
Accepted Manuscript

Controls on the formation of turbidity current channels associated
with marine-terminating glaciers and ice sheets

Ed L. Pope, Alexandre Normandeau, Colm Ó. Cofaigh, Chris R.
Stokes, Peter J. Talling

PII: S0025-3227(19)30071-4
DOI: https://doi.org/10.1016/j.margeo.2019.05.010
Reference: MARGO 5951

To appear in: Marine Geology

Received date: 11 February 2019
Revised date: 22 May 2019
Accepted date: 26 May 2019

Please cite this article as: E.L. Pope, A. Normandeau, C.Ó. Cofaigh, et al., Controls on the
formation of turbidity current channels associated with marine-terminating glaciers and ice
sheets, Marine Geology, https://doi.org/10.1016/j.margeo.2019.05.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.margeo.2019.05.010
https://doi.org/10.1016/j.margeo.2019.05.010


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Controls on the formation of turbidity current channels associated with marine-

terminating glaciers and ice sheets 
Ed L. Pope1*, Alexandre Normandeau2, Colm Ó Cofaigh1, Chris R. Stokes1, Peter J. Talling3 

1Department of Geography, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, 

UK 

2Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, Dartmouth, NS, B2Y 

4A2, Canada 

3Departments of Earth Science and Geography, Durham University, Science Laboratories, South 

Road, Durham, DH1 3LE, UK 

Keywords: submarine channels, fjords, ice sheets, turbidity currents, geomorphology, glacimarine 

processes 

Abstract 

Submarine channels, and the sediment density flows which form them, act as conduits for the 

transport of sediment, macro-nutrients, fresher water and organic matter from the coast to the deep 

sea. These systems are therefore significant pathways for global sediment and carbon cycles. 

However, the conditions that permit or preclude submarine channel formation are poorly understood, 

especially when in association with marine-terminating glaciers. Here, using swath-bathymetric data 

from the inner shelf and fjords of northwest and southeast Greenland, we provide the first paper to 

analyse the controls on the formation of submarine channels offshore of numerous marine-

terminating glaciers. These data reveal 37 submarine channels: 11 offshore of northwest Greenland 

and 26 offshore of southeast Greenland. The presence of channels is nearly always associated with: 

(1) a stable glacier front, as indicated by the association with either a moraine or grounding-zone 

wedge; and (2), a consistent seaward sloping gradient. In northwest Greenland, turbidity current 

channels are also more likely to be associated with larger glacier catchments with higher ice and 

meltwater fluxes which provide higher volumes of sediment delivery. However, the factors controlling 

the presence of channels in northwest and southeast Greenland are different, which suggest some 

complexity about predicting the occurrence of turbidity currents in glacier-influenced settings. Future 

work on tidewater glacier sediment delivery rates by different subglacial processes, and the role of 

grain size and catchment/regional geology is required to address uncertainties regarding the controls 

on channel formation.  

 

*Corresponding Author: edward.pope@durham.ac.uk 
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1. Introduction 

Submarine channels are a common feature of the world’s oceans where large volumes of sediment 

are introduced into coastal waters, or where continental shelf and slope processes are episodic, such 

as related to the advance and retreat of ice sheets (Peakall et al., 2000; Ó Cofaigh et al., 2004; 2006; 

Wynn et al., 2007; Lastras et al., 2009; Conway et al., 2012). These channels, and the sediment density 

flows which form them, act as conduits for the transport of sediment, macro-nutrients, fresher water 

and organic matter from coastal environments to deeper water (Canals et al., 2006; Galy et al., 2007; 

Kao et al., 2010; Azpiroz-Zabala et al., 2017; Amblas et al., 2018). 

Here, we present an initial study of why submarine channels are found in some locations, but not in 

others, determining the controls on their presence or absence. Similar questions have long been asked 

for river systems on land, where channel presence is determined by surface gradients and the amount 

and pattern of accumulation of surface rainfall and runoff (Leopold and Wolman, 1957; Schumm and 

Lichty, 1965; Lane and Richards, 1997). Similar processes do not occur underwater, and submarine 

channels also terminate, unlike river channels that typically extend continuously to the shorelines. 

There are few previous studies that have quantitatively analysed seafloor bathymetry to determine 

controls on submarine channel occurrence, but the recent availability of swath bathymetry data over 

large areas now makes such work possible (Kneller, 2003; Mitchell, 2005; Amblas et al., 2015). Past 

analysis of submarine channels has been restricted to their geometry and internal processes (Clark et 

al., 1992; Clark and Pickering, 1996; Peakall et al., 2000; Konsoer et al., 2013; Peakall and Sumner, 

2015), rather than why they exist. In this contribution, we consider submarine channels offshore from 

glaciated margins. 

Submarine channels are commonly found offshore the world’s largest rivers (Clark and Pickering, 

1996). Here, the presence of a channel is commonly linked to rapid deposition of large volumes of 

sediment on sufficiently steep offshore gradients, leading to slope failure or the plunging of river flood 
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water. However, the exact conditions that permit or prevent submarine channel formation in these 

locations remains poorly understood. In contrast to the world’s largest rivers, large submarine 

channels are less commonly associated with the offshore sediment depocentres of the world’s largest 

ice streams (Dowdeswell et al., 1996; Pope et al., 2018). Despite the rapid delivery of exceptionally 

large volumes of sediment, these trough-mouth fans are thought to be constructed through recurrent 

glacigenic debris-flow occurrence (Vorren and Laberg, 1997). Where channels are found, they are 

often hypothesised to be a consequence of meltwater sedimentation (Ó Cofaigh et al., 2018; Pope et 

al., 2018; Rui et al., 2019). Despite their rarity, however, perhaps the world’s longest submarine 

channel, the Northwest Atlantic Mid-Ocean Channel, is found on a glaciated margin (Hesse et al., 

1997). The Northwest Atlantic Mid-Ocean Channel extends for ~3800 km from the Labrador Sea (at 

water depths of <500 m) into the North Atlantic (at water depths >3500 m) (Hesse et al., 1997). The 

controls on submarine channel formation along glaciated margins are therefore even more uncertain 

than river-fed margins; but it is likely that these channels play a key role in sediment budgets, 

oceanography and ecosystems of glaciated margins (Powell and Domack, 1995; Hunter et al., 1996a; 

Bourgeois et al., 2016; Calleja et al., 2017). 

Using detailed bathymetric mapping, submarine channels have been identified in contemporary fjord 

systems associated with river deltas and, at high latitudes, with marine-terminating outlet glaciers 

(Prior et al., 1987; Bornhold et al., 1994; Hughes Clarke et al., 2014; Batchelor et al., 2018). These 

datasets enable us to analyse and better understand the controls on channel formation and turbidity 

current recurrence in fjords with marine-terminating glaciers. An improved understanding of controls 

in fjords can also be applied to continental margins where ice previously reached the shelf edge, and 

thus help us to understand the evolution of these margins, their glacial histories, and their geohazard 

potential (L'Heureux et al., 2013; Gales et al., 2014; Newton and Huuse, 2017). It can also inform 

marine resource potential assessment related to turbidity current deposits (Syvitski and Farrow, 1989; 

Tasianas et al., 2016).  
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Where rivers discharge into fjords, the occurrence of turbidity currents is believed to be related to the 

pattern of glacier retreat. While glaciers provide large amounts of sediment, proglacial lakes can 

considerably hinder the supply of sediment to fjords (Normandeau et al., 2019). Where turbidity 

current occur, the formation of channels is thought to be related to the area of the river drainage 

basin and the highest mean annual discharges (Gales et al., 2019). Larger drainage basins are required 

in order for sufficient sediment to be supplied to river deltas (Gales et al., 2019). These elevated 

discharges concentrate deposition of this sediment during specific periods, resulting in the build-up of 

more unstable sediment due to its rapid deposition (Clare et al., 2016; Pope et al., 2017). The unstable 

nature of this sediment makes it more prone to failure and thus favours a greater number of turbidity 

currents thereby allowing channel incision to occur (Conway et al., 2012; Hughes Clarke et al., 2014; 

Clare et al., 2016; Hizzett et al., 2018; Gales et al., 2019). Alternatively, rivers discharging into fjords 

can transport sufficient sediment to result in the formation of hyperpycnal flows (Normark and Piper, 

1991). Although rare, hyperpycnal flows have the potential to either incise channels or trigger turbidity 

currents that allow channel incision to occur (Normark and Piper, 1991; Conway et al., 2012). 

In glaciated fjords, climatic regimes are often viewed as the primary control on the presence/absence 

of channels (Powell and Molnia, 1989; Syvitski, 1989; Syvitski and Shaw, 1995; Dowdeswell et al., 

2016a; Batchelor et al., 2018), largely due to their perceived influence on sedimentation rates at the 

glacier terminus. Warmer climates are associated with higher rates of surface melt and therefore the 

availability of meltwater. Once at the bed, this meltwater can enhance sediment delivery to the 

terminus by increasing glacier velocity and flushing subglacial sediment through a channelized 

subglacial drainage system (Powell, 1991; Nienow et al., 1998; Cowan et al., 1999; Zwally et al., 2002; 

Tedesco et al., 2013). Higher rates of meltwater-derived sedimentation should favour the triggering 

of turbidity currents as a consequence of hyperpycnal flows or the rapid deposition of sediment 

(Mackiewicz et al., 1984; Carlson et al., 1989; Hunter et al., 1996a; Cowan et al., 1999; Clare et al., 

2016). It is notable, however, that some fjords in the same climatic setting contain channels whilst 
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others do not (Batchelor et al., 2018). It is therefore clear that climate alone does not control channel 

formation in these settings. 

Other glaciological and geological factors are also likely to have an impact in controlling the likelihood 

of channel formation in addition to climate. The size of the glacier drainage basin may determine the 

volume of sediment which could potentially be delivered to the terminus (Dowdeswell et al., 1996). 

Terminus stability may also control the supply of sediment to a given location, by determining the 

length of time for sediment to build up in any given location (Powell and Alley, 1997). Bedrock lithology 

and the thickness of subglacial till (if present) may also modulate the volume of sediment available for 

transport to the glacier terminus (Hallet, 1979; Hallet et al., 1996). Likewise, the slope gradient of the 

base of the fjord may also influence the likelihood of turbidity currents being triggered and their 

runout distance; low gradient and reverse slopes limiting turbidity current activity (Talling et al., 2013). 

This study investigates the relative roles of these controls for marine-terminating glacier-influenced, 

fjord systems in relation to potential climatic controls. 

The key objectives of this study are to: 1) map and characterise turbidity current channels found 

offshore of northwest and southeast Greenland; (2) characterise the glacier catchments and fjords 

associated and not associated with channels and; (3) understand  the controls on the formation (or 

absence) of submarine channels along glaciated margins. 

2. Methods and Data 

2.1. Bathymetry 

The primary bathymetric dataset used in this study was acquired by NASA’s Oceans Melting Greenland 

(OMG) project (Fenty et al., 2016; OMG Mission, 2016). This dataset was collected using a Teledyne 

Reson SeaBat 7160 Multibeam Echo Sounder, which has a frequency of 44 kHz and 512 beams. The 

OMG data are supplemented by bathymetric data from Rinks Fjord and the inner shelf of Uummannaq 

Trough, which were collected during the JR175 cruise of the RRS James Clark Ross in September 2009 

(Ó Cofaigh et al., 2013). The JR175 cruise used a Kongsberg-Simrad EM120 system operating at 12 kHz 
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with 191 beams. The OMG and JR175 datasets were gridded using ArcGIS with a cell size of 25 m. 

These datasets (Figs 1 and 2) were used to analyse the presence/absence of submarine channels along 

the northwest and southeast Greenland margins, together with their morphology and the morphology 

of fjords along these margins. In the absence of clear definitions and criteria (Surpless et al., 2009) we 

distinguish submarine channels from gullies and chutes based on scale and morphology. Gullies and 

chutes are generally smaller, straighter and less incised especially in fjord environments (Field et al., 

1999; Gales et al., 2019). Average channel slope gradients were extracted and averaged along channel 

thalwegs. Average fjord gradients were generated by averaging the slope gradients along fjord long 

profiles.  

2.1.1. Alaskan bathymetry 

Multibeam bathymetry of Endicott Arm, Glacier Bay and Behm Canal, Alaska were downloaded from 

NOAA’s hydrographic survey database (https://maps.ngdc.noaa.gov/viewers/bathymetry). The 

datasets were collected during surveys of the NOAA vessels Fairweather in 2007 and 2009, and Rainier 

in 2013. The datasets were collected using RESON 7111, 7125, 8160 and 8101 multibeam echo 

sounders during the Fairweather cruises. Kongsberg EM710 and Reson 7125 echo sounders were used 

to collect bathymetry data onboard the Rainier in 2013. The datasets were gridded with cell sizes of 

16 – 32 m depending on maximum water depth.  

2.2. Satellite Imagery 

Landsat 8 satellite imagery is used to show the modern margin of the Greenland Ice Sheet in our study 

areas. The satellite images acquired were from July to September 2015, 2016 and 2017. Images were 

selected based on the lowest percentage cloud cover available. 

2.3. Drainage catchments and pathways 

To assess the relationship between submarine channel presence and the approximate catchment size 

of the Greenlandic outlet glaciers we used local hydrostatic pressure fields to delineate the 
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hydrological catchments of each outlet glacier (e.g. Pattyn, 2010; Livingstone et al., 2013; Willis et al., 

2016). To achieve this, we used the latest 150 m DEMs from BedMachine v3 of the surface and bed 

(Fig. 3a) of the Greenland Ice Sheet (Morlighem et al., 2017). The DEMs were used to calculate the 

subglacial hydrological potential (φ) and the major drainage catchments. φ was calculated from: 

𝜑 = 𝜌𝑖𝑔𝑧𝑠 + (𝜌𝑤 − 𝜌𝑖)𝑔𝑧𝑏      (1) 

where 𝜌𝑖 = 910 kg m-3 is the density of ice, 𝜌𝑤 = 1000 kg m-3 is the density of water, g = 9.8 m-2 is the 

acceleration due to gravity, 𝑧𝑠 is the ice surface elevation, and 𝑧𝑏 is the bed elevation (see Fig. 3b; 

Shreve, 1972). Sinks in the φ surface were identified and filled. The sink-filled φ was used to calculate 

the flow pathways and thus define the subglacial drainage basins beneath the Greenland Ice Sheet 

(Fig. 3c). 

2.4. Ice flux 

The contemporary ice flux at each glacier terminus was reconstructed using DEMs from the 

BedMachine v3 dataset and MEaSUREs Greenland Annual Ice Sheet Velocity Mosaics from InSAR and 

Landsat v2 (Joughin et al., 2015, updated 2017). This was achieved by multiplying the cross-sectional 

area of the ice front, derived from the BedMachine v3 dataset, with the depth-averaged velocity near 

the terminus based on surface velocity measurements using synthetic-aperture-radar interferometry 

(InSAR) and assuming basal velocity to be 80% of surface velocity (Overeem et al., 2017). 

2.5. Surface runoff 

To estimate the relative annual delivery of meltwater to each outlet glacier terminus we used the 

RACMO2.3 regional-atmospheric climate model (Noël et al., 2018). RACMO2.3 combines a high-

resolution weather prediction model, and the European Centre for Medium-range Weather Forecasts, 

with advanced snow models to determine daily ice sheet surface mass balance (Ettema, Van den 

Broeke, Van Meijgaard and Van de Berg, 2010; Ettema, Van den Broeke, Van Meijgaard, Van de Berg, 

et al., 2010). We use RACMO2.3 monthly cumulative runoff output from 01/01/2008 to 31/12/2017 
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(Fig. 4). Runoff is defined as the sum of rain and melt, minus local refreezing and retention, and was 

calculated for the entire Greenland Ice Sheet at 1 km resolution. We overlayed the glacier catchments 

with the gridded RACMO2.3 data and summed the runoff for all grid cells for a given month and then 

averaged each individual month between 2008 and 2017. The average runoff is assumed to represent 

the monthly discharge from the subglacial drainage system at the terminus (Overeem et al., 2017). 

2.6. Uncertainties 

2.6.1. Submarine channel identification 

It is probable that all large channels within the footprint of our bathymetry data have been identified. 

However, it is possible that smaller channels, i.e. shallow channels or those with widths <25 m, are 

not identified. In addition, the lengths of identified channels may be underreported. This is a 

consequence of the 25 m spatial resolution of the bathymetric datasets and their coarsening vertical 

resolution with increasing water depth, which may result in channels becoming indistinct from the 

seafloor.  

2.6.2. Drainage catchments, pathways and ice fluxes 

Our delineation of drainage catchments, pathways and ice fluxes contains a number of inherent 

uncertainties. These are a consequence of uncertainties in the BedMachine v3 ice thickness and bed 

elevation datasets resulting from the need to interpolate between radar lines and sources of error in 

the MEaSUREs dataset (see Morlighem et al., 2017 and Joughin et al. 2015). They are also a 

consequence of our decision to assume that basal velocities equate to 80% of surface velocities. 

However, our intention is to compare and contrast obvious differences between catchments rather 

than compare absolute values.  

2.6.3. Surface runoff 

Our methodology to estimate meltwater discharge incorporates a number of uncertainties. First, it 

assumes that runoff is transmitted straight to the bed and is not stored either in supraglacial lakes or 
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englacially (Banwell et al., 2012). However, a significant volume of meltwater may be prevented from 

reaching the ice margin because of refreezing and infiltration (Bamber et al., 2012; Harper et al., 2012). 

Second, we assume rapid and efficient transmission through the subglacial drainage system. However, 

the efficiency of the drainage system will vary over the year depending on surface meltwater inputs 

(Hewitt et al., 2012; Schoof et al., 2012; Hewitt, 2013) and meltwater may also be stored by subglacial 

lakes (Palmer et al., 2013). Nonetheless, we assume that the estimated runoff is a reasonable 

reflection of the relative subglacial discharge volumes of the individual catchments. 

3. Results 

3.1.  Presence/absence of channels in fjords 

The OMG and JR175 datasets contain bathymetry for 72 fjords and bathymetric troughs (i.e. troughs 

not bounded by aerially exposed margins) offshore of calving glacier margins which are sufficiently 

well mapped to identify the presence/absence of submarine channels (Figs 5 and 6, Tables 1 and 2). 

There are 35 fjords in northwest Greenland, 11 of which contain channels and 37 fjords in southeast 

Greenland, 23 of which contain submarine channels.  

Where present in the fjords/troughs offshore of northwest Greenland, submarine channels are the 

dominant features on the otherwise relatively smooth fjord seafloor (Fig. 5). In contrast, where 

channels are not present the fjord bottom tends to be more rugged and the primary morphological 

features are elongate ridges, streamlined ridges, bedrock outcrops, fault scarps, knolls, low amplitude 

terraces or multiple small closely spaced moraines (Fig. 7; see Batchelor et al., 2018 for more details). 

Channel heads offshore of northwest Greenland are associated with either moraines or grounding-

zone wedges (Fig. 5) but beyond these features the fjords slope gently into deeper water with average 

gradients of 2.2o (min 1.67o, max 3.17o). In contrast, fjords without channels are far more variable. 

These fjords either lack comparably large moraines/grounding-zone wedges, exhibit a series of over-

deepenings, or quickly become smooth-bottomed with extremely low gradients. Average fjord 

seafloor gradients and the boxplots in Fig. 8f illustrate this variability. The average slope gradient for 
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fjords which do not contain submarine channels is 4.33o, but the average gradient for individual fjords 

ranges from 1.1o to 12.2o. Furthermore, the gradient of fjords containing channels is statistically 

different from ones without channels at the 95% confidence interval (Table 3).  

In contrast to northwest Greenland, the fjords of southeast Greenland are on average longer and 

narrower. The majority of these fjords can be characterised as a series of over-deepened basins often 

separated by moraines (Fig. 6c – d). Where fjords are separated into multiple basins, streamlined 

ridges and reverse slopes are often found. In southeast Greenland submarine channel heads are 

associated with moraines and occur where fjord gradients are relatively consistent (Fig. 6c, d). 

Channels terminate where the fjord seafloor becomes flat or the gradient is reversed and the seaward 

path is blocked by a moraine or bedrock sill (e.g. Fig. 5b and 6c). Channels do not form where gradients 

are extremely low (<1o) beyond a moraine/grounding-zone wedge, or where the fjord slope abruptly 

reverses (Figs 7 and 8f, Table 2). The difference between fjords is negligible and statistically 

insignificant (p = 0.761) when the dataset is considered as a whole. However, if two outliers are 

removed (Table 2; Timmiarmiit Kangertiva (4.82o) and Apuseeq (8.76o)), then the difference in the 

gradient of fjords associated with and not associated with channels is significant as the majority of 

those not associated with channels have gradients <1o (Fig. 8). The large gradients of Timmiarmiit 

Kangertiva Fjord and the fjord associated with Apusseeq Glacier are a consequence of a steep initial 

slope (averaging 7o for the first 4000 m) and a series of steep overdeepened basins, respectively. 

3.2. Glacier catchments and ice fluxes 

Glaciers draining into fjords/troughs represented in our data have catchment areas of between 27 

km2 and 55,000 km2 (Tables 1 and 2). Overall, the average catchment area of those glaciers associated 

with channels and those not associated with channels are 8,300 km2 and 2,900 km2, respectively. In 

northwest Greenland the average catchment associated with a channel is 16,900 km2, compared with 

2,300 km2 for those which are not (Fig. 8). In southeast Greenland the average catchment area for 

glaciers associated with channels is smaller (5,000 km2) than in northwest Greenland but is still greater 
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than those catchments not associated with a channel (3,800 km2). Overall, catchment size is a 

statistically significant factor (p = 0.048) in determining channel presence, but is insignificant in more 

localised datasets with fewer examples, i.e. in southeast Greenland alone (p = 0.68, Table 3).  

The annual ice flux to the fjords/troughs in the datasets was between 5.8 x 10-5 km3 a-1 and 24 km3 a-1 

(Fig. 8). As with catchment area, average ice discharge into fjords associated with channels was greater 

(2.87 km3 a-1) than ice discharge into fjords not containing channels (2.39 km3 a-1). In northwest 

Greenland, annual ice fluxes were considerably greater for catchments associated with submarine 

channels (3.44 km3 a-1) than those not associated with channels (2.21 km3 a-1). In southeast Greenland 

the relationship is similar but reflects the smaller contrasts in average catchment size (2.71 vs. 2.02 

km3 a-1). Unlike catchment area, differences in ice flux between catchments associated with channels 

and those which are not, is not statistically significant (Table 3). 

3.3. Runoff 

Glaciers which drained into fjords/troughs were modelled to have an average annual runoff between 

0.003 km3 a-1 and 0.44 km3 a-1 from 2008 to 2017 (Fig. 8). The maximum monthly runoff varies between 

0.001 km3 a-1 and 0.22 km3 a-1. The average for catchments associated with channels was greater 

(0.0838 km3 a-1) than those without channels (0.072 km3 a-1). A similar relationship exists for maximum 

monthly runoff (0.039 km3 a-1 vs. 0.032 km3 a-1). In northwest Greenland the average annual runoff 

was 0.066 km3 a-1 per catchment, but those with channels had greater annual runoffs (0.13 km3 a-1 vs. 

0.046 km3 a-1). Those with channels also had greater maximum monthly runoffs (Fig. 8; 0.069 km3 a-1 

vs. 0.022 km3 a-1). Annual runoff and peak monthly runoff for catchments associated with channels 

were significantly greater than those without channels (see Table 3). In southeast Greenland the 

average runoff per catchment was greater than in northwest Greenland (0.081 km3a-1), but the runoff 

for catchments associated with channels was lower than those without channels (0.068 km3 a-1 vs. 

0.11 km3 a-1) as was their peak monthly runoff (0.027 km3 a-1 vs. 0.048 km3 a-1). The differences 

between annual runoff and peak monthly runoff of catchments associated and not associated with 
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channels were not significant in southeast Greenland or Greenland catchments as a whole although it 

was when considering only northwest Greenland. 

3.4. Submarine channel dimensions/characteristics 

Offshore of northwest and southeast Greenland, 37 submarine channels eroded into the seafloor have 

been identified (Figs 5 and 6; Table 1). Channel length and average width range from 2.2 km to 37.7 

km and 62 m to 500 m respectively. Channel sinuosity ranges from 1.022 to 1.656. Of the 37 submarine 

channels, nine have well-developed terraces along at least part of their length (Fig. 5a – c). Knickpoints 

can be identified in some of the larger channels, e.g. Cornell, but crescentic shaped bedforms have 

not been identified although this may be a consequence of the resolution of the bathymetry data 

(typical 20 – 60 m crescent shaped bedforms would not be visible on a 25 m gridded bathymetric 

map). The presence of both knickpoints and crescentic shaped bedforms would be indicative of 

turbidity current activity (Wynn and Stow, 2002). Submarine channel knickpoints are normally 

characterised by anomalously steep sections of channel between which the mean slopes of the 

channel thalweg are either relatively constant or gradually decreasing (Mitchell, 2006). Periodic failure 

of knickpoints can result in the depth of the channel locally increasing as the knickpoint migrates up-

channel, thus increasing channel entrenchment (Mitchell, 2006; Gales et al., 2019). In contrast, 

crescentic shaped bedforms are thought to be indicative of instabilities within sediment gravity flows 

resulting in zones of preferential erosion and deposition (Wynn and Stow, 2002; Symons et al., 2016). 

Offshore of northwest Greenland there are 11 channels; offshore of southeast Greenland there are 

26. Channels offshore of northwest and southeast Greenland are on average 14.9 km long and 8.5 km 

long respectively. Channels offshore of northwest Greenland are wider than those offshore of 

southeast Greenland (244 m vs. 137 m) and slightly more sinuous (1.2 vs. 1.16). Excluding the slope of 

the moraine/grounding-zone wedge on which channel heads originate, the average channel gradients 

for the two regions are 2.42° and 2.37° respectively. The average slope gradient where submarine 
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channels end is 0.7° with 75% of slope gradients between 0.52° and 0.92°. Offshore of northwest 

Greenland the average is 0.63° compared to 0.73° offshore of southeast Greenland.  

Turbidity current channels can be broadly categorised into two types according to their length, widths 

and depths (Fig. 9; Table 4). Type 1 channels are less common (only 11 have been identified) and are 

found predominantly offshore of northwest Greenland. These channels are typically longer (5.7 – 37.7 

km), wider (150 – 500 m) and deeper (10.5 – 46.3 m) than their type 2 counterparts (lengths 2.2 – 17.4 

km; widths 61 – 321 m; depths 5 – 33.7). Indeed, type 1 channels are likely to be even more extensive 

as bathymetry does not cover the channel heads of the shortest or longest channels. In addition to 

the contrast in scale, type 1 channels also have well-developed terraces along at least part of their 

length, whereas no terraces are observed along type 2 channels. On average type 1 channels are 

slightly more sinuous than type 2 channels (1.18 vs. 1.17), although the range of type 2 channel 

sinuosities is greater (0.348 vs. 0.634). However, the difference in sinuosities is not statistically 

significant (Table 4). 

4. Discussion 

This section will initially discuss the controls on submarine channel formation offshore of northwest 

and southeast Greenland. General controls on channel presence are defined and compared to other 

regions where glaciers terminate in fjords and bathymetric troughs. It will then discuss the 

characteristics of the submarine channels within the dataset, and contrast these characteristics with 

those of submarine channels observed in other settings. 

4.1. Controls on channel formation in fjords 

4.1.1. Nature of seafloor substrate 

The submarine channels identified in our bathymetric dataset are erosional landforms incised into the 

substrate, i.e. they have not been produced by the build-up of levees, and the channel floor is not 

perched above the surrounding seafloor (Peakall et al., 2000). Channels are only identified on 
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relatively smooth regions of the seafloor that are interpreted as sedimentary substrate (Figs. 5 and 6; 

Andrews et al., 1994; Schumann et al., 2012). This sedimentary substrate resulted from a combination 

of sedimentation from meltwater plumes, IRD, subglacial till formation and deposition related to mass 

movements (Powell, 2003). In contrast, no channel is found in a fjord where the seafloor is interpreted 

to be exposed bedrock, bedrock with a thin sedimentary drape, or where sediment has accumulated 

in the lee of obstacles  (Fig. 7; Batchelor et al., 2018). This suggests that a sufficiently thick sedimentary 

substrate is required in a fjord for turbidity currents to be able to incise into the seabed and produce 

a submarine channel. Thus, a sufficiently deep sedimentary substrate appears to be a fundamental 

pre-requisite for channel formation since it indicates significant sediment delivery to the fjord. 

4.1.2. Slope gradient 

Differences in fjord gradient are a significant control on submarine channel formation (Table 3, Fig. 8). 

Fjords characterised by high seabed gradients (>3°) do not typically contain channels. These fjords 

often contain overdeepenings, multiple bedrock highs or reverse slopes (see Fig. 7). Typically, 

significant moraines or grounding-zone wedges are absent. In addition, fjords with very low average 

gradients do not contain submarine channels (Fig. 8). This is likely a consequence of low slope 

gradients controlling turbidity current flow dynamics (Normark and Piper, 1991). For example, flow 

on low gradients may be weak, and thus unable to incise the channel thalweg. Of the fjords of 

southeast Greenland where submarine channels are absent, 10 fjords have slope gradients of ~1o. 

Even lower gradients (0.13 – 1.34o) are found where submarine channels appear to terminate or, at 

the very least, become indistinguishable from the seafloor due to the resolution of our bathymetry. 

Initial acceleration of submarine mass movements is controlled by flow concentration, friction, and 

seabed gradient (Parker et al., 1986). Reducing slope angle will reduce both the number of turbidity 

currents triggered, as well as their acceleration. This will likely result in a reduction of the erosive 

potential of turbidity currents, and thus prevent channel incision (Kneller et al., 1999; Kneller and 

Buckee, 2000).  
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Slope breaks, such as those associated with the juncture between moraines and the fjord floor or 

between the main fjord and its tributary fjord, can also result in a rapid drop in turbidity current 

velocity (Mulder and Alexander, 2001). This can be a consequence of either the rapid reduction in 

slope gradient or as a result of rapid flow thickening due to the entrainment of seawater via strong 

mixing at the interface of the flow and the ambient water (Komar, 1971; Das et al., 2004). The rapid 

alteration of flow characteristics can reduce the flow capacity leading to rapid deposition and thus 

prevent any channel incision from occurring (Gray et al., 2005). Given these considerations it is 

perhaps unsurprising that the majority of submarine channels are found in fjords which have average 

slope gradients of between 1.6° and 2.9°, and that fjords with average gradients outside of this range 

constitute >75% of fjords which do not contain channels.  

4.1.3. Stable glacier front 

The primary glaciological control on submarine channel formation is the presence of a stable ice front. 

All submarine channel heads offshore of northwest and southeast Greenland are associated with 

moraines or grounding-zone wedges (Figs. 5 and 6). In northwest Greenland eight of the channels 

originate from moraines and grounding-zone wedges at or close to the modern glacier margin while 

three originate from former glacier margin positions. In southeast Greenland, only four are known to 

be associated with moraines and grounding-zone wedges associated with modern glacier positions. In 

this region, 14 are associated with features deposited when glaciers were more advanced and eight 

are unknown due to the channel heads existing beyond available bathymetry. Moraines and 

grounding-zone wedges are sedimentary depocentres formed by past and present glaciers and ice 

streams, when ice was present at that location for a significant period and/or was delivering sediment 

at a high rate (Ó Cofaigh et al., 2008; Batchelor and Dowdeswell, 2015). In the case of grounding-zone 

wedges, they are formed mainly through subglacial deposition of deforming till at the grounding-line 

but can be supplemented by meltwater-sedimentation and iceberg rainout (King et al., 1991; Powell 

and Alley, 1997). Subaqueous moraines form through deposition of till at the grounding-line, meltout, 
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meltwater-sedimentation, iceberg meltout and dumping (see e.g. Powell and Molnia, 1989). Both 

moraines and grounding-zone wedges may also record grounding-line oscillations which act to 

bulldoze and tectonise the sediments. The formation of a grounding-zone wedge is thought to typically 

be associated with the presence of a floating ice shelf at the glacier margin which can restrict vertical 

accommodation space immediately beyond the grounding zone (Powell and Domack, 1995; Batchelor 

and Dowdeswell, 2015); whilst moraines develop in the absence of an ice shelf (Ottesen et al., 2007; 

Batchelor and Dowdeswell, 2015). As a consequence of the contrasts in accommodation space, 

moraines typically have greater positive relief than grounding-zone wedges, in addition to lower 

length-to-height ratios (Dowdeswell and Fugelli, 2012). Once deposited, this material can 

subsequently be reworked by gravity-flow processes such as turbidity currents (Hunter et al., 1996a).  

In general, moraine and grounding-zone wedge formation is controlled by: (1) grounding-zone stability 

(Larter and Vanneste, 1995; Ottesen et al., 2005); (2) accommodation space, i.e. the accommodation 

space of a tidewater terminating glacier will be greater than a glacier terminating in a floating ice shelf 

(King and Fader, 1986; Powell and Alley, 1997); (3) ice velocity and sedimentation rate (Dahlgren et 

al., 2002; Dowdeswell et al., 2008). Consistent delivery of sediment to these features from a stable ice 

front will increase the frequency of turbidity currents occurring. Growth of these features will also 

increase local slope gradients, favouring turbidity current triggering as a consequence of over-

steepening (Clare et al., 2016). The likelihood of channel incision will therefore be enhanced.  

4.1.4. Glacier catchment size, ice flux and runoff 

If, as for rivers, the rate of sediment delivery controls the likelihood of channel formation one might 

hypothesise that catchment size, ice flux and runoff (meltwater discharge) should be correlated with 

the presence or absence of a channel (Hallet et al., 1996; Koppes et al., 2015; Overeem et al., 2017). 

Overall, our data suggests that larger glacier catchments and those with larger runoffs are more likely 

to be associated with submarine channels (Table 1, Fig. 8). However, the contrasts in the strengths of 
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the relationships which we observe between northwest and southeast Greenland suggest a more 

complex relationship, which we now discuss. 

Northwest Greenland 

Catchment size and ice flux might be expected to correlate with sediment delivery to the ice margin. 

This is a consequence of ice velocity being linked to rates of glacial erosion, and the area over which 

these processes operate (Hallet, 1996; Iverson, 2012; Koppes et al., 2015; Fernandez et al., 2016). In 

addition, large meltwater discharges can increase these rates of erosion through facilitating glacier 

sliding, and the flushing out of any sediment generated by other processes (Hooke and Elverhøi, 1996; 

Cuffey et al., 1999; Cowan et al., 2010; Boldt et al., 2013; Stokes, 2018). In northwest Greenland there 

is a statistical relationship between catchment size, runoff and peak monthly runoff and the presence 

of a submarine channels (Table 3; Fig. 8). Thus as catchment size and runoff increase, the likelihood of 

a submarine channel being present increases. These relationships are therefore similar to those 

hypothesised for rivers (Garrison et al., 1982; Babonneau et al., 2002; Pirmez and Imran, 2003; 

Schwenk et al., 2005). In contrast, although ice flux is greater for catchments where channels are 

present (Fig. 8) the difference is not statistically significant (Table 3). This may be a consequence of ice 

flux not directly correlating with sediment transport to the terminus due to other factors such as the 

nature of the subglacial bed, i.e. the presence/thickness of subglacial till. As a consequence, ice flux 

may not exert as much influence as catchment area or runoff volume in northwest Greenland.  

Southeast Greenland 

The number of submarine channels offshore of southeast Greenland is more than double that offshore 

of northwest Greenland, despite similar numbers of fjords being mapped in both regions (Table 1). 

This distribution supports the assertion that these features are more common in regions with warmer 

climates and thus more meltwater and sediment supply (Dowdeswell et al., 1998; Batchelor et al., 

2018). This relationship is reflected in the average runoff for glaciers in southeast Greenland which 

exceed that for northwest Greenland glaciers (0.081 km3 a-1 vs. 0.066 km3 a-1).   
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As in northwest Greenland, catchments and ice fluxes associated with channels are greater on average 

than those not associated with channels, but the relationship with runoff is reversed (Fig. 8). In all 

cases the median values of catchments associated with channels are lower than those not associated 

with channels (Fig. 8). However, none of the variables are statistically different for catchments 

associated and not associated with submarine channels (Table 3). This illustrates the complex 

relationship between channel formation and ice flux and the possible role of other controls (see 

section 4.1.5). 

We hypothesise that the weaker relationships between channel presence and catchment size, runoff 

and peak monthly runoff observed in northwest Greenland is a consequence of glacier retreat and 

thinning since the channels were last active. Out of 26 submarine channels that are known to be 

associated with moraines in southeast Greenland, 14 of the moraines have been abandoned following 

glacier retreat (Fig. 6). These channels are also not clearly defined on the bathymetry. Given that these 

channels are not well-defined and no longer directly connected to their sediment supply, we suggest 

that they are now inactive. The origin of an additional six channels is also unknown as they initiate 

beyond the current bathymetry coverage. In contrast, eight out of 11 moraines associated with 

channels are still associated with glacier termini in northwest Greenland and all of the channels appear 

to be currently active (Batchelor et al., 2018). We therefore suggest catchment areas, ice fluxes and 

runoff were likely greater when glaciers were in more advanced positions associated with the now 

abandoned moraines in southeast Greenland, which would make the relationships observed in 

northwest Greenland more widely applicable. 

4.1.5. Other possible controls 

Despite contrasts between the characteristics of catchments associated with and without submarine 

channels, a number of uncertainties remain. First, the volume of sediment exported by outlet glaciers 

in this study is likely influenced by the erodibility of their bedrock (Dühnforth et al., 2010). Currently, 

we have little to no information concerning the underlying geology of these glaciers, as only the 
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exposed bedrock in coastal regions is well known (Henriksen, 2009). This is further complicated by 

uncertainties around the processes of bedrock erosion, and the subsequent storage, transport and 

deposition of eroded material (Cowton et al., 2012). We are therefore uncertain as to the relative 

control of bedrock strength on rates of sediment transport, and thus its relative impacts on the 

likelihood of submarine channel formation. 

Second, the thickness, deformability and thermal state (frozen/unfrozen) of basal till will impact the 

rate of sediment export by basal drag and meltwater flushing to the glacier terminus (Clarke, 1987; 

Iverson, 1991; Clark and Walder, 1994; Walder and Fowler, 1994; Hallet et al., 1996; Cuffey and 

Paterson, 2010). However, as with underlying geology, we have few direct measurements of the 

nature, extent and thickness of subglacial till for Greenland outlet glaciers. Our lack of understanding 

of subglacial till transport beneath the Greenland Ice Sheet represents a key uncertainty for 

understanding the presence/absence of submarine channels but also the role of ice sheets in global 

sediment budgets more generally (Jaeger and Koppes, 2016). 

Third, it is possible that submarine channels exist or previously existed in some of the fjords which we 

have not identified. The bathymetry data does not extend to the glacier terminus in every fjord and it 

is possible that small submarine channels exist at the heads of some fjords. Seismic data in some fjords 

around Greenland (e.g. Kangerdlugssuaq Fjord; Syvitski et al., 1996) have also revealed the presence 

of buried submarine channels. However, no sub-bottom profiles or sediment cores were collected for 

the OMG project. It is therefore possible that a greater number of submarine channels existed around 

Greenland but they have since been buried by subsequent glacimarine and hemipelagic deposition.  

4.2. Summary and general controls on channel presence 

From our observations of submarine channels offshore of northwest and southeast Greenland, we 

propose a set of criteria controlling the likelihood that a channel will be present in a fjord containing 

a marine-terminating glacier (Fig. 10). First, larger glacier drainage areas increase the likelihood that a 

channel will be present, at least in northwest Greenland. Only one glacier with a drainage area <100 
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km2 supplies sediment to a channel; only five are <200 km2. Second, greater ice fluxes and runoff 

volumes increase the likelihood of submarine channel formation in northwest Greenland. However, 

these factors cannot contribute to channel formation if glacier terminuses are not stable. Therefore, 

the third factor is that the marine-terminating glacier terminus must be stable and deliver sufficient 

sediment for a moraine or grounding-zone wedge to form. Fourth, fjord/trough gradient should be 

consistent, between 1.5° and 3°, and slope seaward. Overdeepenings, very steep or shallow slopes 

will prevent channel formation. Fifth, fjords should initially contain sufficient sedimentary substrate 

to allow incision, which is dependent on previous controls over sediment supply. 

4.3. Controls on turbidity current channel morphology 

Turbidity current channel characteristics have been shown to be highly variable offshore of Greenland 

and have been categorised into two groups (see Section 3.4). However, whilst differences between 

the channels exist, we argue that this is not the result of fundamental contrasts in formational 

processes, but is more reflective of the frequency and power of turbidity currents in type 1 channels 

and the characteristics of catchments which supply them with sediment. 

The contrasts in channel morphology are likely a consequence of the frequency and flow dynamics of 

turbidity currents in each system and therefore reflect differences in sediment delivery. Larger 

channels are likely to be a consequence of more frequent and more voluminous turbidity currents, 

which are more erosive. These flow characteristics would allow larger channels to form and be 

maintained (Klaucke and Hesse, 1996; Peakall et al., 2000; Hansen et al., 2017), and contrasts between 

turbidity current volumes would explain the formation of the channel terraces (Hagen et al., 1994). 

This is a consequence of channel terraces being a consequence of lower volume flows progressively 

filling the larger channel incised by larger flows (Hagen et al., 1994; Piper et al., 1999). An alternative 

mechanism of terrace formation has been proposed when terraces are a consequence of slumping of 

the channel sidewalls (Kenyon et al., 1995). Slumping has been observed on channel sidewalls but 

does not appear to be widespread. However, this interpretation would still favour the incision of larger 
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channels by more powerful turbidity currents. Unfortunately, we are unable to clearly identify a 

formative mechanism without seismic data across the terraces. Channels with similar morphologies 

to those identified as type 1 channels in this study have been identified offshore rivers that terminate 

in fjords (Conway et al., 2012). In the fluvial systems, the presence and size of channels has been linked 

to drainage basin size and river mean annual discharge as a consequence of their links with sediment 

delivery (Gales et al., 2019). However, our data suggests that while the larger type 1 channels are 

associated with larger catchments, greater annual and peak runoff, none of these factors are 

statistically significant in terms of explaining channel morphology (Table 4). Nevertheless, a greater 

proportion of type 2 channels are associated with moraines which have been abandoned by their 

outlet glaciers, and thus inputs may have been greater when channels were still active. It is therefore 

difficult to attribute the development of different channel morphologies to either the rate of sediment 

delivery or the mechanism by which it is delivered, i.e. meltwater or subglacial till transport, without 

direct measurements at the glacier margins. 

Other possible controls on channel morphology in glacier-fed systems include glacier front stability, 

fjord gradient and concentrated or distributed sediment delivery. Delivery of glacigenic sediment to a 

single location over a longer period of time is likely to favour the formation of a type 1 channel. 

Consistent slope gradient over large distances also favours type 1 channel formation as turbidity 

current characteristics are not altered by changes in slope gradient (Peakall et al., 2000). We can see 

in the bathymetry data (Fig. 5) that channels rapidly terminate where the fjord becomes flat 

bottomed. The mean seafloor gradient where channels terminate in northwest and southeast 

Greenland is 0.72° (min 0.13°, max 1.34°). Low slope gradients therefore clearly limit channel 

development. A concentrated sediment delivery system (i.e. concentrated over specific sections of 

the glacier front) may also favour type 1 channel formation. This is a consequence of higher 

sedimentation rates favouring the triggering of turbidity currents. However, without repeat high-

resolution bathymetry close to the glacier front it is difficult to test whether different glaciers favour 

specific regimes. This is especially true where moraines have been abandoned by their glacier. 
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4.4. Do controls on channel formation in Greenland apply to other glaciated regions? 

4.4.1. Alaska 

Alaskan tidewater glaciers are commonly associated with submarine channels due to the high 

meltwater and sediment fluxes that characterise glaciers in this region (Powell and Molnia, 1989; 

Powell, 1990; Powell and Domack, 1995; Hunter et al., 1996a, b; Cowan et al., 1997; Cowan et al., 

1999; Cowan et al., 2010). Of the nine fjords into which tidewater glaciers terminate where high 

resolution bathymetry is available; four contain submarine channels (Table 5; Fig. 11a, b). Submarine 

bedforms formed as a consequence of turbidity currents are also present on the ice-contact fan delta 

associated with the Lamplugh Glacier, and an extensive submarine channel system is present offshore 

of the glaciofluvial delta associated with Carroll and Muir glaciers. There are also submarine channels 

associated with moraines which have been abandoned in Endicott Arm (Fig. 11c). 

Applying our criteria governing the likelihood of submarine channel formation, we can see that active 

submarine channels in Alaska are associated with glaciers that have larger catchment sizes and high 

annual ice fluxes (Table 4). The channels are also found in fjords with moraines, consistent seaward 

sloping gradients and sufficient sediment to allow channel incision to occur (Fig. 11). In contrast, the 

heads of fjords which do not contain channels, with the exception of the Hubbard Glacier, have smaller 

catchment areas as well as flat bottoms as a consequence of sediment filled overdeepenings. 

Submarine channels or large chutes are present in the outer parts of Northwestern Bay, Aialik Bay and 

Resurrection Bay but these are all associated with moraines when glaciers had advanced much further 

than at present. 

4.4.2. Svalbard 

Svalbard has a cooler climate than South Alaska or South Georgia (next section) (Dowdeswell et al., 

2016b), thereby reducing the likelihood of channel formation as a consequence of lower melt 

production. Here, high resolution bathymetry has been published for 30 fjords and outlets (Ottesen 

and Dowdeswell, 2006, 2009; Ottesen et al., 2008, 2017; Baeten et al., 2010; Forwick et al., 2010, 
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2016; Robinson and Dowdeswell, 2011; Kempf et al., 2013; Hansen, 2014; Burton et al., 2016a, b; 

Farnsworth et al., 2017; Flink et al., 2017, 2018; Streuff et al., 2017, 2018; Leister, 2018). These fjords 

and outlets are commonly characterised by terminal moraines associated with previous glacier surges, 

retreat moraines, lineations, elongated streamlined features, eskers and subglacial meltwater 

channels (Table 6). However, there is no evidence that submarine channels associated with marine-

terminating glaciers are present. There are a number of possible explanations for this that are related 

to the surge-type nature of many of the glaciers and the local geometry of the fjords and outlets. First, 

a large number of glaciers for which we have offshore bathymetry are known or are thought to be 

surge-type glaciers (Hagen et al., 1993; Jiskoot et al., 2000). Surges from these glaciers have led to the 

deposition of low gradient (in planform) terminal moraines. Despite the more erodible preglacial 

bedrock of Svalbard compared to East Greenland (Solheim et al., 1998), the only additional moraines 

are small retreat moraines, and these are only found in some catchments. In other catchments, 

additional moraines are absent. This suggests that either the glacier fronts did not remain stationary 

during retreat for a sufficiently long period to build up larger moraines or that sediment volumes 

delivered to the glacier terminus during its quiescent phase were low (Ottesen and Dowdeswell, 

2009). Second, the average catchment size and ice flux of glaciers terminating in these fjords is an 

order of magnitude and two orders of magnitude smaller, respectively, than the Greenland 

catchments associated with submarine channels (Table 1 and 6). Third, once seaward of the fjords, 

much of the submarine geomorphology suggests a divergent ice front and thus a more dispersed 

sedimentation regime. These factors would all reduce the likelihood of triggering the turbidity 

currents required for channel incision. Although turbidity current channels are not observed in 

Svalbard, many of the terminal moraines are associated with debris flow lobes, suggesting that this 

form of mass movement is more common.  

4.4.3. South Georgia 
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South Georgia is situated between the Antarctic Peninsula and southernmost South America. High 

resolution bathymetry has been collected for the majority of the fjords on its northern side and two 

fjords on its southern side (Table 5; Hodgson et al., 2014). With the exception of a proglacial meltwater 

channel in Royal Bay (Hodgson et al., 2014), there is no evidence of submarine channels in any of the 

fjords. If considered in isolation, the bathymetry of Royal Bay, Cumberland Bay East, Cumberland Bay 

West and Drygalski Fjord favours the formation of submarine channels (Table 5) as they are 

characterised by sediment covered seafloors that slope seaward. However, the size of their drainage 

basins is limited (Table 5). This may suggest that, in these catchments, the supply of sediment to 

moraines or grounding-zone wedges is insufficient to result in frequent turbidity current occurrence, 

thus preventing submarine channel incision. In contrast, the seafloor of Stromness Bay and Husvik Bay 

is characterised by either multiple small moraines or exposed bedrock (Hodgson et al., 2014), neither 

of which favour the presence of submarine channels. Meanwhile Possession Bay and King Haakon Bay 

are dominated by overdeepened basins and low slope gradients on the inner continental shelf 

(Hodgson et al., 2014).  

The examples above demonstrate that it is possible to use the general criteria outlined to predict the 

likelihood that a submarine channel will form in a glacially-influenced fjord. They support the assertion 

that warmer climates with abundant meltwater and meltwater sedimentation will favour the 

formation of submarine channels (Powell, 1990; Powell and Alley, 1997; Dowdeswell et al., 2016a). It 

is acknowledged, however, that there are additional local controls which are likely to add complexity, 

such as glacier type, local bedrock geology, and sediment characteristics. 

5. Conclusions 

Submarine channels are a common feature of the world’s oceans, acting as conduits for the transport 

of material from coastal environment to the deep sea. However, the conditions that permit or prevent 

submarine channel formation are poorly understood. This is particularly true of glaciated 

environments. To understand the factors governing submarine channel formation in contemporary 
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glaciated environments, we present detailed bathymetric data from offshore of northwest and 

southeast Greenland to assess the controls on formation of submarine channels.  

The bathymetry data revealed submarine channels in 34 out of 72 fjords. Channels were three times 

more numerous offshore southeast than northwest Greenland, likely reflecting the warmer climatic 

setting and the greater availability of meltwater. In northwest Greenland, submarine channels are 

associated with larger glacier catchments with greater runoff volumes. In southeast Greenland, these 

statistical relationships break down and are reversed in some cases (i.e. average annual runoff), but 

this is believed to partly be a consequence of channels being associated with abandoned moraines. 

Our estimates of ice discharge and meltwater runoff are therefore not reflective of the catchment 

when the glacier was in a more advanced position. We therefore propose that submarine channels 

are indeed more likely to form where catchments are larger and ice and meltwater fluxes are greater. 

However, the morphological characteristics of each fjord will also modulate whether a channel will 

form, i.e. is there sufficient sedimentary substrate and a consistent downslope gradient with few 

obstacles (Fig. 10). A thin or absent sedimentary substrate and highly variable slopes with reverse 

gradients will likely prevent channel formation. From this, we have proposed a series of criteria for 

predicting whether a submarine channel is likely to form in a fjord containing a marine-terminating 

glacier (Fig. 10). Observations from other settings such as Alaska, Svalbard and South Georgia appear 

to support these criteria. Further work on sediment delivery rates by different subglacial processes 

for tidewater terminating glaciers and characterisation of this sediment will help to better constrain 

the processes controlling channel formation, and the characteristics of turbidity currents in these 

environments. 

The identified submarine channels have been categorised into two distinctive types based on 

statistical differences between their lengths, widths and depths. Variations in channel morphology 

according these criteria are likely to be a consequence of contrasting frequency and magnitude of 

turbidity currents within each system. They are less likely to be a consequence of fundamentally 
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different processes occurring in the different catchments. However, without any direct observations 

of turbidity currents in glaciated systems, future work should seek to explore whether contrasts in 

sediment grain size and delivery mechanism significantly impact upon turbidity current dynamics in 

these settings. 
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Figures 

Fig. 1a) – c). Location maps of glaciers and fjords in northwest Greenland. Background bathymetry is 

greyscale IBCAO with 200 m contours (Jakobsson et al., 2012). Average ice velocities for the Greenland 

Ice Sheet between 2016 and 2017 is from MEaSUREs Ice Sheet Velocity Mosaics  V2 (Joughin et al., 

2015, updated 2017). Glacier names are taken from Bjørk et al. (2015). IS = Issuusarsuit Sermiat. Diet 

= Dietrichson. SA = Sermeq Avanarleq. SK = Sermeq Kujalleq. QS = Qeqertarsuup Sermia. KS = Kakiffaat 

Sermiat. NS = Nunatakassaap Sermia. AkS = Kaullilassaap Sermia. UI = Upernavik Isstrøm. UmI = 

Umiammakku Sermiat. Sis = Sisoortartukassak. SerA = Sermeq Avannarleq. AlS = Alianaatsup Sermia. 

Kangil = Kangilernata Sermia. 

 

Fig. 2a) – c). Location maps of glaciers and fjords in southeast Greenland. Background bathymetry is 

greyscale IBCAO with 200 m contours (Jakobsson et al., 2012). Average ice velocities for the Greenland 

Ice Sheet between 2016 and 2017 is from MEaSUREs Ice Sheet Velocity Mosaics V2 (Joughin et al., 

2015, updated 2017). Glacier names are taken from Bjørk et al. (2015). UK = Uummannap Kangertiva. 

K = Katterooq. KBS = Kangertittivaq Bernstorff Isfjord. UmK = Umiiviip Kangertiva. PK = Pukukkat 

Kangertivat. QK = Qeertartivatsaap Kangertiva. APB = A.P. Bernstorff Glacier. Fim = Fimbulglacier. KJV 

= K.J.V. Streenstrup Nordre Bræ. 

 

Fig. 3. a) BedMachine v3 bedrock topography (m) (Morlighem et al., 2017). b) Subglacial hydrologic 

potential (Pa) of the Greenland Ice Sheet derived from 150 m surface and bed elevation grids 

contained in the BedMachine v3 datasets. c) Drainage catchments basins for Greenland. 
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Fig. 4a) – d). Examples of monthly runoff output for the Greenland Ice Sheet calculated using 

RACMO2.3 for four different months in 2017. a) February, 2017. b) May, 2017. c) August, 2017. d) 

November, 2017. 

 

Fig. 5. a) to c) Examples of Type 1 submarine channels and associated fjord characteristics. All 

examples shown are from northwest Greenland GZW = Grounding-Zone Wedge. a) Submarine channel 

in Noorujupaluk, offshore the calving margin of Carlos Glacier to the north and Mohn Glacier. b) 

Submarine channel in Ryder Isfjord. c) Submarine channel in Ussing Isfjord offshore of Sermeq Kujalleq 

Glacier. All channels originate at moraines or grounding-zone wedges and are characterised by 

terraces. Fjords have relatively smooth bottoms. Background is Landsat satellite imagery from August 

2016. 

 

Fig. 6. a) to d) Examples of Type 2 submarine channels. With the exception of a) all the examples shown 

are from southeast Greenland. a) Submarine channel offshore of Illullip Sermia. b) Submarine channel 

offshore of Guldfaxe Glacier in Uummannap Kangertiva. c) Submarine channels in Tasiialak Fjord. d) 

Submarine channel in Nørrearm Fjord. Channels originate from moraines associated with active 

glacier fronts (a and b) or moraines from which glaciers have retreated from (c and d). Type 2 channels 

are generally shorter than Type 1 channels and are not associated with terraces. Background is Landsat 

satellite imagery from September 2016 

 

Fig. 7. Examples of characteristic fjords which do not contain channels. a) Illaarsuaauq Fjord. MoGl = 

Morrel Glacier. DSGl = Döcker Smith Glacier. b) Qeetartivatsaap Kangertiva. KaGl = Kattilertarpia 

Glacier. BrGl = Brückner Glacier. HiGl = Heim Glacier. Fjords contain elongate ridges, minibasins, 

overdeepening, reverse slopes, bedrock outcrops or do not contain large moraines and grounding-
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zone wedges. Background is Landsat 8 satellite imagery from August and September 2016.Fig. 8. Box 

and whisker plots of characteristics, which could control channel presence/absence. NW CP = 

Northwest Greenland Channel Present; NW CA = Northwest Greenland Channel Absent; SE CP = 

Southeast Greenland Channel Present; SE CA = Southeast Channel Absent; All CP = All Channel Present; 

All CA = All Channel Absent.  

 

Fig. 9. Box and whisker plots of channel, fjord and catchment characteristics for systems which contain 

channels. NW = Northwest Greenland; SE = Southeast Greenland; T1 = type 1 channels; T2 = type 2 

channels. 

 

Fig. 10. Schematic of the general criteria thought to control/characterise glacier-fed catchments, 

which do and do not contain submarine channels. a) Channels are more likely to be associated with: 

glacier catchment with areas >100 km2, a stable ice front, high meltwater sedimentation regimes, and 

fjords that are characterised by consistent slope gradients and contain sufficient sedimentary 

substrate to allow channel incision to occur. b – c) Channels are more likely to be absent where: glacier 

catchments are small (<100 km2), sedimentation rates are low, the ice front is unstable, the fjord floor 

is characterised by thin or absent sedimentary substrate, and highly variable seafloor gradients, 

including those with reverse slopes or overdeepenings. 

 

Fig. 11. Examples of submarine channels identified offshore of marine-terminating glaciers in Alaska. 

As observed offshore Greenland, submarine channels are the dominant feature of the fjords and occur 

where the seafloor is relatively smooth with a consistent seaward sloping gradient. Inset figure shows 

the location of a – c). a) Submarine channel offshore of John Hopkins Glacier. JHG = John Hopkins 

Glacier. JHI = John Hopkins Inlet. b) Submarine channel in Tarr Inlet. MarGl = Margerie Glacier. c) 
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Submarine channel in Endicott Arm associated with a moraine from a previous advance of Dawes 

Glacier. Background is Landsat 8 satellite imagery acquired in September 2018. 

 

Tables 

Table 1. Characteristics of identified submarine channels and glacier catchments which terminate in 

each fjord associated with a submarine channel. X* refers to fjords where no moraine or grounding-

zone wedge is identified but the channel head is not covered by the bathymetry. N/A refers to fjords 

which are completely filled by gullies which feed a central submarine channel preventing an 

independent fjord gradient from being calculated. No average runoff or glacier catchment area are 

provided for Ikerasak Ataa Sund as the channel is fed by Equip Sermia and a large proglacial river which 

is fed by three other glacier which do not terminate in the fjord. 

Table 2. Characteristics of glacier catchments which terminate in fjords which are not associated with 

submarine channels. ✔* = Small retreat moraines are present. 

 

Table 3. t-test results comparing the difference between fjord and catchment characteristics of 

systems which do and do not contain channel systems. Systems which do and do not contain 

channels are compared only in northwest Greenland, in southeast Greenland and in both regions. 

 

Table 4. t-test results of the statistical difference between  individual morphological and catchment 

characteristics of type 1 and type 2 channel systems. 

 

Table 5. Characteristics of fjords/outlets around Alaska and South Georgia. Ticks identify where a 

morphological feature is present. Crosses identify where a morphological feature is absent. L = 
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Lineations, CSB = Crescentic Submarine Bedforms. Additional references (Brown et al., 1982; Wiles et 

al., 1995; Gordon et al., 2008; Goff et al., 2012; Hodgson et al., 2014). 

 

Table 6. Characteristics of fjords/outlets around Svalbard. Ticks identify where a morphological 

feature is present. Crosses identify where a morphological feature is absent. E = Eskers, T = Transverse 

Ridges, L = Lineations, C = Crevasse-filled ridges, CT = Crag and Tails, SC = Subglacial Channel, P = 

Pockmarks, MTD = Mass Transport Deposit, D = Drumlin. References (Ottesen and Dowdeswell, 2006, 

2009; Ottesen et al., 2008, 2017; Baeten et al., 2010; Forwick et al., 2010, 2016; Robinson and 

Dowdeswell, 2011; Kempf et al., 2013; Hansen, 2014; Burton et al., 2016a, b; Farnsworth et al., 2017; 

Flink et al., 2017, 2018; Streuff et al., 2017, 2018; Leister, 2018). 
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10
5 

18.
3 

Ty
pe 
2 

Ikeq 
Koge 
Bugt  x* 

165
00 5.68 

0.0
68 

0.3
01 

0.8
21 

3.1
2 

1.8
5 

>9.
51 

1.1
06 

24
6 

23.
3 

Ty
pe 
1 

Ikeq 
Koge 
Bugt  ✓ 

109
00 

11.7
9 

0.0
58 

0.2
75 

0.6
94 

3.3
1 

3.5
4 

6.3
1 

1.0
48 

17
3 

29.
5 

Ty
pe 
2 

   ✓ 370 1.18 
0.0
34 

0.1
68 

0.4
05 

2.5
4 

2.9
9 

8.2
5 

1.0
74 

14
0 

12.
1 

Ty
pe 
2 

Napaso
rsuup 
Kangerl
ua  ✓ 850 1.33 

0.0
35 

0.1
76 

0.4
24 

1.1
4 

2.3
1 

2.9
7 

1.0
36 

12
0 7.5 

Ty
pe 
2 

Paatus
oq  ✓ 140 

3.38 
x 

10¯³ 
0.0
29 

0.1
23 

0.3
44 

0.9
8 

2.1
3 

10.
27 

1.2
59 

10
8 9.6 

Ty
pe 
2 

Linden
ow  ✓ 175 

3.87 
x 

10¯⁴ 
0.0
42 

0.1
77 

0.5
05 

3.4
6 

2.6
8 

11.
75 

1.1
81 

17
0 

33.
7 

Ty
pe 
2 

Avaaqq
at 
Kangerl
uat  x* 

100
00 5.5 

0.0
58 

0.2
56 

0.6
95 

2.1
3 

8.1
6 

>2.
81 

1.1
86 84 

20.
7 

Ty
pe 
2 
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Sikuijivi
tteq  ✓ 

470
0 3.3 

0.1
24 

0.5
72 

1.4
94 

2.0
9 

2.0
8 

14.
01 

1.2
5 

11
0 

13.
8 

Ty
pe 
2 

Anoritu
up 
Kangerl
ua  ✓ 685 

2.53 
x 

10¯³ 
0.0
35 

0.1
73 

0.4
22 

3.3
5 

2.8
9 

6.0
8 

1.0
77 

15
4 

35.
1 

Ty
pe 
1 

Danell  ✓ 890 0.44 
0.0
92 

0.3
62 

1.1
07 

1.2
6 

2.7
1 

2.1
6 

1.0
22 85 5.8 

Ty
pe 
2 

Norrea
rm  ✓ 500 

>0.1
5 

0.0
39 

0.1
61 

0.4
7 

1.8
9 

2.9
4 

6.3
9 

1.4
06 

11
5 

19.
1 

Ty
pe 
2 

Linden
ow  ✓ 480 0.44 

0.0
43 

0.1
89 

0.5
18 

1.4
3 

1.6
5 

4.9
3 

1.1
63 

12
0 7.8 

Ty
pe 
2 

  Heimdal ✓ 

380
0 0.89 

0.1
29 

0.5
98 

1.5
49 

3.4
6 

2.7
1 

3.1
7 

1.0
55 63 5.1 

Ty
pe 
2 

  

Garm 
Skirner 
Bjerge x* 

375
0 

1.4 
x 

10¯³ 
0.0
68 

0.3
03 

0.8
13 

2.8
5 

1.6
5 

>1
6.6

9 
1.2
27 

18
4 

37.
7 

Ty
pe 
1 

Uumm
annap 
Kanger
tiva Guldfaxe ✓ 

180
0 1.65 

0.0
79 

0.3
56 

0.9
44 

2.4
1 3.3 

17.
37 

1.6
56 

12
8 

12.
7 

Ty
pe 
2 

Kattert
ooq 

Apusiikaji
k ✓ 

380
0 1.28 

0.1
05 

0.3
46 

1.2
58 

3.6
4 

1.6
4 

33.
9 

1.1
43 

14
8 19 

Ty
pe 
1 

Kanger
tittivaq 
Bernst
off 
Isfjord 

A. P. 
Bernstorf 
Gletscher x* 

440
0 6.47 

0.1
2 

0.5
68 

1.4
41 

2.9
1 

2.3
3 

>4.
96 

1.3
04 

17
8 

12.
6 

Ty
pe 
2 

Kanger
tittivaq 
Bernst
off 
Isfjord Sleipner x* 

435
0 

3.38 
x 

10¯³ 
0.0
66 

0.3
01 

0.7
87 

2.9
1 

2.4
1 

>5.
7 

1.1
15 

30
2 

34.
1 

Ty
pe 
1 

Kangerl
ussuaq 

Kangerlus
suaq x* 

550
00 

23.6
3 

0.3
34 

1.9
64 

4.0
08 

1.1
5 1.8 

>8.
45 

1.1
58 

19
6 5.1 

Ty
pe 
2 

Average   
500

8 2.71 
0.0
68 

0.3
25 

0.8
15 

2.3
7 

2.7
3 

>8.
22 

1.1
57 

13
7 

16.
5   

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Table 2 

Fjord Glacier Morai
ne/ 

GZW 

Glacier 
Catchm

ent 
Area 
(km²) 

Ice Flux 
(km³a¯¹) 

Avera
ge 

Runo
ff 

(km³a
¯¹) 

Peak 
Mont

hly 
Runof

f 
(km³a

¯¹) 

Total 
Runo

ff 
(km³
a¯¹) 

Avera
ge 

Fjord 
Gradi
ent (°) 

Northwest 
Greenland               
Pulsilik/De 
Dødes  ✓* 120 0.067 0.009 0.064 0.107 5.72 
Pulsilik/De 
Dødes  ✓* 390 0.386 0.025 0.191 0.305 6.18 
Pulsilik/De 
Dødes  ✓* 280 0.174 0.018 0.135 0.218 5.87 
Pulsilik/De 
Dødes  ✓* 250 0.138 0.2 0.139 0.238 6.68 

Illaarsuaauaq  x 70 0.002 0.009 0.058 0.106 5.26 

Illut  ✓* 430 0.232 0.069 0.15 0.229 3.96 

Meteorbugt Yngvar Nielsen x 1070 0.875 0.04 0.287 0.478 5.31 

Noorujupaluk Gades ✓ 3105 2.153 0.041 0.303 0.493 5.28 

  Morrell ✓ 130 0.268 0.014 0.102 0.166 4.54 

   x 510 1.485 0.039 0.28 0.472 3.61 

  Döcker Smith x 4100 1.546 0.031 0.226 0.375 2.73 

  Rink x 4300 3.09 0.026 0.195 0.315 4.11 

  
Issuusarsuit 
Sermiat x 3740 1.512 0.04 0.276 0.485   

  Nansen x 580 1.18 0.051 0.065 0.109 3.81 

Duneira Bugt Sverdrup x 1540 5.996 0.086 0.597 1.036   

Duneira Bugt Dietrichson ✓ 300 2.511 0.037 0.254 0.439 4.63 

  Hayes x 130 6.851 0.021 0.128 0.256 1.8 

Kullorsuup 
Kangerlua  x 120 4.64 0.02 0.124 0.237 1.72 

Kullorsuup 
Kangerlua  x 380 1.1 0.052 0.345 0.624 4.11 

Kullorsuup 
Kangerlua  x 130 3.916 0.017 0.103 0.2 4.14 

Kullorsuup 
Kangerlua 

Nunatakassap 
Sermia x 720 8.972 0.077 0.529 0.926 1.51 

Kangerlussuaq 
Giesecke 
Isfjord 

Qetqertarsuup 
Sermia 
Kakiffaat 
Sermiat 

x 

910 0.645 0.084 0.579 1.002 1.1 

   x 31500 5.649 0.148 1.031 1.772 12.2 

  
Umiammakku 
Isbrae ✓ 130 3.916    4.14 

Average   2290 2.388 0.05 0.268 0.46 4.47 
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Southeast 
Greenland          

Kangerluluk  ✓ 790 1.104 0.057 0.259 0.688 0.93 

Avaaqqat  
Kangerluat  ✓ 3900 0.746 0.114 0.502 1.371 1.24 

Anorituup  
Kangerlua  x 1100 3.223 0.117 0.544 1.401 1.22 

Napasorsuup 
Kangerlua  ✓ 5300 6.75 0.09 0.424 1.077 0.81 

   x 14100 5.953 0.136 0.742 1.632 0.97 

Timmiarmiit 
Kangertivat  x 5600 1.727 0.064 0.344 0.769 4.82 

Umiiviip 
Kangertiva  x 30 

7.634 x 
10¯⁵ 0.003 0.013 0.035 1.6 

Nattivit 
Kangertivat 

Bussemandgle
tsjer ✓ 270 

6.57 x 
10¯⁵ 

0.035
2 0.181 0.422 0.93 

  Apuseeq x 110 
5.63 x 

10¯⁴ 0.02 0.085 0.237 8.76 

  

K. J. V. 
Steenstrup 
Nordre Brae x 3820 2.396 0.146 0.784 1.75 1.95 

Qeertartivatsaa
p 
Kangertiva Heim ✓ 900 0.036 0.046 0.233 0.555 2.88 

  Polaric x 3200 1.361 0.136 0.742 1.632 0.81 

Nansen Christian IV x 12500 2.994 0.444 2.615 5.326 1.22 

Average   3970 2.022 0.108 0.574 1.3 2.16 
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Table 3 

Characteristic Region p-value 

Catchment area Northwest 0.056 

Southeast 0.68 

All 0.048 
Ice flux Northwest 0.387 

Southeast 0.62 

All 0.485 
Average runoff Northwest 0.043 

Southeast 0.243 

All 0.516 
Peak monthly 
runoff 

Northwest 0.021 

Southeast 0.225 

All 0.441 
Total runoff Northwest 0.021 

Southeast 0.243 

All 0.273 
Fjord slope gradient Northwest 0 

Southeast 0.761 

All 0.007 

 

Table 4 

Characteristic p-value 

Channel width 0.001 

Channel length 0.004 

Channel depth 0.002 

Channel sinuosity 0.766 

Channel gradient 0.086 

Fjord gradient 0.046 

Catchment area 0.708 

Average monthly runoff 0.376 

Peak monthly runoff 0.376 

Total runoff 0.415 

Ice flux 0.281 
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Table 5 

Fjord Glacier Chan
nel 

Pres
ent 

Catch
ment 
area 
(km²) 

Ice 
Flux 
(km³
a¯¹) 

Morai
ne / 

Groun
ding 
zone 

wedge 

Sedi
ment 
cover 

Expo
sed 

bedr
ock 

Consis
tent 

Downs
lope 

Gradie
nt 

Othe
r 

feat
ures 

Alaska 

Endicott Arm 
Dawes 
Glacier 

✓ 604 0.6 ✓ ✓ x ✓ CSB 

John Hopkins 
Inlet 

John Hopkins 
Glacier 

✓ 254 0.6 ✓ ✓ x ✓   

John Hopkins 
Inlet 

Lamplugh 
Glacier 

x 161 0.16 ✓ ✓ x ✓ CSB 

Tarr Inlet 

Grand Pacific 
Glacier 
Margerie 
Glacier 

✓ 
565 
182 

0.1 
0.1 

✓ ✓ x ✓   

Rendu Inlet 
Rendu 
Glacier 

✓ 128  ✓ ✓ x ✓ CSB 

Disenchantm
ent Bay 

Hubbard 
Glacier 

x 3900  x ✓ ✓ x   

Aialik Bay Aialik Glacier x 70  ✓ ✓ ✓ x L 

Holgate Arm 
Holgate 
Glacier 

x 69  ✓ ✓ x x   

Northwestern 
Fjord 

Northwester
n Glacier 

x 72  ✓ ✓ ✓ ✓ CSB 

South 
Georgia 

                  

Royal Bay 
Ross Glacier 
Hindle 
Glacier 

x 100.7  ✓ ✓ x ✓ SC 

Cumberland 
Bay East 

Nordenskjold 
Glacier 

x 135.5  ✓ ✓ x ✓   

Cumberland 
Bay West 

Neumayer 
Glacier 

x 86.4  ✓ ✓ x ✓ MTD 

Stormness 
bay 
Husvik Bay 

 x   ✓ ✓ x x   

Antarctic bay Crean Glacier x 62  ✓ ✓ ✓ x L, E 

Possession 
Bay 

 x   ✓ ✓ x x   

King Haakon 
Bay 

Briggs Glacier x   ✓ ✓ ✓ x   

Drygalski 
Fjord 

Jenkins 
Glacier 
Risting 
Glacier 

x     ✓ ✓ x ✓   
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Table 6 

Fjord Glacier Chan
nel 

Pres
ent 

Catch
ment 
area 
(km²) 

Ice 
Flux 
(km³
a¯¹) 

Morai
ne / 

Groun
ding 
zone 
wedg

e 

Sedi
ment 
cover 

Expo
sed 

bedr
ock 

Consis
tent 

Downs
lope 

Gradie
nt 

Other 
feature

s 

Keulenfjorde
n 

Doktorbree
n 

x 95 
0.00

02 
✓ ✓ x x 

E, T, 
MTD, P 

Keulenfjorde
n 

Liestølbreen x 99 
0.00

47 
✓ ✓ x x 

E, T, 
MTD, P 

Keulenfjorde
n 

Nathorstbre
en 

x 318.8 
0.04

36 
✓ ✓ x x 

E, T, 
MTD, P 

Rindersbukt
a 

Paulabreen x 56.4 
0.00

1 
✓ x x x 

E, L, C, 
MTD 

Rindersbukt
a 

Bakaninbree
n 

x 60.8  ✓ x x x 
E, L, C, 
MTD 

Rindersbukt
a 

Scheelebree
n 

x 58.4  ✓ x x x 
E, L, C, 
MTD 

Templefjord
en 

Tunabreen x 137.6 
0.24

4 
✓ ✓ x ✓ L, MTD 

Templefjord
en 

Von 
Postbreen 

x 174  ✓ ✓ x ✓ L, MTD 

Billefjorden 
Nordenskiöl
dbreen 

x 169.5 
0.08

16 
✓ x ✓ x 

L, P, 
MTD 

Borebukta Borebreen x 87 
0.00

51 
✓ x x x 

L, C, 
MTD 

Borebukta 
Nansenbree
n 

x 31.1 
0.00

28 
✓ x x x 

L, C, 
MTD 

Yoldiabukta 
Wahlenberg
breen 

x 104.2 
0.01

13 
✓ x x x 

L, C, 
MTD 

Trygghamna 
Harrietbree
n 
Kjerulfbreen 

x   ✓ ✓ x ✓ 
L, MTD, 

P 

Ymerbukta 
Esmarkbree
n 

x 33.4 
0.00

36 
✓ ✓ x ✓ MTD, P 

St 
Jonsfjorden 

Osbornebre
en 

x 130.6 
0.04

78 
✓ x x ✓ 

L, C, 
MTD 

St 
Jonsfjorden 

Konowbree
n 

x 39.9 
0.01

08 
✓ x x ✓ 

L, C, 
MTD 

Kongsfjorde
n 

Kongsbreen x 153.9 0.25 ✓ x ✓ x 
L, CT, 

SC 
Kongsfjorde
n 

Kronebreen x 509.8 
0.31

03 
✓ x ✓ x 

L, CT, 
SC 

Kongfjorden 
Blomstrand
breen 

x 65.7 
0.01

37 
✓ ✓ x x L, MTD 

Lilliehöökfjor
den 

Lilliehöökbr
een 

x 211.8 
0.10

6 
✓ ✓ x ✓ L, D 

Möllerfjorde
n 

Kollerbreen x 20.5 
0.01

21 
✓ ✓ ✓ ✓ L, MTD 
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Möllerfjorde
n 

Mayerbreen x 34.6 
0.01

89 
✓ ✓ ✓ ✓ L 

Magdalenefj
orden 

Waggonway
breen 

x 29.1 
0.02

22 
✓ x ✓ x   

Smeerenbur
gfjorden 

Smeerrenbu
rgbreen 

x 95 
0.02

58 
✓ ✓ ✓ ✓ MTD 

Liefdefjorde
n 

Monacobre
en 

x 344.5 
0.09

07 
✓ x ✓ x L, MTD 

Bockfjorden 

Karlsbreen 
Friedrickbre
en 
Børrebreen 

x 151.5  ✓ x ✓ ✓ L, MTD 

Woodfjorde
n 

Vonbreen 
Abrahamsen
breen 
Elnabreen 
Johanbreen 

x 315  ✓ x ✓ ✓ 

L, CT, D, 
E, P, 
MTD 

Lomfjorden Veteranen x 300  x x ✓ ✓ 
L, D, 
MTD 

Wahlenbergf
jorden 

Etonbreen x 664.2 
0.04

11 
✓ x ✓ ✓ 

L, C, E, 
SC, 

MTD, 
CT 

Hartogbukta Austfonna x   ✓ x ✓ x L, SC, D 

  
Sonklarbree
n 

x 207.2 
0.01

71 
✓ x x x 

L, E, SC, 
MTD 

  
Hochstetter
breen 

x 589.2 
0.01

2 
✓ x x x L, MTD 

  Negribreen x 916.2 
0.00

1 
✓ x x x 

L, D, E, 
SC,  

MTD 

  
Besselsbree
n 

x 128.6 
0.00

65 
✓ x x x 

L, E, SC, 
MTD 

  
Koristkabree
n 

x 50 
0.00

17 
✓ x ✓ x L, MTD 

  
Pedasjenko
breen 

x 36.2 
0.00

24 
✓ x ✓ x L, E, SC 

  Hannbreen x 22.8 
0.00

1 
✓ x ✓ x L 

Mohnbukta 

Heuglinbree
n 
Hayesbreen 
Königsbergb
reen 

x 119.7 
0.02

77 
✓ x x x 

L, E, 
MTD 

  
Duckwitzbre
en 

x 72.6 
0.00

02 
✓ x x x L, E 

Freemansun
det 

Freemanbre
en 

x 72.6 
0.00

21 
✓ x x x L 
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Highlights 
 

 Most complete inventory of submarine channels offshore Greenland 

 Submarine channels are more common offshore of southeast Greenland 

 Controls on channel formation are defined and used to construct conceptual model 

 Observations from other glacier-influenced settings show support for these criteria 
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Figure 10



Figure 11


