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Abstract: This paper compares evapotranspiration estimates from two complementary 

satellite sensors – NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and 

ESA’s ENVISAT Advanced Along-Track Scanning Radiometer (AATSR) over the 

savannah area of the Volta basin in West Africa.  This was achieved through solving for 

evapotranspiration on the basis of the regional energy balance equation, which was 

computationally-driven by the Surface Energy Balance Algorithm for Land algorithm 

(SEBAL).  The results showed that both sensors are potentially good sources of 

evapotranspiration estimates over large heterogeneous landscapes.  The MODIS sensor 

measured daily evapotranspiration reasonably well with a strong spatial correlation 

(R2=0.71) with Landsat ETM+ but underperformed with deviations up to ~2.0 mm day-1, 

when compared with local eddy correlation observations and the Penman-Monteith method 

mainly because of scale mismatch.  The AATSR sensor produced much poorer correlations 

(R2=0.13) with Landsat ETM+ and conventional ET methods also because of differences in 

atmospheric correction and sensor calibration over land.   
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1. Introduction 
 

Understanding the spatial dynamics of evapotranspiration (ET) is critically important for food 

security and water resources management in Africa.  With reference to the Volta basin (Fig 1), studies 

such as [1] and [2] have failed to estimate regional ET because of the sheer size of the area, surface 

heterogeneity and poor distribution of spatially referenced hydro-climatic data.  For example, there are 

only five rainfall stations above Lake Volta and there are no ground-based energy flux towers.  In this 

context, remote sensing is an attractive method for obtaining or modelling evaporative fluxes at the 

regional scale.  NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA’s 

Environmental Satellite (ENVISAT) Advanced Along-Track Scanning Radiometer (AATSR) sensors 

present some of the most suitable sources of land surface information to help achieve this [3-5].   

However, the quality of satellite data, the ease of application and availability of algorithms for 

retrieving key ET model parameters remains very important.  In this context, it is necessary to evaluate 

the utility of different sensor data to ascertain their quality and value in terms of information sharing 

among scientific users, policy managers and data providers.  This, in part, explains why the literature 

provides a range of studies that deal with regional synthesis of heat fluxes from previous satellites such 

as the NOAA Advanced Very High Resolution Radiometer (AVHRR) data [5, 6].  Recently, papers 

have also been published on ET intercomparison from MODIS and AVHRR sensors [4, 6, 7], and 

MODIS against the Environmental Satellite (ENVISAT) Medium Resolution Imaging Spectrometer 

(MERIS) [8].  More specifically, recent studies have demonstrated the advantage of MODIS over 

AVHRR, taking advantage of MODIS bands for land temperature detection and biomass estimation 

[6].  First, MODIS has narrower spectral bands at the visible and near infrared wavelengths (36 

channels) than AVHRR, which enhances discrimination of vegetation properties [8].  Secondly, the 

MODIS sensor has one of the most accurate calibration subsystems.  This allows the raw brightness 

values to be converted into true percentage reflectance or radiance measurements [9, 10].  Thirdly, 

MODIS has a higher radiometric resolution than AVHRR using 16 bits of quantization in all bands as 

opposed to AVHRR’s 10 bits [8].  However, this is the first study to compare MODIS with AATSR. 

Specifically, the paper seeks to examine the relative potential of MODIS and AATSR for measuring 

key components of the energy balance equation such as surface temperature (Ts) and ET over the Volta 

basin, which might potentially be used to predict regional water availability. 
The paper is structured in the following way: the first part provides a description of the MODIS and 

AATSR sensor data, followed by their application to the study area.  The second part describes the 

study methods including a stepwise description of image processing, derivation of key energy fluxes 

and sensor intercomparison.  This section also deals with data evaluation using a 30m resolution 

Landsat ETM+ image, ground data and published information.  The third part discusses the results, 

which is followed by a summary of the key findings. 
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2. Materials and Methods 
 

2.1. The Study Area 

The Tamale district (right-hand-side inset of Fig 1) was selected as the study area for three principal 

reasons: (1) the area is representative of the main land cover types in the Guinea savannah region; (2) 

the Tamale hydrometeorological monitoring station is a good source of historical data; and (3) the area 

is one of the most accessible for equipment installation and field data collection.  The Volta basin 

encompasses six West African countries (Benin, Burkina Faso, La Côte d’Ivoire, Ghana and Mali – 

boundaries shown in light grey in Fig 1) covering an area of about 400,000 km2.  Over 70 million of 

West Africans depend on the Volta for food and water resources, housing, energy in terms of 

hydropower supply, and lake transport.  The need to understand fluctuations in the key energy 

processes that control water availability in the region is therefore of utmost importance. 

 

Figure 1. Location of the Volta river basin in West Africa Source: Modified after 

GLOWA-Volta Project [11].  The Tamale White Volta catchment area (5,311 km2) is 

shown as an inset on the right-hand-side.  The inset is a false colour composite Landsat 

ETM+ image dated 05/01/2004.  The Red-Green-Blue colours represent ETM+ bands 4, 

3, 2.  The study area encompasses parts of the Tamale, Yendi and Salaga districts of 

Ghana.  
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The climate of tropical West Africa is largely influenced by the movement of the Inter-Tropical 

Convergence Zone (ITCZ), which is an area of low pressure cells, where the Northeast Trade Winds 

meet the Southeast Trade Winds near the Earth's equator [12].  As these winds converge, moist air is 

forced upward causing water vapour to condense, and as the air cools and rises a band of heavy 

precipitation results.  West Africa is also characterised by high daily/annual temperatures (see Table 1), 

which are closely related to the region’s position in terms of the Equator, Gulf of Guinea and Sahara 

desert.  Table 1 is important for two reasons: (1) it provides general long-term climatic information 

about West Africa, and (2) it places the study area and subsequent discussion into a regional context. 
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West Africa is largely drained by three transboundary river systems - the Niger, Senegal and Volta.  

The Volta Lake (~8,500 km2) developed from the Volta River (see Fig1), forms a massive inland 

drainage and flow regulating system, whose hydrological conditions are central to the region’s 

economy.  The geology of the area is often valued in terms of rich mineral resources, but shallow 

aquifers also contribute significantly to the rural economy in terms of surface flow discharge and 

borehole water supply, particularly during the dry season [13].  Although a regional background is 

given here, it needs to be stressed the current data (Section 2.2) and subsequent discussion focuses on 

the Volta basin.    

Table 1. Climatic conditions of West Africa.  

Data 

Monitoring 

Station 

Geographical location Country Ecological 

zone 

Mean 

annual 

rainfall 

(mm) 

Mean 

annual 

evapotran- 

spiration 

(mm) 

Mean 

annual 

temp. 

(0C) 

Period of 

climate 

records 

Lat. Lon. 

Niamey 130 48’N 20 16’ W Niger Sahel 

savannah 

560 2000 36.0 1905-1989 

Koro 120 46’N 70 49’ W Mali Sahel 

savannah 

522 2041 36.8 1971-1990 

Bobo 

Dioulasso 

110 16’N 40 31’ W Burkina 

Faso 

Sudan 

savannah 

759 1958 31.5 1971-2000 

Tamale 90 25’N 00 50’ W Ghana Guinea 

savannah 

1087 1650 28.2 1961-2000 

Axim 50 09’N 20 57’ W Ghana Forest 2148 1315 25.8 1961-2000 

Sources: Modified after [14]; http://www.climate-zone.com/.  Note: The study area is highlighted.   

 

2.2. Data Sources 

 

Landsat ETM+ (NOAA/NASA), Level 1B MODIS (NASA) and AATSR (ESA) imagery (Table 2) 

were used as the main sources of remotely sensed data [15].  For spatial validation of the MODIS and 

AATSR data, a single Landsat ETM+ (30m resolution) was required.  However, cloud-free Landsat 

ETM+ data coincidental with the coarse-resolution data were unavailable.  As a result, an image 

(Landsat ETM+) acquired on 5th January 2004 was used as proxy data (Table 2).  Although the 

Level 1B products do not directly contain images, they still contain calibrated data which are often 

used by other software applications to construct the images.  Aside from satellite data, a 40-year (1961-

2000) record of daily air temperatures as a well as historical (1970-1980) daily wind speed and 

sunshine data observed from the Tamale meteorological monitoring station served as key reference and 

ET modelling input data [14].  Unfortunately, spatially observed surface temperature (Ts) data were not 

available for the study area.  Indeed, data scarcity is a widely recognised problem in Africa and remains 

a major disincentive to regional-based studies [1-3; 15].  In this case, a number of assumptions were 

made in Section 2.3 to be able to operate the SEBAL algorithm.  An important data set which was used 
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to initialize and validate the SEBAL algorithm was energy flux (eddy correlation) data (Fig 2) 

measured for the Tamale district, courtesy of the GLOWA-Volta Project [11].  Additional sources of 

model input and validation data included field surface temperatures, which were observed from 

thermal data loggers at the time of satellite overpass (Table 3).  The thermal loggers named A-E were 

installed in the study area as follows: north-western (urban), north-eastern (grassland bush), central 

(agriculture), eastern (open woodland) and southern (closed woodland) locations of the study area, with 

actual geographical coordinates shown in Table 3b. 

Table 2. Characteristics of AATSR and MODIS data used for the study 

Image Date Satellite overpass (UTC) Orbit Track Frame Central coordinates  

Lat Lon 

AATSR Sensor 

040103 10:13:07 - 10:14:43 4441 380 3500 90 51’N 10 58’W 

131104 10:04:47 - 10:06:23 14146 65 3500 90 18’N 00 04E 

021204 10:07:35 - 10:09:11 14418 337 3500 90 36’N 00 35’W 

181204 10:04:44 - 10:06:20 14647 65 3500 90 19’N 00 04’E 

250105 10:10:25 - 10:12:01 15191 108 3500 90 37’N 10 18’W 

MODIS Sensor 

040103 10:25:00 - 10:30:00 16209 - - 90 51’N 010 58’W 

131104 10:30:00 - 10:35:00 26097 - - 30 54’N 000 530E 

021204 11:00:00 - 11:05:00 26374 - - 60 83’N 070 510E 

181204 11:00:00 - 11:00:00 26607 - - 70 91’N 070 320E 

250105 10:25:00 - 10:30:00 27160 - - 90 37’N 010 18’W 

Landsat ETM+ 

050104 10:40:00 - 10:41:00 - 194 53 100 06’N 000 36’W 

Note: The Landsat ETM+ scene acquired on 5th January 2004 was used mainly because of the absence of cloud-free data 

coincidental with the MODIS and AATSR overpass.  

 
For regional-scale studies, the MODIS and AATSR sensors provide high quality spectral products 

with good radiometric and geometric properties.  As indicated above, the MODIS sensor has a number 

of advantages including (36) multi-spectral channels (bands), which enable precise discrimination of 

vegetation types [4-8] and a daily revisit capability, which provides high data temporal frequency.   

Most of the MODIS data products are also freely available to users from the USGS website.  The 

AATSR sensor has a number of particular capabilities.  For example, it delivers data from both the 

reflectance and thermal infrared bands, which provides useful land-based parameters (e.g. land-cover 

and surface temperatures) often needed as key inputs to energy and water balance models.  In terms of 

temperature mapping, the AATSR scenes are supplied to users as a ready source of brightness 

temperatures [7].  This is extremely valuable because data re-calibration problems which are often 

associated with the AVHRR and MODIS sensors are easily avoided.   Furthermore, the spectral bands 

and spatial resolution (1 km) are quite similar to MODIS, which makes sensor inter-comparison 
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possible [5, 6, 16, 17].  It is also worth noting that the digital data format of both the MODIS and 

AATSR provides capabilities which easily lend them for integration with new-generation GIS-based 

data assimilation schemes [18, 19].  Table 4 displays the general characteristics of the satellite data sets 

used. 

Figure 2. Local energy flux observations from the Dutch-type scintillometer instrument, 

which measures turbulent intensity fluctuations of the refractive index of air.  Source: 

Reproduced from field data retrieved from the GLOWA-Volta database [11]. 

 

Table 3a. Soil temperatures (K) observed from thermal data logger at the time of 

MODIS & AATSR overpass. 

 Logger A Logger B Logger C Logger D Logger E 

Date: 131104 

Time  10:12 309.19 310.21 309.19 308.72 307.58 

          10.32 309.27 310.32 309.97 308.86 307.97 

          11:12 309.27 310.29 309.92 308.45 308.49 

Av. Temp (K) 309.24 310.29 309.69 308.68 307.95 

Date: 021204 

Time  10:12 312.67 312.08 312.39 308.11 307.88 

          10.32 312.98 312.21 312.33 308.07 307.70 

          11:12 312.98 312.29 312.38 308.64 308.66 

Av. Temp (K) 312.88 312.19 312.37 308.27 308.08 

The locations of the thermal loggers named here as A-E are given in Table 3b 
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Table 3b. Geographical locations of the thermal loggers. 

 Geographical 

description (see 

Fig 2) 

Latitude (0N) Longitude (0W) Land cover class 

Logger A North-west 090 26’ 000 51’ Urban 

Logger B North-east 090 28’ 000 26’ Grassland-bush 

Logger C Central 090 14’ 000 37’ Agriculture 

Logger D East 090 04’ 000 28’ Open Woodland 

Logger E South 080 56’ 000 50’ Closed Woodland 

  The thermal loggers were installed in the Tamale study area only (see Fig 1) 

 

Table 4. Technical characteristics of key sensor data sets applied in this study. 

Data 

source 

Spatial 

resolution 

(m) 

Spectral range (µm) 

 

*VIS NIR band MIR band TIR band 

Landsat 

ETM+ 

30 (15m for 

panchromatic 

and 60m for 

thermal band) 

Band1 (0.45-0.52) 

Band2 (0.52-0.60) 

Band3 (0.63-0.69) 

Pan (0.5-0.90) 

Band4 (0.76-0.90) 

 

 

Band5 (1.55-

1.75) 

Band7 (2.08-

2.35) 

Band6 (10.4-12.50) 

 

ENVISAT 

AATSR 

Level 1B 

1km Band1 (0.545-0.565) 

Band2 (0.649-0.669) 

 

Band3 

(0.855-0.875) 

 

Band4 

(1.580-1.640) 

Band5 (3.50-3.89) 

Band6 (10.40-11.30) 

Band7 (11.50-12.50) 

MODIS 

Level 1B 

250 (500m 

for bands 3-7) 

and 1000m 

for bands 

8-36) 

Band1 (0.62-0.670) 

Band3 (0.46-0.48) 

Band4 (0.55-0.57) 

Band8 (0.41-0.42) 

Band9 (0.44-0.45) 

Band10 (0.44-0.49) 

Band11 (0.53-0.54) 

Band12 (0.55-0.56) 

Band13(0.66-0.67) 

Band14 (0.67-0.68) 

Band2 (0.84-0.87) 

Band5 (1.23-2.50) 

Band15(0.74-0.75) 

Band16(0.86-0.87) 

Band17(0.89-0.92) 

Band18(0.93-0.94) 

Band19(0.91-0.96) 

Band6 

(1.628-1.652) 

Band7 

(2.105-2.155) 

Band26 

(1.36-1.39) 

Band20 (3.66-3.84) 

Band21 (3.92-3.98) 

Band22 (3.92-3.98) 

Band23 (4.02-4.08) 

Band24 (4.43-4.49) 

Band25 (4.48-4.54) 

Band31 (10.78-11.28) 

Band32 (11.77-12.27) 

Sources: Various - NASA and ESA websites e.g. http://daac.gsfc.nasa.gov; http://www.msct.ssai.biz; 

http://envisat.esa.int/instruments/. *VIS=Visible, NIR=Near Infrared, MIR=Middle Infrared & TIR=Thermal Infrared band 
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2.3. Study Methods 

 

2.3.1. Image Processing 

 

The main image processing steps are described as follows: 

• The raw Level 1B AATSR images (Table 2) were first read using the Windows version of the 

European Space Agency (ESA) Basic ERS & ENVISAT AATSR and MERIS software 

(BEAM) (http://www.brockmann-consult.de/beam/).  The BEAM is a collection of executable 

tools and an application programming interface which have been developed to facilitate the 

utilisation, viewing and processing of ENVISAT data products.  It is particularly useful for 

importing image data, visual interpretation, image geo-referencing, band arithmetic and image 

statistics. 

• Brightness temperatures at the top of atmosphere (TB) were directly retrieved after running the 

BEAM software; the software automatically implements an inverted version of the Planck’s 

equation where image radiances are converted to TB (see equation 1).  The TB files were then 

exported and stored as GeoTIFF for further use. 

• The raw Level 1B MODIS data (Table 2) were also read using NASA’s HDF-EOS to GIS 

(HEG) conversion toolbox (http://eosweb.1arc.nasa.gov/PRODOCS/misr/geotiff_tool.html). 

The HEG software is useful for image viewing, geo-referencing to standard projections such as 

UTM and data conversion to GeoTIFF. 

• Examination of the MODIS header files enabled the retrieval of calibration constants from the 

reflectance (Bands 1 and 2) and radiance (Bands 31 and 32) files of the composite product.  The 

reflectance and radiance values were then used as appropriate to calculate calibrated versions of 

time series data following NASA’s re-calibration procedures described in the MODIS L1B 

Product User’s Guide [16].  The inverted Planck’s equation was then applied to convert the 

image radiances (L) of each of the thermal infrared bands (TIR) to TB following the approach of 

[20] (equation 1) and later used as model inputs for calculating Ts. 








 +
=

1ln
5
1

2

L

c

c
TB

λ
λ

      (1) 

where c1 = 3.74*108 and c2 = 1.439*104 and λ = average wavelength of the TIR bands; represented as 

bands 31 and 32 for MODIS and 6 for Landsat ETM+ (see Table 4).  TB was used at a later stage to 

calculate Ts in the next section. 

• To solve for equation 1 an ERDAS-Imagine based algorithm was applied for both the Landsat 

ETM+ scene (5th January 2004) and the MODIS time series data (Table 2). 

• Further, ERDAS spatial modelling tools were used to calculate NDVI (normalized difference 

vegetation index) for the Landsat ETM+, MODIS and AATSR imagery using the equation 

below [21]: 

RNIR

RNIR
NDVI

+
−=       (2) 
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where NIR and R are light reflectance in the near infrared band and the red bands of the electromagnetic 

spectrum, respectively. 

 

2.3.2 SEBAL Processing in MATLAB 

 

 For the MODIS and AATSR data, the results of equations (1) and (2) were applied as key inputs to 

the Surface Energy Balance Algorithm for Land (SEBAL) code [22, 23] which was run through code 

written in MATLAB.  For the single Landsat ETM+ image, it was quicker to derive ET using 

ERDAS/GIS-based spatial modelling tools.  Another important reason is that the ERDAS approach is 

easily repeatable in developing countries where software facilities and the image processing skills of 

users are quite limited [8].  The other inputs to the SEBAL algorithm are described in Table 5 below.  

The theoretical basis of the SEBAL is that it solves the energy and radiation balance equations 

(equations 3 & 4) on per-pixel basis, from which ET may be derived as the residual term of the 

regional energy balance model at the time of satellite overpass following the scheme shown in Fig 3. 

0GHRET n −−=        (3) 

where ET = latent heat flux (evaporation), Rn = net radiation, H = sensible heat flux, and G0 = soil heat 

flux.  The units for all the above parameters are Wm-2. 

Figure 3. Schematic illustration of how evapotranspiration (ET) may be estimated from 

remotely sensed data.  Source: Modified after [24]. 
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Table 5. Satellite and ground data used for regional-scale ET estimation and validation. 

Data Type Use of the Data 

Satellite 

data 

MODIS/AATSR 

time series imagery 

The MODIS and AATSR provided the key instantaneous data needed 

for energy and water balance modelling (net radiation, NDVI, BT) 

A Landsat ETM+ 

scene acquired on 

5th January 2004 

The Landsat image also provided energy balance modelling data.  In 

addition, it was used for a detailed land use/cover classification and ET 

maps for other purposes: (1) a guide for fieldwork; (2) to map wet and 

evaporation points to guide SEBAL-based energy balance modelling; 

and (3) as a source of validation for MODIS & AATSR ET estimates 

Satellite-

based 

intermediate 

parameters 

Brightness 

temperatures (TB) 

TB was derived from satellite data.  It served as the main intermediate 

data for deriving Ts using the split-window algorithm [8] 

Local and 

global 

climate 

records 

 

Radiation data and 

constants (e.g. US 

Navy website) 

Radiation constants e.g. sunshine duration (n=12-14) were used as input 

data to: (1) validate satellite radiation measurements; and (2) up-scale 

instantaneous to daily net radiation (see equation 20). 

Local wind speed 

(u) 

Wind speed was used as a source of momentum data for SEBAL-based 

energy balance modelling 

Local air 

temperature (Ta) 

Ta was used as a data source for the prediction of pixel-based Ta in 

equation 18. 

Data from 

fieldwork  

HOBO logger 

temperatures 

Field temperatures were used as a source of SEBAL initialization and 

validation data for satellite-based temperature estimates 

ET 

validation 

data 

GLOWA-Volta 

field data 

The GLOWA data was used as one of the main sources validation for 

satellite-derived net radiation  and energy fluxes (e.g. ET) 

Penman-Monteith 

estimates (Tamale 

district) 

The Penman-Monteith estimates were used as additional source of 

validation data for satellite-based ET 

 

Net Radiation (Rn) 

Following equation (3), the net radiation (Rn), which is the amount of radiation left after all 

outgoing radiation (L↑) is subtracted from all incoming radiation (L↓), was calculated as follows: 

)()1( ↑
↓↓ −+−= LLKRn α        (4) 

where K↓ = incoming shortwave radiation,  α = albedo (dimensionless) and L↓ and L↑ are incoming and 

outgoing long wave radiation, respectively and the shortwave radiation (Wm-2) reaching the Earth’s 

surface under cloud-free conditions is calculated as: 
toaKK ↓↓ ×= τ        (5) 

where τ is atmospheric transmissivity and K↓
toa is the extraterrestrial solar radiation (Wm-2).  The 

extraterrestrial solar radiation at a given point in time is calculated according to the following 

relationship: 

 



Sensors 2008, 8                            

 

 

2746

)coscoscossin(sin ϖφδφδ +=↓ oSC
toa EGK     (6) 

where GSC = solar constant (1367 Wm-2), Eo = is eccentricity correction factor (i.e. average/actual 

Earth-sun distance, which ranges 0.980-0.989 [24; 25]), δ = solar declination, ø = latitude and ω = hour 

angle (all angles are in radians).  Surface albedo (α) is calculable following an empirical formula 

derived by [26] as: 

2τ
α ap rr −

=        (7) 

where ra = albedo path radiance, rp = top-of-atmosphere radiance and τ
2 = the two-way transmittance 

for solar radiation (Wm-2).  The surface albedo (α) of the darkest pixel (e.g. deep sea) is usually 

assumed to take a value of zero.  If α = 0, it follows from equation 7 that ra = rp of a deep sea and by 

approximation, the darkest pixel target.  It has been shown that, for a known surface elevation (z), the 

one way transmission (τ) may be predicted following an empirical relationship as [24]: 

z××+= −510275.0τ        (8) 

Thus, assuming that the average elevation of the Tamale area is 180 m, the two-way transmittance (τ
2) 

is approximately, 0.568.  The above report has also shown that the fractional path radiance (ra) ranges 

from 0.025 – 0.04.  For tropical areas, a constant value of 0.03 has been suggested [24; 27].  Further, 

the incoming long wave radiation (Wm-2) is the downward thermal radiation flux from the atmosphere.  

It is computed using Stefan-Boltzmann equation as: 
4

aa TL ××=↓ σε       (9) 

where εa = atmospheric emissivity (dimensionless), σ = Stefan-Boltzmann’s constant (5.67×10-8 Wm-2 

K-4) and Ta = near surface temperature (K) from climate records [14], which for lack of spatially- 

observed estimates, was first assumed to be invariant for each pixel, but later predicted from equation 

18; εa may be calculated using an empirical model following as follows [27]: 
09.0)ln(85.0 τε −×=a       (10) 

The outgoing long wave radiation (Wm-2) is the upward thermal radiation leaving the surface.  It is 

calculated using the Stefan-Boltzmann equation as follows: 
4

0 sTL ××=↑ σε       (11) 

where ε0 = surface emissivity (dimensionless), σ = Stefan-Boltzmann’s constant and Ts = surface 

temperature (K) which was first estimated as a crude spatial average from Table 3b (304 K), but later 

calculated on per-pixel basis from the split-window algorithm (equation 24).  The emissivity of an 

object is the ratio of the energy radiated by that object at a given temperature to the energy radiated by 

a black body at the same temperature.  Since the thermal radiation of the surface is observed in the 

thermal bands of satellite data, one can compute the surface temperature if the emissivity of the land 

surface is estimated.  In SEBAL, surface emissivity may be estimated using NDVI and an empirically-

driven method [28]: 
)ln(047.0009.10 NDVI+=ε       (12) 

where NDVI > 0; otherwise, emissivity is assumed to be zero (e.g. water). 
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Soil Heat Flux (G0) 

The soil heat flux is the rate of heat storage in a soil as a result of temperature gradient between soil 

surface and the underlying topmost soil layers.  The SEBAL uses an empirical relationship by [23] 

which attempts to estimate G0 as a function of NDVI, surface temperature and albedo as follows: 

)978.01(])1.1(0062.0)1.1(0032.0)[
273

( 42
0 NDVI

T
RG s

n ×−×××+××
−

= αα
α

   (13) 

 

Sensible Heat Flux (H) 

Sensible heat flux is the rate at which energy is lost through convection and diffusion processes as a 

result of temperature difference between the surface and the lowest layers of the atmosphere: 

ah

pa

r

TC
H

∆××
=

ρ
      (14) 

where ρ = density of air (Kg m-3), cp = air specific heat capacity 1013 (JKg-1K-1), ∆T = difference 

between surface and air temperature (0K) and rrah = aerodynamic resistance for heat transport (sm-1), 

determined by wind speed, surface roughness, displacement height and thermal instability of the 

atmosphere. 
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*       (16) 

where u* = friction velocity, k = von Karman’s constant (0.41), ublend = wind speed at the blending 

height (i.e. mixing layer), zblend = blending height, zoh = roughness length for heat transport, zom = 

roughness length for momentum transport, d = displacement height and ψh and ψm = are stability 

correction factors for heat and momentum transport, respectively.  The temperature difference (∆T) is 

predicted in order to estimate H from equation 14 following [22, 23]: 

pa

ah

C

rH
T

×
×

=∆
ρ

       (17) 

 

In this equation, H and ∆T are both unknown factors but are directly related to one another, as well 

as to the value of rah.  Therefore, ∆T is calculated at two extremes, “indicator pixels” (wettest and driest 

pixels) by assuming values for H at these reference pixels.  The wettest pixel is the pixel where H ~ 0 

(i.e. all the available energy [Rn – G0] is converted λET or ∆T becomes zero), and the driest pixel is 

where λET ~ 0, so that H = Rn – G0 or ∆T is maximum.  The wettest pixels are selected as pixels with 

high NDVI but with low temperature, while the driest pixels are selected as pixels with high 

temperature but with low NDVI and albedo.  Subsequent to the selection of the wettest and driest 

pixels, the linear equation which gives value of ∆T as a function of surface temperature is developed 

as: 

sas TbaTTT ×+=∆=−       (18) 
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where Ts = surface temperature, Ta = air temperature (previously defined as near surface in equation 9), 

and a & b are constants.  With the values of Ts and ∆T at the two pixels, a & b may then be solved 

iteratively, as rah is also a function of H, where rah is calculated using equations 15 and 16 above.  As 

noted before, lack of spatially-observed ground temperature data makes equation 18 relevant in the 

derivation of temperature difference (Ts-Ta).  

 

Evapotranspiration (ET) Up-scaling Methods 

Under fair weather conditions, the evaporative fraction (Λ), which is the ratio of latent heat flux to 

available energy, is generally assumed to be constant during daytime [23, 27].  Thus, Λ may be used to 

integrate remotely sensed ET over the diurnal cycle as follows: 

0GR

ET

HET

ET

n −
=

+
=Λ λ

λ
λ

      (19) 

where the instantaneous evaporative fraction (Λins) is equal to the integrated daily evaporative fraction 

(Λday).  Guided by the above principles, instantaneous net radiation may also be aggregated as daily net 

radiation (Rn-day) following the approach by [23] as: 

daydaydayn KR τα ×−××−= ↓
− 110)1.11(     (20) 

where τday = daily atmospheric transmissivity for radiation, which was calculated using the Angstrom 

formula as τday = 0.25 + 0.5 ×n/N, where n = actual duration of sunshine and N = maximum possible 

sunshine or daylight hour.  Cloud-free actual sunshine data (n) were obtained from the US Navy 

website – http://aa.usno.navy.mil.  Daily incoming short wave radiation (K↓day) was then calculated 

using the following relationship: 
toa

daydayday KK −↓
↓ ××= τ5741.11       (21) 

where toa
day

K −↓  = daily incoming short wave radiation at the top-of-atmosphere (TOA) was calculated 

using the sine method as: 






 −=−↓ ssoSC
toa

day EGK ωωπφδ
π

tan
180

sinsin
24

    (22) 

where ωs = sunset or sunrise hour angle (radians); the definition of the remaining parameters is given in 

equation 6.  From equations 19 and 20, actual ET was set as a constant following [23] who used similar 

empirical models for the Sahel region in West Africa.  Daily ET derived from equation 23 was 

validated using the GLOWA-Volta ground energy flux observations [11]. 

588.28
dayn

day

R
ET −×Λ

=       (23) 

 

Derivation of Land Surface Temperature (Ts) 

Following the split-window approach by [8], Ts was estimated as: 
56.039.034.178.034.239.0 2

22211
2

1 ++−×−+= TTTTTTTs    (24) 

where T1 and T2 represent AATSR bands 6 & 7 and MODIS bands 31 & 32, respectively; and the 

coefficients are empirically determined on the basis of land cover types, vegetation fraction, season and 

time of day, atmospheric vapour pressure, satellite zenith angle and surface emissivity [7].  For the 

Landsat ETM+ data, Ts was estimated using the single channel algorithm [31] and applying 

coefficients derived for the dry Roxo catchment in Portugal [27]. 
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3. Results and Discussion 
 

Sensor intercomparison studies can deliver several benefits, of which data quality assurance, 

provision of market information and sharing of technical information among key stakeholders are 

paramount.  Nevertheless, several constraints remain crucial, such as lack of consensus about image 

pre-processing methods, differences in sensor footprints and occurrence of random errors including 

missing data [5 - 7].  Some of these issues are discussed in the subsequent section. 

 

3.1. Results 

 

3.1.1. Sensor Intercomparison of Ts 

 

An important motivation for evaluating Ts from different sensors is the close interaction between 

temperature, sensible and latent heat fluxes.  At the catchment scale, dynamics of surface energy is a 

critical indicator of water availability, which in turn, constitutes very useful information for water 

resources management. For example, the operational management of the downstream Volta Lake for 

hydropower generation is of great economic importance.  The results in Table 6 present the temporal 

variability of Ts over the Tamale district derived from the Landsat ETM+, MODIS and AATSR 

sensors.  The Tamale district is important for both economic and environmental reasons.  As one of the 

largest urban areas in the Guinea savannah zone in Ghana, water scarcity is a severe problem.  

Secondly, the area is heterogeneous in terms of savannah land cover [18].  This explains the 

importance of understanding the energy dynamics of the area.  

Table 6 shows that the average MODIS Ts over the Tamale district was 309.9 K compared with 

320.6 K by the AATSR instrument.  Although the MODIS Ts compares well with the Landsat sensor 

(~302 K), the result is inconclusive without ground truth validation.  This makes two types of 

validation necessary; first, evaluation of the image thermal calibration methods and the secondly, 

verification of the results from independent field data (see Table 3).  As shown in Section 2.3.1, the 

data from both sensors were subjected to similar image processing methods, where image radiances 

were first converted to brightness temperature (TB) using the inverted Planck’s equation and 

subsequent derivation of surface temperature (Ts), using the split-window algorithm.  The only 

difference is that the AATSR TB was obtained directly whereas the MODIS TB was calibrated 

manually [18].  The effect of this is examined in Table 7. 

Table 7 shows that the average AATSR TB (full-scenes) are slightly higher than MODIS in the 11 

and 12µm thermal bands (channels) at nadir viewing angles; the deviations in these channels being 5.1 

and 4.7 K, respectively.  The difference between the coarse-resolution sensors (MODIS & AATSR) 

and the reference Landsat ETM+ TB is even wider (7-13 K).  Over a large area, the above TB variations 

are large [5, 7], which also closely reflect the magnitude of Ts deviations in Table 6.  This tends to 

emphasize the previous opinion that the Ts deviations may not be due to differences produced from 

image processing, but variations in sensor and instrument characteristics. 
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Table 6. Variation of surface temperature (Ts), normalised difference vegetation indeed 

(NDVI) and daily evapotranspiration (ET) over the Volta savannah from MODIS & 

AATSR sensors (N = 71 pixels). 

Date of image 

acquisition 

[Julian day] 

 

Landsat 

ETM+ 

MODIS AATSR 

050104 

[05] 

131104 

[318] 

021204 

[337] 

250105 

[25] 

131104 

[318] 

021204 

[337] 

250105 

[25] 

Land Surface Temperature (Ts) 

Maximum 312.451 309.476 309.650 310.390 317.037 323.089 322.356 

Minimum 286.318 302.078 302.616 306.691 308.623 308.750 312.347 

Mean 301.869 304.383 306.217 308.586 312.463 318.970 319.050 

Std. Deviation 7.091 1.594 1.999 0.965 1.871 2.890 1.882 

NDVI 

Maximum 0.809 0.727 0.720 0.661 0.751 0.701 0.693 

Minimum 0.025 0.387 0.326 0.312 0.519 0.461 0.488 

Mean 0.521 0.620 0.566 0.489 0.639 0.587 0.582 

Std. Deviation 0.083 0.066 0.079 0.068 0.045 0.074 0.046 

Daily Evapotranspiration (ET24) 

Maximum 8.510 2.297 3.082 2.831 0.987 1.471 0.706 

Minimum 0.000 0.020 0.025 0.904 0.000 0.300 0.000 

Mean 3.102 0.918 1.469 2.052 0.283 0.965 0.170 

Std. Deviation 1.424 0.609 0.840 0.400 0.213 0.282 0.140 

 

In the second case, reference is made to Fig 5, which compares satellite derived Ts with field soil 

temperatures observed at the time of the satellites overpass (10:00 - 12:00 noon).  Fig 5 was derived by 

calculating the mean (diurnal) logger temperatures from Table 3b and plotting them against the satellite 

measurements.  It is not always easy to compare point data with spatially derived satellite 

measurements without making some assumptions [5].  The following assumptions were made: (1) 

surface temperatures do not vary significantly within 1 km pixels where satellite measurements are 

made; and (2) sensor geometric effects on the location of the thermal loggers are of minimal 

significance.  Guided by ground control points (geographical coordinates), five nearest Ts data points 

from MODIS and AATSR maps were extracted and compared with the ground truth data.  In the case 

of the Landsat ETM+ thermal map, average Ts values were extracted from 30x30 pixel windows, 

reference to existing ground control points and the coarse-resolution data.  As expected, the MODIS 

sensor better predicted Ts (R
2 = 0.73), compared with both the AATSR (R2 = 0.41) and Landsat ETM+ 

(R2 = 0.59) as shown in Fig 4.  The detailed data analysis and error assessment are discussed in the 

subsequent section. 
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Table 7. Temporal statistics of MODIS & AATSR brightness temperatures (TB). 

Date of image 

acquisition 

[Julian day] 

MODIS 

131104 [318] 021204 [337] 250105 [25] 

11µm 12µm 11µm 12µm 11µm 12µm 

Maximum 301.8 299.3 303.2 301.6 309.1 306.3 

Minimum 281.4 289.8 291.6 294.3 298.0 299.9 

Mean 296.0 292.0 299.3 292.7 302.2 300.8 

Std. Deviation 1.231 1.032 0.853 1.110 1.543 1.276 

 AATSR 

131104 [318] 021204 [337] 250105 [25] 

11µm 12µm 11µm 12µm 11µm 12µm 

Maximum 303.2 297.6 314.8 312.2 317.7 313.3 

Minimum 292.6 289.2 299.6 298.4 307.7 302.8 

Mean 298.9 294.8 305.0 303.3 309.1 304.7 

Std. Deviation 1.055 0.807 2.276 2.078 1.441 1.511 

 Landsat ETM+ (10.4-12.5 µm)  

050104 [05] 

Maximum 309.990 

Minimum 283.720 

Mean 293.719 

Std. Deviation 7.691 

 

Sensor Intercomparison of NDVI 

From Table 6, the variations in NDVI (used here as surrogate for biomass density) are closely 

related to dynamics of thermal energy and therefore, transpiration processes.  The temporal variation of 

MODIS NDVI portrays this more consistently than the AATSR, which is also exemplified by the wider 

range of the MODIS NDVI values (~0.36) compared with AATSR (~0.22).  For medium resolution 

(1x1 km) satellites, an NDVI difference of approximately 0.20 (Fig 5) may cover an extremely wide 

ground area, vegetation types and biomass volume, which reinforces the advantage of the MODIS 

visible bands for NDVI estimation compared with AATSR. 
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Figure 4. Comparison between satellite and logger temperature observations.  The logger 
temperatures were calculated as an average observation from 10:00-12:00 noon.  To compare with 
the 1 km resolution MODIS and AATSR data, the Landsat temperatures were extracted as average 
values from 30x30 pixel windows. 
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Scatterplot: Ground Truth v Landsat ETM+ Temperature
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Figure 5. Regression models between NDVI and surface temperature (Ts). The models 

are derived from full MODIS (N = 5486 pixels) and AATSR (N = 4139 pixels) scenes, 

(a) Ts = -11.303NDVI + 315.61; R2 = 0.7458; RMSE = 0.051; and (b) Ts = -

18.655NDVI + 323.29; R2 = 0.6162; RMSE = 0.04993.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sensor Intercomparison of ET 

The importance of ET as a key indicator of water availability in dry savannah regions has previously 

been noted.  In fact, the over- or underestimation of ET can provide misleading information required 

for water policy decision-making and resource allocation.  Also, the question of data accuracy is an 

important issue because precise data sets are needed for continuous monitoring of ET, which in turn is 

needed for quantifying regional water balance.  Both Table 6 and Fig 6 compare the temporal 

variability of ET measured from the MODIS and AATSR sensors.  These are further compared with a 

detailed (30m resolution) Landsat ETM+ data acquired 4-5 weeks later.  A detailed discussion follows 

here. 
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Figure 6. Distributed ET (mm day-1) predicted from (a) MODIS, (b) AATSR and (c) 

Landsat ETM sensors on 131104, 121204 & 05/01/04 respectively.  Notice the spatial 

resemblance of both the MODIS and AATSR with Landsat ETM+, but the Landsat data 

better estimates ET because of its high spatial resolution (30m).  At least two Landsat 

scenes were required as a mosaic to cover the study area; lack of exact mosaic scenes 

presents an important limitation in regional synthesis. The blank spaces in (b) represent 

missing data, which rendered the November image unsuitable here. In this example, 

notice the similarity of the spatial relationship between ET and dense vegetation in the 

southern part of the image and sparsely vegetated Tamale urban area in the north-

western part.   
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Figure 6. cont. 

 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Discussion 

 

Consideration of Table 6 shows that the average range of Ts measured over the Tamale district by 

the MODIS sensor was 309.4 - 310.4 K compared with 317.0 – 323.1 K by the AATSR sensor.  This is 

consistent with the sensor brightness temperatures shown in Table 7, which shows that Ts 

measurements by the AATSR sensor are potentially higher Ts than the MODIS instrument; additional 

evidence is shown in Fig 5.  Here, the MODIS sensor produced a much better prediction of Ts (R
2 = 

0.73) than AATSR instrument (R2 = 0.41).  A simple error analysis (i.e. calculation of the mean sensor 

deviations from the observed values) shows that the MODIS instrument underestimated ground 

temperatures by about 1.2 K.  By contrast, the AATSR overestimated surface temperatures by 4.1 K.  

The difference between the sensor measurements may be due to their respective engineering design, 

sensor calibration and the satellite overpass time gap (~60 minutes).  It must be noted, however, that 

the above variation is consistent with the sensor design efficiency of both satellites and other published 

results.  For example, comparing Ts measurements from the MODIS and NOAA-14 AVHRR sensors, a 
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difference of 25 K was observed within the overpass gap of 2 – 3 hours of the two satellites [5].  In this 

case, output variations were attributed to a number of technical factors such as sensor characteristics, 

atmospheric correction and the spectral response function of the thermal infrared channels [5, 29].  In 

this study, differences between satellite and ground temperatures are important because the 

characteristics of “passive” thermal sensors make measurement of “skin” temperatures of bare soils 

difficult in the presence of other materials such as vegetation and water.  In view of this, the results in 

Table 6 and Fig 4 represent soil surface temperatures as against radiant temperature measured by the 

sensors.  Theoretically, these two measurements are quite different but are often compared for the sake 

of practicality [31].  Aside from this, differences between radiant and “skin” temperatures may not be 

unexpected over heterogeneous landscapes [30, 31].  Indeed, the infrared channels of MODIS and 

AATSR can be considered well suited for surface temperature measurement, but only to the degree of 

their design efficiency, which is rarely better than 3 K [32].  It can be concluded, therefore, that the 

MODIS and AATSR sensors have quite similar capabilities for measuring Ts over complex savannah 

landscapes.  An important question is why is there a relatively weak correlation between the Landsat 

ETM+ and the ground truth (logger) data (R2 = 0.59).  The differences in the local environment at the 

time of Landsat overpass may account for this.  For example, whereas the logger and MODIS and 

AATSR sensor measurements were made on the same day (2nd December 2004), the Landsat 

temperatures were measured nearly 4 weeks later (5th January 2005).  As noted earlier on, the Landsat 

ETM+ data was used mainly because of the absence of cloud-free alternatives for December 2004. 

Both Table 6 and Fig 5 show that the AATSR sensor generally measures a narrower range of NDVI 

values, which may be due to the sensor’s narrower bandwidth (see Table 4).  Table 4 also confirms that 

the red (R) and near infrared (NIR) bands of MODIS are more clearly separated than those of AATSR.  

For example, the width of the MODIS R band is 0.50 µm, while that of AATSR is 20 µm.  Still, 

AATSR has a narrower bandwidth in the NIR range.  Previous studies have shown that broader 

reflectance bandwidths are correlated with spectral sensitivity of green vegetation [5, 33].  Also, the 

percentage of incident energy reflected by vegetation is a function of wavelength [30], which also 

explains why vegetation reflectance increases significantly over the NIR region; the wider the NIR 

region, the more variable vegetation discrimination can be over large areas.   It should be noted, 

however, that the primary purpose of the AATSR sensor (unlike MODIS) is measurement of global sea 

surface temperature [7] which means, the optical range of the AATSR sensor has not been as fully 

calibrated and widely validated on land as MODIS [5].  The conclusion here is that although MODIS 

and AATSR may both derive reasonable Ts measurements over vegetated surfaces, their NDVI 

products are not equivalent because of the wavelength positions of the appropriate reflectance bands, 

sensor and inter-calibration, and atmospheric correction.  In this case, the AATSR may not be as 

suitable as MODIS for hydrological applications.  However, the AATSR is a good sensor and so it 

should be possible to derive high quality products for hydrology with better calibration over land 

targets. 
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Figure 7. Regression models between ETM+ ET and (a) MODIS; y = 1.0457x; R2 = 

0.7071; RMSE = 0.3359; and (b) AATSR: y = 1.0026x; R2 = 0.1262; RMSE = 0.6211.  

Note: N=71 pixels because analysis covered the Tamale district where it was possible to 

cross validate with ground truth data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

From Table 6, the AATSR sensor underestimates ET by about 32% in comparison with the MODIS 

sensor.  Since data from both sensors have received the same modelling treatments, a plausible 

explanation is aggregated errors from key intermediate variables related with the ET model namely, Ts, 

NDVI and net radiation (Rn).  Whereas the MODIS instrument estimates a regional ET value of 

approximately 1.48 mm day-1, the AATSR sensor measures only 0.47 mm day-1.  Thus, for one 

AATSR pixel (1x1 km), the cumulative difference in water loss is approximately 2.45*106 MJ km-2 

day; assuming that 1.0mm day-1 evaporation is equivalent to 2.45MJ m-2 day-1.  Over very large areas, a 

large amount of moisture loss could be underestimated.  To better understand sensor differences, a 

quantitative evaluation is pursued using calculated values from the Penman-Monteith method, ground 

(eddy correlation) observations and Landsat ETM+ spatial measurements as validation sources.  The 

range of estimated ET values for the Tamale district based on the Penman-Monteith method (in 2004) 
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was 2.5 – 2.8 mm day-1 [18].  While agreeing that sensor validation based on point data is not always 

convenient, it still provides a good source of comparison in the absence of extensive field campaigns 

[29].  Based on the geographical extent of (x-y coordinates) of the Tamale area, a linear interpolation 

model was derived covering an approximate area of 70 km2.  The mean ET value for Tamale, geo-

referenced from MODIS and AATSR ET maps was then compared.  Here, both sensors underestimated 

regional ET by an average of 2.0 mm day-1; the difference was probably related to the sensor footprints 

being too wide. 

Energy flux (eddy correlation) observations (see Fig 2) were used as an additional basis for 

comparison in the absence of spatially observed ET estimates.  In this case, diurnal latent heat for 

December 2001 (i.e. 50.87W m-2) was converted as 1.79 mm day-1, but again, both sensors 

underestimated ET by about 1.29 mm day-1.  As a final step, ET estimates from MODIS and AATSR 

were correlated with high resolution (30m) Landsat ETM+ data (Fig 7).  

Fig 7a reveals a closer agreement between Landsat ETM+ and MODIS than AATSR (Fig 7b) where 

sensor correlation discrepancy could be as large as 0.6 mm day-1.  This strongly suggests that the 

AATSR errors may have aggregated from the measurement of the model intermediate parameters.  

Why this happens may also be related to problems in sensor calibration for land targets, atmospheric 

correction and/or poorly derived coefficients for the NDVI algorithm.  Table 8 compares satellite-based 

ET with other methods. 

Table 8. Satellite-based ET (mm day-1) vs. conventional methods in the Tamale Volta 

district. 

Method Scale Range Mean Standard deviation 
Penman-Monteith Local (Tamale) 1.53 – 4.87 3.90 0.66 

Scintillometer Local (Tamale) - 1.79 - 

Landsat ETM+ Regional 0.15 – 2.93 2.10 0.42 

MODIS Regional 0.05 – 2.83 2.07 0.37 

AATSR Regional 0.01 – 2.09 1.21 0.86 

 
Careful consideration of Tables 6 to 8 and Figures 4  to 7 shows that both the MODIS and AATSR 

sensors have good potential for measuring energy fluxes over very large areas but are not as useful as 

Landsat over smaller areas.  Also, AATSR appears to underestimate ET, which means for hydrological 

applications users have to apply this product with caution; further calibration of the (AATSR) 

reflectance bands may be necessary to derive accurate vegetation parameters. 

 

4. Conclusion 
 

    This paper evaluated the potential of both MODIS and AATSR sensors for measuring regional-scale 

evapotranspiration (ET), based on the regional energy balance equation and driven by the SEBAL 

algorithm.  The results show that both MODIS and AATSR can derive reasonable estimates of key 

variables such as NDVI (surrogate for biomass density), surface temperature (Ts) and ET over large 

vegetated savannah landscapes.  The MODIS sensor measured daily NDVI, Ts and ET much better 
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than its AATSR counterpart.  For example, a high spatial correlation was found between MODIS and 

thermal logger data (R2 = 0.73) in comparison with (R2 = 0.41) by the AATSR sensor.  In terms of ET, 

a similar correlation (R2 = 0.71) was found between the MODIS and Landsat ETM+ sensors as against 

R2 = 0.13 by the AATSR sensor.  When the MODIS and AATSR sensors were evaluated against point 

observations of ET such as eddy correlation observations and the Penman-Monteith method, they both 

underperformed (~2.0 mm day-1) mainly because of scale mismatch.  It must be noted that the AATSR 

sensor performed poorly against the MODIS, Landsat ETM+ and ground data, mainly because of 

differences in the spectral bands, sensor calibration and atmospheric correction. This will require 

further investigation if an improved land-calibrated AATSR product becomes available.  Indeed, the 

AATSR was primarily designed for ocean rather than land-based studies.  Therefore, for hydrological 

applications, the MODIS data is preferred at the present time. 
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