of this section is dedicated to the proof of Theorem 3.1. The general
strategy we follow is to first reformulate (4) in the framework presented in Section 2; this
is done in Proposition 3.8. Then we show that, in this setting, Hypothesis 2.14 (a)-(c) (in
particular (1) and Hypothesis 2.1) holds and, therefore, Theorem 2.2 follows; this is done in
Propositions 3.10 and 3.11. Next, we show that M (0) = a"™(0) satisfies the assumptions
of Theorem 2.4; this is identity (15). Lastly, we aim to use Theorem 2.15 to establish
Theorem 3.1. This requires proving the weak measurability assumption: Hypothesis (d);
this is Theorem 3.14. Bearing this strategy mind, most of the work of this section will be in
establishing Hypothesis 2.14.

Let us begin with the reformulation of (4) via an application of the Gelfand transform:

12



It is well-known, see for example [1, Section 3.2, pg. 615], that U. extends to a unitary
operator from [L?*(R9)]™ into [L?*(O; LZ(R?))]", where L3(R?) = {f € L2 (R?); f(- + k) =

loc

eV f() (k€ Z%)}(= L*(Y)). Henceforth, we identify L*(Y') with L3(R?).
Definition 3.4. We define

grad: [H'(R%)]"
grad,: [H; (Y)]"

C [L*RD]" — [L2R)]™, (pi)ieq
C [L*(Y)]" = [L* (V)] (@i)ieq
where Hj(Y) is the Sobolev space of #-quasi-periodic functions taken to be the closure, with
respect to the H1(Y') norm, of C5°(Y): smooth functions ¢ that satisfy o(- + k) = €% (),
k € Z¢. We also introduce

div := —grad”®, and divy = — grady,

as well as
grad, = grad, divy = divy and H(Y) = dom(grad,,).

The operators just introduced are closed. Indeed, the divergence operators are skew-
adjoints of the densely defined gradient operators. The operator grad, is closed, since grad :
[HY(Y)]™ C [LA2(Y)]" — [L*(Y)]™? is closed, grad, C grad and H}(Y) C HY(Y) is, by
definition, closed.

For the convenience of the reader, we now gather some well-known properties on the
interplay between the Gelfand transform and the differential operators introduced above.
As is customary in PDE-theory, we employ a slight abuse of notion by not distinguishing
between grad, acting on L?(Y") and the corresponding gradient (acting as differentiation with
respect to y) in L*(0; L*(Y)).

Proposition 3.5. Let ¢ >0, a € Mﬁd, s € de. The following statements hold:
(a) U. grad = LgradyU.,
(b) U.div = %divaug,
(c) for all (0,y) € © XY we have (U-a(-/e)f)(0,y) = aly)U-f)(0,y) and
(Ues(-/€). )0, y) = s(y)(U:f)(0,y).

Proof. The proof of (c) easily follows from the explicit formula for the Gelfand transformation
for f € [C.(RY)]™ and the periodicity of a and s. The statement in (b) follows from (a) upon
using the definition of div and divy as, respectively, being skew-adjoints of grad and grad,
along with the fact U, is unitary. Thus, it remains to demonstrate (a). For this, we observe
that

U grad p = % grady U

13



holds for ¢ € [C2°(R)]". Therefore, we deduce grad C U= 'L grad, U, by taking into account
the facts that grad and grad, are closed, U is unitary, and that [C°(R?)]" is a core for grad.
Similarly, as Cg°(Y') is a core of grad, we obtain

UL grad, C gradd ",
and the assertion follows. ]

Proposition 3.5 implies that v € dom (div a(z) grad) solves (4) if, and only if, U.u €
dom (diva a grad, ) solves

—6% divg a grady U.u + sUhou = U, f. (7)

For the final step to cast the problem in the form discussed in Section 2, we introduce the

spaces
P(6) = e®)caCnxd g {gradju; u e [Hy(Y) L eiw")Cd]”} (0 € 9), (8)

where here, and throughout, e*®ceC"*¢ is the space obtained by multiplying each compo-
nent of vectors in C*™*? by Y 3 y s e/{%¥ca

In order to properly establish and formulate the first order perspective we have in mind
we first demonstrate that ran(grad,) and P(0) are closed. Both results are a consequence of
the following standard argument.

Lemma 3.6. Let Hy, H, be Hilbert spaces and B: dom(B) C Hy — H; closed. Assume that
B is one-to-one and dom(B) < Hy is compact. Then, there ezists ¢ > 0 such that

1@l < el Bol|a -
In particular, ran(B) C H; is closed.

Proof. Assume that the inequality does not hold for any positive constant. Then, there
exists a sequence (¢y)ken such that ||¢g||m, = 1 and

1Bowlla, <5 (k€N).

As (¢g)ken is bounded in dom(B), and dom(B) < Hj is compact, we deduce that there
exists a Hy-convergent subsequence of (¢, with (Byy), weakly converging, which we do
not relabel. Let ¢ = lim;_,. pr € Hy. By passing to the limit £ — oo, in the inequality
| Bokl|la, < 1/k, we deduce that

| (weak)- lim By, < lim inf || Bl m, = 0.
k—o0 k—o0

and therefore ¢ € dom(B) with By = 0. As B is one-to-one, it follows that ¢ = 0 which
contradicts ||¢||g, = limg 00 ||@k|lz, = 1. Hence, the desired inequality holds.

The fact that the range of B is closed is a straightforward consequence of the now
established inequality and the fact that B is closed. O

14



Proposition 3.7. Let € © = [—n,7)%. Then, the following assertions hold:
(a) ran(grad,) C [L2(Y)]" is closed,
(b) P(0) C [L*(Y)]"™4, introduced in (8), is closed.

Proof. Note that ran(grad,) = ran(grady |ker(grad,) ). 1o establish (a) we aim to apply Lemma
3.6 for B = grady |xer(grad, ) Ho = [L*(Y)]" and Hy = [L*(Y)]"*%. B is easily shown to be
one-to-one and closed. By Rellich’s selection theorem H'(Y) < L?(Y) is compact. Hence,
since dom(B) = H}(Y) Nker(grad,)t € H(Y) is closed, we deduce that dom(B) < L?(Y)
is compact. Thus, (a) follows from Lemma 3.6.

In order to prove (b), we observe that e(’)c¢C"*? is finite-dimensional. Thus, we are left
with proving that

{gradyu; u € [Hy(Y) L @eca]m}

is closed. We demonstrated above that Lemma 3.6 holds for B = grad, |ker(grad0)J_, Hy =
[L2(Y)]™ and H, = [L*(Y)]"*¢. Consequently, the inequality in Lemma 3.6 holds and, to
prove the above space is closed, we only need to establish that if (g )ken is a convergent
sequence in Hj(Y) with limit ¢ € H}(Y') satisfying

(r,@et) 2y =0 (KEN),

then ¢ L e'®Jca, This is an easy consequence of the fact that (¢)zen strongly converges in
LA(Y). [

We introduce

l: P(0) < [LAY)]™ (0 € ©).

By Proposition 3.7 (b) we have that P(0) C [L?(Y)]™*¢ introduced in (8) is closed. Thus,
vy [LA(Y)])™*4 — P(0) is the well-defined adjoint operator and mpg) := gt is the orthogonal
projection onto P(f). The following result holds.

Proposition 3.8. Let ¢ > 0, € O, a € ./\/lzid, s € ijd and g € [L*(Y)]". Then, the
following conditions are equivalent:
(i) u € dom (divgagrad,) satisfies

— % divpagradyu + su = g.

(ii) v € dom(grady) and q € dom(divyg) satisfy

6 o) 2 (a5 ()= ()

Proof. Before we prove the equivalence, we note that

divg a grad, = divg tetyargey grad,, (0 € ©). (9)
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Indeed, note that ran(grad,) C P(#): This is obvious for § = 0, so let us consider 6 # 0.
Since {e{(®+272))cal /4 forms a complete orthonormal system for L?(Y'), then

Z c i((0+272),y) (y e Y C E Cn)

2€74

and

grad, u(y Z D @ (10 + 27m2) e O — (0 2igelO) 4 orad, v(y), (yeY,c? e C),

2€7Z4

for some v € [HY(Y) L e!®ca]n,
Next, as ker(divy)® = ran(grad,) C P(f), we obtain P(0)* C ker(divy). In particular, we
infer
Loty grady = grad, and divy(1 — ¢gep) = 0.
Hence, (9) follows.
For (1)=(ii), we set ¢ := Lijatge) gradyu. Then (ii) follows from (9). Note that, for a €
M# 4> Loatg is continuously invertible. Indeed, multiplication with a can be identified as an

operator in L(L*(Y)"*4). Moreover, as a € /\/l# then Rea > vljp2(y)pnxe and consequently
Repatg > v1pg for some v > 0. This yields the continuous invertibility of tjacy.

The imphcatlon (ii)=(i) also follows from (9). Note that u € dom(divy a grad,) follows
from the fact that ¢ € dom(divgey), v € dom(ej grad,) and the second row of the system
(ii). O

Now, we aim to apply Theorem 2.15 to the system (ii) in Proposition 3.8. For this, we
use the following setting:

Hy = L*(© x Y)?+d, -
Ho = [L*X]" & P(6), e

M(0) = (S ) O)1> | AD) = ( 0 —dlovg L@) | (10)

0 (pate
N(@) ¥ 4 ei(9,~>cd(cn ® €i<9">CanXd.

We also set | |
Nl(@) = el<0,'><cd@”’ and NQ(@) — el<0">cd@"><d (11)

The following result holds.
Theorem 3.9. With the setting (10), Hypothesis 2.1/ holds.

We begin with verifying the conditions (a) and (b) of Hypothesis 2.14 as well as (a) and
(b) of Hypothesis 2.1.

Proposition 3.10. Assume the setting (10). For each 0 € ©, the following statements hold:
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(a) A(0) is skew-selfadjoint;

(b) Re M(0) = v/(||al]|? + 1), where v > 0 is such that Rea > vlgaxa and Res = vien;
(C) WN(Q)A(Q) g A(Q)ﬂ'N(Q) N

(d) A(0)mN is bounded.

Proof. The first assertion follows from the fact that divyey = —(L; grad, )* For the second
statement, we observe that Res > vlen > (v/(|lal|* 4+ 1))1cn. Moreover, note that Rea >
Vlgnxa implies tyarg > v1pg) and, thus,

Re(ipatg) ™ = (v/(llpatel*)) Lrw) = (v/(llall® +1))1p):-

The third assertion is easy to see upon the decomposition [L*(Y)]" = €®)ceC" @ [L2(Y) L
¢!®)ea]™ The fourth assertion is a consequence of the above decomposition of [L?(Y)]" and
the finite dimensionality of N (). O

Proof of Theorem 3.9 — Part 1. The assertions (a) and (b) of Hypothesis 2.14 and (a) of
Hypothesis 2.1 clearly follow from Proposition 3.10. Assertion Hypothesis 2.1 (b) follows
from Proposition 3.10 (c¢) and Lemma 2.7 upon setting H = Hy, U = N(0) and A = A(9). O

We now turn to complete the proof of (c¢) of Hypothesis 2.14, which results from a
quantified version of Proposition 3.7 (see also Lemma 3.6).

Proposition 3.11. Assume the setting (10). Then, the following assertions hold.
(a) For all € © and u € [H}(Y) L €%)cd]™ we have

HUH[LQ(y)]n g 7'('71 H grade UH[Lz(y)}nxd.
(b) For all 0 € ©, we have
R(0) = N(0)* = (")eeC™)t @ {grad, u;u € [Hy (V) L &@ea]n).
(c) Let tr@y : R(0) — Hy be the canonical embedding. For all 6 € ©, the operator
UrioyA(0)Lreo) 15 continuously invertible and
sup H(L*R(@)A(H)LR(Q))_IH < b
00

Proof. To prove (a), we argue, as in the proof of Proposition 3.8, that {e!{/+?7*)ca}__,; is an
orthonormal basis for L?(Y') and utilising the fact that u; L e®Jca i € {1,... ,n}, one has

u= Z Pl0t2malca  orad, u = Z 02maleac?) @ i(0 4 272), ) e C™

2€7% 2€Z%
z7#£0 2740

Then

I grady ulfyagypons = 3 16 @10+ 2m2) s > 7 3 @20 = 72 ulfsgpe

2€Z% 274
z7#0 z#0
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The statement in (b) immediately follows from the definition of P(0), see (8). For the proof
of statement (c), we set

Ry (0) = (ei<9">CdC”)L, and  Ro(0) = {gradyu;u € [H;(Y)J_ei<9"><cd]”}.

Thus, for the canonical embeddings tpg,g) : R1(0) < [L*(Y)]", try0) @ R2(0) — P(0), we

obtain
_ [ tR1(8) 0
Lr(o) = ( 0 LRQ(G)) 7
and
) B 0 —Lﬂj}l (9) le@ LQLR2(6)
Uy A(0)Lrio) = (—L}}Q(e)LZ grady tr, (o) 0 |

Next, we observe that t}, 5 projects onto Ry(¢). By (a) it follows that grady ¢g, () is one-
to-one, and therefore we obtain that 7, 5 grady tg, (g) is a bijection. Therefore, it follows
that

(L}%Q(e) Lo grady tg, (9)) = —L}%l(g) dive oL r,(6)

is a bijection. In particular, by (a), we calculate

. . -1 - \ N 1 _
Ry (0) 41 2 = ||\try(0) 0 0 LR <l
(o) dive torra) || = | (koo grads o)) | < 7
Hence,
. -1 -
1CRoA@) mrw) | <77
and we conclude the proof of assertion (c). O

Proof of Theorem 3.9 — Part 2. The assertion (c) of Hypothesis 2.14 follows from Proposi-
tion 3.11(c). O

To complete the proof of Theorem 3.9, it remains to prove Hypothesis (d). For this, we
make some preliminary observations. The proof of the next result is demonstrated by direct
calculation and is therefore omitted.

Proposition 3.12. Let p € [L*(Y)]"*?, § € ©. Then,

Z (04 2m2)(0 + QWZ)TC(Z)61<9+2WZ,~)

Tr)p = (p, e0et)el@let — 10 + 2722 ’ B
2€74\{0}
where .
cfj) = {¢p, el<9+2“">cd>.

Proposition 3.13. Let (0))ren be a convergent sequence in ©, 6 = limy_,o. Oy. Let (uy)ren
in [L2(Y)]", and (qr)ren in [L*(Y)]™*? weakly convergent sequences with limits u and q.
Then, the following assertions hold.
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(a) Tr@)qk — TP©)q-
(b) Assume, in addition, that qx € P(0r), k € N, as well as (grady, ug)ren and (dive, qi)ren
are bounded. Then u € dom(grady), ¢ € dom(divy) and

grad,, up — gradyu, and divy, gx — diveq.

Proof. For the proof of (a), we use Proposition 3.12. Indeed, we obtain for all £ € N with
cgi) = (qg, €% +27%)ca) and that

T
_ O\ (O ed (O +2m2) (0, +272)" () it t2me.
TPk = (qr, €0t )eteed E;\{O} boromep e
As (qx)r converges weakly to ¢, we obtain that
(Or +212) (O +272)" () sigeromany . (O +212)(0+272)" () ipionay
c e C ce C
|0y, + 27z|? q’“ |0 + 27z|? a
as k — oco. Thus, by the dominated convergence theorem, we infer
T 0+ 272)(0 4 272)T () i0oms.
TG — (¢, €@et)e@ et — N ( |9+)(2m‘2 : eIt = mpig)q.

2€Z4\{0}

Hence, (a) follows.

The second statement is proved in a similar manner and so we will just sketch the
argument. Upon decomposing wu;, with respect to the basis {e?*27)ca} . decomposing
qr as above, one computes

grad,, uy = Z (0 + 272) ® cg?eiw’”'z”")cd,
2€74

- : Or + 2 O, + 2m2)T -
divek q = leg<qk7 €1<9k">cd>el<9k">‘cd - Z (ek + 27TZ)T( K+ |97;Z—i)_<2;;2 772) C((Ii)€1<0k+2wz">(cd '

z€Z4\{0}

Then, utilising the assumption that both the sequences (grady, ux)ren and (divg, qr)ren are
bounded, we can pass to the limit in the above equations and characterise them as grad, u
and divy g respectively. O

Theorem 3.14. Let s € S,ffd, a € ./\/lfid, and € € (0,00). Assume setting (10). Consider
T:0 — L(H) be given by

g (5 0 N L 0 —divew))
P\NO (hag)™) " e \—if grad, 0 v

Then, T is weakly continuous.
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Proof. Before we prove the statement, we observe that there exists ¢ > 0 such that for all
f € © one has
Res > clcen, and Retgarg = clpg).

Hence, by Lemma 2.5, we deduce that

S 0 1 0 - diV@ Ly - ~ %
* —1 + = * Lo
0 (epac) e \—t;grady 0

Moreover, it is clear that

0 —dives (s 0 N, L/ 0 —divews)) .
—uj grad, 0 0 (thate)™ e \—¢} grad, 0 o

< OQ.

sup
)

(13)

For the proof of the statement, we let (0y)ren be a convergent sequence in ©; denote by 0
its limit. Let f € [L2(Y)]", g € [L*(Y)]™? and define (ug, @) :== T(0%)(f,g). Then, by (12)
and (13), we obtain that (ug)k, (qr)k, (dive teqr)r, and (gradyug), are bounded. Without
loss of generality, we may assume that (ug), and (gg)r converge weakly to some u and ¢
respectively. Thus, by the definition of u; and g, we obtain for all £ € N that

[ = sug — divy, tg, G,
Lo, AL, TP(0,)9 = Qk — Lg, Olay Ly, Erady, Up.
By Proposition 3.13, as k — co, we obtain that the weak limits of the above equations are
f = su— divg teq,
LyAloTp(9)g = q — LyQlyly grady u.

These in turn imply that (u,q) = T(0)(f,g) which identifies the limit and the assertion
follows. O

Remark 3.15. With a rationale similar to the one used in [6] and utilising that the em-
bedding H}(Y) = L*(Y) is compact, it can be shown that the mapping in Theorem 3.14 is
even continuous in operator-norm.

Proof of Theorem 3.9 — Part 3. It remains to prove assertion (d) of Hypothesis 2.14. This

is true as 6 +— 1o (M (0) + %A(G))_laz is weakly continuous, see Theorem 3.14, and, therefore,
weakly measurable. O]

We are now in the position to provide a proof of the main result of this section.
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Proof of Theorem 3.1. Let iy : [L*(Y)|" @ P(0) — [L*(Y)]" @ [L*(Y)]™?. Theorem 3.9
implies that the assumptions of Theorem 2.15 hold for the setting (10). Therefore, we
deduce that there exists a x > 0 such that for all £ > 0, we obtain

© s 0 1 0 —divy 1y -
; e o do
H/@ . <(0 (L;cug)_l) . c <—L§ grad, 0 >) b
@

— ol m 5 0 T —1—1 0 —divy e _1[*d9H (14)
o T\UNOR0 (atg)t) TNO T o\~ grad, 0 o

< Ke.

We shall prove below the homogenisation formulae

500 (5 (g 1) 50 = (" ooty 1) )

Now, clearly the right-hand side of (15) satisfies the assumptions of Theorem 2.4 and we
deduce that

@ m(s) 0 1 0 —divy g ! .
H/@ Lo (( 0 ahom(e)—l) + E (_[’2 grade 0 )) [’Gde
® . -1
_ s 0 1 0 —divy 1 .
- /@ Lo <7TN(9) (0 (LZGLG)_1> TN(@) T g (—L; gradg 0 )) LGdQH

< ke, (16)

The above assertions prove the desired result. Indeed, after having applied the unitary
Gelfand transformation, Proposition 3.5 implies the equivalence of problems (4) and (7).
Then, Proposition 3.8 establishes the equivalence between the first and second-order formu-
lations, and finally (14), (16) imply the required asymptotics for the first-order problem.

It remains to prove (15). We use N(0) = Ny(0) & No(0), see (11). First, we establish
that

TNL(0)ST Ny () = M(S) = /Ys(y)dy (0 €0O). (17)

This is a simple calculation:

<sei<9">cd0£, ei<97‘>cdﬁ> = Z (/ Sij) aiﬁj, (047 ﬁ S (cn)
Y

i,j€{1,...,n}

Let us now prove that
Unn0)(L6at0) " iny(0) = @™ (0) T (0 € ©), (18)

with Rea™(0)~" = v|ja]| 1y
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Fix 8 € C™4. Since e?)caC™? C P(6), and taiy : P(§) — P(6) is invertible, there
exists 7 € C™? and Ny, € [H}(Y) L €%)ci]” such that

vpatg (% edy + grad, Ny,) = €@ ca g, (19)
Next, we compute for all ¢ € [H}(Y) L e/®Ica]” that

0= (e%cd3 grad, q) = <L§abg(ei<0")<€d’y + grady Ny, ), grady q)
= (a(grady No,, + €"*Ic19), grad, q).

.....
,,,,,

Furthermore, since e?)caC"*4 C P(6), (19) implies that

(B,m)cnxa = (€@et B ety = (15a(eP ety + grady N, ), € etn)
= <a(grad9 Ny, + ei<9">cd7), ei<9">cdn> = (ahom(é’)% N)cnxd, (ne C"Xd). (20)

That is v = (ahom(G))_lﬁ, where a"™(6) is given by (5). Hence,

o0 )ca (ahom(ﬁ))_lﬁ _ ei<0">€d”y _ L}2(9)61<9">cd7
= Ui, (grady Noy + O ciy) = i3 ) (i5ag) 7 (e1)e1 9)

= U0 (t5at0) " ine) (19721 8),

that is, we have shown (18) holds. The claimed properties of a"™(6) in the theorem state-
ment are demonstrated in Proposition 4.2 in Section 4. O

In the proof of Theorem 3 we proved the following result about the asymptotic behaviour
of the fluxes.

Proposition 3.16. For F € [L*(Y)]", let
Uep = ( — e 2divga grad, +s)71F,

and

Vo9 = ((— e divy a"™(0) grad, +m(s)) 'F

Then,

Lrea grady u.y — 5_17r9ah°m(0) grad, U579||[L2(y)]n><d < I{SHF”[LQ(Yﬂn.

le”
Proof. This follows from inequalities (14), (15) and (16) for right-hand side U-'(F,0)". O

Another implication of Theorem 3.9, which we use in the next section, is the analogue of
Theorem 2.16 that reads as follows.
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Theorem 3.17. Let a € Mn & S E de. Consider the setting (10) and let iy : [L*(Y)]" &
P(9) = [L2YV)]" @ [LA(V)]™, ox [ARY]" — [L2RY]" @ {0} C [LA(RY)]" @ [L*(RH]™.
Then, there exists k > 0 such that for all € > 0, one has

[(—ava ) gmars ()7 =2t [ (v | (M5 panty )

1 0 - diVa Ly - * ~x
+ g (—Le grade 0 ) ]ﬂ'N(g)> LN(g)Lg d@Z/{EL

For completeness, we shall end this section with the well-posedness proof of (6).

Proposition 3.18. Let a € ./\/lf:d. Then, for all € © and v € C™? there exists a uniquely
determined Ny, € [H}(Y) Le®)cd]™ such that

(a(grady No, + €'@Icty) grady o) =0, (¢ € [Hy(Y)Le @], (21)

Furthermore, the inequality
| grady Ny, || < Lljjy]

holds. Here, v 1s such that Rea > v

Proof. For this note that by Proposition 3.11(b), we have
Ry(#) = {grad, ;¢ € [HF(Y)Le!®Ica]"} C L2(Y)™*? closed.

We denote, as usual, by tp,) and 7g,@) the canonical embedding from Ry(¢) and the
orthogonal projection to Ry(f).

Next, we shall reformulate (21): Ny, € Hg = [H} (V) Le!®cd]™ satisfies (21), if, and only
if, for all ¢ € Hy one has

ae!®)ety, grad, o)
ae'? et Vs TRy (0) Srady )
ae'®)ed % LR (6) Uy (0) 2129 )

bledy, Uy (o) 81adg ).

(a grady Ny, grad, @) =

(=
(-
(-
(=R, ) ae
Next, since
(agrady No,. grady ©) = (aty0) ) 88y Novs o)y 818, )
= <LR2 (0) LRy (0) LRQ(e) grady Ny, LRQ(G) grady ¢),
we deduce that (21) is equivalent to stating that
i

<LE2(9)GLR2(9) LEQ(Q) grady Ny, LEQ(Q) grady ) = <—LEQ(9)CL€ ")Cd% LEQ(e) grady ) (¢ € Ha),
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which, due to the fact that the operator grad,: Hy — Ry(f) is a bijection, is equivalent to
stating

<67'>(cd

Uia(0) LRa(0) Ly o) 8¥8g Noy = —tp, gy ety

The coerciveness of a implies that Uiy (9)ALRy(9) 1S COEICIVE. Hence,

* * -1 & (0.
LRy (0) gradg Ngy = — (LRQ(Q)CLLRQ(Q)) LRy (0)0€ (0, )(cd,y_

The last equation determines grad, Ny, uniquely, and the desired assertion follows by ob-
serving that Ny, € Hy and that grad,: Hy — R2(6) is bijective.
To prove the inequality, we note that since Rea > vlcnxa then we obtain Re(ijatg) >
v1p). Therefore,
[(tpace) ™M < w71,

and we calculate

16:,(6) 8rady Noo | < v |, gyae®etyl] < L |1]. O

4 Properties of the fibre-homogenised matrix a"™(f)
and comparisons to classical results

In the whole section, we adopt the setting (10). In Section 3, we established

®

Ut / (— e *divg "™ (0) grad, + m(s))_ldc%l6
)

to be non-standard leading-order asymptotics in € > 0, uniform in 6 € O, for the operator

family ((—diva(-/e)grad —i—s)_l)E. This section is devoted to comparing these asymptotics

to the classical ones found in the literature, see Remark 3.2. We end the section with an

example of when AM™() £ A (0). The main result of the section is as follows.

Theorem 4.1. Let a € Mﬁd, s € S:fd. Then, there exists a constant k > 0 such that for all
e > 0, the inequality

1

H (—diva(:)grad+s(2)) — (= diva™™(0) grad+m(s))_1 < ke

holds. The constant matriz m(s) € S*, and constant fourth-order tensor a"™(0) € M7¥ ,
are given in Theorem 3.1.

Before proving this result, we introduce some related auxiliary results.

Proposition 4.2. Let 0 € ©, a € Mﬁd and v > 0 such that Rea > vlgnxa. Then, the
following assertions hold:
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(a) for all X € C™® with Npx = 22:1 Zj:l Ne(rs)er
<(Zhon1(9)X7 Z>(Cn><ri = <a(grad9 Nox + ei<9,'>ch)’ grade Nyy + el0)ca Z> (X, 7 c CnXd);
(b) for all X € C**¢

Re(a"™(0)X, X)crxa
— lnf Re<a(grad9 N0 + 61(9,~>¢:dX)’ grade Ng 4 €i<0">(ch>;
Nef() L e
(C) we have
07\72(9) (LZ(]JLG)_I LNQ(G) _ ahom(‘9>71;
(d) R,e ahOln(e) 2 Vl(chd;
(e) | Rea™(6)] < || Real;
(f) llatom(6)| < el

v

(9) if ayi € C (i,k € {1,...,n},j,l € {1,...,d}), then a"™(0) = a (0 € O).

Proof. To prove (a), we use (20) and observe that
(a(grady Nyx + €%ct X)), grad, Nyz) =0

as Nyx € [H}(Y)Le!®ed]”. Next, the claim in (b) follows from the observation that (6) is
the Euler-Lagrange equation corresponding to the problem of finding the minimiser of the
non-negative functional

[Hel (Y)J—eiw’.%d]n > N +— Re(a(grade N9 -+ ei<9">CdX>, grade NG + €i<0:'>cd X)
The assertion (c) is shown in (18). For the proof of (d), we let X € C™% and use (a) to
obtain
Re(a"™(0) X, X)enxa = Rela(grady Nyx + €)ca X)), grad, Ny + €@ )ca X)
> v(grady Nogx + e0lea X grady Nox + €i<6">CdX>
= v(|| grady Nox > + [ X|[[*)
> v| X,

where we used Pythagoras’ identity as grad, Nyx Le!()ce X
In order to prove (e), we shall use (b). Indeed, for all X € C"*? we obtain

Re(a™™(0)X, X)gnxa = inf Re(a(grady Ny + ¢'@)ca X)), grad, Ny + /et X)

Ne[HY(Y) Le! " cd)n

< Refae!'ea X el@lca Xy < || Real || X2

The proof of (f) uses (c¢). From the inequality Rea > vlcaxa, we infer that Re tjatg > vlgnxa.
Hence, Re(tjag) ™ = v/(]|al|*)1gnxa. Thus,

(ahom<8)—1)
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The last assertion follows from the observation that a constant a leaves Ny(#) and, hence,
P(#) invariant. Therefore, we obtain

a"™(0)~" = Un o) (Lo ate) ™ vy (o)

* * —1

— L}‘VQ(G)LZLgLNQ(g)a_l
=at [
Proposition 4.3. There exists k > 0 such that for all 0 € ©

la"™(0) — "™ (0) | va(0) < £16).
Proof. As N{"™ solves (6), then Proposition 3.11 (a) and Proposition 3.18 imply that

INS e < (772 + 1)1/2M, Beo,re{l,....,n}se{l,.. .. d). (22)

v

Using the notation in Proposition 4.2, assertion (20) implies that

(@™ (0)X, Z) ny(0) = (algrady Nox + Ot X) eOlet 7y (X, 7 € C™);
This identity yields

(7(8) — a""(0)) X, Z) ) = {alepacdy Nox ~ grad, Nox), ¢ 02)
+ (agrady Nox, (e9)et —1)Z) (X, Z € C™9).

Consequently

[a"™(8) — a"™(0)|| < [lallll grady Nox — grad, Nox|| + [0][|a grad,, Nox|-
Recalling (22), we observe that to prove the proposition it remains to demonstrate

Jk > 0V0 € © || grady Nyx — grady, Nox|| < x[0]]| X]|. (23)
By (6), one has for Nyy = 32", 3% N X,, that
(agrady Nox, grady o) = —(ac'®Iei X gradyp), (¢ € [Hy(Y) L &®et]),
and
(agrady Nox, grady @o) = —(aX, grady @o), (o € [H#(Y) L1m.

Fix g € [Hy(Y) L 1]", and set Nox = e X00ci Npy, 0 = ei® )iy, Clearly Nyx belongs to
[HL(Y) L1]"and ¢ € [H}(Y) L '®Ica]”. By the identity grad, ¢'®/et = ¢¥)cd (grad, +i6),

and the equation for Nyx, we calculate that Nyx solves

(agrady NQX, grady o) = —(agrady NQX, i0pg) — <a(i@]%x + X), (grady +i6)po).
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Therefore, B
(agrady[Nox — Nox], grady ¢o) = Re(¢o), (24)

where
Ro(po) = —(agrady ]%X,i&p@ — <ai€]%x, (grady +if)o) — (a X, o).
Utilising (22) and Propostion 3.11 (a) gives
| Ro(p0)| < #1011 X[ lpo |z ryn < (1 +772)210]1X ||| grad ;. @o | zagryece,

By setting ¢o = Npx — Nox, and recalling that Rea > vlcaxa gives the inequality (23).
Hence, the proposition is proved. O

The last step in proving Theorem 4.1 is contained in the next proposition.

Proposition 4.4. There exists a constant k > 0 such that, for all € ©, ¢ >0, and f € C",
fo = e%)ca f with

Bo\ [ (m(s) 0 1 0 —divy g L g,
Mg = 0 ahom(g)—l e "N(0) _LZ grade 0 N(6) 0/
é f— m(s) 0 1% 0 — diV@ Ly -1 f9

Mé = 0 ahom(o)—l LN —L; grade 0 LN(6) 0

the following inequality
186 — Ball < el foll

holds.
Proof. Fix 0 € ©. Recall that

N(8) = N1(0) & No(), Ni(6) == ®IeiC", and Ny(f) = € ciC*?.

By direct calculation, it follows that ran(divg |n,)) © N1(0), ran(grady [y, 9)) € N2() and
that

% 0 — diV@ Lo 61(9">Cd6 €i<€">¢:d Mib d nxd
UN (o) (_L; grad, 0 ) LN(8) (61<9">CdM = — ¢i0)ca 3 249 ) (6eC* M eC™).

Let us now prove the desired assertion. For f € C", consider the problem: Find (8, M) €

C" @ C™? = N(0) such that
Hl(S) 0 €i<0’.>Cdﬁ _ ei<0">Cd Mle - ei<97'>cd f

0 ahom(e)—l 6i<97'><CdM ei<6,~)cd6 ® i0 - 0 5

e 2a"™(0)(8 @ 0)0 + m(s)3 = f.

M =

equivalently M = gahom(e) £ ®1i6, and
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By taking the inner product on both sides of the above identity with 3, we calculate
(72101 + ) 18] < 1, (25)

where v > 0 is such that for all § € © we have Rea™™(0) > vlgnxa, and Rem(s) = vics;
note that such v exists by Proposition 4.2.
Now, let 5’ € C™ solve

e2a™™(0)(8' ® 0)0 + m(s)p = f.
It follows that

e2a"™(0)((8 — ) ® 0)0 + m(s)(5 — ') = e72(a""(0) = a"™())(5 @ 0)0.

Therefore, arguing as in the derivation of inequality (25) with a"*™(0) instead of a"™(6) and
f=¢e2(a"™(0) — a"™(9))(8 ® 0)0, we deduce that

(e72VI0P + )1I8 = Bl < lle2[a"™(0) = a™™(6)](8 ® )0
< e ?[la™m(0) = a™ @) 1011 B1I-

Consequently, by considering Proposition 4.3 and (25) for arbitrary f € C" again, we deduce
that

I8 =B < nr iy < Gl

for C' = Ksup,cp % Hence, Proposition 4.4 holds. [

Proof of Theorem 4.1. In Proposition 4.2 we established that a"™(0) € /\/l#d and that if

ae M? 4 1s constant then "™ (#) = a for all § € ©. Furthermore, if s € S#d is constant
then it clearly follows that m(s) = s. Thus, by utilising Theorem 3.17 twice, once for a and

s, and again for a"™(0) and m(s), we conclude that Theorem 4.1 follows from Proposition
4.4. [

An example of when a"™(6) # a"™(0).

Let us recall the well-known result that if a € ./\/l# 1 1s self-adjoint and satisfies the assumption
aX € ker(divy) for all X € C"*? then

2 0) = 0y = [ aty)in

For the reader’s convenience we shall reprove this result here (for further information see for
example [18, Section 1.6]). The claimed identity can be immediately seen by noting that,

for such an a, problem (6) takes the form: Find Nérs) € [Hy(Y) L 1]" such that
(agrad, Ném), grady ) =0, (p € [H;IE(Y) 11,
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Indeed, this follows from
(ae, @ ey, grady o) = —(divgae, @ e, 0) =0,  (p e [Hy(Y) L1]"),

Consequently, N\ = 0 and from (5) we deduce that a™™(0) = (a).
We shall use this observation to demonstrate that in general a"™(6) # o™ (0) for 6 # 0.
Indeed, the following result holds.

Proposition 4.5. Assume a € ./\/lfjtd is self-adjoint with aX € ker(divy) for all X € C™*.
Then,
A" (6) = a""(0) (04 0)

iof, and only if, a is constant.

Remark 4.6. For the case n = d = 1, then the condition aX = a - X € ker(divy) for
all X € C (i.e. a € ker(divy)) automatically implies that a is constant. In fact, for the
one-dimensional scalar case one does not require the assumption a € ker(divy) to deduce
that a™™(0) = a"™(0). That is, for any a € ./\/lffl, one can show by direct calculation that
am(g) = a"™(0) for all § € ©.

Proof of Proposition 4.5. Fix § € ©\{0}, X € C% Let Nyx € [H}(Y) L € )eci]™ solve
(a(grady Nox + ¢ @Iet X), grady ) = 0, (p € [Hy(Y) L @Ier]). (26)
Recalling Proposition 4.2 (a) we deduce that

<ah0m(9)X, X>(Cn><d _ <a grad, Nyx, ei<9,‘>CdX> + <G,€i<9’.>ch, ei(e,‘>ch>
= (agrad, Nyx, e@7ci X) 4 (a) X - X (27)
= (agrad, Nyx, et X) + (a"™(0) X, X).

Therefore, the identity a™™(#) = a"°™(0) holds if, and only if, (a grad, Nyx, e!®)ct X) = 0.
Note, from the assumptions a = a* and aX € ker(divy) for all X € C"™? and the identity

e0)ca grad# e H0ca — grad, +if,
we deduce that
(agtady o, et X) = —(aifp, 6001 X), (€ [HAY) L e®ea]r).  (28)
Then, from the above assertion it follows that
a gra ox, e\die = —(aifNyx, e'?c .
grad, N, 0, )ca x ON., (05)ca X

If we assume a is constant, then the term on the right-hand side of the above equation
vanishes because Nyx L €?"JcaC?. Therefore, a™™ () = a*™(0).
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Let us assume that a"™(f) = a"™(0). We shall now prove that a must necessarily be
constant. By (27) it follows that

(agrad, Ngx, ')t X) = 0. (29)
Equation (29), the fact a* = a and setting ¢ = Nyx in (26), gives
(agrady Npx, grady Nox) = 0.
That is, Nyx = 0 and (26) takes the form
(ac'®let X, grad, ) =0, (p € [Hy(Y) L e@ei]).
This in turn, combined with (28) and the fact a = * implies that
(ae'®)ci X i0p) =0, (@ € [Hj(Y) L eIea]m).

That is,
ae? e Xi0 € 10)ed 04

which can only be true if a is constant. O]

Example 4.7. We give a small concrete example that the set of a satisfying the conditions
imposed in Proposition 4.5 is non-trivial. For this, let n =1, d = 2. Take p, ¢ € C°(0,1;R)
with ¢, > 0. Then define

b:Y 3 (y1,92) — (¢(g2) w((?)/l)) '

As the entries of b are non-negative, a == b+ 1¢s € Mﬁ. Moreover, a = a*. The divergence
condition, that is both of the columns of a are in the kernel of divy, is easy to see.

5 Application of fibre homogenisation to equations of
Maxwell type

In this section, we shall demonstrate the utility of our approach in the context of Maxwell’s
equations. That is to say, we shall treat the following static variant of Maxwell’s equations:

e(x) 0 0 —curl En J 3
" =
(5 )+ lan 0) () = () on
For consistency with notation in the literature, where ¢ is often reserved for the dielectric

permittivity, we denote n € (0,00) to be the parameter. Here, J, ¢, u are given and the
unknowns £, and H" are the electric and magnetic fields respectively. A system of the type
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may occur, for example, when considering the resolvent problem for the Maxwell system in
the frequency domain at a fixed frequency. The operator curl is acting as

82E3 — 83E2
Curl(Ej>j€{1,2,3} = 83E1 - 81E3
81E2 — 82E1

realised as an operator in [L*(R3)]*. Note that curl, thus defined, is selfadjoint.
Henceforth, we consider ¢, u € Mfg, that is we assume that

e, p € L*(R% L(C?))

are Y-periodic and satisfy Ree(x), Repu(x) > v for some v > 0 and a.e. # € R3. As the
operator curl is selfadjoint, then by Lemma 2.5, we deduce that for a given J € [L*(R3)]?
there exists a unique pair (E", H") € [dom(curly)]? to the above Maxwell system. The rest
of the section focuses on describing the small n behaviour of this solution via the approach
described in Section 2.

Let U, be the Gelfand transform introduced in Section 3, Definition 3.3. The following
result states that U, interacts with curl in a similar way to its interaction with grad and div.

Proposition 5.1. For alln > 0, we have

@
U, carlU, = / % curly df,
[—7T,7T)3

where curly := curl |[Hé(y)]3 with the closure performed as an operation within [L*(Y')]3.

As the proof of this fact is analogous to the proof of Proposition 3.5 it is omitted.
The anticipated homogenisation theorem we deduce as a consequence of following our
general abstract procedure reads as follows:

Theorem 5.2. Let e, i € Mﬁg. Then, there exists k > 0 such that for all n > 0 we have

€ (ﬁ) 0 n 0 —curl
0w (5) curl 0
Z/{_l /69 ((ﬂ-n(@)gﬂ-n(é)) 0 ) + 1 < 0 — curl(;))_l dou
[—m,m)3 0 Tn(6) HTn(6) n \curly 0 ul

n(f) = el0)es 03 @ {grad, p;p € Hel(Y)J_eiw")@},

-1

< K1,

where

Unlike in the case of second-order elliptic systems with rapidly oscillating coefficients
presented in Section 3, in general the object m,@amu @), a € Mﬁ,), cannot be expressed as
the fibre-homogenised matrix given in Section 4. Such a comparison in the Maxwell setting
only occurs for a particular choice of right-hand side. Namely, the following result holds.
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Theorem 5.3. Letn >0, e, € Mﬁ, F € ker(div). Then

@ -1
0 1/ 0 —curl F
Ut T (6)ETn(6) 1 0 U
! /[—mr)3 (( 0 Tn(0) LT (6) * n \curly 0 7\ 0
@ hom 1
=U! e (0) (o) 0 170 —curl F
= uﬁ /W’Tr)3 ( ( 0 Iuhom(e)ﬂ_n(e) + " Cuﬂg 0 d@l/{n e

ghomig)y )

In particular, from these two results, and the fact that M 0) = 0 o ()

satisfies the assumptions of Theorem 2.4, we deduce the following result.

Corollary 5.4. Assume e, € Mﬁs and F' € ker(div). Then, there exists k > 0 such that
for all n > 0 we have

(94 () )
[ () () )

Remark 5.5. In fact, Theorem 5.3 holds if F' € [L?*(R?®)]? is such that, for each 0 € ©,
U,F(0,) is an element of {grad, p;p € H}(Y)Lel®)es}L This is a consequence of Lemma
5.14 below. It is clear that ker(div) is a strict subset of such fields.

< wn| F

The next few paragraphs focus on a proof of Theorem 5.2. For this we will be applying
Theorem 2.15, to the following setting

H = Hy= [0V, N(8) =) = [95C @ {arady pp € HA(Y) LePI),
—cur 30
40 = (o, Y w0 = (5 0). 0= mn )

curlg 0

Before we prove that Hypothesis 2.14 holds in this setting, let us study more closely the
operator curly. For this we introduce the following transformation.

Definition 5.6. Let 0 € ©. We define
Vo: L2(Y) = (2(Z%),u — ((u, e7F2)cs))

2€Z3 °
Note that Vy is unitary with
0+27rz
VQ ZEZ3 - Z ¢
2€Z3

and the sum being convergent in L*(Y).

In the following, we will employ the slight abuse of notation and reuse Vy to denote the
corresponding unitary operator from [L?(Y)]? to [¢2(Z?)]3, which acts component-wise as in
the previous definition.
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Lemma 5.7. Let § € ©. Then
Vy curly V, (c(z))z = (i(0 + 27z) x c(z))z :
In particular, curly = curly.

Proof. The unitary equivalence follows by direct computation. The fact curly is selfadjoint
now follows from the fact that the multiplication operator

(c(z))z — ((0 4 27z) x c(z))z
is skew-selfadjoint. O
We now gather several relevant auxiliary results. For 6 € ©, recall
1(6) = I3 C? @ {grady p; p € HY(Y) L@},

and set

ny(0) == e C3 () = n(h) 2o,
As usual, let 1,9, Lr(p) be the canonical embeddings and ), m(g) the orthogonal projections.
Lemma 5.8. Let 0 € ©, u = ;s (Del*2mes € [L2(Y)]3. Then
uer(d) < V=0 & VzeZ®: DL+ 2r2).
Proof. Let u € (). Then, clearly ¢(”) = 0. Moreover, we compute for z € Z3 \ {0}:

(P, =i(0 + 272);)

J

NE

(c®), —i(0 + 212)) =

.
—

w |l

 _ <<uj7 €i<0+27rz,')(c3>7 —i(@ + 27rz)j>
j=1

(u,1(0 + 2mz)e0F2m=)es)

(u

,grad, 0+ lcs)

0.
On the other hand, assume that the Fourier coefficients satisfy the properties mentioned on
the right-hand side of the claimed equivalence. Then ¢(®) = 0 implies (u, €?/c3y) = 0 for all
v € C3. Next, let p € H}(Y) Lel®)e3C3. From the identity p = > ez o) céz)ei<9+2”zv‘>c3 c
H}(Y)Lel%)es we deduce that
2€7Z3\{0}
= (u, Z i(60 + 27Tz)céz)ei<9+2“"><03>
2€73\{0}
= 3 (9,160 +272))c})
2€Z3\{0}
= 0’
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which establishes the claim. O]
Proposition 5.9. Let 6 € ©. Then
curlg Tn(9) = 6 x Ty (0)-

Moreover, we have
Tn(9) curlg - Curlg Tn(6)-

Proof. Let u € [L*(Y)]*. Then
U = Ty U + Tre)U = ei<9">c3fy + grady,p + Te(0) U,

for some v € C* and p € H}(Y)Lel®)cs. Since ran(grad,) C ker(curly), we obtain that
NOUES dom(curly). Moreover, we compute

curlp mypyu = curly (ei<6">c37 + grady p) =10 x ei<9">c37 = 16 X my, (9) U

This shows the first desired assertion.
Next, assume in addition that v € dom(curly). Then, mg)u € dom(curly) and

curlg u = if) x m,, (g)u + curlg mgyu = 6 x 6i<9">637 + curly my(g)u.
From i x €?"Jcsy € ny(0) C n(f), we infer that
T 9) Curly u = (g curly my(p)u.
Lemma 5.7 implies that there exists some (¢*)),czs in C? such that

curlg mgyu = Z i(0 + 27z) x o(2) pii(04272) ) s
2€Z3\{0}

Furthermore, since ((6 + 272),i(0 + 272) x ) = 0, it follows from Lemma 5.8 that
curly mgyu € r(0). Hence,

Ty(9) Curlg u = my(g) curly mpyu = curly m(g)u,

which together with Lemma 2.7, for H = [L*(Y)]?, A = curly and U = r(#), yields the second
desired assertion. O

Proposition 5.10. Let § € ©, u € dom(curly) Nr(0). Then

lull < 2l curly ul].
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Proof. There exists (¢\¥)),czs in C* with u =" __,s (@el?*272es - By Lemma 5.8, we have
that ¢(© =0 and ¢®) 10 + 27z for all z € Z3. In particular, we get

10+ 272) > P} = [[(8 + 2m2) [ 2]| = 7P| (= € 2\ {0}).

Thus, by Lemma 5.7,

| curly u® = H Z (0 + 2m2) x (Dei0+2m)ca 2
2€Z3\{0}
= Z ||i(9—}— 27Tz) % C(Z)ei<9+27rz">c3||2
2€Z3\{0}
- Z (6 + 272) x c(Z)H2
2€Z3\{0}
P m Z HC(Z)H2 — 7TZ||UH2. -
2€Z3\{0}

In the setting (30), with the Propositions 3.7 (b), 5.9 and 5.10, we can readily demonstrate
Hypothesis 2.14 (a)-(c) for the setting (30). In particular, the assumptions of Theorem 2.2
hold. To argue as in the proof of Theorem 3.1 and obtain a proof for Theorem 5.2, it remains
to prove Hypothesis (d).

Proposition 5.11. Let (0y)ren be a convergent sequence in ©, 0 = limy_,oo 0. Let (ug)ren
in dom(curly, ) C [L*(Y)]® weakly converge to some limit u. Assume that (curlg, u)ren is
bounded. Then u € dom(curly) and

curly, up — curly u.

Proof. Recalling Definition 5.6, we have

= V() e = IS = V) = T O,
z€Z3 2€73
for (7)o = (ot 082750) L (69) Ly = ((a 092050) € R(Z9). Lemana

5.7 states that
V@k Cur]_gk U = Z 1<0k‘ + 27.‘.2) % C;{;Z)el<9k+27rz’.>c3.
2€Z3

Passing to the point-wise limit above, we determine that

Vy, curly, uy, — Z i(0 + 2m2) x (Pei0+mcs
2€7Z3

as k — oo. This, plus the assumption that (curly, ux)ren is bounded, implies the desired
assertion. O
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Proposition 5.12. Let e, € ./\/lﬁ,), and n > 0. Assume setting (30). Let T : © —

L([L*(Y)]®) be given by
e 0 1 0 —curly -
o (6 ) e 5™))

Then, T 1s weakly continuous.

Proof. Let (0 )ren be convergent in © to some limit . We need to prove that for f € [L*(Y)]°,
then the sequence (T'(6)f)ren is weakly convergent in [L%(Y)]® to the limit T'(0) f.
By Lemma 2.5,

sup | T(0)]| < 5,
0co

where v > 0 is such that Ree > vlcs, Re = vles. Therefore, (T'(0y) f)ren weakly converges,
up to a subsequence, to some u. Moreover,

0 — curly
p [ (can, 5" 002 <

and therefore, by Proposition 5.11, we deduce that w = T(0)f. Since w is unique, the whole
sequence (T'(0x)f)ren weakly converges and the proof is established. O

The proof of Hypothesis 2.14 (d) now follows from Proposition 5.12, as T is weakly
continuous and therefore weakly measurable.

We conclude this section by proving Theorem 5.3. This result is a consequence of the
following proposition and the assertion U, div = fge divy dOU,,:

Proposition 5.13. Let n > 0, &, € M7 3, f € ker(divg). Then

Tn(0)ETn(0) A 1 — Clll"lg - f
0 T (6) W Tn(6 n curlg 0
([ (O)Ty 0 n 170 —curl L
N 0 uhom(e)ﬁn(g) n \curly 0 0/

For the proof of this proposition, we will utilise the following result.

Proposition 5.14. Let § € ©, ¢ € M7 3, B en(d) and f € ny(0) ©r(0). Then
Ta@eE = f < "™0)E = f.

Proof. Let ny(6) = n(0) ©n,(0) = {grady p;p € Hy(Y) Le!®Ie3}. Assume that mygeE = f.
Then, for all ¢ € ny(#) we deduce that

<7Tn(9)€E> 90> = <f7 g0> = 0.
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Hence, as 1,9 = ¢ for all ¢ € ny() we obtain

(eE,0) =0 (p€mny(0)).

Moreover, projecting on r(f) reveals that

Te(9)f = Tee)Tno)eE = 0.

Thus, f = m,(9)f and so
(B, ) = (f,¢) (p€n(0)),

which readily gives
gomOE = f.

The other implication is similar. O]

Proof of Proposition 5.13. Let (E, H) € [dom(curly)]? be such that

Tn(6)ETn(0) 0 —i—l 0 —curly E\ (f
0 Wn(g)/urn(@) n Cuﬂg 0 H N 0/"

Equivalently,
T En(o) E — % curlg H = f, Tn(0) W0y H + %Cuﬂg E=0.

Let us focus on the first equation. One implication of this equations is that curlg H €
ny(0) & r(f). Thus, for f = f + %curlg H and E = 9 E, we have

Ta@el = f € n1(0) ®r(0),

and Proposition 5.14 implies

chom gV — .

The argument for the second equation is completely analogous. Thus, the desired assertion
holds. O]

The proof of Theorem 5.3 now follows by applying Proposition 5.13 pointwise for any
0eco.
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