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ABSTRACT

We determine the inner density profiles of massive galaxy clusters (Mo > 5 x 10'* My,) in the Cluster-EAGLE (C-EAGLE)
hydrodynamic simulations, and investigate whether the dark matter density profiles can be correctly estimated from a combination
of mock stellar kinematical and gravitational lensing data. From fitting mock stellar kinematics and lensing data generated from
the simulations, we find that the inner density slopes of both the total and the dark matter mass distributions can be inferred
reasonably well. We compare the density slopes of C-EAGLE clusters with those derived by Newman et al. for seven massive
galaxy clusters in the local Universe. We find that the asymptotic best-fitting inner slopes of ‘generalized’ Navarro—Frenk—White
(gNFW) profiles, y onrw, of the dark matter haloes of the C-EAGLE clusters are significantly steeper than those inferred by
Newman et al. However, the mean mass-weighted dark matter density slopes of the simulated clusters are in good agreement
with the Newman et al. estimates. We also find that the estimate of y ,nrw is very sensitive to the constraints from weak lensing
measurements in the outer parts of the cluster and a bias can lead to an underestimate of y onpw.

Key words: gravitational lensing: strong — gravitational lensing: weak — galaxies: clusters: general — galaxies: kinematics and

dynamics — dark matter.

1 INTRODUCTION

In the lambda cold dark matter (ACDM) cosmological model, cold
dark matter dominates the matter budget of the Universe, and much
of it clusters into dark matter haloes. Gas condenses at the centres
of these haloes, forming stars and giving birth to galaxies (White &
Rees 1978; White & Frenk 1991). Measuring the distributions of
dark and baryonic matter at the centres of haloes provides a key test
of ACDM and theories of galaxy formation.

Over the past three decades, the evolution of pure cold dark
matter has been calculated with great precision by means of N-body
simulations (Davis et al. 1985; Navarro, Frenk & White 1996b, 1997,
Jenkins et al. 2001; Diemand, Kuhlen & Madau 2007; Springel et al.
2008; Gao et al. 2011; for a review see Frenk & White 2012). In
particular, Navarro et al. (1996b, 1997, hereafter NFW) have shown
that dark matter haloes have a universal, self-similar, spherically
averaged mass profile with asymptotic behaviour, p(r) oc ~!, at the
centre, and p(r) o< r— at large radii.

In reality, in a bright galaxy baryonic matter dominates the mass
budget at the centre of the halo (Schaller et al. 2015a). Furthermore,
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the galaxy formation process may modify the central halo density
itself. The effects of these baryonic processes are complex and even
their sign is unclear: while baryon condensation and contraction may
sharpen the density profile (Blumenthal et al. 1986; Gnedin et al.
2004; Gustafsson, Fairbairn & Sommer-Larsen 2006; Dufty et al.
2010; Schaller et al. 2015a; Peirani et al. 2017), rapid expulsion of gas
due to feedback process may flatten it, at least in faint galaxies (e.g.
Navarro, Eke & Frenk 1996a; Dehnen 2005; Read & Gilmore 2005;
Mashchenko, Couchman & Wadsley 2006; Pontzen & Governato
2012). The competition between these processes is best followed with
hydrodynamical simulations, but even then discrepancies persist. For
example, Gnedin et al. (2011) and Schaller et al. (2015a,b) show that
the net effect of baryonic processes in large galaxies in the field and
in clusters is to preserve the asymptotic dark matter density profile,
p(r) o« —1, but Martizzi, Teyssier & Moore (2013) find that cores
may be generated by active galactic nucleus (AGN) feedback in
extreme cases.

Observationally, the inner density slopes of bright galaxies are best
constrained by combining stellar dynamics data for the central galaxy
with gravitational lensing data at large radii (e.g. Treu & Koopmans
2002, 2004; Auger et al. 2010; Newman et al. 2013a,b; Newman,
Ellis & Treu 2015; Shu et al. 2015; Sonnenfeld et al. 2015). In this
way, the roral density profile of a galaxy can be measured, from
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several kiloparsecs to tens of kiloparsecs from the centre. The total
mass-averaged density slope, 7, within the effective radius of early-
type galaxies is found to be around —2 in galaxy- and group-scale
systems, but may drop gradually to —1.2 in massive clusters (Treu &
Koopmans 2004; Auger et al. 2010; Newman et al. 2015; Li et al.
2019). The dark matter halo profile is not directly measurable and
can only be inferred by assuming a model to subtract the contribution
from the stellar component. Recent measurements have concluded
that while the halo density profile in groups is consistent with the
NFW form (Newman et al. 2015; Smith, Lucey & Edge 2017), in
some clusters the inner slope is around —0.5, significantly shallower
than the NFW prediction (Sand et al. 2004, 2008; Newman et al.
2013b; Del Popolo, Le Delliou & Lee 2019), and in contradiction
with cosmological simulation results.

There are several possible interpretations for this discrepancy. The
simulations may lack the correct physics, or treat baryonic processes
improperly (Laporte et al. 2012; Laporte & White 2015), or it may
be that the dark matter is not cold but perhaps made up of self-
interacting particles (e.g. Spergel & Steinhardt 2000; Vogelsberger,
Zavala & Loeb 2012; Rocha et al. 2013; Kaplinghat, Tulin & Yu
2016; Robertson, Massey & Eke 2017a,b). An alternative explanation
is that systematic effects in the analysis of the observational data have
been underestimated.

There are several potential sources of systematic uncertainties
when subtracting the stellar component in order to infer the inner
slope of the dark matter component. For example, the shape of
the stellar density profile is usually inferred from the light profile
assuming either a constant mass-to-light ratio or a stellar population
synthesis model (e.g. Cappellari 2008; Newman et al. 2013a, 2015).
A systematic overestimation of the mass-to-light ratio could relieve
the tension between observations and theory (Schaller et al. 2015b).
In addition, simplistic assumptions about the symmetry of the system
or the anisotropy of the velocity distribution may also bias the
inference of the inner dark matter profile (e.g. Meneghetti et al. 2007;
Lietal. 2016). Recently, Sartoris et al. (2020) have estimated a value
of —0.99 for the dark matter density slope at the centre of Abell S1063
—in excellent agreement with ACDM predictions — from analysis of
a large sample of stars in the central galaxy with spectroscopic data
and a model allowing for variable velocity dispersion anisotropy.

In this work, we assess dark matter density reconstruction methods
in galaxy clusters that combine stellar dynamics with gravitational
lensing. We construct mock data using the Cluster-EAGLE (C-
EAGLE) simulations, a set of high-resolution zoom-in hydrodynam-
ical simulations of massive clusters (Bahé et al. 2017; Barnes et al.
2017). We then perform a combined analysis of stellar kinematics
and gravitational lensing on the mock data and explore the accuracy
of the recovered dark matter density profiles.

The structure of the paper is as follows. In Section 2, we describe
our mock data and in Section 3 our models, and the method used
to infer model parameters. In Section 4, we present the recovery
of dark matter profiles and study the model dependence on galaxy
shape and velocity anisotropy. We summarize and discuss our results
in Section 5.

2 MOCK DATA

2.1 The C-EAGLE simulations

We create mock observations using the C-EAGLE simulations
(Bahé et al. 2017; Barnes et al. 2017). This set of cosmological
hydrodynamical simulations consists of 30 zoom-in resimulated
massive galaxy clusters that were selected from a larger volume
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dark matter-only simulation according to a criterion based on halo
mass and isolation (Bahé et al. 2017). The C-EAGLE simulations
employ the state-of-the-art EAGLE galaxy formation model and
simulation code (Crain et al. 2015; Schaye et al. 2015). This code
is based on a modified version of the GADGET-3 smooth particle
hydrodynamics (SPH) code last described in Springel (2005), which
includes radiative cooling, star formation, stellar and black hole
feedback, etc. The parameters of the subgrid models used for EAGLE
were calibrated so as to reproduce a small subset of data of the
z = 0 field galaxy population (Crain et al. 2015; Schaye et al.
2015). C-EAGLE made use of the AGNdT9 model that gives a better
match than the reference EAGLE model to the X-ray luminosities
and gas fractions of low-mass galaxy groups (Schaye et al. 2015).
C-EAGLE adopted the same ACDM cosmological parameters as
EAGLE: Hy = 67.77 kms~! Mpc™!, , = 0.693, Qy = 0.307, and
Q;, = 0.04825. The mass resolution of C-EAGLE is the same as in
EAGLE: 1.8 x 105 Mg, initially for gas particles and 9.7 x 10® Mg
for dark matter particles. The Plummer gravitational softening length
of the high-resolution region was set to 2.66 comoving kpc for z
> 2.8, and then kept fixed at 0.70 physical kpc for z < 2.8. The
minimum smoothing length of the SPH kernel was set to a tenth of
the gravitational softening scale.

In this paper, we are interested in massive clusters comparable to
those in the sample of Newman et al. (2013a,b) and so we focus
on clusters whose mass falls in the range 4.0 x 10" < My <
2 x 10" Mg, at z = 0, where My is the mass enclosed within a
sphere of radius g whose mean density is 200 times the critical
density of the universe. Altogether our sample consists of 17 massive
galaxy clusters, denoted by CE-12 to CE-28 in the C-EAGLE
simulations (Barnes et al. 2017). While the clusters analysed by
Newman et al. (2013a,b) have an average redshift of z ~ 0.2, the
simulation output we analyse is at z = 0. However, we have checked
that our conclusions are unaffected by this choice. Further properties
of our clusters may be found in the tables in the appendix of Barnes
et al. (2017) and Bahé et al. (2017).

2.2 Photometric and kinematic data

We create photometric and kinematic mock data following a similar
process to that described by Li et al. (2016). First, we define the
central galaxy as the one lying closest to the centre of the potential
of the cluster. Using the same method as Schaller et al. (2015¢),
we find that all our central galaxies are very close to the centre
of the potential, with a mean offset of 0.2 kpc and a maximum
of 0.8 kpc. Since the offset is comparable to the softening length
of the simulations (0.70 kpc), the centres of the central galaxies
are consistent with the centres of the potential. Next, we construct
the surface stellar mass density map of the central galaxies in the C-
EAGLE clusters by projecting the galaxy’s star particles on to the x—y
plane of the simulation volume on a grid of cell size 0.5 x 0.5 kpc?.

To generate a brightness map, we assume a constant M*/L
ratio for each star particle. For comparison, we also generate a
surface brightness map for each central galaxy by calculating the
mass-weighted r-band brightness in each cell. The luminosities of
individual star particles are derived following the method of Trayford
et al. (2015).

We then calculate the mean and standard deviation of the line-
of-sight velocities of stars in each cell. As Newman et al. (2013a),
we obtain kinematic data in a long slit of width 3 kpc aligned with
the major axis of the galaxy. The bins extend from the galactic
centre to 21 kpe, which is approximately 1.5 effective radii (Rg) for
the galaxies in our sample. We assume that the uncertainty in the
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Figure 1. Line-of-sight velocity dispersion profiles. Red and blue lines
represent profiles derived for our sample of BCGs and those from derived
from the observed data in Newman et al. (2013a), respectively. The vertical
dotted line marks the softening length and the vertical dashed line the 3D
average Power et al. radius for our clusters.

measured velocity dispersion is 6 per cent in the inner four bins and
9 per cent in the outer three bins, similar to the values in Newman
et al. (2013a). For the situation where a satellite happens to lie along
the line of sight, we discard the affected bins.

In Fig. 1, we compare the line-of-sight velocity dispersion profiles
for our sample of clusters with those from Newman et al. (2013a).
The blue points are the velocity dispersions of the Newman et al.
(2013a) clusters and the red points are those of our clusters. The
vertical dotted line marks the softening length and the vertical dashed
line is the 3D average Power et al. radius (Power et al. 2003), which is
usually taken to define the region where the profiles are numerically
converged. Here, we adopt the same threshold as Schaller et al.
(2015a) to derive the Power et al. radius for our clusters. As we can
see, most our clusters have higher line-of-sight velocity dispersions
than the observed clusters. This is because at a given halo mass, the
brightest cluster galaxies (BCGs) in C-EAGLE contain more stellar
mass than observed BCGs by up to 0.6 dex (Bahé et al. 2017) and
this results in a greater mass concentration and thus a larger velocity
dispersion reflecting the deeper gravitational potential.

2.3 Gravitational lensing mock data

We calculate the tangential shear of the clusters at ten equally spaced
logarithmic bins in radius ranging from 100 to 2000 kpc, which is
similar to the range covered by the data of Newman et al. (2013a,b).
Since the shear contributed by the correlation between different
haloes is much smaller than the shear caused by the halo itself
(Cacciato et al. 2009; Li et al. 2009), for simplicity, the lensing signal
is calculated only from the mass distribution in the halo ignoring the
contribution of the large-scale structure. The tangential shear, y,, at
projected radius, R, can be written as

Y1(R)Seie = AX(R) = My (R)/(R*) — (R), (1)

where Mg,+(R) is the mass, including dark matter, stars, and gas,
enclosed within projected radius, R; ¥ (R) is the surface density at
R; and X is the critical surface density, which is determined from
the redshifts of the lens and the source. We assume that the error on
the tangential shear is 40 per cent, comparable to the average error in
fig. 5 of Newman et al. (2013a). In this work, we do not perturb the
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true value, so the centre points of our weak lensing ‘measurements’
are not biased.

Strong lensing is also important in constraining the mass model
of the clusters. The observations usually consist of multiple arcs
produced by different background galaxies at different redshifts
and those arcs can be very sensitive to the local surface density.
The strong lensing constraint in Newman et al. (2013a) comes
from measurements of the positions of multiple images, whose
uncertainty is taken to be 0.5 arcsec. Here, to simplify our modelling,
we approximate the strong lensing constraint as an aperture mass.
The average Einstein radius, Rgi,, of the Newman et al. clusters is
~10 arcsec; thus we assume that the total projected mass within Rg;,
(~39 kpc at z = 0.2) can be measured to a precision of 5 per cent.

3 MODELS

We use two approaches to model the stellar kinematics of the central
galaxies in the C-EAGLE clusters

(i) the spherically symmetric Jeans model (sJ) (Binney &
Tremaine 2008; Cappellari 2008),

(ii) the Jeans anisotropic model (JAM) (Emsellem, Monnet &
Bacon 1994; Cappellari 2002, 2008).

Since Newman et al. (2013a,b) mainly used sJ, when comparing
our results with observations, we will mostly rely on this model as
well. However, for an interesting theoretical test, we also combine
JAM with the lensing analysis to investigate if it results in significant
differences.

3.1 sJ model

For the spherically symmetric case, the Jeans equation gives the
relation between the line-of-sight velocity dispersion, o, and the
mass distribution, M (r), as

2G o p*(r)Mmt(V)F(r)dr

Olos(R) = E*(R) R 2

, (€5

where X, and p, are the surface density and 3D density of the stars,
respectively, M, (r) is the total mass enclosed within 3D radius r
and, in the isotropic case, F(r) = v/r?> — R?.

Following Newman et al. (2013a), we use a 3-parameter dPIE
model (Eliasdéttir et al. 2007) to describe the 3D density profile of
the stellar component, where

144 .
(1 +r2/a®) (1 +7r2/s?)

the core radius, a, the scale radius, s (s > a), and the central density,
po, are free parameters. The surface density profile of the stellar
component can be analytically written as

. o 710252 1 1 4
apre( )—pOSQ_az \/a2+R2_\/52+R2 ' @

We fix the profile parameters, a and s, by fitting the dPIE model
to the mass surface density profile of the central galaxy. Only the
normalization of the density profile is allowed to vary during the
dynamical modeling process.

The mass distribution of the dark matter halo follows a gNFW
profile

O\ TVNFW /] 1r VeNFW —3
= (= s+ 5 : 5
PeNEW (1) = P (Vs) (2 + 2rs) 5)
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(3)

Papie(r) =
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where p; is the characteristic density and yrw gives the inner
asymptotic density slope of the halo. For the NFW profile, y jnrw =
1.

For the spherical Jeans model we therefore have the following free
parameters

(1) the stellar mass-to-light ratio: M*/L;
(i) the three parameters that describe the dark matter halo density
proﬁle: Pss sy and ygNFW-

3.2 The JAM method

For many galaxies in the real Universe, the assumption of spherical
symmetry for the distributions of mass and velocity dispersion is not
valid. In practice, assuming an axisymmetric mass distribution often
provides a better solution to galactic dynamical modelling.

For a steady-state axisymmetric mass distribution, the Jeans
equations in cylindrical coordinates, (R, z, ¢), can be written as

2 2 o2 —
nvg —nvg  d(nvg)  O(nvgv;) 0D
= — 6
R orR | o "R ©
nvgy,  O(nv? d(nvgv, 0D,
RV: (nv?) n (nvgvy) — 9% @
R 0z oR 0z
where the vy denote the three components of velocity
o = /Ukvjf d’v, (®)

f is the distribution function of the stars, &, the gravitational
potential, and 7 is the luminosity density.

In this work, we adopt the numerical Jeans—Anisotropic—
Modelling routine of Cappellari (2008) with the multi-Gaussian
expansion (MGE) technique (Emsellem et al. 1994; Cappellari 2002),
which is widely used in galactic dynamical modelling (e.g. Cappellari
2008; Cappellari et al. 2011; Newman et al. 2015; Li et al. 2016,
2017).

To determine a unique solution, the JAM routines make two
assumptions (Cappellari 2008)

(1) the velocity dispersion ellipsoid is aligned with the cylindrical
coordinate system (vgv, = 0),

(ii) the anisotropy in the meridional plane is constant, i.e. v =

bvjz, where b is related to ., the anisotropy parameter in the z-
direction, defined as

%l
o

1 —

©))

S| =

=1 =

- =

R

If we set the boundary condition, nzT2 = (0 as z — 00, the solution
of Jeans equations can be written as

Gy o0 acD[O[

nv?(R,z):/ n dz (10)
b i oz

_ d(nv? _ 0D,

nu;(R,z)zb[R %1;2)+nv§ +Rn = (11

The intrinsic velocity dispersions on the left-hand side of these
equations are integrated along the line of sight to derive the projected
second velocity moment, vZ_. This can be directly compared with
the kinematical data for the stellar component, i.e. the rms velocity,
Ums = v/ V2 + 02, where v and o are the stellar mass-weighted line-
of-sight velocity and velocity dispersion, respectively.

The gravitational potential, @, is determined by the total mass
distribution. We consider two components: the stars and the dark
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Figure 2. Difference between recovered and true surface luminosity profiles
for CE-13 and CE-19. Blue lines represent the difference between the dPIE
and the true profiles. Red lines show the difference between the MGE and the
true profiles. The vertical yellow lines indicate the outermost radius at which
kinematical data are available, which is 21 kpc unless affected by satellites
along the line of sight. The vertical dashed lines mark the Power et al. (2003)
radius and the vertical dotted lines the softening length.

matter haloes. To speed up the calculation, the JAM routines use
MGE (Emsellem et al. 1994) to fit the surface brightness distribution,
(X', y), of the central galaxies

N 2
oy ’)—Ziex LI ) (12)
T L onar? P | T 2z 2

k=1

where L is the total luminosity of the k-th Gaussian component
with dispersion, Ay, along the major axis, and ¢ is the projected
axial ratio in the range [0,1]. The JAM routines assume galaxies to
be oblate axisymmetric. Thus, once the inclination angle i (i = 90°
for edge-on) is known, the three-dimensional luminosity profile in
cylindrical coordinates, n(R, z), is given by

N

_ L k 1 ) Z2 ) :|
n(R, z) k;‘ Taya P { 2a7 (R + 2] (13)

In this work, we assume that the stellar mass distribution traces
the luminosity. Thus, we first derive the brightness profile from the
mock image of the central galaxy using MGEs, and use this as the
distribution of the stellar mass. Only the amplitude of the stellar
mass distribution is allowed to vary during the modelling of the
kinematical data, i.e. a constant M*/L is assumed at all radii. Newman
et al. (2015) conclude that the assumption of a constant M*/L is the
main systematic uncertainty in the estimation of y4,,. We will discuss
the validity of this assumption in Section 4.4.1.

We compare the quality of the fits to stellar photometry for the
dPIE and MGE models in Fig. 2 for two clusters; the panel for CE-
13 illustrates a typical fit while the panel for CE-19 is the worst fit
amongst 17 clusters. Clearly, MGE provides a much better fit than
dPIE because it has more free parameters. MGE fits most clusters
within an error of 10 per cent, while dPIE fits most clusters within
an error of 40 percent, which is higher than the errors estimated
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by Newman et al. (2013a) (~5 percent) from fitting the surface
brightness profiles of their clusters. This discrepancy could be due,
in part, to differences in the properties of the real and simulated
galaxies but, as we will show later, it has no affect on the inference
of the parameters of interest here. Both MGE and dPIE give a bad fit
to CE-19 due to contamination from two line-of-sight satellites that
are very close to the BCG (within 15 kpc).

For JAM we also assume that the dark matter halo follows a gNFW
profile and the density distribution of the gNFW dark matter halo is
also expressed as an MGE in the JAM routines.

By requiring that the predicted v,,,s should be a good match to the
mock galaxy’s v.ys, we can estimate the following six parameters:

(i) the inclination angle, i, between the line of sight and the axis
of symmetry;

(ii) the anisotropy parameter, ., in equation (9);

(iii) the stellar mass-to-light ratio, M*/L;

(iv) the three parameters of the dark matter halo density profile:
Pss T'ss and y.

3.3 Model inference with the MCMC method

According to Bayes’ theorem, the posterior likelihood for a set of
parameters, p, given a set of data, d, is
Pepla) = P (14)
(d)

where P(d|p) is the likelihood and P(p) is the prior distribution
of the parameters. Combining the ‘observational” data together with
the models described above, we explore the posterior distribution of
the model parameters using the Markov chain Monte Carlo (MCMC)
technique.! Assuming the errors are independent and Gaussian, the
likelihood of a set of parameters is proportional to e~/ with x>
defined as

x> = xg + XL + Xwis (15)

where the constraints from kinematics, strong, and weak lensing are
described by x2, x3 , and x%, respectively. Here, x3; and xg, take
the form

, 2
> Rg) — X2 R
x§L=< (= E)GSL (= E)> : (16)
and
, 2
. AX(R) — AX (R)
XWL_IZ< —le(R) ) ) (17)

respectively, where the sum is over 10 data bins. (< Rg) is the total
enclosed surface mass density, including the baryonic, dark matter,
and gas components, within the Einstein radius, and A 3(R) is defined
in equation (1); o5, = 0.05%'(< Rg) and o,y = 0.4A Y (R) are the
corresponding errors. x takes the form

. /s 2
2 v;ms — Ur:ns
= _— s 18
=2 < - ) (18)

i rms

where the v/ is derived through JAM, o/  is the error, and the

sum is over 7 data bins. Note that for the sJ model, x2 is calculated

'We use the ‘EMCEE’ code to implement MCMC (Foreman-Mackey et al.
2013).
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Table 1. Parameter priors. Here, Ula, b] denotes a uniform distribution over
the interval [a, b] and 6 is the upper boundary for cos(i) determined from the
MGE model.

Parameter Prior Unit
cos i U0, 0]

B U[—0.4,0.4]

logio ps U[3, 10] Mo
logio 75 Ullog10(50), 3] kpe
Y eNFW U[-1.5,0]

by substituting the rms velocity, v,,s, with the line-of-sight velocity
dispersion, o .

Throughout this paper, we use primed and unprimed quantities
to refer to quantities derived from recovered models and from
the original C-EAGLE data, respectively. Priors for the parameters
are listed in Table 1. We use uniform priors over reasonable
intervals for all parameters, which are similar to those adopted
by Newman et al. (2013a). Note that in this work the ‘best-
fitting’ parameters are given by the median values of the posterior
distributions.

4 RESULTS

4.1 Recovered density slopes

As an example, in Fig. 3 we compare the inferred and true density
profiles for CE-13. The upper and lower panels show the results for
sJ and JAM, respectively. For both models, the recovered density
profiles agree very well with the input ones except for stars beyond
around 100 kpc. Since our fiducial stellar mass model assumes a
constant mass-to-light ratio and our dPIE (MGE) fit to the light
distribution is restricted to 100 kpc, the discrepancy beyond this
radius is to be expected. Note that although the two models give
very similar profiles for CE-13, there are still differences in the inner
dark matter profiles where sJ tends to overestimate the mass of dark
matter.

In Figs 4 and 5, we present the posterior distributions of the
model parameters for sJ + lensing and JAM + lensing analyses,
respectively, for CE-13. For both sJ and JAM + lensing analyses,
significant degeneracies among the three parameters of the gNFW
fit can be clearly seen in the contours. To compare our best-fitting
gNFW profiles with the input dark matter profiles, we also fit the latter
between 1 kpc and Ry to get the ‘true’ input values of the gNFW
parameters. Different choices for the radial range in the fit and the
weighting scheme can lead to slightly different best-fitting values
because of degeneracies amongst gNFW parameters. For example,
the values of yonpw inferred from fitting to the mass profiles are
systematically smaller than those inferred from fitting to the density
profiles by ~0.12. These systematic differences are well below the
statistical errors of the estimates derived from kinematics + lensing
analysis we have carried out.

To compare the total inner density slope, we additionally define
a mass-weighted density slope in the same way as Dutton & Treu
(2014) and Newman et al. (2015)

4R} p(R.)
MR

Fam == / St p() 2L g, . a9)
M(R.) Jo dlogr

where p(r) and M(r) are the cluster’s total density and mass profiles.
Similarly, we define the mass-weighted dark matter density slope,
Vam, by using the dark matter p(r) and M(r) density profiles in
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Figure 3. Reconstructed density profiles (2p) for halo CE-13. The upper and lower panels show the reconstructed profiles using the sJ and JAM models,
respectively. The points show the true density profiles. The solid lines show 200 randomly selected reconstructed profiles from our MCMC samples. The dark
matter, stars, gas, and total density profiles are plotted in red, yellow, magenta, and blue, respectively. The vertical yellow line (r = 21 kpc) marks the upper
bound of the dynamical data. The vertical green line marks Rgi,. Weak lensing data exist to the right of the vertical blue line. The vertical dashed lines mark the

3D Power et al. radius and the vertical dotted lines the softening length.

equation (19). In the case where the dark matter scale radius,
> R., the dark matter density slope within R, follows a power-law
distribution and the asymptotic slope yonpw i equivalent to Vgm.
Note that the ‘true’ mass-weighted slope is calculated directly from
the simulation data rather than derived from a fit to the profile.

In Fig. 6, we compare the true and the best-fitting values of several
key parameters: y nrw, the asymptotic density slope of the dark

MNRAS 496, 4717-4733 (2020)

matter halo; 7, the mass-weighted average density slope within
R. for the total mass distribution; 74, the mass-weighted average
density slope within R, for the dark matter distribution; M, the
total mass within Re; fim, the dark matter fraction within R, for
sJ + lensing analysis (left column) and JAM + lensing (right
column), respectively. We denote the best-fitting and true values
with superscript ‘R’ and ‘7", respectively.
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Figure 4. Posterior distributions of model parameters for the sJ + lensing analysis. In the panels with contours, true values of the parameters are marked with
red dots. Blue, green, and red lines represent lo, 20, and 30 regions, respectively. In the marginalized distributions, the input values are marked with vertical
red solid lines and the 84 per cent and 16 per cent percentiles with vertical dashed blue lines.

To illustrate clearly the trend between best-fitting and true values,
the green dashed lines indicate equality; the red dashed lines are the
linear relation between best-fitting and true values. For both models,
the mass-averaged dark matter density slopes, Yum, and y gnew are
reasonably well constrained. For the total mass within R., My is
overestimated by 0.1-0.2 dex for many clusters. Interestingly, the
best-fitting total density slope, 7, behaves very differently between
the two models. JAM tends to overestimate the total density slope at
small masses, while sJ systematically underestimates the total density
slope at high masses. For the dark matter fraction both models provide
an unbiased recovery, with sJ showing smaller variance than JAM.
The parameter values in Fig. 6 are also listed in Tables Al and A2.

To investigate whether the recovered mass depends on the dynam-
ical state of the cluster, we classify the C-EAGLE clusters as relaxed
or unrelaxed using the information provided in table A2 of Barnes
et al. (2017). A cluster is defined as relaxed if the kinetic energy of
the gas is less than 10 percent of the total thermal energy within
Rspo. In Fig. 6, we use filled squares to indicate relaxed clusters and
empty squares to indicate unrelaxed clusters. Overall, the quality of
the recovery is independent of the dynamical state of the cluster.

4.2 Comparison with observations

In this section, we compare our C-EAGLE mocks with the observed
clusters of Newman et al. (2013a,b, 2015). Fig. 7 shows the best-

fitting asymptotic dark matter density slopes, y onFw, as a function
of the cluster mass, My, derived from our mock cluster data and
from the observations of Newman et al. (2013b). For comparison,
we also plot the input values of y gnpw, Which we derived by fitting
the gNFW profile directly to the simulation data.

The true asymptotic dark matter density slopes of the C-EAGLE
clusters have values ~1 at 10'*> Mg, and decrease slowly to ~0.8 at
10'5 My,. These are significantly higher than the observational results
of Newman et al. (2013b), for which the mean value is 0.50 + 0.13
(with an estimated systematic error of 0.14). For both the sJ and
JAM + lensing analyses, the recovered values of y nrw agree well
with the input ones, and both are systematically higher than those
inferred from the observational data. To be specific, we use bootstrap
methods to choose seven (the same number of clusters as in Newman
et al. 2013a) asymptotic slopes, ¥ onpw, randomly from the posterior
distributions of y ongw for all 17 clusters to derive the joint constraint
on the mean value of yorw. The method we use is different from
the method used by Newman et al. (2013b) who multiplied the
posterior distributions of y,nrw together, implicitly assuming that
these distributions are the same for all clusters; this is not necessarily
the case and the product can be strongly affected by inclusion of
one or two clusters with a very different yonpw distribution. In
fact, Newman et al. (2013b) point out that excluding the cluster
with the lowest y onpw (A2537), the mean y gnpw Would change by
~40 per cent from 0.50 to 0.69. Using the bootstrap method, we find
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Figure 5. Posterior distributions of model parameters for the JAM + lensing analysis. In the panels with contours, the true values of the parameters are marked
with red dots. Blue, green, and red lines represent 1o, 20, and 3 o regions, respectively. In the marginalized distributions, the input values are marked with
vertical red solid lines and the 84 per cent and 16 per cent percentiles with vertical dashed blue lines. The true value of S is not shown in the plot because it lies

outside the prior range; this happens only in the case of CE-13.

probabilities of 3.5 percent, 17.1 percent, and 49.1 per cent for the
mean value of those randomly chosen seven asymptotic slopes to lie
within the 1o (0.50 £ 0.13), 20 (0.50 £ 0.26), and 30 (0.50 £ 0.39)
ranges of the Newman et al. (2013b) results, respectively. In this
comparison, we combine the constraints from the kinematic, strong
lensing, and weak lensing data as was done by Newman et al. (2013b)
and, like them, we use the sJ model for the dynamical analysis. We
assume similar uncertainties for the kinematics and strong lensing as
in the observational study and reasonable uncertainties for the weak
lensing constraint as shown by fig. 5 in Newman et al. (2013a). Thus,
the discrepancy between the observed inner density slopes and those
of the C-EAGLE clusters is unlikely to be due entirely to systematics
in the method itself.

Interestingly, the simulation and observational results agree well
if we compare the mean values of the mass-weighted mean density

MNRAS 496, 4717-4733 (2020)

slopes within the effective radius, 74, instead of the asymptotic
yenpw. Since the effective radii of the central galaxies of the C-
EAGLE clusters are smaller than those of the Newman et al. (2013a)
sample, roughly 44 kpc, to be consistent we measure yg, for our
clusters at 44 kpc using equation (19). (If not explicitly stated,
Yam 18 taken to mean the value at the effective radius of the C-
EAGLE cluster.) In Fig. 8, we show (with dashed lines) the posterior
distribution of jg, derived by the sJ + lensing analysis for each
C-EAGLE cluster. We also mark with a vertical solid black line the
mean value of y4,. To explore the spread in the mean, we again
use a bootstrap method to draw seven values randomly from the
posterior distribution of P4y,. The solid black line in the figure shows
the distribution from the bootstrap and the vertical dashed black
lines its 16 percent and 84 percent percentiles. We find a mean
Vam = 1.13 = 0.09. The mean and error of the true values of y4, for

1.20Z Ae|\ 9z uo Jasn Ausianiun weying Aq 6966585/ L 2Y/7/961/o10ne/seiuw;/woo dno-oiwepese//:sdiy woll papeojumod



sJ

Constraining the inner slope of massive clusters

== = recovered = true - -
2.0 4 . -
== = Jinear fit P -
. - - ’[; -
~E ﬁ -
[ - -
16 i ,#1- L) :
e
14 1.5 1.6 1.7 1.8 1.9 2.0 2.1
_’1‘
Ytot
1.4 1
-
121
1.0 1 -
e -
[P -
0.8 —=
-z
064 =
0.4 1
0.6 0.7 0.8 0.9 1.0 1.1 1.2 13
=T
}Idm
1.50
-
-
i -
125 Y
—
: 1.00 - =
%% 0751 =%
EN
0.50
0.25 4
0.7 0.8 0.9 1.0 1.1 1.2 13 14
T
VeNFW
12.4 [:‘
— -
- -
2 1] I gt
=) P’ a=
= -
&E 120 'E -
0 -
=S _- - _ -
= - fule -
20 1184 I:]’ -
- -
11.6 T T T T T T
11.7 11.8 11.9 12.0 12.1 12.2
T
lOglO Mtot [MO]
0.8
==
0.6
-
g
%_'—U 0.4 -
-7 -
-
= -
0.2
0.30 035 040 045 0.50 055 0.60 0.65 0.70
dm

4725
JAM

.
2.0 1 Ell] ,’f}r
+ ’/”,‘
-
-,
b b &
x8 ;
TS
1.6 1 - -
-0
144
1.4 L5 1.6 1.7 1.8 1.9 2.0 2.1
=T
}/tot
1.4 -
- -
-
1.2 -
1.0 A
%S -
0.8 -
- -
06{ =2~
-
0.4
0.6 0.7 0.8 0.9 1.0 11 12 13
=T
Ydm
1.50
LB
1.25 1 —
.
1.00 ==
E e
x% 0754 ==
>~
0.50
0.25
0.7 0.8 0.9 1.0 1.1 12 13 1.4
T
YoNFW
12.4
] -
— -
- -
Eo 122 - - ﬁ’
: By~
~ 8 /’/’
= 12.0 -
p= _ -
S ’:’
o0 11.8 T
< 277 o
11.6 +— . T T T T
1.7 11.8 11.9 12.0 12.1 12.2
T
lOgIO Mtot [MO]
0.8
0.6 -
=]
o
% 0.4
’f
024
030 035 040 045 050 055 060 065 0.70
dm

Figure 6. Comparison between the true and best-fitting values of Jior, Yam,» ¥ gNFw, 102(Mior), and fam. The left and right columns show results for sJ and

JAM, respectively. The x-axis is the true value and the y-axis the best-fitting value. (The best-fitting and true values are denoted by superscripts

R’ and ‘T,

respectively.) The solid squares represent relaxed and the empty squares unrelaxed clusters. The red dashed lines are the best linear fits to the true versus

best-fitting values. The green dashed lines indicate equality.
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Figure 7. y o Npw as a function of Mao. Blue squares show the true values
for the C-EAGLE clusters and the red circles the best-fitting values from the
sJeans + lensing analysis. The observational estimates from Newman et al.
(2013b) are shown as yellow stars.
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Figure 8. Marginalized posterior distributions of y4m (at 44 kpc) obtained
from the sJ + lensing analysis for each C-EAGLE cluster (dashed lines). The
vertical solid black line shows the mean value of Ygn. The solid curve shows
the joint constraint on the mean value of Yy, and the vertical dashed lines the
16 percent and 84 per cent percentiles. The yellow star with an error bar is
the corresponding result of Newman et al. (2013b). The cyan triangle is the
true value for our C-EAGLE sample, with the bar spanning the error in the
mean. The values given in the legend are the most probable values for the
mean value of P

the C-EAGLE clusters are shown as a cyan triangle and error bar. The
yellow star and error bar show the mass-weighted mean dark matter
slope for the sample of Newman et al. (2013a,b), taken directly from
fig. 15 of Newman et al. (2015). It differs from with the true and
estimated mean values for the C-EAGLE clusters by less than ~1o.

Why are the observed values of y nrw much smaller than those
from the C-EAGLE simulations, while the respective values of Jgy
agree? As we discussed before, the mass-weighted density slope,
Vam = Yenew When g 3> R... Thus, the significant difference between
the two measures of slope in the data of Newman et al. (2013a,b)
implies that the observed clusters have smaller inferred values of 7
than the C-EAGLE clusters. To confirm this point, in the upper panel
of Fig. 9, we plot the values of the gNFW scale radius as a function of
M. For the sJ + lensing analysis, the best-fitting values of 7, agree
well with the true values. But, as we can see, 4 out of the 7 clusters

MNRAS 496, 4717-4733 (2020)
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Figure 9. Upper panel: gNFW scale radius as a function of Mgg. The blue
squares are the true values of the gNFW rg for the C-EAGLE clusters; the
yellow stars with error bars are the gNFW r¢ values of the Newman et al.
(2013Db) clusters (estimated from the appendix of Newman et al. 2013a); and
the red circles are the best-fitting gNFW rg values for the C-EAGLE clusters
from the sJ + lensing analysis. Lower panel: NFW scale radius as a function
of Mgo. The blue squares are the true values for the C-EAGLE clusters; the
yellow stars are the values for the Newman et al. (2013a) clusters (from their
table 8). The cyan line is the mass—concentration relation for relaxed haloes
at redshift 0.2 (Dutton & Maccio 2014), with the shaded region showing the
corresponding lo scatter (Neto et al. 2007).

in Newman et al. (2013a,b) have inferred values of the gNFW r
smaller than the smallest intrinsic value in the C-EAGLE sample,
which is around 220 kpc. A simple interpretation of this discrepancy
is that it reflects differences in the density distribution in the outer
parts of the simulated and real clusters. However, since there is a
degeneracy between ry and y ongw, the small inferred values of the
gNFW rg could reflect the presence of a central core in the cluster
dark matter distribution. To resolve this ambiguity we compare the
estimated values of the NFW r, (from table 8 in Newman et al. 2013a)
with those found in cluster simulations (blue squares for C-EAGLE
and the cyan line from Dutton & Maccio 2014). The observational
estimates of the NFW r, are obtained exclusively from the strong
and weak lensing data which pertain to regions far from the centre.
As we can see, the estimated values of the NFW r; for the three most
massive clusters in the Newman et al. sample agree well with the
simulations, but those for the three smaller clusters in the sample are
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Figure 10. Comparison between the best-fitting values of ygnpw for the
C-EAGLE clusters from the sJ analysis alone (ignoring lensing data; green
circles), the observational estimates from Newman et al. (2013b) (orange
stars) and the fiducial values of C-EAGLE clusters (blue squares).

significantly smaller than in any of the simulated clusters, pointing to
real differences in the outer density profiles of the real and simulated
clusters.

4.3 Importance of lensing constraints

It is worth pointing out that the lensing data plays a crucial role in
constraining the mass model. Although these data probe only the
outer parts of the density profile, the strong degeneracy amongst
the three parameters of the gNFW profile implies that they are also
important for constraining the inner parts of the profile, and help
improve the precision of the decomposition of the stellar and dark
mass components. Poor or biased lensing measurements may lead to
the inference of incorrect dark matter slopes.

4.3.1 Tests with kinematics alone

In Fig. 10, we show the best-fitting y onpw values for the C-EAGLE
clusters derived from kinematical data alone. For the sJ model, the
median value of the best-fitting asymptotic slope, ygnrw, is 0.54,
which is significantly smaller than the true value. The JAM model
produces a slightly more accurate result, y onew = 0.61, but this still
significantly underestimates the true density slopes.

Why does dynamical modelling alone fail to reproduce the input
venew? The reason may lie in the lack of information about the
halo profile contained by the dynamical data, which are restricted to
the inner halo. In Fig. 11, we show dynamical quantities for CE-13
inferred from the sJ and JAM models. The blue points with error
bars are the true values and the red lines are best-fitting results
including the lensing constraints. Both sJ and JAM fit most of the
dynamical data within the errors, with JAM providing a better fit than
sJ. Both models, however, underestimate the velocity dispersion at
x ~ 20 kpc (even though they both accurately recover the true total
density profiles). Ignoring the lensing constraints (cyan lines), both
models overestimate the velocity dispersions at large radii. This is
because, confined to the central parts of the cluster, the dynamical
data alone, without the lensing data, cannot constrain the gNFW
profile, especially the value of ;. The MCMC fitting then tends
to zero-in on to a shallower dark matter density profile slope than
the true value, which increases the velocity dispersion in the outer
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Figure 11. Comparison between true and recovered dynamical quantities for
both the sJ and JAM models for CE-13. The upper panel shows the velocity
dispersion of the stars and the bottom panel shows the rms velocity along
the line of sight. The blue circles with error bars show the true values; the
red lines represent the dispersions inferred from the full model and cyan
lines those ignoring the lensing constraints. The vertical dotted lines mark
the softening length and the vertical dashed lines the 3D Power et al. radius.
The width of the error bars represents the size of the bins used to derive the
input kinematics.

regions, where it is underestimated by the full model. This explains
the bias in y onpw seen in Fig. 10.

4.3.2 Tests with biased weak lensing

In the last section we showed that the lensing measurements serve
to anchor the constraints on the total density profile. Biased lensing
measurements are therefore likely to lead to biased estimates of
Y eNFW -

Interestingly, recent studies using weak lensing data of high
quality find larger values of the NFW scale radius, ry, for some
of the clusters included in the sample of Newman et al. (2013a).
In Table 2, we compare lensing measurements of r;, obtained from
NFW fits, for three clusters by Merten et al. (2015) and Umetsu
et al. (2016) with the results of Newman et al. (2013a) (see table 8
in Newman et al. 2013a, table 6 in Merten et al. 2015, and table 2
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Table 2. Comparison amongst the different lensing measurements of the
NFW scale radius (in kiloparsecs) for three clusters, MS2137, A383, and
A611, obtained by Newman et al. (2013a), Merten et al. (2015), and Umetsu
etal. (2016) (denoted as N13, M15, and U16, respectively). For convenience,
we adopt 1 = 0.7.

MS2137 A383 A611
49 59 57
NI13 11913 260732 31713
71 57 86
MI5 686771 4717 586150
450 130 210
ul6 800732 310115 570%310
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: @: biased
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Figure 12. Comparison of the values of ¥ gNrFw inferred from biased weak
lensing inputs (black points), derived by Newman et al. (2013b) (orange stars)
and the actual values for C-EAGLE clusters (blue squares).

in Umetsu et al. 2016).> For these three clusters, the values of the
scale radii measured by Newman et al. (2013a) are smaller than
the more recent measurements by the other authors by 30 percent
to ~700 percent. For a comparison with simulation predictions,
we have also marked those three clusters in the lower panel of
Fig. 9.

To explore how the best-fitting values of y npw are affected
when the lensing measurements return a profile with too small a
value of ry, we perform the following test. We first obtain best-
fitting NFW profiles using unbiased weak lensing ‘measurements’
of the C-EAGLE clusters. Next, without changing the value of M,
we decrease the scale radius of the best-fitting NFW profile by
50 per cent, which is approximately the average difference between
the results of Newman et al. (2013a) and those of Merten et al.
(2015) and Umetsu et al. (2016). We then generate weak lensing
measurements using these artificially biased NFW profiles with
the same error bars as the fiducial ones. Finally, we combine
the fiducial stellar kinematical data and strong lensing data with
the artificially biased weak lensing data to constrain the mass
models.

The best-fitting values of y npw are shown as black points in
Fig. 12. As may be seen, these slopes, derived assuming artificially
biased weak lensing inputs, are much smaller than the true values
shown in blue. They are, in fact, quite comparable to the results of
Newman et al. (2013b). Of course, we do not claim that the latter are
biased but our conclusions point to one possible way in which the

2For consistency, we only compare parameters for spherical NFW haloes.
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Figure 13. Comparison of the joint constraints on the mean ygn, (at 44 kpc)
from mock data constructed either assuming a constant M*/L (red) or the
photometric model of Trayford et al. (2015) (blue). Results are shown for
sJ + lensing modelling, assuming in both cases that M*/L is constant. The
yellow symbol and error bar show the observational result of Newman et al.
(2013b), while the cyan symbol and error bar correspond to the true C-EAGLE
result. The values quoted in the legend are the most probable values of the
mean ygm derived from the corresponding test.

discrepancy between the results of Newman et al. (2013b) and our
simulations might be resolved.

4.4 Robustness to model assumptions

In this section, we consider the effect of various model assumptions
on the estimates of the inner dark matter slope.

4.4.1 Mass-to-light ratio

In the preceding analysis we made use of our fiducial mock data in
which a constant mass-to-light ratio was assumed when generating
the surface brightness map of the central galaxy. However, this
may not apply in the real Universe. To explore the sensitivity of
our results to this assumption, we built another set of mocks, this
time using the r-band luminosity calculated with the photometric
method of Trayford et al. (2015). We performed the same analysis
on this new set of mocks, still assuming a constant M*/L. The
difference between these results and those from our fiducial model
reflects the uncertainties introduced by the simple assumption of
constant M*/L.

In Fig. 13, we compare the joint constraints on the mean gy (at
44 kpc) from our mock data using the sJ + lensing model, assuming
a constant M*/L, for both, mocks constructed making this same
assumption and mocks constructed using the photometric model of
Trayford et al. (2015). The inferred mean y,, in the latter case is
only about 3 per cent smaller than in the standard case. These results
indicate that the assumption of a constant M*/L is reasonable for the
analysis of the inner dark matter density profiles in these massive
clusters.

4.4.2 Shape of the central galaxy

When modelling the central stellar dynamics by solving the Jeans
equations, we assumed the galaxy to have either a spherical or an
oblate shape. A spherical shape for the central galaxy is assumed
in the sJ model, while an oblate shape is assumed in the fiducial
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Figure 14. §74m as a function of the triaxiality parameter. The solid squares
show relaxed clusters and the empty squares unrelaxed clusters.

JAM model. Although this oblateness assumption is valid for most
early-type galaxies, it does not apply to the most massive ones (e.g.
Li et al. 2016, 2017). To be consistent with previous analyses, we
assumed oblateness in our application of the JAM. In the upper
and lower panel of Fig. 14, we show the error in the inferred
mass-weighted slope of the dark matter density profile, 6¥m =
()7(;m — Vam)/ Vam (Where, as before, 17(;,“ denotes the best-fitting value
and Y4y the true value), as a function of the triaxiality parameter,
T = =% (Binney & Tremaine 2008) for both the sJ and JAM
models.

We compute the triaxiality parameter of the galaxy using the
reduced inertia tensor defined as

Z Mnxi,nxj,n/rik

B ST 0

Iij,k+l

where i, j € {x, y, z} and the summation is over the stars within
25 kpe, (which is slightly larger than the region with kinematical
data and around 2R. for our sample. Here, r,_  is defined as the k-th
iteration value of the radius

Tnk =

x2+y2/q* +22/s%, (21)

where ¢ = b/a and s = c/a (assuming the lengths of the three major
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axes are a, b, ¢ and a > b > c) are the square root of the ratios
of the reduced inertia tensor eigenvalues. We iteratively calculate
the reduced inertia tensor and the values of ¢ and s, deriving the
triaxiality parameter from the stable g and s values.

If s > 0.9, then the galaxy is close to spherical and, if s < 0.9, we
can classify the shape into three categories: oblate for 7'< 0.3, prolate
for T > 0.7 and triaxial in between. All of our clusters have s < 0.9.
From Fig. 14, we find that most of the cluster central galaxies have
a prolate shape. Interestingly, although the shapes are not consistent
with the assumption of the JAM or the sJ model, we do not find
a correlation between the accuracy of the estimate of y, and the
triaxiality parameter.

To explore further the model dependence on the galaxy shape,
we rotate all of our galaxies in three different directions, so that
the line-of-sight direction is aligned with the major, intermediate,
and minor axes, respectively, and repeat the kinematics + lensing
analysis. We show the best-fitting y gnew in different directions as
a function of Mg in Fig. 15. We see that for both models looking
along intermediate and minor axes gives similar y onpw distributions,
while looking along the longest axis gives larger best-fitting values of
¥ enpw than for the two other directions. The probability of drawing
seven asymptotic slope values from their posterior distributions with
mean value lying within the 1o range of the observational result
(0.50 £ 0.13) are 17.3 percent, 5.7 percent, and 1.5 per cent when
viewing along minor, intermediate, and major axes, respectively.

4.4.3 Velocity anisotropy

We also test the dependence of the model on the velocity anisotropy.
Schaller et al. (2015b) suggested that the discrepancy between the
dark matter density profile slopes in the observed clusters and in
the EAGLE simulations might be due to incorrect assumptions for
the velocity anisotropy parameters. In the sJ modelling, the velocity
anisotropy is assumed to be zero, while in JAM it is assumed to be
constant in the z cylindrical coordinate.

In Fig. 16, we plot the error in the estimates of 4, as a function of
the anisotropy parameter, 8, of the C-EAGLE clusters for both the
sJ and JAM cases. The anisotropy in cylindrical coordinates, Sjam
(B.), is computed as

v2
Biam =1-— =, (22)

2
Ur

where the z-axis is aligned with the minor axis of the galaxy. The
anisotropy parameter for the spherical Jeans model is computed as

2
Y5

Ba=1—-=, (23)

2
where 173 = g. There is significant galaxy-to-galaxy scatter in the

anisotropy parameter value but we do not find a significant trend of
8Yam With B.

5 SUMMARY AND DISCUSSION

We have investigated the accuracy of techniques for inferring the
inner density profiles of massive galaxy clusters from a combination
of stellar kinematics and gravitational lensing data. We constructed
mock data sets from 17 clusters in the C-EAGLE hydrodynamical
simulations (Bahé et al. 2017; Barnes et al. 2017), whose masses
are comparable to those of the seven clusters studied by Newman
et al. (2013a) (with a mean My ~ 1 x 10> My). We performed a
stellar dynamical and lensing analysis on the mock data sets. For the
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Figure 15. Values of ygnrw for C-EAGLE clusters viewed from different
directions. The upper, middle, and lower panels show results when viewing the
central galaxies along the minor, intermediate, and major axis, respectively.
Blue squares are the true C-EAGLE values and the yellow stars the measured
values of Newman et al. (2013b). Red and green circles are results from the
JAM and sJ model, respectively.

former we used two different methods: the spherical Jeans model,
which was the method used by Newman et al. (2013a,b), and the
Jeans anistropic model. Our findings can be summarized as follows:

(1) The values of the inner asymptotic slope of a ‘generalized’
NFW density profile, yonrw, estimated using the kinematics +
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Figure 16. §74m as a function of the anisotropy parameter, 8. The solid
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lensing analysis on the mock data agree reasonably well with the
input values indicating that, in principle, the method is accurate and
unbiased.

(ii) The dark matter asymptotic density slopes, ¥ gnpw, Of massive
C-EAGLE clusters are steeper than those inferred by Newman et al.
(2013a,b) for the observed clusters. The C-EAGLE clusters have
Yenew ~ 1, whereas Newman et al. (2013b) find y gnew ~ 0.5 for
their clusters, as shown in Fig. 7.

(iii) The inner density profile can also be characterized by the
mean mass-weighted dark matter density slope, 7im, averaged within
the effective optical radius of the central galaxy. To compare our
results with observations, we derive this average slope within 44 kpc,
which is approximately the effective radius of the clusters of Newman
et al. (2013a). Taking errors into account, the average slopes from
C-EAGLE clusters agree with the observed ones (see Fig. 8).

(iv) The different conclusions reached when using the two dif-
ferent measures of inner dark matter density profile slope can be
traced back to different values of the characteristic halo radius, r,
in the C-EAGLE and observed clusters. The values of r, inferred for
the Newman et al. (2013a) sample are significantly smaller than the
values for the clusters in the simulations (see Fig. 9). The smaller the
15, the faster the dark matter density slope varies within the effective
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radius and thus the larger the difference between the asymptotic and
mass-weighted values.

(v) We find that there is a strong degeneracy between the asymp-

totic gNFW slope, y nrw, and the scale radius, 7, (or, equivalently,
the scale density, ps; see Figs 4 and 5). As a result, the gravitational
lensing data that directly probe the cluster mass distribution at large
distances also play a role in constraining the inner profiles. To assess
the importance of lensing data, we repeated our analysis of the C-
EAGLE clusters in two ways. First, we ignored lensing and used only
stellar kinematical data. We found that, in this case, the dark matter
density slopes are significantly underestimated (see Fig. 10). This
is probably because, as shown in Fig. 11, not including constraints
from lensing loses the anchor point in the outer regions of the cluster
and a nearly constant density dark matter core is then preferred to
account for the steeply raising observed stellar velocity dispersion
profile (which otherwise the stellar dynamical models considered
here would have difficulty matching).
Secondly, we kept the stellar kinematical and strong lensing mock
data unchanged, but artificially biased the weak lensing mock data
to correspond to a profile with a 50 percent smaller value of the
NFW r;. We found that, in this case, the best-fitting y ,npw values
are significantly underestimated and are, in fact, quite comparable
with the values estimated by Newman et al. (2013a,b). We noted that
for three clusters, the NFW scale radii measured by Newman et al.
(2013a) are much smaller than the more recent measurements carried
out by Merten et al. (2015) and Umetsu et al. (2016). Based on these
tests, we suggest that stellar kinematical data combined with lensing
measurements from the more recent observations would alleviate the
discrepancy between the observed dark matter density slopes and
the theoretical predictions. We also note, however, that the haloes of
three of the observed clusters have scale radii similar to those in the
simulations (lower panel of Fig. 9), so biased lensing results may not
be the whole story behind the tension.

(vi) We also applied our sJ + lensing and JAM + lensing analyses
to clusters viewed from their minor, intermediate, and major axes.
We found that the best-fitting y onpw tends to be larger than the true
value when the cluster is viewed from the direction of the major axis.
If the observed samples were biased in this way, the discrepancy with
the C-EAGLE clusters would be even larger.

(vii) We tested the robustness of the method to the assumptions

of a constant stellar mass-to-light ratio and an isotropic velocity
anisotropy and found the method to be fairly insensitive to these
assumptions.
In summary, while according to one measurement (the mean inner
slope of the dark matter density profile) the observational data agree
with the simulations, according to another (the asymptotic slope) they
do not. These two measures differ in the way they weight different
regions of the mass distribution in the cluster. The asymptotic slopes
are extrapolations that rely on the innermost data points whereas the
mean slopes may be more robust. The inferred asymptotic slopes are
degenerate with the scale radius (or the scale density) of the halo and
thus they can be strongly affected by the lensing data; a poor or biased
measurement of the lensing constraints can lead to significantly
smaller asymptotic slopes. Thus, although some tension between
the simulations and the data remains, this does not necessarily imply
a fatal inconsistency between the two.
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Table A1. Comparison between true and best-fitting parameters obtained from sJ plus lensing analysis. The best-fitting and true values are denoted with
superscript ‘R’ and ‘7", respectively. 7o and yam are the mass-weighted slope of total density profiles and dark matter density profiles and ygnrw is the
asymptotic dark matter density slope. M* and M are the stellar and total mass enclosed within the stellar effective radius, Re. The unit of mass is Mq. fam is
the dark matter mass fraction witnin R.. Errors are calculated as 84 and 16 percentiles.

Taon Vot Vim Vi VgTNFW VgRNFW logio M*T logio MR logio My, logio M fim Sim
CE-12 179 L6300 115 1.09%03 107 103709 1,62 11767097 1191 12077097 049 0.501013
CE-13 169 1.65709 098  1.09102 092 1.0170% 1163 11697019 1191 12011092 048 0521013
CE-14 180 L76%00¢ 097  L18T)35 125 LI5THIS 1158 11.59%0% 1181 11.83700% 041 0427013
CE-15 205 186750 ra17 1329 137 1287048 1156 11.5770% 1173 1179109 032 0411019
CE-16 176 L78%000 107 L1073 088  1.04703S 1169 11997010 1194 1221700 044 0407017
CE-17 175 Le3')r 122 126703 125 1077033 163 11727005 1195 1216700 053 0.64700%
CE-18 165  1.58%0% 105 0967028 090  0.857032 1173 1183709 1202 12117092 047 0481003
CE-19 195 1547008 112 0637030 099 0.50703% 1,65 11717058 1192 11.94790 047 041701
CE-20 190 L71t00% 114 1237058 103 118Th 172 11887519 1201 12227092 048 0.541012
CE-21 188 L79%0%% 110 L1673 L1000 110703 11.86  11.9770% 1208 1221705 040 042701
CE-22 156 1.55700¢  0.87 081703 092 0747939 11.81 1187709 1210 12117093 048 041701
CE-23 147 1487000 073 083732 096 077797 162 11737097 1193 1201700 051 0477003
CE-24 163 160%0% 104 1017037 084 0977013 1176 11.90%0% 1208 1217702 052 0467013
CE-25 174 Le4™(0r 112 107704 L1s Lo1T9% 1185 1189709 1211 12147007 045 044703
CE-26 163 1517097 08 073702 082 0627033 1190 11.89709% 1218 1215109 047 0441012
CE-27 140 1457096 090  1.03%030 081 096703 1156 11.81%00% 1201 12207003 064 0597017
CE-28 153 1417096 090 0947002 081 085703 11.81 1196709 1216 1236709 055 0.601010

Table A2. Comparison between true and best-fitting parameters obtained from JAM plus lensing analysis. Notations are the same as Table Al.

Ten Vot Vim Vi Yenew  Vewew  logio M logio MR logio Ml logio Ml fi, fén
CE-12 179 1707096 115 1astdly 107 0 L3t 1162 116509 1191 1201759 049 056701
CE-13 L69 1747008 098 098%03 092 090703 1163 11687090 1191  11.94700% 048 045703
CE-14 1.80  1.98709% 097 075702 125 0697030 1158 11617500 18t 117300y 041 0231097
CE-15 205 202750 117 108t 137 1.0370% 1156 11547050 1173 1169700 032 028701
CE-16 176 L76%000 107 LIITHAT 088 107703 1169 1L77T00E 1194 12077007 044 050703
CE-17 175 L7100 122 143709 125 1.3970% 11,63 11627010 1195 12001092 053 06710
CE-18 165  L76%000  1.05 104703 090 098702 1173 1184709 1202 12107007 047 044708
CE-19 195 1.69700% 112 0677938 099 0557031 1165 1L67709% 1192 11917903 047 0427072
CE-20 190 1797008 114 1200050 103 L16T0AE 1172 1184759 1201 1215700 048 0.52%003
CE-21 188 1.847007 110 1.22%00¢ 110 118THlS 11.86  11.887097 1208 12157001 040 04610}
CE-22 156 L77H00% 087 072703 092 0.6370% 1181 11967000 1210 12127007 048 0.2970.03
CE-23 147 L66%0% 073 070703 096 0.64793¢ 162 1179109 1193 1199790 051 035t
CE-24 163 1.687007 104 112013 084 10970 1176 1179709 1208 1213709 052 054700
CE-25 174 189T00% 112 082703 LIS 076707 1185 1196700 1211 12097007 045 0.26700
CE-26 163 L7070 082 0807035 082  07179% 1190 11897008 1218 12147007 047 0437013
CE-27 140 L71%09) 090 1.05T05 081 LO1TH3 1156 11.9470% 1200 1221700 064  047701]
CE-28 153 1461095 090 101703 081 095700 1181 1191t0% 126 1233700 055 0.62700
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