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Abstract

We present an evaluation of the two master integrals “r the crossed vertex diagram with a
closed loop of top quarks that allows for an eas, nv.ucrical implementation. The differential
equations obeyed by the master integrals a ~ use. to generate power series expansions cen-
tered around all the singular points. The dift ve..* series are then matched numerically with
high accuracy in intermediate points. " .. > ansions allow a fast and precise numerical
calculation of the two master integrals in a.. the regions of the phase space. A numerical
routine that implements these expar- ~ns is presented.
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PROGRAM SUMMAR /
Program Title: elliptic
Program Files doi: http://d . oi.org/10.17632/kybzy5d84t .1
Licensing provisions: CC By 4.0
Programming language: Fe ctre 177
Nature of problem: Nuni -ic . computation of the two master integrals for the crossed ladder
vertex diagram with m ssive 1 ~p at two-loop level.
Solution method: Pow :r sr cies :xpansions around singular and regular points for positive and neg-
ative values in = —S/4, 2 -/ith m denoting the massive state in the loop and S the Madelstam
invariant. The dif’ crent ¢ ~ries expansions are matched numerically.

1. Introducy.~»

In the "as’ years, we witnessed an impressive progress in the analytic calculation of
multi-loop F¢ nman diagrams. This progress was mainly due to a procedure which is by
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now standard and consists in the reduction of the dimensionally regularize scalar integrals
to the Master Integrals (MIs) [1-13], and their calculation using the difierent..! equations
[4, 14-17].

With this procedure, it was possible to calculate massless quantu.~ rorrections to im-
portant processes in collider physics, that are now known to three a. 1 fow~ loops [18-27].
These corrections can be usually expressed in terms of generalize . | olylosarithms (GPLs)
[28-31]. While sometimes higher-order massive corrections can ilso pe cxpressed in terms
of GPLs [32-36], they reveal in general a more complicated strnctu. ~. This is for instance
the case of the two MIs of the equal-mass two-loop sunrise The -elated system of first-
order linear differential equations cannot be decoupled and i. admi s solutions in terms of
complete elliptic integrals of the first and second kind [37- +5). T'his is also the case of three-
[44, 45] and four-point functions [46-48] that were consic ~r 1 re :ently and whose solutions
are expressed as iterated integrals over elliptic kernels 1. "ltip!'_d by polylogarithmic terms.
The study of these new functions has just started [49-54].

In this article, we focus on the calculation of tho twe MT, of the vertex crossed topology
with a closed heavy-quark loop. These two MIs were sv. 1ied in detail in Ref. [45], where the
authors worked out completely their solution in . rms ot repeated integrations over elliptic
kernels. They enter the calculation of several processe. at the two-loop level in perturbation
theory, as the production of top-antitop pairs in ha .ronic collisions [47, 48, 55-61], di-photon
or di-jet production [62] and they are par of t.~ coefficients of the pr expansion of the
double Higgs production cross section, as dis us.~d in Ref. [63].

Our goal is to present a Fortran nu.. ~ic' outine that can be easily used to evaluate
the MIs for every real value of the dimensii less parameter x = —S/m?, which the MIs
depend on, with double precision. ... approach we use is a semi-analytical approach to
the solution of the differential equ‘ tions, i1 amely the expansion of the differential equation
near singular points. It was pror osea ' Ref. [64] for the sunrise with three equal masses.
In Ref. [44] the method was aplie to a three-point function' occurring in the calculation
of the MIs that are involved in +ne wo-loop corrections to the electroweak form factor
[67, 68]. More recently, a si*_ilar approach was used in [69, 70].

The paper is structured as 1ic'ows. In Section 2, we discuss the MIs entering the 6-
denominator topology of t1, . 1. We focus on the two crossed MIs (7g, T1o) for which we
present the relevant seco. 4 order linear differential equation that will be solved expanding
the solution by series 1ear the singular points. Section 3 is devoted to the discussion of the
solution for Ty in tk~ regior z > 0. We present first the series in the two singular points
x=0and z =16 ~~d t.>’ matching. Then, we discuss the expansion at infinity and how
it can be matchcd to t. e expansion at x = 16. In Section 4, we present the solution for
Ty in the region . < 0 ,btained via the analytic continuation in the high-energy time-like
region. In Section 5, we discuss the evaluation of the second master integral. Finally, in
Section 6, we preser ; the Fortran routine.

1See Refs. 7, 66] for two recent publications on the method.



Figure 1: The 6-denominator topology. Internal plain thin lines represe.. v assless propagators, while
thick lines represent the massive propagator. External plain thin lines re~ -sent . assless particles on their
mass-shell.

2. The Differential Equations for the two crossed Ma-*“er Integrals

We consider a process in which two massless partic'~s w*" incoming momenta p; and
pa2, such that p? = p2 = 0, annihilate into a particle with mo nentum p = p; +po. We define

the Mandelstam invariant S = —(p; + p)? and the di.ensinless parameter
S
xr = —@ = -5, (1)

where s = S/m? and m is the mass of a massiv~ * cate that runs into the loops.

The 6-denominator topology we are in. .~stel in relevant for this process is shown in
Fig. 1. The dimensionally regularized scalar invcgrals belonging to that topology can be
expressed in terms of

DY
Dy Dk, r . 2
/ 1 na Dgz D§3 DZ4Dg5 Dge ( )

In Eq. (2), D;,i=1,...,7, are the < momi1ators to which the following routing is assigned

Dy 7 = {k% +m? (pr k)P4 mP kS m? (po + k)2 +m2 (pr — by — ko),

(p2 + k1 + 12/(2 (k1 + kz)Q} ) (3)

with k; and ko the loop morienta; a;, with ¢ = 1,...,7, are integer numbers, d = 4 — 2¢ is
the dimension of the snacc rime, and the normalization is such that?

dy. 2\ €
pig, = Wi (m_2) | ()
dmzl'(14¢€) \ M

where p is the sca'» of .dmensional regularization.

The redu cion “o the MIs of the family in Eq. (2) are performed using the computer
programs FI. E [7, 1), 11] and Reduze 2 [8, 9]. There are 10 MIs in total, shown in Fig. 2.
All of them are nuown in the literature from previous works [45, 68, 71, 72].

We foc 's Hn cthe evaluation of Ty and 7y using the semi-analytic approach followed
in Refs. [64, 73]. We concentrate on the system of first-order linear differential equations

2Note that we present, in the paper and in the routine, the euclidean version of the MIs, before Wick
rotation.



oo o QPP D>DP3P

() (T2) (Ts) (T9) (Ts)  (Te) (T2) () (75)  (Tho)

Figure 2: Master Integrals. The convention for the lines is as in Fig. 1. T .e dc, 1. ~resents a propagator
raised to the second power.

that involves the two coupled 6-denominator MIs Tg and 7. +..c two MIs are finite in e.
Moreover, in all the processes mentioned in the introductio, a the NNLO, they enter in
the calculation of the finite part of the cross section s~ that oviy the O(e°) is needed. At
the O(e?), we find:

dTy 2 4m?

aw - gt T (5)
d,TlO 1 1 1 1 1

¢jio 1 B 0

dx 16m2 ( T — 16) 73 \ o, + r— 16 7-10 + 2(37), (6)

where Qy(z) contains the MIs of the subtop logic - and, at this order in ¢, is a function that
can be expressed in terms of logarithms and 1uczarithms of the variable z.

The system is equivalent to a single -c.2--order linear differential equation for one of
the two MIs involved. Let us consider T9. W. find:

T @) 4 )T = ). @

The general solution of the secc ad order linear differential equation in Eq. (7) can be
expressed as a linear combinetio. (wi’a two unknown coefficients) of the two independent

solutions of the homogeneo’ .- part and a particular solution. If 75(3) and 7;,52) are the two
homogeneous solutions and Ty is e particular solution, we have

To=aTyy +cTyy +Ts. (8)

The two constants ¢ an 1 ¢o have to be fixed imposing the initial conditions, for instance
the value of the funcii-1 ar d its derivative in a given point of the real axis.
The actual for.n of Eq. (7) has Q(z) = (4m?/x)Qy and

4 1
(=) — 7 9
pl(~) St 9)

9 7 7

- 1
i 12 64z | 64(z —16) (10

o) 1[5 1 1 L1y )
“t) = 1\ - - — —|H(—r,—r,z
m* | 64 | 256(x — 16) 256z 1622 a3

3 1 1 1| H(r,0,z)
o4 [16(x —16) 16z ﬁ] 2(4—2) } ’ (11)




where we used the notation introduced in Refs. [68, 74] for the repeated ntegration over
square roots

T dt Lot
H(—T’, —7’,$) = /0 t(t+4)/0 t/(t/+4~)7 (12)
* dt

The function H(—r, —r, z) is real when x > 0. In the Minkow ski reg on, 2 — —s—i0", with
s> 0, H(—r,—r,x)isreal if 0 < s < 4. For s > 4, it develops n i «ginary part due to the
branch cut of the square root. The function H(r,0,x) is .eal if U < x < 4, while for z > 4
the square root of the integrand has a branch cut. The .~ .t is purely imaginary and the
sign depends on the sign of the small imaginary part v..~t v add to x to chose on which
part of the cut we are. The same happens for the scuare ro t \/x(4 — x) in Eq. (11). It is
real for 0 < x < 4 and purely imaginary for x > 4. The ~~.ibination H(r,0,z)/y/x(4 — x)
is real on the entire z > 0 axis. Using consistently the . ~me prescription for H(r,0,z) and
for /(4 — x), we find that the ratio is real ana .~dependent on the prescription used.

The two functions H(—r, —r,z) and H(r,” =) can be easily expressed in terms of loga-
rithms and polylogarithms performing a chang~ « ¢ variable [75, 76]. For H(—r,—r,x), we
define

L W
- (14)
with
”r [
E=21— J@,0<x<m (15)
N s —|— 4 y \/E
In terms of £ we can write
r (_ , — T, .Z') - _1n2(§) : (16)
For H(r,0,x), we define
T = (1 +,§>7 (17)
3
with Y
Vi —z+i/z
e S | 4 18
3 Vi s 0sTs (18)
and we can writc
H(r,0,z) = wln(') —1 (2(2 — éan(f/) — 2Li2(£’)) ) (19)

The analr .~ ~ontiuation of the expressions in Eqs. (16,19) for other values of the variable
x is discuss @ in [76].

Eq. (7) be'ongs to the Fuchs class, i.e. it has regular singular points only, eventually
including the point at infinity. In our case, the singularities on the real axis are located at
x =0, x = 16, while also the point at infinity, x = oo, is singular, as can be seen replacing
the variable z with y = 1/x and studying the equation in y = 0.
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The solution of the homogeneous equation associated to Eq. (7) car he expressed in
terms of complete elliptic integrals of the first kind, and the particular soution "~ expressed
as repeated integrations over the elliptic kernel, as it was discussed i'. dc‘ail in Ref. [45].
However, in this paper we are going to use another approach for the sc'1t’on of the second-
order differential equation. We will use the differential equation to _enei.‘e power series
expansions around the singular points and at infinity. Each series .. dete. mined up to two
arbitrary constants. We will impose the constants of the serier in ¢ = 0, since we know
the initial conditions for 7y in that point. Then, the series are nic‘ched two-by-two in a
point which lies inside both convergence domains. In this wa 7, we 1 ill be able to fix all the
constants and have a representation by series on the whole rea’ axis. Our ultimate goal is to
be able to evaluate precisely the function 7y on the whole real axis. In order to achieve the
required precision it can be useful to supplement the or »i~al e ;pansion in x = 0, x = 16
and infinity, with additional expansions around regular roint .

Once the first master integral Ty has been determined, w can find the expression of the
second, 71, using Eq. (5):

To= 2T 1

Am? dox  wm#c

(20)

3. Ty evaluation for > 0

In this Section we discuss the solution ' ¥q. (7) in the region > 0. Ty is obtained
through the series in the singular regular poi.ts z = 0, x = 16 and x = oo that are then
matched to cover the entire region z > ¢ 1n all points, we first solve the homogeneous
equation and then the complete equation, obtaining all the coefficients of the series in terms
of the first two unknown coefficient .. '1..~se unknowns will be fixed from the behaviour of
the solution in one point, with the matchig procedure.

3.1. The solution around v = (

The point x = 0 allows us to 1.. n se the initial conditions and, therefore, to determine
the two constants of integr ... n that come from the general solution of the second-order
linear differential equatior (7). Fcr this purpose, it is sufficient to know the behaviour of
the master Ty for x — 7 th t can be obtained, for example, via a large-mass asymptotic
expansion of the integral,

Tog ~ logz for x — 0. (21)

This implies that in . = solution no terms with inverse powers of x appear, fixing the
constants of inte: ratio:
We first consi ler the homogeneous equation

d275(0) d7;(0)
dx? +p(@) dx

The funct. ms p) and ¢(z) have the following expansion in z = 0:

@ = 0. (22)

4 1 x x2
~ 2o 23
p(z) > 16 256 2096 T (23)
9 7 7 Tz a2
~ 2 b _ — 24
q() 122 64r 1024 16384 262144 (24)
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Since x = 0 is a singular regular point, we look for a power series solutior »f the form:

T (2) = Zan : (25)

where a,, are numerical coefficients determined from the differential equ. ~tion itself and from
the initial conditions. Substituting the solution (25) in Eq. (22), w_ or tain the characteristic
equation for the determination of a:

3\ 2

with double solution in @ = —3/2. The fact that we "iave ‘o coinciding solutions for
« constrains the prefactor of only one of the two indepe. ‘ent <olutions of the differential
equation. This will be of the form 1/(z+/z). Let us caw *his arst solution 7;%?) and let us

look for a second solution, independent from 7;?, of he form 7;(’(2)) = 73%? g(x). Substituting

in Eq. (22) and using the fact that 7;(3) is a solution, .~ find for g(x) a differential equation
that admits a logarithmic behaviour, log(z), a ., «swu, a power series. Therefore, the
general solution of the homogeneous differential equ. tion (22) takes the form

70 f Z oo 18 Z bo™ (27)

n=—1 n=—1

where we have absorbed a 1/z factor ins.~¢ 1.~ series. The series (27) converges in a circle
of radius r = 16, i.e. up to the nearest divery nce point on the real axis.

Expanding now the differential .. tion (22) in x = 0 and substituting the general
solution (27), we can fix all the coe fcients of the series in terms of the first two coefficients,
a_1 and b_q, that are the unkno /m co. <tants to be fixed using the initial conditions. The
first few coeflicients are:

! 1
ay = Fra- 1+ bl7 b0:6_4b1’ (28)
) : 9
“ = Tg3sa’ T Tozsa’ "= Tesal (29)
25 185 25
= v 1 b, b — —b, . 30
2T 108576 ' 3145728 L 2= 1043576 " (30)

The general solution . - 7' is a combination of two independent solutions, that can be
found imposing, ‘or instance, a_; = 1 and b_; = 0 (pure power series, to be identified as
7;(3) in Eq. (8)) «ra_y =0and b_; =1 (power series plus power series times a logarithm
of z, to be id .utified as 7;(7(2]) in Eq. (8)).

Let us nc v cons der the complete equation, Eq. (7), and look for a particular solution.
The expansion . ne function Q(z) around x = 0 is?

= i knx™ + log x i rpx’, (31)

n=—2 n=—2

31In order to simplify the notation from now on we set m? = 1.
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with first coefficients

1 3
-9 — T—< Ly = —— 2
k2= 158 =27 TR (32)
21 11
1T 9048 "I TR (33)
10549 83
= — = —— — - 4
Fo = Z35%00 0T TR0 (34)

Therefore, the inhomogeneous term has a double pole in x = 0, mz 'tiplied also by a single
log z. We look for a particular solution of Eq. (7) in = 0 o. the fc m:

7~5(x) = Z pnx" + log yl ™. (35)

n=—1 n=-—.

Substituting Eq. (35) in the second-order differential ¢ mat on expanded around x = 0 we
obtain, as in the case of the general solution of the hoi. ~geneous equation, terms p,, and ¢,
that depend on p_; and ¢_;. However, in this ca. ~» we are looking for a particular solution,
since the general solution of the homogeneous equaticn is already known by Eq. (27). We
can then choose to set

p-1=C ¢ =0, (36)

finding the following first terms of the series 1.0 kq. (35):
5 1

_ 5 L 37
Po 288 5 4o 96 5 ( )
7 1
p1 = —28800 \ g1 = —%, (38)
122, o (39)
P2 = sers0 2= 730960

The general solution of the co.. nlete equation is therefore:

e n n n n
Jo(x) = NP lanx + NG _E lbnx + E_O P’ 4+ logx E_O Gnx™ . (40)

To determine comple. v tae solution, we have to impose the initial conditions. Since
To(x) can have a’ mos* a logarithmic singularity for z — 0, the coefficients of the power
singularities mus - vanis' :

a1 =0, b, =0, (41)

and, as a cor sequen :e, all the a,, and b, coefficients vanish.
Therefore, 1..c solution of the complete equation reduces to

To(x) = anmn +logx Z qnx", (42)
n=0 n=0

where the first few coefficients p,, and ¢, are given in Eqs. (37-39).



The solution given in Eq. (42) is real for x > 0. However, in the nhysical region,
x < 0 (s> 0), it develops an imaginary part that can be determined using v. » Feynman
prescription x — —s — i0". This means that the logarithmic terms de elop an explicit
imaginary part:

logx — logs — im. (43)
Then, To(x) becomes complex for x < 0 (s > 0) with:
ReTo(s) = an(—s)" —i—logsE:q7 —s)". (44)
n=0 n=0
Im79(s) = —n an (—s)". (45)
n=0

3.2. The solution around r = 16

The series in = 0 is completely determined. Tu. folle ving singular regular point we
have to consider is & = 16. Since the singular point ('osest to x = 16 is x = 0, the radius
of convergence of the series in x = 16 is r = 16.

As in the previous subsection, we write Tg(o) as

o

T (2) = (& — D > ", (z — 16)" (46)

1w 0

and solving the characteristic equation w. obuain a double solution a@ = 0 Therefore, the
homogeneous equation has a solution of the torm:

T (@) = ap(a -16) +log(x —16) > b,(x — 16)". (47)

The coefficients are, of course «.?>rer. from the ones of the previous section, although we
use the same notation to ar vid introducing too many symbols. The first few coefficients
read:

7 1 7
a; = _6_4 A ?Ebo, bl = —abo, (48)
1,3 69 153

— — - —

@ = Tag, % " a3 b2 = Tz (49)
/20 1283 759

~ _ b by = — 122 g 50

9 T10-3576 ™ 3145728 0 3 71048576 ° (50)

As discussed i» the [ cvious section, we find the homogeneous solution as a combination
of two indep ndent -olutions: the first can be found imposing ay = 1 and by = 0 and it is a
pure power se ies; t e second, imposing ag = 0 and by = 1, resulting in a power series plus
a power £ ..~ mnltiplied by a logarithm of (z — 16).

In order *t» find a particular solution, we must study the non-homogeneous term. Its
expansion arc md x = 16 is of the following form:

o0

Q)= 3 gule —16)" (51)

n=—1

9



where the first three coefficients g, are:

g1 = 4O%ILQ( 74 4V/3) — = 84\/_10g (7T—4v3) + 8192 lo, (- +V5)
8192\/‘ @ (52)
Qo = ﬁ%\/ghg( 74+ 4V3) + 5242898\/_ 2(7 —4V/3) - —@mg 2(2 4+ V5)
+655356\/_ 82+ V5) - @ log(2) + 26%34\/3&’ %)
o = % (=7 + 4v/3) - mmg(?- 4 B) 4 o o2 + V)
TR a2 VE) + e loB(2) — 1 o, (54
In particular, note that there is no logarithmic term .. Eq. (51).
The particular solution of the non-homogenc - equation in x = 16 reads:
= irn(w —16)" + 1o, (2 — 16) ipn(w —16)". (55)

The coefficients r; and p; depend on the ry (nd pg, which are undetermined. However,
since we are looking for a particular solu.'~n we can set from the beginning ry = 0 and
po = 0. This, in turn, forces the entire series of the logarithmic part of Eq. (55) to vanish,
pn =0 forall n=1,2 ... Therriore, e have a simple power series, with the first three
terms given by:

- —409:;\/§L12(—7+ 4R TJ3§4\/§log (7= 4v3) + 8192 log?(2 + V/5)
8192\/_ =5 (56)
ry = ﬁf 7 - 4V3) + ﬁ 2(7—4\/§)+m10g(2+\/5)
_20;;?52] 45) ~ m log(2) + 209711—52\fCQ’ 57)
BT _Wwij :;6\/.’ Liz(=7 +4V3) - 2415535304[ log™(7 - 4@)
50 231215 75082+ V) + % "2+ VE)+ 4194304 log(2)
o (58)

Sy 1309552\/‘

The generc! solution of the differential equation is given by
= ay(z—16)" +log(x — 16) Y _by(x —16)" + > _ru(x —16)".  (59)
n=0 n=0 n=0

10



Note that the integral Tg(x) should be real in the Euclidean region. Howe =r, the logarith-
mic terms, that come from the homogeneous solution, are responsible of the ~ppearance
of an imaginary part that cannot be there. We have, therefore, to i np se that by = 0.
This condition implies that the logarithmic part of the expansion van.. >e completely. The
solution in Eq. (59) becomes a simple power series and depends on . sing.> condition, ag,
that can be fixed as explained in the following section.

3.3. Matching the series in x =0 and v = 16

The series expansion around x = 0 is completely deterriined "y imposing the initial
conditions. The series in x = 16, instead, depends on a sin,'e un .etermined constant of
integration, ag. We can compute ag, imposing that thr series in z = 0 and the one in
x = 16 assume the same value in a given point in the inte <~ _tio1 of the respective domains
of convergence. Since both series have radius of con, rgei..c r = 16, in principle it is
sufficient to impose that both series have the same value in any point = € (0, 16).

Dealing with infinite series would exactly determine “he coefficient ag. However, we can
only determine an arbitrary, but finite, number of coe.”~ients of both series. Therefore, ag
will be determined in an approximate way.

The number of terms in the series depend ~n the 1 lative precision at which we want to
be able to compute Tg9(z) in a given point of t. = » cal axis. Our goal is to provide a double
precision numerical routine, using a relativ ' sn.>1l number of terms in the series (around
50 or less).

If we want to use just the series in - . 'z = 16 and we want to be able to provide
such a precision, we have to deal with a large . 1mber of terms in the series. In order to keep
the number of terms of the order of SO and relative double precision within the interval
0 < x < 16, we have to add series "a inter aediate points.

All the points in the interval r € (» '0) are regular points for the differential equation
and they will result in simple ow r series (without the logarithmic part). In particular,
we added series in x = 2, 4. an< 8. rhe procedure of matching is, therefore, performed
as follows. We match the s ‘es in = 0 with the one in = 2. As a matching point we
choose x = 1.5. Then, in tne pow." x = 3.25 the series in x = 2 is matched with the one in
x = 4, while in z = 6, t' e s ries in x = 4 is matched with the one in z = 8 . Finally, the
series in x = 8 is matche!' v ith the one in x = 16, in the point x = 12.

The actual point n whic.. we match two series is of course arbitrary. Nevertheless, a
bad choice would lc -er Jhe Hrecision of the matched series. This would, in turn, lower the
precision for all x ~Hove “'.e matching point. A possible approach for a good choice is the
following. We fir st star  with a point that assures a good convergence for both the series
and we determine *he * nknown constants. Then, we vary a bit the point of the matching
and we look at th~ corresponding variation of the significant digits of the constants. A
good matchi. ¢ poir, maximises the number of stable digits in the result for the unknown
constants

3.4. The souv. tion around r = oo

We consider now the expansion of Ty around x = oco. Since the closest singularity to
xr = 00 is at x = 16, we expect the expansion around infinity to be convergent outside the
circle of radius 16, i.e. for |z| > 16.
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The expansion at infinity can be studied systematically by perform’ o the following
change of variable x = 1/y and, then, considering the limit y — 0.
The homogeneous equation in y — 0 limit reads

2.1-(0) (0)
4
d“Ty _§d7§ —i——T(O):O.

60
dy> oy dy oy’ (60)
We look for a solution of the form
T ) = > Ay (61)
n=0
The characteristic equation gives (8 —2)? = 0, with a dc 1bl- ze o in 3 = 2. Therefore, the
solution of the homogeneous equation, in the original ~ariable © = 1/y is
0 - Qp, VO.; bn
7‘9“(95):25—10qu_:¢, (62)
n=2 =2

with the coefficients a,, and b,, expressed in terw.” of the lowest-order ones, ay and by as
shown for the first few terms:

a3:4a2+8b2, b3:4b2, (63)
ay :366L2+84b2, b4 :36b2, (64)
as — 400 as + 2960 b2 s b5 =400 bg . (65)

The expansion of the non-homoge=~ous term €(z) around = = oo is of the form:

= Iﬁ/“ > ln 2 > mn
Q(x)zxxr— ‘fgxzx—n+log xzw—n, (66)
r =0 n=0 n=0
where the lowest-order coeffi- tents .~ .d:
3 1
0 4C2 ) 0 ) mo 1’ ( )
3 27 13
k1:§—3§ l1:—4, m1:Za <68)
24F A1 131 199
k’2——8 _Tﬁ: 52——77 m2—T- (69)

The different’al equ tion involves a second derivative and the non-homogeneous term
has double logari hmic .erms. Therefore, the particular solution must contain up to four
powers of the iogarithm:

o0 oo o0 o [ee)

v =N P In | 002 ™ oe3 Un | o0t tn 70
To(z \Zmn ogxzxn—kogxzxn ogxzwn—kogxzxn. (70)

n=2 n=2 n=2 n=2

Substituting 1'q. (70) into the non-homogeneous equation, we obtain the following first few
coefficients:
1075 15

3
— o — — _ ]_
p2 =0, ps =T+ 2C2> D4 16 S G2, (71)
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=0, 32—1—6@7 Q4=—Z—(wf‘~ (72)
3 7 185 27

r2:—§C2, T3 == = C27 Ta= "7~ 2—C2, (73)

2

UQZO, Ug—g, U4:7, (74)
1 1 3

ty = — ty = — ti- °

2 487 3 127 4 74 <75>

Finally, the general solution is given by:

- ﬁ - In 2 . T'n 3 = Un, 4 - tn
— —logx — +log“x — —log ) - -+ log™ x —, 76

where we set:
ﬁn:pn+an7 qn = gn l‘hu- (77)

The coefficients of the power series and of the sin~!~ 1~ rithm depend upon the two con-
stants of integration, while the coefficients of the ~uble, triple and fourth logarithm are
uniquely determined. As in the case of the s. ... "= = = 16, the two constants have to be
determined matching the solution in x = oo w*a the one in x = 16, in an intermediate
point chosen in the range 16 < x < 32 (toc ~erizs in x = 16 has radius of convergence
r = 16). However, in order to improve the p.acision in the determination of the integral
To(z), without adding too many terms 1. the series expansions, it is better to add the
expansions in three additional regular points: = = 32, x = 64 and x = 128, before the
matching with = = oco.

4. Ty evaluation for £ < 0 (5 > 0)

The solution for 7Ty in the regio. -~ < 0 can be constructed starting from the expansion
of the amplitude Tg(x) for a. o time-like momenta, namely for x — —oo (s — o0), that
can be found from the asvmptotic expansion in the space-like region (x — 00) by analytic
continuation. With the ~‘eyr man prescription

r — —s—10", (78)
we have to conside~ tha. *"ie logarithm develops an imaginary part as in Eq. (43):
logx — logs — im. (79)

Then To(s) I ecomes complex and its real and imaginary parts are given by:

ReTo(.) = Z( "pn logsz + (log* s — 7* Z(—l)”;—z — (log’ s
n=2 n=2
—3m”log s) Z(—l)"% + (log* s — 67°log” s + ") Z(—l)"i—z . (80)
n=2 n=2

13



o0

Im7y(s) = Z —I—QIOgSZ — (3log® S—7T2/Zj/ " n n
s
n=2 n=2
= W tn
+ (41 — 47?1 —1. 1
+ (4log® s — 4n*log s Z " (81)

n=

The series in x = 0 has a convergence radius » = 16 and the erie, o' infinity converges
in |z| > 16. In order to determine 7y in all points of the time-like . *eion with the required
precision, we need additional expansion points to sew the se’.es at inhnity with the one in
x = 0. Since in the region —co < z < 0 (0 < s < o) the e are .0 singular points, the
points to be added will be regular points, and the correspe_.ding ocries will be simple power
series.

We added the following points: s =4, s =8, s = 1€ s = 2?2 s = 64 and finally s = 128.
We will discuss extensively just s = 16.

4.1. The solution around s = 16

The point s = 16 is a regular point. Ther .., vue expansion of the homogeneous
solution is a power series

T (s) S‘a (,—16)" (82)
with the first few coefficients given in terms ¢ ag and a; by
25 9
az = —1q—%ao - aal ) (83)
53 57
% = 5e T 1096 (84)
7859 39
ay = —= apg — ai . (85)

~00663296 32768

The expansion of the in'.c mnogeneous term around s = 16 is of the following form

= duls —16)", (86)
n=1
where
5 51 1
= —log 2+ V3) + ——————Li <—>
o« 2097152 /3 ° ) 104857605~ \ (2 + v/5)?
5 35 2
log (2 +/3)" — log (2
085760 f 0g(2+V5)” - 2383608 8 +v3) 2621420 ¢ (2
=1 105 5 51
)+ ————C(2) —irm 2+5
‘Oﬂ50160\/§C( ) 16777216C( ) {4194304\/5 10485760\/_ o8 5)
3 35
— N — log (2
10485760 3388608 8 +\/§)] ’ (87)

B 245 0 (2 4 V3) 4389 Li( 1 )
o 402653184\/_ 6710886400v/5 - \ (2 + v/5)?
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4389 1 155 =
0g(2 + V5)? + + log (2 + v

671088640075 T 62914560 268435456
+%bg @)+ 6710;1;:4900\/5<<Q> a 536;?%«2) % _W
6710§§:joof 0s(2+ V5) + 3355243413200 * 26841122454 Tales \/g)] o (8)
= 2147422248\/5 log 2+ V3) + 53687?())211200\/5 b (( Y +A\/?3 )7>
+53687?())le200\/5 08(2+ V5)* - m p :3895:75%5@ log (2+V3)
_%bg @)~ 53687?(321200\/5“2) R 1_71:_“6}) 5184(( )
i 42949207296\/3 * 53687?)211200\/5 log(< = V5! - W‘Iglzoo
—% log (2 + \/5)} . (89)

Therefore, the particular solution of the diffe. nt a1 cquation in s = 16 is, again, a power
series in which the coefficients p,,, n > 2, d nena upon the first two coefficients, py and p;.
Since we are now looking for a particular so. 't.cn, we can set po = 0 and p; = 0, finding

Z s —16)" (90)

with the first few coefficients that -ead N
b= _2621:4314\/3Li2 ((2 +1?z> 2621i4f 08(2+ V5)* + 524288 log(2 +v/3)?
+mg(2> e C(2) i {m log(2 + V)
_5245288 log(2/r \/')} ’ (91)
b= +12582212VE DE(2+V3) + 419437(?40\/3L12 ((2 +1\/5)2)
+419437j40\/‘ o8(2+ V)" - 3145728 log(2+v/3)° - m log (2)
4 943(?40%“2) N 209?152C(2) B m[25165224\/§ 4194;(?40\/' 08(2+ V)
i 3142728 log(2 + \/5)} ’ (92)
o= 120795995552\/3 log(2 + 3) - 5368710191112100\/SL12 ((2 +1\/S)2)
5368710191112100\/_ o8(2+ V5)" + 7549;4720 i 128824297051888 log(2 + v/3)?
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N 61 log (2) + 11111 (@) — 2275
1677721600 53687091200v/5 8589934592
. 95 11111

o 2415919104x/§‘+'53687091200\/5

2275
D (2 .
12381901888 28 *_\/§ﬂ (93)

¢(2)

61

1Og(z*_\/g)—moéao“m

Finally, the general solution is given by

To(s) =Y wn(s — 16)", (94)
n=0
where
Wy =ag, wWi=0ay, Wp,=0a,+p, 1rn>2. (95)

5. Expansions for the Master Integral T;q
The second MI is directly determined from the 1.t one by means of Eq. (20):

x d 1
To= gt ot 3T (96)
Knowing the series expressions for 7y, Eqy. 10, _llows to determine 77y performing a simple
derivative.

The matching conditions that we ..., nsed for the series expansions in the various points
of the real axis, for the complete etermi ation of 7y, are still valid for 7. In principle,
one simply has to take the deriv.tive . ¢ .ach of these series, the series itself, and combine
them in order to fulfill Eq. (96°. Ir the case of infinite series, there would be no difference
in the determination and pre isio. of Jig with respect to what we found for 7y. However,
we deal with truncated seris., and this means that the optimal choice for a matching point
of two series for 7y can be less op.5imal for the corresponding series of 719. Therefore, we
decided to determine thr me sching points independently for the series of Ty and Tig.

We used the criteriun. f maximization of the number of stable digits in the determi-
nation of the unknov a crnstants, under the variation of the matching point. In so doing,
we found that the 1..~traine points for corresponding pair of series of 79 and Ty give rise
to slightly differer’ matc. ng constants. We used the difference between the values of the
matching consta ts as a1 indicator for the precision at which we can claim the series repro-
duce the numerica. 7ali-: of the masters. In all the matching points, we found corresponding
matching cor stantc that agree with double precision.

6. The . *+an Routine

In this se. tion we give details on the numerical routines that accompany the paper.
The routine implements the series in the various points of the real domain discussed
in the previous sections. In some points (in particular in = = 2,4,8,16, 32,64, 128 and
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s =4,8,12,16, 32,64, 128), in order to improve the convergence of the seri =. we performed
the Bernoulli variable transformation [77, 78|, which is defined as

t:log(b‘f””‘“) (97)

To—ab—ux

for a series expansion around x,, with nearest singular points a ar d b. =:ch that a < z¢ < b.
This change of variable usually increases the convergence of ti. < ries near the point of
expansion (see for instance Refs. [44, 64]). Although in tb_ poinmw. indicated above we
found a considerable increase in such convergence, resulting i1 an in rease of the number of
reliable digits of the final result, in = 0 and x = £o0 the or,in=" power series worked at
the same level of accuracy (or sometimes even better) oo hac © stter numerical behaviour.
Therefore, the routines are written using the original seric., in 7 = 0 and x = £o00, and the
series in the Bernoulli variable in all the regular points a..1 x = 16.

The numerical program consists of the header fii main_:1liptic.f and the two main
files MI1.f and MI2.f, which compute the master mteg..us Ty and Tig respectively. The
program is written in FORTRAN. Several files contain tha - ngthy formulae of the expansions
around the various points.

The program can be used in the two follo ... wavs:

(&

e Way 1: As a whole with output onto t” - scre »n and into an outputfile. After unzipping
the files
tar -zof elliptic.zip w5 rmatively  unzip elliptic. zip

the program can then be compiled with the provided makefile, meaning by typing
make
and run by the command
/run 3 salue of x #name of outputfile

If no input value fo» v = —s is given, the program interrupts and asks to input a
value. If instead n‘ iny at for the name of the output file is given, the output is written
into a default fil» na. ed output_MI.dat.

e Way 2: Inside 'nc her program. In this case only the files MI1.f for 7y and MI2.f for
Tio are need~ ' as v.~.l as all files in the folder seriesexpansions. The makefile of
the other rograr must then be adjusted by adding MI1.o or MI2.o to the files
to be comp:'=d. The function complex*16 MI1(double precision x) for Ty or
comple .*16 MI2(double precision x) for 7Tjy can then be called directly within
any otl ~r FOR RAN program.

In the *ouc .. "2g we list the various files and explain them in more details.

e main_e.liptic.f: The main file calls the functions MI1(x) and MI2(x) for the value
x given by the user as an argument when running the program and writes the output.
This file is not needed if the user wants to call the integrals from within his/her own
program.
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e MI1.f: Computes the master integral 79 and can be called by th user directly if
he/she decides to call the integral from within his/her own program. M.* f decides
which series expansion is needed for the given value of  and retur-.s t e corresponding
value. It needs the help files that are provided in the folder sex  ~s :xpansions.

e MI2.f: Same as MI1.f but for 7ig.

e seriesexpansions/MI1_in_x_#.f: Help files that conta.. tie lengthy expressions
for the series expansions of Ty around x = 0,2,4,8,1¢ 32,64, 28 and oo, where #
stands for the respective value of z.

e seriesexpansions/MI1_in_s_#.f: Help file that cont~ins the lengthy expressions
for the series expansions of 79 around s = 4, 8,12, .5 52,6, 128 and oo.

e seriesexpansions/MI2_in_x_#.f and seriesexpan. ions/MI2_in_s_#.f: Same as
seriesexpansions/MI1_in_x_#.f and seriese.mans.ons/MI1_in_s_#.f respectively
but for Tqg.

6.1. Numerical Checks

We performed several numerical checks bov™ te cisure the correctness of our results and
to check the numerical accuracy. We will d~scrii > them in the following.

e As outlined in Section 3.3, we determincd the constants of integration by matching
the series in points within the raa. s or convergence of two series, starting from
x = 0 which we have determined completely, going to x = co and z = —oo0. We
did this procedure for both “g anl’ Ty separately. If we would be able to expand
the series to arbitrary high ¢.der, t1e constants of integration of 7y and Ty would
be the same. However, we work w_ch truncated series, and the determination of the
constants depend upon t. e cetai’s of the series used, as for instance the form of the
coefficients and the nur.ber o, “ :rms. As a consequence, the integration constants are
not exactly the same. 1.~ allows us to use the comparison of the matching constants
between Ty and Tir “r each series to determine internally the numerical accuracy
of the procedure. Do’ig so we find agreement in all the series to double precision
accuracy.

e As an internal he k 2 1d as a determination of the accuracy of the result, we adopted
the followin<, .irate, /. The series in x = 0 is completely determined, since we impose
the initial « onditic 1s in that point. Starting from x = 0, we match the undetermined
constants ot “he <cries as described in the paper up to the series in x = oco. Indepen-
dently, we pe form the same procedure in the Minkowski region, starting from s = 0
up to t e seri s in s = oo. Now with the series in x = oo, we perform an analytic
cont*»nation to the Minkowski region, s > 0, and we numerically evaluate the series
in s = 'J0U, comparing the result with the numerical evaluation, in the same point,
of the s ries obtained with the matchings in the Minkowski region. We find that the
two numbers agree with double precision.
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e We cross-checked our numerical routines against PySecDec [79-81] ir ~everal points of
the entire domain, in both the Euclidean and Minkowski regions. V/e fou. 1 complete
agreement within the numerical accuracy of PySecDec, which is ".mu ed to 5-6 digits.

e The most stringent test was the one done with the numbers ~omi.~ from the exact
solution of Ref. [45]. We could check our routines against t»~ nu. hers provided by
the authors of Ref. [45] in x = 3,13,50 and s = 3,5,18,5(, fir ... 7 an agreement to
double precision accuracy?.

7. Conclusions

In this paper we presented a semi-analytical evaluat’>n f,r he two MIs of the crossed
vertex topology with a closed massive loop, implementad in a Fortran numerical routine.

The two MIs can be expressed in power series of the din.. nsional parameter € = (4—d)/2.
Each order in € fulfills a system of two coupled first-c_ der lir 2ar differential equations, that
admits solutions in terms of one-fold integrals of cow. nlete elliptic integrals of the first and
second kind times polylogarithmic terms (see Ref """ - the present paper we focus on the
solution of the differential equations for the O(e”), ~hich is relevant for phenomenological
applications at the NNLO.

In order to implement the solutions in a 1" rtran numerical routine, for the precise
evaluation of the two MlIs, we followed a .t.~da.d approach that was used in the past
for the study of the equal-mass sunris~ and *he three-point function with two massive
exchanges, namely the solution by series . the equivalent second-order linear differential
equation for one of the masters. The other master is then calculated by a simple derivative,
once the first master is known.

Expanding the master in series n th  singular points of the differential equation we
were able to directly construct # sol1tiow. that covers the entire range —oo < z < oo which
is suitable for precise numerica. v alue Jions.

The Fortran routine pres nted 1. ¢his work returns the numerical value of the two MIs
for every real value of the <ani ~sionless parameter they depend on, with double precision
accuracy.
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