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Abstract

We propose semiparametric methods for estimating ra.. 'om utility models using rank-ordered
choice data. Our primary method is the generali. -+ maximum score (GMS) estimator. With
partially rank-ordered data, the GMS estimator allows .. = arbitrary forms of interpersonal het-
eroskedasticity. With fully rank-ordered data, v e ( w, estimator becomes considerably more
flexible, allowing for random coefficients anc ~ltern. tive-specific heteroskedasticity and correla-
tions. The GMS estimator has a non-standarc as, mptotic distribution and a convergence rate

1

of N=1/3. We proceed to construct its . .o '™~ version which is asymptotically normal with
a faster convergence rate of IV —d/ (2d+1), whe. » d > 2 increases in the strength of smoothness

assumptions.
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1 Introduction

Rank-ordered choices can be elicited using the same type of survey as mu' ino- iial choices, specif-
ically one that presents an individual with a finite set of mutually exclu.’~e ai. =natives. The two
elicitation formats may be distinguished by the amount of information t’..." is av. ilable to the econo-
metrician. A multinomial choice reports the individual’s “choice” or r ost reterred alternative from
the set, whereas a rank-ordered choice reports further on the indivi‘uals ~reference ordering such
as her second and third preferences. One rank-ordered choice obse¢ "vation >rovides a similar amount
of information as several multinomial choice observations, in the se.. =~ *’.at it allows inferring what
the individual’s choices would have been if her more preferre: alt .cn. tives were not available. This
allows fewer individuals to be interviewed to achieve a givm level [ statistical precision, and the
resulting logistic advantages could be substantial for non-marke valuation studies which typically
involve a narrowly defined population of interest (Scarna e. »I. 2011).

We develop semiparametric methods for estimation of ra. dom utility models using rank-ordered
choice data. Despite the wide availability of parametr.. ~ounterparts, such semiparametric methods
remain almost undeveloped to date. The random ...'"*-~ function of interest has a typical structure:
it comprises a systematic component (utility index) v * ¢cying with finite-dimensional explanatory vari-
ables, and an additive stochastic component (e.vo. term). The objective is to estimate preference
parameters, referring to coefficients on the .. '»n.tory variables. The methods are semiparamet-
ric in that they maintain the usual parametric “>rm of the systematic component but place only
nonparametric restrictions on the stoc* us..> component.

The parametric methods are equ.'lv wel) established for multinomial choice and rank-ordered
choice data. In most cases, an ans.ysis ot . wltinomial choice data involves maximum (simulated)
likelihood estimation of one of fu v ~a0d s: multinomial logit (MNL), nested MNL, multinomial
probit (MNP), and random cor ficient « “mixed” MNL. Each model assumes a different parametric
distribution of the stochasti. comn., nent, and has its own rank-ordered choice counterpart that
shares the same assumpti n: rank-ordered logit (ROL) of Beggs et al. (1981), nested ROL of
Dagsvik and Liu (2009), ra. ¥ ordered probit (ROP) of Layton and Levine (2003), and mixed ROL
of Layton (2000) and Calfe: et a.. (2001). Building on Falmagne (1978) and Barbera and Pattanaik
(1986), McFadden (1v2% prevides a technique that can be applied to translate any parametric
multinomial choice mode! inco the corresponding rank-ordered choice model.

The literature n the semiparametric methods is more lopsided. For multinomial choice data,
several alterna’.ve metnods exist including Manski (1975), Ruud (1986), Lee (1995), Lewbel (2000),



Fox (2007), Bajari, Fox and Ryan (2008), and Yan (2013).! The special case of oinow. 2l choice data
has attracted even greater attention, and the respectable menagerie include ., K. ud (1983), Manski
(1985), Han (1987), Horowitz (1992), Klein and Spady (1993), Sherman (1y.?", and Cavanagh and
Sherman (1998), to name a few. When it comes to rank-ordered choice daw. we are aware of only
one study that aims at semiparametric estimation of preference parar.ete ©~ namely Hausman and
Ruud (1987). In their study, the weighted M-estimator (WME) of Ruud © .986) is generalized for use
with rank-ordered choice data, whereas the original WME was ir cended for use with multinomial
choice data. The generalized WME imposes independence between *he exy .anatory variables and the
error terms, ruling out heteroskedasticity across individuals. " noueh the generalized WME allows
consistent estimation under nonparametric stochastic specific. ~*'on, " his consistency is confined to
the ratios of the coefficients on continuous explanatory var.. hles and the estimator’s asymptotic
distribution is unknown outside a special case of Newey ‘1986).

In this paper, we propose a pair of new semiparame.~ic mecchods for rank-ordered choice data.
The primary method that we develop is the genera’ .. ......mum score (GMS) estimator. Unlike
the generalized WME, the GMS estimator does not requ.-e independence between the explanatory
variables and the error terms, and can accommoda e ' 2xuvle forms of interpersonal heteroskedastic-
ity. We also show that the GMS estimator is c. . “iste. * under more general assumptions concerning
the explanatory variables than the generalized \“VM.l. Roughly speaking, if one of ¢ explanatory
variables is continuous, the GMS estimator .''ows consistent estimation of the ratios of all coeffi-
cients regardless of whether the other ¢ — 1 variables are continuous or discrete. Like the maximum
score (MS) estimator of Manski (198) tha. it nests as a special case, the GMS estimator has a

1/3 and a = on-- candard asymptotic distribution. One way to lessen

slow convergence rate of N~
these drawbacks is to introduce e tra .egular conditions and apply Horowitz’s (1992) technique to
construct a smoothed version ¢¢ tuc GN 3 estimator. We show that the smoothed GMS (SGMS)
estimator achieves a faster cc. =rgence rate of N~%(2d+1) where integer d > 2 increases in the
strength of the smoothness ~onditious presented in Section 3.1, and possesses a normal limiting
distribution with a covari-.nce natrix that can be consistently estimated.

The GMS estimator gene. ~lizes the pairwise MS estimator that Fox (2007) has developed for

a semiparametric ana’ysis of r ultinomial choice data. When the individual faces J alternatives, a

'Bajari, Fox and P _ 1 (200" stands out from other studies in this list, since their objective is to estimate a
multinomial choice 1 bdel in . n environment where the econometrician does not observe multinomial choices made
by individuals; instea ' the ec' nometrician observes aggregated data on sales rankings of alternative products across
different markets. ™his .. * .e poses some challenges for taxonomy. We agree with Fox (2007, p.1004) on classifying
their estimator .s a mt 'tinomial choice method, considering that the behavioral model used in their proofs is a
multinomial cho ~e mode



multinomial choice observation allows the econometrician to infer the outcon.es o1 7’

— 1 pairwise
comparisons where each pair comprises the individual’s actual choice and a-. w1 -hosen alternative.
A rank-ordered choice observation provides information that is needed to ‘= .er the outcomes of
other pairwise comparisons; for example, in case the individual ranks all . ~lternatives from best
to worst, her rank-ordered choice allows the econometrician to infer che ~—tcomes of all possible
J(J —1)/2 pairwise comparisons. The GMS estimator extends the M. - stimator by incorporating
this type of extra information, which could come from data on par.ial rankings (e.g., the individual
reports her best and second best out of five alternatives) as well « s comy ete rankings.

The GMS estimator inherits all attractive properties of ‘ue MS estimator, two of which are
particularly relevant to empirical applications. First, the GM." - ,cim: tor allows the econometrician
to be agnostic about the form of interpersonal heteroskedastic. - o1 scale heterogeneity” (Hensher et
al., 1999; Fiebig et al., 2010), referring to variations in th overall scale of utility across individuals.?
This property is desirable because in most studies, the ex. ~t to.in of interpersonal heteroskedasticity
matters only to the extent that its misspecificatic ..., vo inconsistent estimation of the core
preference parameters. Second, the GMS estimator is co. sistent when the data generating process
(DGP) comprises an arbitrary mixture of differer.” waets, provided that it is consistent for each
component model. Empirical evidence from 1 “avic al economics (Harrison and Rutstrém, 2009;
Conte et al., 2011) supports the notion that char. <te.izing observed choices requires more than one
model. But consistent parametric estimatio.. 7t a nixture model is extremely difficult, because it
demands the exact knowledge of the number and specifications of component models.

The GMS estimator becomes consg’deraby - more flexible than the MS estimator when each indi-
vidual completely ranks all alternatives .~ he' choice set from best to worst. As we discuss in details
in Section 2.3, the GMS estimatr ¢ or complete rankings is consistent for all popular parametric
models exhibiting flexible substi‘ut.. » pr cterns, whereas the MS estimator is not.? Thus, the GMS
estimator more closely satisfi » -vhat an empiricist may expect from the use of a semiparametric
method, namely the ability tn estimace all popular parametric models consistently on top of other

types of models.* This is - a in eresting finding because in the parametric framework, the advantage

2This property explains - major 'ference between the GMS estimator and the maximum rank correlation (MRC)
estimator of Han (1987) a .d S} crman (1993). The GMS method utilizes the observed ranking information and does
pairwise comparisons of a. ~v .ativ’ s within each individual, allowing the conditional joint distribution of the error
terms to vary across in”*idua.. .n comparison, the MRC estimator does pairwise comparisons between individuals
and requires the error cerms t be independent of the explanatory variables, ruling out the possibility of interpersonal
heteroskedasticity.

3 The difference aris. "~- .use the complete ranking information allows us to replace the assumption of equicorre-
lated errors or “¢ .chang’ ability” (Goeree et al., 2005; Fox, 2007) with a much weaker assumption of zero conditional
median.

4When it com. - to - .sumptions on explanatory variables that are needed for the point identification of utility



of using rank-ordered choice data instead of multinomial choice data is limit.d to . %iciency gains
(Hausman and Ruud, 1987; Beresteanu and Zincenko, 2018) and a multino aia choice model may
be more robust to stochastic misspecification than its rank-ordered choice ~canterpart (Yan and
Yoo, 2014). This kind of efficiency-bias tradeoff does not apply to the . mpaiison of the GMS
estimator on complete rankings to the MS estimator on multinomial ¢ 10ic >~ the GMS estimator is
more efficient as indicated by smaller root mean square errors (RMSk, #. Monte Carlo simulations
(Section 4), and is also robust to a wider variety of DGPs.

As noted earlier, the GMS estimator also inherits less attractiy » prope¢ :ties of the MS estimator,

—1/3 and the non-standard .symntotic distribution of Cavanagh

such as the convergence rate of N
(1987) and Kim and Pollard (1990). Horowitz (1992) develoy ~ "ae s 100thed MS (SMS) estimator
that addresses these drawbacks in the context of Manski’s (.7%5) wIS estimator of binomial choice
models. Yan (2013) extends the results to Fox’s (2007) 'S estim .tor of multinomial choice models.
The SGMS estimator of rank-ordered choice models tha. we piopose builds on this tradition.

The remainder of this paper is organized as fo''_.... Ccction 2 develops the GMS estimator
and compares it with popular parametric methods. Sec'ion 3 develops the SGMS estimator and
states its asymptotic properties. Section 4 presen.” t' e wionte Carlo evidence on the finite sample
performance of the proposed estimators. Secti . 5 cc *cludes. Proofs of Theorems 1-3 are provided
in Appendices and those of Theorems 4-5 are incmided in Supplementary Material.

Throughout this paper, we will maintain "he 1o:lowing notations. We write scalars in lightface,
vectors in lowercase bold, and matrices in uppercase bold. All vectors are column vectors. R? is
a ¢-dimensional Euclidean space, B i, a surset of R?, and other blackboard bold letters such as
J and M refer to finite sets. We reser, - let'ers j, k and [ for indexing alternatives, and letter n
for indexing individuals or observ .tior s. Vector x;; denotes the difference between two vectors x;
and xy. The first element of  (a, ) is denoted by x;1 (2x,1), and the subvector comprising its
remaining elements is denoted o, ; (&;;). Where the distinction needs emphasis, we use x,,; (€,,1)
to denote the nth observation of ran.dom vector x; (x;;). Letters P and E denote a probability
and an expectation, respe tive y. Function F'(-) denotes a cumulative distribution function (CDF),
and function F(-|-) der otes « ~onditional CDF. The ‘" derivative of function K (-) is denoted by
K®(.). Function 1(-* is - a irdicator function that equals one when the event in the brackets is
true, and zero otherwise. S mbols \, ’, =, and 2s denote a set difference, matrix transposition,

convergence in dis ;ributic 1, and convergence in probability, respectively.

coefficients, semip~=ame. = .anethods are more restrictive than parametric methods and the GMS estimator is no
exception. In th s respe *, the GMS estimator is as restrictive as the MS estimator, and requires the presence of a
continuous expl: natory v riable with large support. See Assumption 3 in Section 2.2.



2 The Model and the Generalized Maximum Score Listi.mator

2.1 A Random Utility Framework and Rank-Ordered Cho: e T, ata

Consider a standard random utility model. An individual in the population . interest faces a finite
collection of alternatives. Let J = {1,...,J} denote the set of alter .ativ . and let J > 2 be the
number of alternatives contained in J. The utility from choosing alte. ative j, uj, is assumed as

follows:
uj=xiB+e; Vjel, (1)

where ; = (zj1,...,2j4) € RY is an observed g-vector ~f cc ~.iates, 8 = (B1,...,04) € R?
is the preference parameter vector of interest, and e; is the m observed component of utility to
the econometrician. Let X = (x1,...,2;) € R7%¢ he .~ .natrix of the covariates and & =
(¢1,...,€7)" € R’ be the vector of the error terms. The ntir. - index x,3 is often called systematic
(or deterministic) utility, as opposed to the error term ¢, which is called unsystematic (or stochastic)
utility.

The random utility function (1) can accommo ate both alternative-specific and individual-
specific covariates. To see this point, consider a . *ility function that spells out the distinction

the two types of covariates explicitly
uj =2y +saj+e; Vjel, (2)

where ¢i-vector z; includes covari'.tes tu. * vary over alternatives (e.g., product attributes), and
qo-vector s includes a constant ern as wsell as covariates that vary across individuals but not
over alternatives (e.g., person’, age,. "Vithout loss of generality, we set a; = 04, for location
normalization, where 04, den tes . 29-vector of zeros. Following Cameron and Trivedi (2005, p.498),
equation (2) can be compar .., written in the form of equation (1) as follows. Let «x denote a vector
that collects alternative-., aci ic parameter vectors, a = (0},,a),...,a/;) € R7%, Next, let s;
denote a conformable sector . at is partitioned into .J blocks, where the j¥ block is s € R%
and each of the rem.mi.g J — 1 blocks is Og. For example, s; = (s/,0),,...,0,,) € R/%,
s2 = (0y,,8',...,0,,, € u. 2 and so on. Then, it follows that s'a; = s;a, and equation (1)
is obtained by def ning x, = (27, s})' € R? and 8 = (v, &')" € RY, where ¢ = ¢1 + Jga.

Thus, withe = los. ou generality, our subsequent discussion focuses on equation (1). Let r(j, u)

denote the lat mt (or  otentially unobserved) ranking of alternative j, based on the underlying utility



vector u = (up, ug,...,uy) € R7. We shall follow the notational convention tlLat r(, ) = m when
j is the m! best alternative in the choice set J, i.e., a smaller ranking - alu - indicates a more

preferred alternative. A more formal definition of the latent ranking is

J
r(j,u) =1+ Z 1(uj < uyg) (3)
k=1

for any j € J. For instance, suppose that J = 4 and uz > uqg > uy .- ug. Then, r(3,u) = 1,
r(4,u) = 2, r(1,u) = 3, and r(2,u) = 4. There is a one-to-one .. nr'ag between the choice set
{1,...,J} and the latent ranking set {r(j,u): j=1,...,J} oy 7 _u. ition (3).?

Next, let r; denote the reported (or actually observed) ranki.g of alternative j, and r =
(ri,...,ry) € N7 be the vector of the reported rankings of all J 'ternatives in J. We shall maintain
that the reported ranking r; coincides with the latent rans. o r/j, u) in case the individual reports
the complete ranking of alternatives, and is a censored v.-<ion of the latent ranking in case she
reports only a partial ranking. To facilitate further . ~ussion, suppose that the individual reports
the ranking of her best M alternatives where 1 < "7 < .] — 1, and leaves that of the other J — M
alternatives unspecified. As before, suppose that - =4 and ug > ug > u1 > ue. In case M = 3,
the complete ranking is observed since the indi . 2l ceports her best, second-best, and third-best
alternatives, allowing the econometrician t ‘=fer hat the only remaining alternative is her worst
one, r = (71, 12, r3, r4) = (3, 4, 1, 2), and tha. ~ach alternative’s reported ranking is identical to
its latent ranking. In case M = 2, on), . nartial ranking is observed since the individual reports
her best and second best alternative * and 1he econometrician cannot tell whether alternative 1
is preferable to alternative 2, » = (3, 3, . 2), so the reported ranking r2 is no longer the same
as the latent ranking 7(2,u). Fi allr, in ase M = 1, the resulting partial ranking observation is
identical to a multinomial choi .e obse. .tion since the individual reports only her best alternative,
r=1(2,2,1,2).

A more formal definitira « © the reported ranking that incorporates the above discussion is as
follows. Let the random s V. (M C J) denote the set of the best M alternatives for the individual,
thatis, M = {j : r(j,v, < M}. Thereported ranking of alternative j, then, follows the observation

SWe ignore utility ties he.  bec .use they happen with probability zero under the assumptions we impose later for
point identification.

SLike the popular saramet. ¢ methods that we will review in Section 2.3, our semiparametric method allows both
the choice set J = {1,. ...,J} .nd the dimension of the subset M C J, and hence J and M, to vary across individuals.
For example, per ... a may face choice set J = {1,2,3,4,5}, and report his first and second-best alternatives as
alternatives 2 a-d 3 (M. = {2,3}), respectively: in his case, J =5 and M = 2. Person b, on the other hand, may
face J = {1,2,3, '} and 7 :port a complete ranking on it, e.g., her first, second-best, and third-best alternatives are



rule

r(j,u) if r(j,u) < M, orequivalently, j € M, )
r; =
! M+1  if r(j,u) > M, orequivalently, j € J\ M.

When M = J — 1, the complete ranking is observed. When M = 1 the resutting partial ranking
is observationally equivalent to a multinomial choice. The interm~ "iate . ~ses of partial rankings,
which occur when 1 < M < J — 1 and J > 3, are much less cor mon it empirical studies though

not unprecedented.”

2.2 Identification and the Generalized Maxim -m Sro e Estimator

This section introduces identification conditions for tkL - vreferc nce parameter vector B and the
primary method that we propose, the Generalized Ma. mum. score (GMS) estimator. The GMS
estimator is semiparametric in the sense that it allow- "1.. Coo. .ometrician to estimate 3 consistently,
without committing to a specific parametric form of the . ~nditional distribution of the error vector
given observed attributes €| X.

The first assumption presents a key cond ‘~n p rtaining to our identification strategy. This
assumption implicitly places a restriction on ti.~ conditional distribution of €|X, albeit it is a
nonparametric restriction satisfied by a range ~t parametric functional forms, some of which we will
discuss in the subsequent section. Denote the systematic utility of alternative j as v; = :13;,3 for any

alternative j € J.
Assumption 1. For any pair of ¢ ternate. s 5,k € J and for almost every X € R7*4,
vj > v if and only if

P(Tj<7’k;|X) > P(Tk<Tj|A}, (5)

i.e., alternative j generates .~ qer systematic utility than alternative k if and only if there is a higher

chance that j is prefer ble o k (i.e., r; < 1y) than the reverse (i.e., 1, < 1;), conditional on almost

alternatives 1, 2, and 4 (M = 1.7 4}), respectively: in her case, J = 4 and M = 3. Our proofs can be modified to
accommodate this ge erality expiicitly, though we do not pursue it to avoid carrying around individual subscripts.
Note that when J a: d M are considered individual-specific, complete rankings data in our subsequent discussion
refer to the case where M = , — 1 for all individuals, and partial rankings data refer to the case where M < J — 1
for at least one i~ urvidual.

"See for exa: iple Lay on (2000) and Train and Winston (2007), both of which analyze data on the best and
second-best alter. ~tives- Jheir data structures are M = 2 and J > 3 according to our notations.



all covariates.

Assumption 1 immediately implies that v; = vy, if and only if P(r; < r|¥ ) = P(r; > ri|X), i.e.,
alternatives j and k have the same systematic utility if and only if the proba. 'ity that alternative
j is preferable to alternative k is the same as the probability that alterna.. -« k is preferable to
alternative j.

Two special types of rank-ordered choice data are worth highlightin, First, when M = 1, the
individual reports only her best alternative and we have multir omial “hoice data. In this case,
alternative j is ranked above alternative k (r; < ry) if and only if ; s rar ced as the best alternative

(r; = 1), so we have
P(Tj < T’k|X) = P(T’j = 1|X) (6)

If we replace P(r; < r|X) with P(r; = 1|X) and repic-e £ ., < rj|X) with P(r, = 1|X) in (5),
then Assumption 1 becomes the monotonicity prop~=+:- - _sice probabilities (Manski, 1975; Fox,
2007), i.e., the ranking of the choice probability of an a. ~rnative is the same as the ranking of the
systematic utility of that alternative for any giver. inc v.cual.®

Second, when M = J — 1, the individual ~vor.- all alternatives from best to worst, and we
have fully rank-ordered choice data. With this ¢ mylete ranking information, we can compare the
utilities between any two alternatives. Withco “t 100 of generality, let’s focus on a pair of alternatives
(7, k) such that j < k. Alternative j is ranked anove alternative k if and only if the utility from

choosing alternative j is larger than t'.e utu.“y from choosing alternative k, so we have

P(rj <r|X) = Puj > u|X)

= Plep- ~ Jvi —u] X). (7)

The “only if” part holds und :r .~e definition of ranking =, and the “if” part is a direct result of
complete ranking. The first _ uality of (7) may not hold if we observe only a partial ranking, i.e.,
M < J —1. This is bec ‘use while 7; < r; naturally implies u; > wug, u; > u, may not imply
rj < r; when neither 7.ternaw. = j nor alternative & belongs to set M, which includes the best M
alternatives, both alt: ma’.ves j and k are observed with the same ranking, M + 1, even if u; > uy.

For any pair of »'_ rnat. s, assume that the distribution of €, —¢; conditional on the explanatory
vectors is a strict y incre sing function. Then the well-known pairwise zero conditional median

(ZCM) restrictiom, 1. "un(er, — €] X) = 0, is a necessary and sufficient condition for Assumption

8See Fox (20. 7) for a  etailed discussion of sufficient conditions for the monotonicity property of choice probabil-
ities.
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1 when a complete ranking of J alternatives is available. The proof is straightto. -ard.® Notice
that P(r; < ri|X)+ P(r; < rj|X) =1 when the choice set is fully rank-orde1 d. For “necessity”,
Assumption 1 implies that v;—v; = 0if and only if P(r; < ri|X) = 1/2, or e, * valently, P(ep—¢; <
vj — x| X) = 1/2 by (7). For “sufficiency”, the ZCM assumption implies the" v; - vy if and only if
P(rj <ri|X) >1/2 by (7), or equivalently, P(r; < 74| X) > P(ry < ;| X

Our second assumption is about scale normalization and the pa.> aeter space. As usual in
discrete choice modeling, identification of the preference vector 8 = equires scale normalization since
they are unique only up to a scale.!® When a parametric form of t.  cond :ional distribution of €| X
is specified, it is a nearly universal practice to normalize a sc ue parameter of that distribution to
achieve identification.!’ But when no parametric form is speci.’», no cale parameter is available for
normalization. In the semiparametric framework, identificatic - is vuerefore achieved by normalizing
the preference parameter vector 3 instead. Subject to he prio. knowledge that some element of
vector 3 is non-zero, we can normalize the magnitude o: *hat ciement.'? Without loss of generality,
we assume that the first element of 3 has absolute v '._ C..., i.e., |f1] = 1. Let 8= (B2,...,B4) €

R~ be the vector containing the other elements of 3.

Assumption 2. The preference parameter vector O < B, where parameter space B = {—1,1} x IE%,

B is a compact subset of RI™1, and q > 2.
Next we formally define the point identin ~tion for 3 € B.

Definition 1. For any vector b € B, 7y function

Q*(b) = Z Ell(ry <7’ - Haxje _apb) + 1(r, < ry) - 1(x)b > x)b)]. (8)
1<j<k<]

The parameter vector B is poi * identined if Q*(8) > Q*(b) for any b € B and b # 3.

Identification requires £ « be the unique maximizer of function @Q*(b) for b € B. Assumption 1
guarantees that 3 maxim. =s 7;*(b) in the parameter space, which will be shown in Theorem 1 later.

However, if all the cov:riates 1. (8) are discrete, then we can always find another vector b in the

9This proof does not ap,' to .artially rank-ordered choice data, of which multinomial choice data is a special
case, because the first uality . (7) does not hold. Goeree et al. (2005) give an example showing that the ZCM
assumption is not suf icient f¢ the monotonicity property of the choice probabilities.

10Multiplying both “he pref rence parameter vector 8 and the error term e by any positive constant leads to the
same rank-ordered -hoice T ..a.

"For instance in the “inomial probit model, the variance of the conditional distribution is assumed to be one.

12For example econom sts may agree that the coefficient on the own price variable is negative.
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neighborhood of 3 such that b generates the same ranking of utility indexes a3 8 u. ~s, and conse-
quently, Q*(b) = Q*(8). To achieve point identification, we need to impose ‘.n ¢ ‘tra assumption on
the covariates, namely, we need a covariate that is continuous conditional «. “ne other covariates.
Recall that x;, = x; —xp € RY, 21 is the first element of x5, and Zj, = (. »9,... ,xjkyq)' c RI-1
refers to the remainder. Our third assumption states the continuity r .qui -~ment on the covariates

for point identification.
Assumption 3. The following statements are true.

(a) For any pair of distinct alternatives j, k € J, the probabili’ ; uenswy function of x ;i 1 conditional

on Tji, 9ik(Tk1|2jk), is positive everywhere on R for (' ust e sery &jy.
(b) For any constant vector ¢ = (ci,...,¢q) € R, P(Xe=v, =1 if and only if ¢ = 0.

Assumption 3 is essential for the uniqueness of 3 as @ ma.aimizer of @*(b) for b € B . Assump-
tion 3(a) avoids the local failure of identification, w™*-" . _,t required by parametric models but
important in semiparametric settings. In other words, t..~ semiparametric models relax restrictions
on the error distribution at the cost of imposing « mt au.cy conditions on the covariates. Assump-
tion 3(b) is analogous to the full-rank conditic for e binomial choice model, which prevents the
global failure of identification.

The following theorem establishes point . 'enuincation; the proof is available in Appendix A.
Theorem 1. Let Assumptions 1-3 hold The parameter vector 3 is point identified by Definition 1.

Next, we describe the intuition b “ind cheorem 1. Let b = (by, B/)’ be any vector in the
parameter space B. Under Assum tior 1, it 73 > x} 3, then event r; < ry is more likely to occur
than event rj, < r;; if @8 > '3, " en cvent r, < r; is more likely to be true than event r; < ry;
and if iL’;-ﬂ = .3, then event = < 7, has the same chance of being true as event r; < r;. Therefore,

the expected value of the following 1..atch
mjk(b) = 1(rj <7g) " b >xpb) + 1(r, < 71j) - L(zpb > xb) + 1(rj < rg) - 1(zb = ). b)

= 1rj < ) Ui > pb) + 1(ry <)) - L(z}b > @)b)

should be maximi. ~d at t ie true preference parameter vector 3 over b € B. Since

Q" (b)= > E[m;(b)] (10)
ISR |
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by (8) and (9), function Q*(b) is also maximized at B. Assumption 2 (scalc nori. ~lization) and
Assumption 3 (regularity conditions on covariates) guarantee that 8 uniquel> m. ximizes Q*(b) over
b e B.

Our fourth assumption pertains to sampling. Matrix X, and vectors *. aund €, are the n'"

observation of matrix X and vectors r and e, respectively.

Assumption 4. {(r,, X,,e,) : n = 1,...,N} is a random se~ple . (r,X,€), where r, =
(Tn1s--srng) € NV X = (Tp1,...,20g) € RIX and €, = (ep1,. .,eny) € R’ For cach

individual n =1,..., N, (ry, X,) is observed.

Assumption 4 states that we have N observations of (r,..", indr xed by n, and individuals are
independently and identically distributed (i.i.d.). For the latte. reason, we drop subscript n to avoid
notational clutter except when it is needed for clarificat.. .

Next, we describe the intuition behind applying The vem 1 (Identification) and Assumption 4
(Random Sampling) to construct the GMS estimat . weuue xj,;b as the b-utility index of alter-
native j for individual n. Applying the analogy principic, we propose a semiparametric estimator,
by = (bv 1, B/]V)’ € B, for 3 as follows:

by € argmax Qn(b), (11)
beB

where

N

Qn(b) = Nﬁlz Z (1 <= o) - L@y b > @yb) + L(rpg < rpj) - (b > ;,;b)]
n=1 | 1<j<k<J

(12)

can be viewed as the sample analog " Q*(b) defined by (8). In the special case of M =1, i.e., when
we have multinomial choic : da a, the estimator by defined by (11) becomes the pairwise maximum
score (MS) estimator of ¥ox | 'N07). When J = 2 or we have binomial choice data, the estimator by
becomes the MS estine stor of Manski (1985). For this reason, by is called the generalized maximum
score (GMS) estimator.

When comple’ 2 rank 1gs of three or more alternatives are observed (J > 3 and M = J —
1), the inner sum 'mside the curly brackets in (12) is an increasing function of Kendall’s rank
correlation be ween bserved rankings and estimated utility indexes across J(J — 1)/2 alternative

pairs within i Yividu' I n. In this situation, the GMS estimator may be interpreted as an estimator
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that maximizes the sample mean of within-individual rank correlation.'® Notc tha. “he maximum
rank correlation (MRC) estimator of Han (1987) and the rank estimator of € av: 1agh and Sherman
(1998) are substantively different from ours, both in regards to the moa's of interest and the
maximands. Their semiparametric estimators are for single-equation index ™odels, which include
binary choice models (J = 2) but not more general types of multinor iial ~~oice and rank-ordered
choice models (J > 3).1 In addition, within-individual rank correlatior. ~ ross alternative pairs is an
irrelevant concept for single-equation index models, and what the "1KC (rank) estimator maximizes
is Kendall’s (Spearman’s) rank correlation between a dependent variabl : and an estimated index
across N(N — 1)/2 pairs of individuals in the sample.'?

Again in the same situation (J > 3 and M = J — 1), ( --'0) is algebraically identical to the
objective function of Bajari, Fox and Ryan (2008) at first gla..~e. but the setup of their econometric
analysis is quite different from ours. Rankings in thei: ~nalysi; are the aggregate sales rankings
of alternative products offered by the same supplier 1.. a specific market, instead of individual-
level preference orderings that we consider. Their ¢’ I o 13 to estimate a random utility model
describing individual-level multinomial choices (that is, 7 > 3 and M = 1 in our notation), in
an environment where the econometrician obser =s .nc aggregate sales rankings instead of the
individual-level choices. They show that whe *he « “ror terms are i.i.d. over alternatives within
individuals, a semiparametric estimator of the m lti.omial choice model can be constructed using
a score function that incorporates all pairw’-e conparisons of the aggregate sales rankings. In
comparison, the GMS estimator with complete rankings (J > 3 and M = J — 1) can accommodate
more flexible error structures that s sfy 1 e pairwise ZCM (discussed in Section 2.3), thereby
allowing for flexible patterns of heterosk. 'ast’ :ity and correlation over alternatives as well as random
coefficients across individuals.

The following theorem estallisu. * th strong consistency of the GMS estimator.

Theorem 2. Let Assumptic.as 1-< hold. The GMS estimator by defined in (11) converges almost

surely to the true preferens : p. rameter vector, B3, in the data generating process.

13Let mn(b) denote inner su.. ° iside the curly brackets in (12) for individual n, then Kendall’s rank correlation
between observed rankings ,; and u.lity indexes @,;b, where j = 1,...,J, equals [2mn(b) — 1] x [J(J —1)/2]"" for

this individual. Clearly, C v (b) s th~ sample mean of m, (b), where n = 1,..., N, and hence is an increasing function
of the sample mean of witn. @mdir .dual Kendall’s rank correlation.
1Gingle-equation in ... mode. include, inter alia, Tobit, binary probit, ordered probit, and univariate duration

models; the assumed lata gen rating process involves a single latent dependent variable. In comparison, the random
utility model for mul ‘nomial and rank-ordered choice data can be viewed as a system of J — 1 latent dependent
variables where e» ' var.._.c is the utility difference between alternative j and alternative J for j =1,2,...,J — 1.

5More preciss .y, the 1 uk estimator of Cavanagh and Sherman (1998) is a class of related estimators, of which one
that maximizes . 'vearma; ’s rank correlation is a special case.
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2.3 Comparisons with Parametric Methods

From the empiricist’s perspective, the question of paramount interest may }e how flexible the
semiparametric model that the GMS estimator accommodates is relat’~e t. narametric models
that one may consider. Modern desktop computing power makes this - ~stio. especially relevant.
Standard computing resources of today can handle estimation of moc :ls t'.at ‘zature fairly flexible,
albeit parametric, error structures. Most semiparametric methods for *screte choice data relax
parametric restrictions on error structures at the price of regu arity «onditions on explanatory
variables that parametric methods do not require, and the GMS . -tin .tor is no exception. This
section maintains that such conditions hold, which have be n ¢ . d as Assumption 3(a) in the
context of the GMS estimator.

When applied to data on complete rankings, i.e. M = J — ", the GMS estimator postulates a
semiparametric model that can nest all popular parametr.. moc :ls and any finite mixture of those
models. In most studies on rank-ordered choices, the com,, 'ete rankings are elicited as needed for
this result.'® Such a degree of flexibility is not somet..’ng to be taken for granted. For instance, the
MS estimator (Manski, 1975; Fox, 2007) using m' ***»amia: choice data is consistent for a family of
parametric models featuring equicorrelated errors \ > 4., multinomial logit (MNL) and multinomial
probit (MNP) with homoskedastic errors that ~xI biv the same pairwise correlation), but not for
those parametric models that feature more “~vibi. error structures (e.g., nested MNL, MNP with
a general error covariance matrix, and mixed nNL).

This section elaborates on the semir .._metric model that the GMS estimator postulates, and its
comparisons with popular parametric models To clarify the notion of interpersonal heteroskedas-
ticity here (and later, unobserved i .terper. - 1al heterogeneity), we reinstate individual subscript n.
With a slight abuse of notation, ¢ » o} serv .tionally equivalent form of equation (1) may be specified

to express the utility that indi- i«dual 1. .erives from alternative j as
Upj = Op X (az;lj,@) + ,, forn=1,2,...,Nand j €], (13)

where the new parame.er o, < R}r captures that portion of the overall scale of utility which

varies across individu- 1s.!” Eo iivalently, o,, may be also described as a parameter that is inversely

6 See for example, . ggs e. « (1981), Hausman and Ruud (1987), Calfee and Winston (1998), Calfee et al.
(2001), McCabe et ¢ . (200v , Siikamaki and Layton (2007), Scarpa et al. (2011), Yoo and Doiron (2013), and
Oviedo and Yoo (201 ).

17Since any posi*~e m. _.onic transformation of the utilities preserves the rank order of the original utilities, the
random utility s secifica.’ »n (13) is observationally equivalent to un; = @;,;8 + €n;/on. The slight abuse of notation
refers to that £; m equati n (1) corresponds to &y;/0x, rather than €,; alone. Note that the presence of a parameter
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proportional to that portion of error variance which varies across individuals. Consis. nt estimation
of a parametric model requires the correct specification of both the joint dens’cy « € errors ,| X, and
the distribution of ¢,,. The GMS estimator allows both requirements to be . ! xed substantially.

Regardless of the depth of rankings observed (i.e., for every M such Jtat 1 < M < J —1),
the GMS estimator is consistent for the semiparametric model that acc~modates any form of
interpersonal heteroskedasticity via o,,. For verification, note that whew » ; = m;wﬂ and v, = ) . B
satisfy the inequality stated in Assumption 1, so does any positi- ¢ multipie of this pair, o, X vy,
and o, X v,. The GMS estimator, therefore, allows the empiricl t to be agnostic about the exact
distribution of ¢,. This is a desirable property because in uost studies, o, demands attention
only to the extent that it must be correctly specified for the ¢ >~ .ister t estimation of the preference
parameter vector (3.

The remainder of this section assumes the use of co. nlete ri nkings (M = J — 1). This allows
the semiparametric model to accommodate any model “at satisfies the pairwise zero conditional

median (ZCM) restriction, i.e.,
median(epy — €nj| Xyn) = 0 forany j,ke ", w.c.c j#k, (14)

which is then a necessary and sufficient condition “~r Assumption 1 as long as the distribution of
(enk — €nj)| Xy is a strictly increasing func -v.. ‘=< the proof in Section 2.2). In comparison, any
parametric model involves a much stronger set o, “estrictions affecting other moments too, since the
density of €,|X,, is specified in full de’ au.

The semiparametric model based ~n (14 offers considerable flexibility not only over possible
distributions of idiosyncratic error , bt ai.» over possible distributions of random coefficients. To
see this latter aspect, note that o..~ r.ay - 1ew €,, as composite errors comprising individual-specific
coefficients heterogeneity m,, (f \at has v.e same dimension as 8) and purely idiosyncratic errors €y,

(that has the same dimensiouw. as &,,' such that a typical entry in vector €, = X,n,, + €, is
Enj = :C;Ijr/n + €nj- (15)

Suppose now that ic osv.acre 1c errors €, satisfy the pairwise ZCM restriction, median(e,, —
€nj| Xpn) = 0for an~ k€] and the usual random coefficients modeling assumption, (n,,Le,)| Xy,
holds. Then, as lc1g as i1 lividual heterogeneity has ZCM, i.e., median(n,,|X,) = 0, the compos-

ite errors g, satisfy ' pairwise ZCM restriction in (14) too: differencing two composite errors

like o, does not affect an - of our earlier results because they do not rely on e,; having a standardized scale.
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results in a linear combination of conditionally independent random variables, (x,, - #n;)'n, and
(€nk — €nj), each of which has the conditional median of zero. Each element i . o nay be interpreted
as the median of a certain random preference coefficient whereas the corres, ~ «ding element in n,,
measures the individual-specific deviation around this median. In compariso. a parametric random
coefficients model places more rigid restrictions on the distribution of ind «*dual heterogeneity n,,,
because the density of n,,| X, needs be fully specified much as that o1 - ( X,.

It is easy to verify that the semiparametric model accommodat s the <lassic troika of parametric
random utility models, MNL (or ROL), nested MNL (or nested .’OL),  ad MNP (or ROP).!8 All
three models assume away interpersonal heteroskedasticity 'y setting o, = 1V n = 1,2,...; N,
and assume an idiosyncratic error density €,|X, that imp. > the pairwise ZCM condition. In
case of MNL, the idiosyncratic errors are 4.7.d. extreme valu. type 1 over alternatives and, as the
celebrated result of McFadden (1974) shows, differencii.> two e -ors results in a standard logistic
random variable that is symmetric around zero. The . ~stea WINL directly generalizes the MNL
model by specifying the joint density of ,|X,, as a _....uiized extreme value (GEV) distribution.
This distribution allows for a positive correlation betwec. £,; and €, in case alternatives j and k
belong to the same “nest” or pre-specified subset « f J waifferencing two GEV errors still results in
a logistic random variable that is symmetric . .~una zero, though it may not have the unit scale.
Finally, in its unrestricted form, the MNP mode. gei.eralizes the nested MNL model by specifying
the multivariate normal density e,|X, ~ 10, v .) that allows for heteroskedasticity of e,; over
alternatives j, and also for any sign of correlation between ¢,; and ¢,;. Differencing two zero-mean
multivariate normal variables results i'. a zer. -mean normal variable that is symmetric around zero.

Mixed MNL (or mixed ROL) mode.  har ¢ become the workhorse of empirical modeling in the
recent decade. The semiparametr ¢ m del accommodates the most popular variant of mixed logit

models, as well as their extensioas. . the context of error decomposition (15), a mixed MNL model

8 A major parametric alternatir : tu “hese three models is the heteroskedastic rank-ordered logit (HROL) model
of Hausman and Ruud (1987). Originali, introduced as an ad hoc specification to address mounting empirical
evidence against the ROL moc :l (1 ausman and Ruud, 1987), the HROL model has subsequently inspired several
other specifications that sharc ~imiar motivations (Ben-Akiva et al., 1992; Fok et al., 2012; Yoo and Doiron, 2013).
We do not consider the HR™'L m¢ ‘~l because it stands on its own behavioral foundation that is not shared by other
random utility models. In _ont" ast to the microeconomic interpretation of a ranking as a preference ordering based
on a single set of utility « -aw-, the AROL model equates a ranking observation with a collection of observations on
stage-by-stage choices that ha. ~ b en made as follows. In stage 1, the individual chooses the best out of J alternatives
based on a set of utili y draw~ and excludes it from further consideration; in stage 2, she chooses the best out of the
remaining J — 1 alte natives « ased on a new set of utility draws and eliminates it from further consideration too;
and she repeats this p» -~ess » atil stage J — 1 after which only one alternative is left for further consideration. In her
observed ranking .-, her m'"* best alternative corresponds to her choice in stage m. The hallmark of this framework
is that the indi- idual’s 1 eferences for alternatives change from one stage to another even when those alternatives
are available in a.' stages
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has idiosyncratic errors €,|X, as i.i.d. extreme value type 1 over alternati.es a. ' incorporates
a non-degenerate “mixing” distribution of random heterogeneity n,,|X,. W nil the mixing distri-
bution may take any parametric form, specifying n,,|X, ~ N(0,V,) is b, f.r the most popular
choice, so much so that the generic name “mixed logit” is often associated w. h this normal-mixture
logit model. Differencing the normal-mixture logit model’s composite rro:< ~esults in a linear com-
bination of conditionally independent zero-mean normal and standa. ' .ogistic random variables,
which has the conditional median of zero. Fiebig et al. (2010) a .gmen* tue normal-mixture logit
model with a log-normally distributed interpersonal heteroskedas. city ps -ameter o,,, and find that
the resulting Generalized Multinomial Logit model is capab’c of capturing the multimodality of
preferences. Because the semiparametric model allows for an - *.rm « f 0, it nests the Generalized
Multinomial Logit model too. Greene et al. (2006) extend .“e normal-mixture model in another
direction, by allowing the variance-covariance of randc.~ coeffic.ents, Var(n,|X,), to vary with
X . The semiparametric model nests their heterosked«. *ic nurmal-mixture logit model too, since
this type of generalization does not affect the condi’"__... ...cdian of n,,.

The semiparametric model also accommodates any fii. "= mixture of the aforementioned paramet-
ric models, and more generally that of all parameti. = 1 oaels satisfying the pairwise ZCM restriction.
In other words, it is allowed that the data gei . -ating process comprises different parametric mod-
els for different individuals.'® This flexibility ccmes from the fact that the GMS estimator does
not require the density of €,|X,, to be iden ‘cal across all individuals n = 1,2,..., N, as long as
each individual’s density of the error vector satisties the pairwise ZCM restriction. While the finite
mixture of parametric models approasa has . ot been applied to the analysis of multinomial choice
or rank-ordered choice data, it has mo.. 7ate . influential studies in the binomial choice analysis of
decision making under risk (Harr’son ind Rutstrom, 2009; Conte et al., 2011). The findings from
that literature unambiguously 1 gge. - the ¢ postulating only one parametric model for all individuals

may be an unduly restrictive .. 'mption.

3 The Smoothec G MS Estimator

The maximum score ‘MS, ty»e estimator is N 1/ 3_consistent, and its asymptotic distribution is
studied in Cavanagh (19,7 .nd Kim and Pollard (1990). Kim and Pollard have shown that N'1/3
times the centerec MS es imator converges in distribution to the random variable that maximizes

a certain Gaussian ~ror 38 for binomial choice data. Their general theorem can be applied to

9For exampli  the ne: ed MNL model may generate 1/3 of the population while the mixed MNL may generate
the rest.
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multinomial choice data and rank-ordered choice data too. However, the .esulu. o asymptotic
distribution is too complicated to be used for inference in empirical appliratic 1s. Delgado et al.
(2001) show that subsampling consistently estimates the asymptotic distribu. ~ . of the test statistic
of the MS estimator. However, subsampling inference is sensitive to the cho. e ot subsample size.?°
Moreover, the standard bootstrap is inconsistent for the MS estimato™ for »*nomial choice data, as
shown by Abrevaya and Huang (2005), and also for multinomial and ..~ z-ordered choice data.

In this section, we propose an estimator that complements .ne GMSb estimator by address-
ing these practical limitations, in return for making some additicnal sm othness assumptions. In
the context of Manski’s (1985) MS estimator for binomial chr.ce data, Horowitz (1992) develops a
smoothed maximum score (SMS) estimator that replaces indic ~+ .r fur ctions with smooth functions.
Yan (2013) applies this technique to derive a smoothed ver.'~n o1 Fox’s (2007) MS estimator for
multinomial choice data. We use the same approach to ¢ +ive a s noothed GMS (SGMS) estimator,
which offers similar benefits as its SMS predecessors. Spe “ficaiy, we show that the SGMS estimator
is consistent under the same set of assumptions as ''.. ZIl... estimator and has a rate of conver-

1/3

gence that is faster than N~"/° under extra smoothness ~onditions. Its asymptotic distribution is

multivariate-normal with a covariance matrix tha. ca’. vc consistently estimated from data.

3.1 The SGMS Estimator and its Asy.mp.otic Properties

In this section, we first derive the SGMS estin.. tor and state its consistency result in Theorem 3.
Then we summarize the results on its = '~ of convergence and asymptotic distribution, and state
the formal results on the limiting d'stributi n in Theorem 4. Theorem 5 establishes consistent
estimation of the parameters in thr limit.. = distribution of the SGMS estimator.

The objective function in (12 car be  ewritten as

N
Qvb) =N N iy <o) = 1k < mng)] - L@ b > 0) + L(rne < 1)} (16)

n=11<j k<’

by replacing 1(z;,; ;b > ") wiw. "1—1(z;,;;b > 0)]. The indicator function of b in (16) can be replaced
by a sufficiently smoot a1 fur.cticn K (-), where K (-) is analogous to a cumulative distribution function
(CDF). Application of th.. < .aoothing idea in Horowitz (1992) to the right-hand side of (16) yields
the SGMS estima; or

20The computationa:, ~~=* Lf subsampling is very high for the MS (or GMS) estimator because a global search
method is neede . to sol e the maximization problem for each subsample.
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b% € argmax Q%(b, hn), (17)
beB

where

N
Qb hN) =N > {[1(rny < o) = Lrnk < 7ng)] - K [, 536b/hy) + 1(rup < 7mj)} (18)
n=11<j<k<J

and {hy : N =1,2,...} is a sequence of strictly positive rea” nur' ~rs satisfying limy_.ochny = 0.
The next condition states the requirements on function K, for he consistency of the SGMS

estimator.

Condition 1. Let K(-) be a function on R such that.
(a) |K(v)| < C for some finite C € RL and all v € **; and
(b) limy——ooK(v) =0 and limy,— oo K(v) = 1.

Theorem 3. Let Assumptions 1-4 and Condw o, 1 1.old. The SGMS estimator b3, € B defined in

(17) converges almost surely to the true pre “~=emce narameter vector (3.

By Theorem 3, the consistency of the SGMS estimator holds under the same set of assumptions
as the GMS estimator, as long as th = smoc h function K(-) is properly chosen. Since any CDF
(e.g., the standard normal distribution. “mnc 1on) satisfies Condition 1, the SGMS estimator does
not require more assumptions to  chie ve strong consistency than the GMS estimator does.

Unlike consistency, extra assm, ion: on the distributions of the error terms and covariates are
required in order to derive the . ~vmptotic distribution of the SGMS estimator. Choosing a smooth
function K (-) that is at lea<t twice lifferentiable. Assume that the true parameter vector is an

interior point in the parar .ete' space, that is,
Assumption 5. ﬁ 18 .n ioterior point of B.

Then the objective fu..~t'on (18) of the SGMS estimator is a smooth function of b and we can

apply a Taylor ser es expe 1sion method to derive its asymptotic distribution.?' Let b%g denote the

21Unlike binor .. choice uata, which are generated by a single latent random utility function, multinomial choice
data and rank-c ‘dered c. oice data are generated by multiple latent random utility functions. Yan (2013) explains
the challenge of leriving the asymptotic distribution of the SMS estimator for multinomial choice data based on
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=S . .. .
first element of b3 and by denote the vector of its remaining elements. Recal, that .“e magnitude
of first element of 3 is normalized to be one (Assumption 2). By Theorem 3, /3, is a sign consistent

~.es to infinity. Since

(.

estimator for 31 and the probability P(b%1 — 1 = 0) converges to one as /v
b%l converges to the true parameter at a faster rate than the remaining .'~ments of the SGMS
estimator, we focus on the convergence rate and the asymptotic dis.ribr w..» of (l;i — ﬁ) in the
following analysis.

Roughly put, the fastest convergence rate of (IN)i—B) to zerois V=41 where d is the positive
integer that indicates the strength of the smoothness conditions 1. Assv aption 6 and Assumption
7(a) discussed later. When d = 1, the convergence rate of “ne S'MS estimator is N~/ and it
has an unknown limiting distribution, thus the SGMS estima... doe; not offer evident advantages
over the GMS estimator. When d > 2, the convergence rate " the SGMS estimator, by appropri-
ately choosing the smooth function K(-) and bandwidt.. hn (Condition 2 and Assumption 8), is
N~—4/(d+1) "and the asymptotic distribution of the SGM. ~stimator is multivariate normal, making
statistical inference straightforward. In other worde, ' oraer to have the asymptotic normality of
the SGMS estimator, we require the conditional nrobabi.'y of ranking comparison in (5) to be at
least twice differentiable with respect to the syste me.ic utility. A larger integer d corresponds to
stronger smoothness conditions. Therefore, a . ', er . vte of convergence of the SGMS estimator is
achieved at the cost of making stronger smoonthne. s assumptions on the conditional distributions of
the error terms and the continuous explanato:, variable. For inferential purposes, we assume d > 2
and treat it as a given/known parameter 22

To facilitate a formal statement o’ the as, umptions required for deriving the asymptotic distri-
bution of the SGMS estimator, we ‘ntro. “cr a series of extra notations first. Recall that v; = w;ﬁ
represents the systematic utility c. ch osirg alternative j € J. Denote v = (vy,...,v5_1,v5) € R7.
There is a one-to-one correspon ience ~e’ ween X and (v, X) for fixed 8, where X = (&,,...,&;) €

R7*(@=1) " Define vector ¢; =. (- ..,1) € R7. For any alternative j € J, let vector v_; be the

the properties of Horowitz’s (1" 92, binomial SMS estimator. Since rank-ordered choice data are generated by the
same multiple utility functior as r .altinomial choice data, deriving its asymptotic distribution is a straightforward
extension of the multinomia! SM. estimator in Yan (2013). The sketch for deriving the asymptotic distribution of
the SGMS estimator is inc’ uded in Supplementary Material.

22Following the notatic < sv ama- .zed at the end of Introduction, let KV (-) denote the first derivative of K(-). As
we will point out shortly, K /) “1 our analysis is analogous to a d*® order kernel in kernel density estimation. If a
faster convergence rat 1s desived, the researcher may assume a larger d and choose K (-) that gives the corresponding
higher order kernel ¥ ((.), ke ping in mind that this gain in the convergence rate is at the cost of making stronger
smoothness assumptio. . In r aur Monte Carlo experiments, we find that assuming d = 2 allows the SGMS estimator
to perform signifi aucly better than the GMS estimator in terms of achieving smaller mean square error under various
error distributic s.
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difference: v — vt ;. For example, when 1 < j < J,
1 J
'U_j:(’Ul—vj,...,’Uj_l—Uj,0,Uj+1—vj,...,1}]—vj) € R”.

In words, v_; is computed by subtracting the systematic utility of alter ... ive 7 Zrom the raw vector
of systematic utilities. For any pair of alternatives j, k € J, define v_ -+ = v, —v; and v_;, as the

vector that consists of all elements of v_; excluding v_; . For exe- ple, when 1 < j <k < J,

V_jr = (V1 — V), .., Uke1 — Uj, Ukl — Vs - -+, UJ —vj)’ eRrR’ !
If J > 2, for any three different alternatives j,k,l € J, definc v_; ;- as the vector that consists of

all of the elements of v_; excluding v_;; and v_;;. For exam,'», when 1 < j <k <[l < J,
V_ip = (v1 —v; — V. — v _ — v — Y e R72
ikl = (V1 = Vjy o V1 — Uj, Ul — Vjy oo, V1 = Vj, U4 — Uy ..., U] — ;) € )

If J > 3, for any four different alternatives j, k,l,m € [ define vy ,,) as the vector that consists
of all of the elements of v excluding {vg, vy, }. Thive 1 « sne-to-one correspondence between v and
(Vjk» Vims Vgt my)-

Let pjx(v—jx|0—jx, X) denote the conditiona’ ac. sity of v_; given (9_;x, X). For any integer

1 > 0, define the derivatives

P gkl X) = Opy(vjy o, X) /0w k),
whenever they exist. Denote pE(I)C) (’U j,k|"~’—j,h, X) = pjk(v—j,k“)—j,ka X) Let pjkl(v—j,ka U—j,l|7~)—j,kla X)
denote the joint density of (v_;x, = + ) co.ditional on (9_; i, X), and pjgim (Vjks Vim0 k,m} X) de-
note the joint density of (vjx,? »,) cond cional on (13{k7m},)~().
Given any pair of alternctives ' k € J, there is a one-to-one correspondence between X and

(v—jk,U—ji, X) for fixed » € B. The probability for each individual to rank alternative j over

alternative k depends on .~ _ovariates matrix X, or equivalently, (v_;x, ¥—;, X). Define
ij(’l}_]"k, '{7—]',19, {7\ r— P\T’j < rk|v—j,k:) fJ_j’k, X) (19)
and

Fir(v_j ,0_jx X) = P(rj < rg|v_ji, ®—jx, X) — P(re < rj|v_jp 0_jp, X). (20)
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Next, for any integer ¢ > 0, define the following derivatives

F](I’i) (/U*]}ka {)*j,/w X) = 8iF’jk(U*j,k7 i’*j,kv X)/a(vfj,k)a
whenever the derivatives exist. Likewise, define the scalar constants k. «. 4 kq, respectively, by
o0 o0
kg = / KW (v)dv and kq = / (KM (1)) 2dv,

whenever these quantities exist.

Finally, define the ¢ — 1 vector a, and the (¢ — 1) X (¢ — ) o .u es @ and H as follows:

d
1 _ (i N < —8) - <\~
a = Z kdz m FE |:Fj(k)(0,’l],j7k, X)pfd )(O‘U, j ks X).’If]ki| s (21)
1<j<k<J =1 ’

Q= Z 2kaFE [ij(o,f),jyk,k)pjk(mf' . i)lgkfk;k}, (22)
1<j<k<J
and
_ 1 R - . o
H= Y E[FP0.0 50 X)pp(0lo-, . X)@5al] (23)
1<j<k<J

whenever these quantities exist.
Now, we turn to the formal de cripiion of the smoothness conditions on the distributions of the

error terms and the continuous co. - .ate

Assumption 6. For any pa’ o) stinct alternatives j,k € J, any integer ¢ such that 1 <1 < d, all

v_j 1 in a neighborhood of C ulmost every (0_; 1, X), and some finite constant C, F;,? (Ve Dk, X)

erists and is a continuous " :tion of v_; . satisfying \Fj(;) (V—j ks V—j s 5()] <C.

By definition (20) fur ctio Fj(-) can be derived from the conditional distribution of the er-
ror terms. Assumption ¢ ‘v essence imposes the differentiability requirement on the conditional
distribution funct >n of t. e error vector € with respect to systematic utilities. Further elaboration
on the latter point . ~ine .[lustrative examples can be downloaded from the corresponding author’s

website.23

Zhttps:/ /sites.y ~ogle om/site/yanjin2011/research-2
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Assumption 7. The following statements on the covariates are true.

(a) For any pair of distinct alternatives j,k € J, each integer i such that L <i < d—1, all v_j;}, in
a neighborhood of 0, almost every ('b,j,k,j(), and some finite constu. * C, kjlk) (v,j,k|f),j,k,j()
exists and is a continuous function of v_j . satisfying ]pglk) (v—jrloye X)| < C. In addition,

for all v_j, and almost every (¥_jx, X), |pjr(v_j1®_jp X)| < O

(b) If J > 3, then for any three distinct alternatives j,k,l € J, all "v_jx,v_;;), almost every
(f)_j’kl,j(), and some finite constant C, pjp(v—_jx, V—ji|0—j k. X) < C.

(c) If J > 4, then for any four distinct alternatives j, k," » € , all (vjr,vm), almost every
(fj{k,m},j(), and some finite constant C, pjklm(vjk,vlm:“rk,m},f() < C.

(d) The components of matrices X, vec(X Yvec(X)', anu vec( {)vec(X ) vec(X )vee(X)' have fi-

nite first absolute moments.

In addition to the continuity requirement imposed by :.3sumption 3(a), Assumption 7(a) further
requires that the conditional probability density . tion of the first explanatory variable, xjj 1,
given other explanatory variables is (d—1) timc . 'iffer ntiable, or equivalently, the conditional CDF
of the first explanatory variable, xj; 1, given othe. explanatory variables is d times differentiable.

Given the smoothness parameter d in Ass. »ption 6 and Assumption 7(a), the smooth function
K () is chosen in a way such that its first derivative, K()(-), is analogous to a d** order kernel in
kernel density estimation. Condition . lists t. e requirements on the smooth function in addition to

Condition 1.24

Condition 2. The following stai. ~ nts bout K(-) are true.

(a) K(v) is twice different abi. for v € R, |[K(D(v)| and |K@ (v)| are uniformly bounded, and
the integrals [*°_[KM' 2dv, |20 [KM (v)]4dv, [*2 v*K®)(v)|dv, and [ [K®)(v)]2dv are

)
finite.

(b) For some intege: d > 2, [ [ KW (v)|dv < 0o and kg € (0,00). For any integer i such that
1 <i<d, integrai. [ [0' KW (v)|dv < 0o and [ v KW (v)dv = 0.

24These extra requ -ements, stated in Condition 2, on the smooth function K (+) are similar to those in Assumption
7 of Horowitz (1992).
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(¢) For any integer i such that 0 < i < d, any n > 0, and any positive seque.ice {.. '+ converging
to 0,

lim hy' |5 (v)juv = 0.
N—o0 |hyv|>

lim hé\,d/ WKW (v)|dv =0 and
| v>n

N—o0

Assumption 8. (logN)/(Nh};) — 0 as N — oo, where {hn} is a str. *ly positive sequence con-

verging to 0.
Assumption 9. The matriz H, defined by (23), is negative ' "nite.

Assumptions 6-8, together with Condition 2, are analogous vo tv sical assumptions made in the
kernel density estimation. A higher convergence rate of the SGI1S estimator can be achieved using
a higher order kernel K(M(-) when the required derivative. of F( ) and p(-) exist. The matrix H in

Assumption 9 is analogous to the Hessian information ma -ix in the quasi-MLE.

Theorem 4. Let Assumptions 1-9 and Conditions 1-. hold for some integer d > 2, and let {b%}
be a sequence of solutions to problem (17). If Nb = " Nas N — oo, where \ € [0,00), then

(Nhx) 2By — B) = MVN (-\V2H 7 7 H ),

and if Nh2*! — 00 as N — oo, then (hN)’d(b; -B8) % —H la.

Theorem 4 implies that given a ¢ noothi =ss condition (where the strength of the smoothness
condition is governed by integer d), the SG VIS estimator centered by the true parameter vector,
l;i — B3, converges in distributic 1 tc a rormal vector at the rate of (Nhy)~'/2 by choosing a
bandwidth hy at the rate eque’ to o fo ter than N~/ When the bandwidth hy converges

to zero at the rate of N—1/(2d

‘i.e., Nh?\‘,i+1 converges to a strictly positive real number )), the
convergence rate of the cent -od SGMS estimator is (Nhy)~ /2 = N=4(2d+1) which is the fastest
rate of convergence as ex «ain .d below.

In the case of unde -smov "ing (i.e., Nh?\‘,JZH converges to zero), bandwidth hy goes to zero
at a rate faster than v—' 2¥t") and the centered SGMS estimator converges in distribution to a
zero-mean normal v~-tor . *.ce A = 0) at the rate of (Nhy)~/2, which is slower than the rate of
N=4Qd+1) hecaus » N~ D /(Nhy)~1/2 = (NRITT)1/(4442) goes to zero as N goes to infinity.?

In the case of over-. =~ Lhing (i.e., Nh?\?l‘H diverges to infinity), bandwidth hy goes to zero at a

%51n certain a plicatior 3, under-smoothing may be a more straightforward way to implement statistical inference
because it does n. ' rear e bias-correction, which is discussed in Section 3.2.
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rate slower than N~%/(4+1) and the centered SGMS estimator converges in proba. ‘lity to a bias
term at the rate of h%,, which is also slower than the rate of N~ (4+1) becav e ; —4/(2d+1) /()4 =
(N R =d/2d+1) goes to zero as N goes to infinity.

To make the results of Theorem 4 useful in statistical inferences, it .. necessary to be able
to estimate the parameters, a, €2, and H, in the limiting distribu’ion ~¢ the SGMS estimator

consistently from observations of (r, X). The next theorem shows how. *.iis can be done.

Theorem 5. Let Assumptions 1-9 and Conditions 1-2 hold for ome in eger d > 2 and vector b%

be a consistent estimator based on hy oc N~V Lep pr. o M—8 2d+1)

5 €(0,1). Then

, where real number

P
(a) any — a, where vector

N
an=(ha) N D [Lrng < k) — U < 1) ] KO (2,53 /B8) (Znjr/hN);
n=11<j<k<J

N
(b) Qn & Q, where matriz Qy = (hN/N): s AN )t (BY, hiy)' and vector

n=1

th(b, hN) = Z [1(rn]~ <Tpk) - 1(Tnk < Tn]‘)] K(l) (w%jkb/h]v) (i’njk/h]\]),
1<j<k<J

forbeBandn=1,..., N,
(¢) and Hy (b3, hy) 2 H, wh re 7 .atrz

Hyb%,hy) = (NI S [1rny < k) = 10 < )] K@) (2,103 /) Enjily -
C=l1<<k<J

3.2 Implementatirn S.>gestions
3.2.1 Asymptotic i'.s Correction

Theorem 4 has all ywed u. to state earlier that the fastest convergence rate of the SGMS estimator
centered at the truc narar .eter vector is N~%(24+1) which can be achieved by choosing a bandwidth
hy at the rate of N=1/(2¢+1) under particular smoothness conditions (indicated by integer d). Nei-
ther under-sm. othine (i.e., Nh2+ — 0) nor over-smoothing (i.e., Nh2¢™ — 00) can achieve this



26

fastest rate. For any real number X € (0, 00), choosing the bandwidth such tha. anﬂ — A allows

the centered SGMS estimator to achieve this fastest rate. The asymptotic bi's 0. IV d/ (2d+1)( -B)
is —\% (441 H=1q when using bandwidth hy = (A/N)Y 2D 1t follows “,m Theorem 5 that

this bias term can be estimated consistently by —A% 4D H \ (b3, hy) ", Therefore, define

~bc ~S 1A
by = by + (\/N)YCHDH (b3, hy) tan (24)

as the bias-corrected SGMS estimator.

3.2.2 Choice of Bandwidth

Using bandwidth hy = (A\/N)Y/(24+1) (where A is a strictly | -itive real number) allows the SGMS

estimator centered at the true parameter vector to acl’'~ve the fastest rate of convergence given
certain smoothness conditions. Next we discuss the cho. = or wue positive parameter \.

Let W be any nonstochastic positive semidefinit- ..., ach that ’H_1WH_ a # 0. Denote

FE 4 as the expectation with respect to the asyrnptotlc . ribution of N/ (Qd“)( B) and define

the mean square error (MSE) as EA[(bN —B) VI ’N — B)]. By the cyclic property of trace,
A[(bN — ,@)’W(bN -08)] = trace{WEA[(bN é)(LSV — B)']}. Theorem 4 implies that

EA[(i)i —B)(Bi _B)] = N2/ 2+t i« V) frlo -l 4 224/ Q4D fr-lg o/ FEY
Therefore, we calculate

MSE — N~24/Qd+D 0o (W BT <\ 1/(2d+1)9+/\2d/(2d+1)aa/) H*l} ‘
From the first order condition, ve su.~ hat MSFE is minimized by setting A to be

N = [trace WH 1QH Y]/ |t ace(2dW H tad H )],

or equivalently, \* = [trace, *H W H1)]/(2da’ H'W H~'a) by the cyclic property of trace.
In this case Nd/(Qd“)/Ji - B) converges to MV N (—(X*)¥/CdHDH1q, (\*)~V/CHDF-IQH )
in distribution.

The optimal » deriv d here can be consistently estimated by Theorem 5 and the continuous
mapping theorem. Thereore, one possible way of choosing bandwidth is to set hy = (5\ [N/ (2d+1),
where )\ is a ¢nsistent estimator for \*. Specifically, the choice of bandwidth can be implemented

by taking the "llowir g steps given integer d > 2, i.e., the smoothness conditions.
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Step 1. Choose a bandwidth hy o< N~%(24+1) and another bandwidth ;.5 o V~9/(2d+1) for
5 €(0,1).

Step 2. Compute the SGMS estimator b% using hy. Use b% and hj to v » .pute vector ay and
use b% and hy to compute matrices QN and HN(b%, hn) as Theorem 5 s. oests.

Step 3. Estimate A\* by

trace [QNHN(b%,hN)*IWHN(b]SV,hN)*l}
[2da/ H N (b3, hn) "W H n (b3, hy) tan]

An = (25)

Step 4. Calculate the estimated bandwidth hg = (Ay/N 1/ 4

Step 5. Compute the SGMS estimator using the estima.~d be~ .width h%;.

Note that the approach described by steps 1-5 is enalogou. to the plug-in method of kernel
density estimation. As usual in the application of tl.~ plu,_ . method, the choice of the initial
bandwidth Ay and parameter § would require some exnlara “9n, because the estimated bandwidth
h$ may be sensitive to that choice. In our Monte =rlo experiments in the next section, the

=

bandwidth has been initialized by setting Ay = - ~d d = 0.1.

3.2.3 Small-Sample Correction

We describe a method, proposed by Horowi.. (19v2), to remove part of the finite sample bias of

an. A Taylor series expansion of ay — a around B yields
~ * 0\ — * 1 - * * 7S P
an —a = [(h3) (B, hiy) =« + (Py) " H (b, hiy) by — B) (26)

with probability approaching one .~ N <oes to infinity, where b} is a vector between b% and (3.
The right-hand side of (26) sk ws that che finite sample bias of ay has two components. The first
component, (b)) %n (8, ki) — a, 1.3 a non-zero mean due to the use of a non-zero bandwidth k%
to estimate a. The seconc cor ponent, (k%) 9H y(by, *N)(f)i — ), has a non-zero mean due to
the use of an estimate of the rue parameter vector 3 in estimating a.

The bias correctior. me hod described here is aimed at removing the second component of bias
by order N~(1=0)d/(2d+ " N e that the second component of the right-hand side of (26) can be

written as

B _ ~1/ . .
() F wibi i) By — B) = [N (150 H (b, h3) (V) (B — B).
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The probability limit of H 5 (by, h}y) is H by Lemmas 7-8 in Supplementary Maceriai, nd (NhN)l/Q(INJJSV—
B) converges in distribution to MVN(=A/2H 'a, H'QH™"') by Theore n 4 Therefore,

1" (i)~ b 1) (B3 — )

| Nhy ()

converges in distribution to MV N(—\2a, Q).
Based on the above analysis, we treat G as an estimator of {1 - [Nh~(1.5)%%~1/2A\/2}a rather

than that of a. Thus, the bias-corrected estimator of vector a is

as = ay/ {1 - [xlNhN(h}*V)Qd] 1/2} , (27)

which is applied as the estimator of @ in our Monte Car'n exper nents.

4 Monte Carlo Experiments

In this section, we use Monte Carlo simulation res "Its .o .cudy finite-sample properties of the GMS
estimator by and the SGMS estimator b%. W cons der six data generating processes (DGPs). In

each DGP, individual n’s utility from alternative 17, . 5, is specified as
Unj = Znj1Y1 + Znj2Yn2 + o +epj forn="1,2,..., N and j = 1,2,3,4. (28)

Each DGP is used to simulate two s s of 10 )0 random samples of N individuals, where N = 500
in the first set and 1000 in the secr ad set.

In all DGPs, the intercept ve *or .s o = (a1, a2, a3,a4) = (0,0.25,0.5,0.75)". The first prefer-
ence parameter 7y, is a determir stic co. “.icient and takes the value of one for all individuals: v; = 1.
In DGPs 1-4, the second pre eren. ~ parameter 7,2 is also a deterministic coefficient and takes the
value of one for all individ uaw © Y2 = 2 = 1 for all n. In DGPs 5-6, however, =, is a random
coefficient that varies acrc.~ "adividuals, and each individual’s coefficient value is a random draw
from distribution N(1 1): Yp2 — 72 + 7n, where 72 = 1 and 7, is distributed as N(0,1).26 Each

1

DGP specifies its own ‘i< rib’ cion of error terms €,;: we provide more details below.2”

%6In random coeffi tents . vdels, we are often interested in discovering a certain central tendency of the ran-
dom preference coeft -ient, su h as its mean or its median. The mixed logit estimator will consistently estimate
E(+yn2) under correct 1. ~~m .ric specifications and the proposed semiparametric estimators can consistently esti-
mate median(vy, .) unde~ Assumptions 1-4. For the simplicity of demonstration, we choose vyn2 ~ N(1,1) such that
E(vyn2) = media 1(yn2) = L.

2"In all DGPs, = ger rate €,; with variance equal to 72/6, subject to rounding errors.
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The econometrician observes a utility-based ranking r,, of J = 4 alterna.uves .. T, as well as
attributes z,;1 and z,;2 for j =1,...,4andn =1, ..., N.?8 Asusual, the dep n ¢ observed rankings
influences the finite sample precision of an estimator; and in the contexy ~ our semparametric
estimators, it also influences the degree of flexibility that semiparametric n. dels offer. Recall that
when the complete rankings (M = J — 1 = 3) are observed and t iere *~ at least one variable
satisfying Assumption 3 such as z,;1 and z,;2 in our DGPs, the sew. '+ arametric model nests all
popular parametric models as special cases; when only partial -ankin~s (M < 3) are available,
this is not the case because the semiparametric model cannot ccomp odate alternative-specific
heteroekedasticity and flexible correlation patterns. We wil’ vneretore explore the finite sample
behavior of the estimators at three depth levels: M = 1 whern ~ .y tl 2 best alternative is observed,
M = 2 when the best and second alternatives are observed, a. 1 m = 3 when the complete ranking
is observed. In all DGPs, observed attribute z,;; is . randor . draw from N(0,2) and z,;,2 is
generated as a ratio of two different uniform draws: specficany, znj2 = @nj/wn where gy,; is drawn
from U(0,3) and wy, is drawn from U(%, 5).2% Note ‘..l ;. and g,; vary across both individuals
and alternatives, whereas w,, varies only across individua.. All three distributions that generate the
observed attributes are independent of one anothe * 2 «a w.i.d. across the subscripted dimension(s).

For comparison with our GMS and SGM. @ estii. ates, we also compute maximum likelihood
estimates using three popular parametric models su.imarized in Section 2.3, namely rank-ordered
logit (ROL), rank-ordered probit (ROP), ana uxeu ROL (MROL). We do not estimate the nested
ROL model, primarily because our analysis already includes the ROP model which is a more flexible
parametric method to incorporate cor elatea ~rrors. In case of ROP and MROL, we opt to place no
constraint on the variance-covariance p. ame .ers of the underlying multivariate normal densities.3°
This allows us to compare our sem’par- metric methods with both restrictive (ROL) and very flexible
(ROP and MROL) parametric met.. s.

In all estimation runs, wr .~t a; = 0 for location normalization. Following the notation in

%8Here we use a relatively sr " choice set mainly because the probit and the mixed logit specifications yield
objective functions that requi' : mv tivariate integration, and consequently a considerable amount of computation
time. The computation time . *' e GMS and SGMS estimators per se is affordable even if the choice set is very
large, e.g., J =100 in Yan 2013).

29This pair of uniform d’ strib .tions ensures that the second observed attribute has approximately the same variance
as the first attribute, i.e., "~ (qn; wy) = 1.9882 ~ 2.

300ur ROP specifice* 1 requ. s estimating five utility index parameters (71, 2, a2, o and ay) and five identified
variance-covariance 1 wamete. * of pairwise error differences. Our MROL specification assumes that both slope coef-
ficients are random a. 4 bivari .te normal: we estimate two mean coefficients (y1 and ~2), three variance-covariance
parameters of thei= biva.” '_ normal density, and three alternative-specific intercepts (c2, as and a4). The ROP
(MROL) model .as bec - estimated in Stata using command -asroprobit- (-mixlogit-); the likelihood function has
been simulated . v taking 200 pseudo-random draws from Hammersley (Halton) sequences.
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section 2, let 81 =1 and B = (72, 2, a3, g)’. Our discussion focuses on scaled pa. “meter vector,
,@/ (1, which is identified in both parametric and semiparametric models. In “he discrete choice
analysis of individual preferences, the main parameter of interest often ta..>< the form of a ratio
between coefficients on non-price and price attributes; this type of ratio .. known as, inter alia,
equivalent prices (Hausman and Ruud, 1987), implicit prices (Calfee ¢ ar °001), and willingness-
to-pay (Small et al., 2005). In parametric models, we normalize the sc ! of the error terms in the
usual manner to estimate (ﬁl,ﬁ,)’, and then use the results to .erive estimated counterparts to
B/B1. In semiparametric models, we normalize |3;] = 1 and est1 nate B3 together with the sign of
B1, and then compute the estimate of the ratio of interest B/ ogn( ).t

Since the GMS estimator entails maximizing a sum of s ~ funs tions, we use a global search
method to compute the GMS estimates: specifically the di. renual evolution algorithm of Storn
and Price (1997), which was also Fox’s (2007) preferred . ~ethod *br computing his multinomial MS
estimates. As to the SGMS estimator, we assume d = 2 (wiuch is the minimum requirement on
smoothness conditions for its asymptotic normality) ... lL....ement a particular version which uses
the standard normal distribution function as the smoot.. function K (-).>? The resulting objective
function is differentiable, and can be maximized b, st'.rung any of usual gradient-based algorithms
from a set of initial search points. The bandw '*h he ~ been initialized by setting hy = N~V/® and
0 = 0.1, and optimized subsequently by applying the five steps described in Section 3.2.2 using an
identity matrix as the weight matrix W.

Table 1 summarizes the true distribution of the error terms in each DGP and whether particular
methods can estimate ﬁ/,@l consister ty. 11> summary presents a strong case for the importance
of considering semiparametric methoas “r -ank-ordered choice data: the GMS/SGMS estimator
using complete rankings is the o .ly 7iethod that remains consistent throughout all DGPs. The
GMS/SGMS estimator using pe~tia. “an’ ings is consistent when the error terms are homoskedastic
(DGPs 1-2) or heteroskedastic « ross individuals (DGP 3), but becomes inconsistent in the presence
of alternative-specific heterockedastic.ty (DGP 4) and/or random coefficients (DGPs 5-6). As usual,
a parametric method is consiccent only when the DGP happens to coincide with the postulated
parametric model itself or its mecial cases.

Tables 2 through 7 rep rt t"e bias and root mean square error (RMSE) of each method (in Table
1) using 1,000 samples o1 iz N simulated from DGPs 1 through 6. The last column of each table

31The estimator of -he sign f $;will converge at a much faster rate than the estimators for other parameters such
that there is no need 1. anal~ _e the finite-sample property of the sign estimator.

32We follow al’ wne implementation suggestions in Section 3.2 in computing the SGMS estimator, by conducting
bias-correction, sing the plug-in method to choose the bandwidth, and making a small sample correction.



31

reports the empirical coverage probability (CP) of the asymptotic 95% confiuence terval of the
SGMS estimator. While all reported estimation results are for scaled param ter , 8 /B1, henceforth
we will not stress division by 81 = 7; explicitly for the simplicity of notatio.. = 1d discussion.

We first focus on the slope coefficient 2, the results for which vary mc. ~ wiuely across DGPs
and estimators. The GMS estimator using complete rankings (i.e., M/ = ' is consistent under all
six DGPs, and displays a small finite sample bias, which is less thaw. 2 /4 of the coefficient’s true
value in DGPs 1 and 2, and 1% in DGPs 3 through 6. In additio’ ., the ~stimator’s RMSE declines
noticeably in all DGPs as the sample size grows from N = 500 o N = 1000, suggesting that its
finite sample distribution becomes tighter around the coefficie v s true value. The potential benefit
of using complete rankings in semiparametric estimation appe = con' iderable. The GMS estimator
using partial rankings (M =1 or M = 2) is consistent under ™Grs 1,2 and 3 but not under DGPs
4, 5 and 6. While the partial rankings estimator still dic 'ays a s nall bias under DGPs 1, 2 and 3,
it can be subject to a bias that is about 22% (at M = 1, ~r &,0 (at M = 2) in DGP 4, and 14% (at
M =1) or 5% (at M = 2) in DGP 6; the complete » _".I.... <stimator’s (M = 3) bias is practically
zero in both DGPs. Comparisons of the SGMS estimato. ~cross alternative depth levels and sample
sizes lead to similar conclusions, though each SG 1S csumator tends to display a larger bias and
a smaller RMSE than its GMS counterpart, ti = expe “ted trade-offs from using a smoothing kernel
to construct a surrogate objective function. For "Gy s 1, 2, and 5, at least one parametric method
allows consistent maximum likelihood estime *on. cChe results suggest that the efficiency gains (as
measured by the reduction in RMSE) that a consistent SGMS estimator offers over a consistent
GMS estimator are comparable to w'.at a ( nsistent parametric estimator offers over the SGMS
estimator itself.

The results for 2 in DGPs 3. 4, 2 1d 6 present particularly interesting examples of the benefit
from using our semiparametric rieti. 1s. Jnder each of these DGPs, none of the popular parametric
methods is consistent but arg .. bly at least one of the parametric methods postulates an approx-
imately correct model. We ~bserve, nevertheless, that even an approximately correct parametric
method may display a siz able pias. In DGP 3, for instance, ROP is a correct specification apart
from its failure to capt .re m.~rpersonal heteroskedasticity; yet, the ROP estimator’s bias ranges
from 37% to 45% of tie t ue r arameter value. In DGP 4 and DGP 6, there is alternative-specific
heteroskedasticity inducec. -« a normal error component which multiplies the second attribute z,,; 2;
MROL can readil; absori this component into the normal random coefficient on z,; 2, and is there-
fore a correct speci.~atic 1 apart from its inclusion of a redundant extreme value error component.
While the MF OL est mator’s bias is indeed small when only the best alternative indicator is used in

estimation (M =1). he bias becomes amplified as deeper ranking information is used and exceeds
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13% with the use of complete rankings (M = 3).

While the results pertaining to the strong consistency of the GMS and S .M. estimators appear
reassuring, the results pertaining to the asymptotic normal distribution o t1e SGMS estimator
sound a cautionary note. The asymptotic 95% confidence intervals for 2 .. >ve empirical coverage
probabilities ranging from 88% to 91% when N = 500, and 89% tc 92" ~vhen N = 1000, even
when one confines attention to those SGMS estimators that are cons. * mt under a given DGP.33
It appears that for the asymptotic approximation to work well, ne mwst consider larger sample
sizes than what we have examined. For the SMS estimator of L nomia choice models, Horowitz
(1992) finds an even larger amount of distortion in samples . .V = 500, which does not improve
considerably in larger samples of N = 1000, though makin, *:ad-f5-head comparisons with our
results is difficult given the use of different DGPs. His subse. eny work (Horowitz, 2002) provides
a bootstrapping procedure that removes the empirical '“stortio . almost entirely. Our conjecture
is that the use of bootstrapping will bring about simila.’:” saustactory improvement in the present
context too. In our view, verification of this con’ _.... ..ay be best addressed in a dedicated
study, for both theoretical and computational reasons. ¢ > the theoretical side, one should formally
extend Horowitz’s (2002) bootstrapping method "r .ne SMS estimator to the SGMS estimator,
and verify the validity of the resulting method n t. = computational side, we note that obtaining
the current set of simulation results for the casc ot N = 1000 and M = 3 under one DGP took
an average of 10 hours on a powerful workst«“on; ubtaining reliable bootstrapping results involves
repeating this type of computing task over several hundred times per each triple of N, M and DGP.3
Exploring the performance of bootst  apping across alternative DGPs, sample size configurations
and preference depths is likely to requi = sev ral months of computer time, even when one exploits
parallel computing.

For the alternative-specific ‘1te. ~ote (g, as, and ag), all parametric and semiparametric es-
timators display practically s .."! biases, even under those DGPs where the estimators in question
are inconsistent. We are not aware of any formal explanation for this general robustness, though
it appears intuitively plav able chat estimating the fixed part of every individual’s utility (intercept

vector a) is an easier task in ¢. mparison to estimating the marginal utility weight on an explanatory

33 As summarized in Tc “le *, the 3GMS estimators using partial rankings are not consistent under DGPs 4-6. In
these cases, the coverage brown. Ml 1es of the asymptotic 95% confidence intervals are not informative about how well
asymptotic properties nave ylayed out. While the coverage probabilities are sometimes widely off the mark under
DGP 4 and DGP 6 vhen M < 3, those results are not alarming considering that the underlying estimators are
inconsistent.

34We compute .ne SGMS estimates using Matlab 2018a for 64-bit Windows on a machine with a 3.6 GHz Intel
Xeon CPU E3-1:71 and . 16GB RAM.
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variable that varies across alternatives and individuals (72 on zp;2). The resuits a. > suggest that
the asymptotic normal distribution of the SGMS estimator provides a bette ap >roximation to the
finite sample distribution of the intercept estimator than that of the slope co. F cient estimator. For
each intercept «; for j = 2,3, 4, the empirical coverage probability of the c.~fidence interval often
comes fairly close to the nominal 95% level.

The Monte Carlo experiments were primarily designed to study tu. * coperties of our semipara-

J

metric methods, but the results provide a fresh perspective on ’ae debate over the reliability of
rank-ordered choice data. Based on the intuitively convincing pr«uise t} at ranking is a more cog-
nitively demanding task than making a choice, some research  cs contend that in case a parametric
method produces different estimates depending on whether ¢ ~*. on irst preferences (M = 1) and
deeper rankings (2 < M < J — 1) are used, the econometric.. » suould opt for M =1 since deeper
ranking information may have been compromised by fac'~rs suc! as decision heuristics: see Chap-
man and Staelin (1982) and Ben-Akiva et al. (1992) for e in..uential proponents of this view. The
results in DGPs 3 through 6, however, caution again ' ._.....g che reliability of data via comparisons
of parametric estimates across alternative levels of M. S1.-e inconsistent parametric estimators may
not be equally biased at all levels of M, they may ro‘.uce estimates that vary across M even when
the reliability of data is beyond any doubt as . . our . ‘mulated samples.

Recall that as Assumption 3(a) in Section 2.. sta.es, for point identification of parameters, our
semiparametric methods requires the presen.~ o1 a continuous covariate with large support such
as 2zpj1 in the Monte Carlo DGPs. In comparison, parametric methods do not require such a
covariate. When Assumption 3(a) fail ., ther. may be a set of parameter vectors that maximize the
probability limit of the GMS objective “c’.on, instead of a unique parameter vector. Though a
detailed theoretical analysis of suc’1 pe tial or set identification is beyond the scope of our paper, we
have conducted another Monte “ar.. stv iy to develop more insight into the practical consequences
of point identification failure .-ing variants of DGP 3 that replace z,;1 and z,;2 with bounded
discrete covariates.?> A summary ot vie results can be downloaded from the corresponding author’s
website.?6 We observe th .t th: GMS estimates of the slope parameter v, vary over intervals that
are narrow relative to th 2 coe.” ~ient’s true value as well as RMSEs in Table 4, but those of intercept
ajs vary over much w'der atervals. Considering the robustness of the parametric estimators of a;s

noted earlier, it aprears .»», the complementary use of parametric and semiparametric methods

3%We use DGP 3 :or illustr tion because it incorporates interpersonal heteroskedasticity (while DGPs 1-2 have
homoskedastic errors) =nd tk . GMS estimator is consistent across all levels of rankings M under DGP 3 but not
DGPs 4-6.

36https://site google.c m/site/yanjin2011/research-2
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could be a useful strategy when Assumption 3(a) is violated. The results a.so p.™t to another
potential benefit of using complete rankings in semiparametric estimatior, a' intervals become

tighter as the depth of ranking increases from M = 1 through M = 3.

5 Conclusions

To collect more preference information from a given sample of inc.viduels, multinomial choice sur-
veys can be readily modified to elicit rank-ordered choices. All pa.ametrir methods for multinomial
choices have their rank-ordered choice counterparts that expl .u the extra information to estimate
the underlying random utility model more efficiently. But sen.'" cam: tric methods for rank-ordered
choices remain undeveloped, apart from the seminal work of 1. siuan and Ruud (1987), which rules
out interpersonal heteroskedasticity and is only applici™le to ¢ ntinuous regressors. Building on
Fox’s (2007) maximum score (MS) estimator of semipa.. met:.c multinomial choice models, we de-
velop the generalized maximum score (GMS) estima’ _ _I_...iparametric rank-ordered choice mod-
els. We show that the GMS estimator allows for arbitra. - forms of interpersonal heteroskedasticity
and consistent estimation of coefficients on all typ. = o’ regressors, as long as there is one continuous
regressor with large support that can be used  nor. ~alize the scale of utility. Like other MS-type

1/3 and a non-standard asymptotic

estimators, the GMS estimator has a slow converg "nce rate of N~
distribution. In the context of binomial choi. mouels, Horowitz (1992) develops the smoothed MS
estimator that addresses similar drawbacks of Manski’s (1985) MS estimator in return for making
stronger assumptions. Yan (2013) ext .nds t. » results to Fox’s (2007) MS estimator of multinomial
choice models. Following this tradition, we “sropose the smoothed GMS (SGMS) estimator which
achieves a faster convergence rate and nas an asymptotic normal distribution.

Our study finds that rank-orderc che.ces provide an interesting data environment which can fa-
cilitate and benefit from the dr v 'opment of semiparametric methods. Most interestingly, our results
show that using extra inform=tion from rank-ordered choices is not just a matter of efficiency gains,
to the contrary of what p ram stric analyses might lead one to anticipate. For our semiparametric
estimators, it is also a vaatte. of consistency in the sense that using complete rankings instead of
partial rankings allow the estimators to become robust to wider classes of stochastic specifications.
More specifically, the M. ~<’nator using multinomial choices and the GMS estimator using par-
tial rankings do n 't allow for an error variance-covariance structure that varies across alternatives,
meaning that they ~nns, consistently estimate flexible parametric models including nested logit,
unrestricted p obit, « 1d mixed logit. By contrast, the GMS estimator using complete rankings (i.e.,

fully rank-orde =d cb sices) can accommodate error structures as such, fulfilling the usual expecta-
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tions that a semiparametric model should nest competing parametric models. The ~ain intuition
behind this contrast is that the use of complete rankings allows one to inf.r \ hich alternative is
more preferred in every possible pair of alternatives in a choice set. The si. v s consistency of the
GMS estimator (and hence that of the SGMS estimator) using fully rank- ~dered choices can be
therefore shown under almost the same assumptions as the strong cor siste = ~v of the MS estimator
using binomial choices, without invoking stronger assumptions needea '~ address more analytically
complex cases of multinomial choices or partially rank-ordered ch sices.

Together with our Monte Carlo evidence on the bias of param tric mr thods under misspecifica-
tion, this finding calls for a reconsideration of the convention . wisdom prevailing in the empirical
literature. Since Chapman and Staelin (1982), several studies » ve ¢ ntended that in case the esti-
mates using complete rankings diverge from the estimates us.. ~ iniormation on the best alternative
alone (or other types of partial rankings), one should hi = more ‘aith in the latter set of estimates
and question the reliability of data on deeper preferen.~ rausings. But with our semiparametric
methods, it is the former set of estimates that is ¢ __I_..... under a wider variety of true models.
And with parametric methods, the discrepancy may ar. ~ even when the reliability of data is be-
yond any doubt as in our simulated samples, beca. se .ne¢ amount of misspecification bias may vary
(non-monotonically) in the depth of rankings .~ed. "Vhile the premise that an individual finds it
easier to tell her best alternative than, say third- v icurth-best alternative, is intuitively appealing,
testing the validity of the conventional wisdo.~ caus for the use of a semiparametric method which
offers the same degree of robustness regardless ot the depth of rankings used in estimation. In our

view, the development of a method as such . a promising avenue for future research.
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Appendices

We provide the proofs of Theorems 1-3 and those of relevant lemmas it Ay pendices A and B.
Specifically, Appendix A provides the proof of identification (Theorem 1) .nd A, »endix B includes
the proofs of the strong consistency of the proposed estimators (Thec.c. s 2-, and Lemmas 1-3).
The derivation of the asymptotic distribution of the SGMS estimato. anc the results for statistical
inference (Theorems 4-5 and Lemmas 4-8) require a relatively lon-, "ist o1 “schnical conditions; we
present these conditions and associated proofs in Supplementary Materic .

Throughout, we use acronyms, LIE, SLLN, and DCT, for J ~v 0. ™ _rated Expectations, Strong
Law of Large Numbers, and Dominated Convergence Theor ‘m. .esj ectively. Set Z, denotes the
collection of positive integers. Symbol ||v| denotes the L” norn> -. vector v and |v| denotes the
vector of the absolute value of each element in v. Symbol O(1) O,(1)) denotes a sequence that is
bounded (bounded in probability) and symbol o(1) (0,(*)) ac *~* s a sequence that converges to zero
(converges to zero in probability). For any summation inde. ~d by an alternative (alternatives), we

suppress the statement that the alternative (alternativ.~) is (are) in the choice set J. For example,

Zj<k means 2j<k,j€J,keJ= or equivalently, Zlgg <.

A Identification

Proof. (Theorem 1) Recall that in Definition 1

Q) = Y E [1(7«j <) (@b > ) + 1(ry < 1j) - (@b > m;b)}
j<k Al
= ZE{[l(Tj < k) -1(7“;C <rj)]-1(w;kb20)+1(rk <’r’]‘)}, ( )
i<k

where ) 8 = 2’8 — ;8. Apply.. = the LIE to the right-hand side (RHS) of (A1) yields

Q*(b) = ZE{[[ i k] X)) = Py < | X)) - (&b > 0) + Pry, < 5] X))} (A2)
i<k
By Assumption 1, the v. e psrameter vector 3 globally maximizes Q*(b) in (A2) for b € B because
the sign of the dif":rence [F(r; < [ X) — P(r < r;|X)], is the same as the sign of ’; 3.
Next, we show +that [ is a unique global maximizer of Q*(b). Consider a different parameter
vector 3~ € P. If, for values of X with positive probability, 3 and 8~ yield different rankings of

systematic ut.'ities, t1en B~ will not maximize Q*(b). In other words, for any X with positive
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probability, if we observe that w;k,@ and x;kﬁ_ have opposite signs for some pair o. distinct alter-
natives j, k € J, then we can conclude Q*(3) > Q*(87). By scale normaliz .t1i0 in Assumption 2,
we will show this argument for 5; = 1; the argument for 1 = —1 is similair. v the first element of

B, By, is also 1, then the set of covariates where 3 and B~ yield differen. ~ankings of systematic

utilities is 37

D(B,B7) = {X| a:;k,B <0< x;kﬁ_ for some j, k € J, wlierej # i}

{X| i;k,é < —Tjp1 < :E;k,37 for some j, k = J, wh rej # k}.

By Assumption 3(a), the set D(3,37) has probability zer. if .nd only if :E;kB = i:;k,é_ with
probability one for any pair of distinct alternatives j, k € o, that -, X3 = X3~ with probability
one. This contradicts Assumption 3(b). If 5; = —1, the set of pc nts where 8 and 8~ give different

predictions is
D(B,B7) = {X |zju1 < 7712'71(.’1:;-,6@77 —:i;k,é) . vsome j, k € J, wherej # k}.

The D(B,87) has positive probability by Assump ‘i n 3(a). Thus, we have proved that the true

preference parameter vector 3 uniquely maxim « > @ (b) for b € B under Assumptions 1-3. ]

B Strong Consistency of the G.."S and the SGMS Estimators

We prove Lemmas 1-3 to establish th. strong -onsistency of the GMS and SGMS estimators (Theo-
rem 2-3). Lemma 1 verifies the con’ inuity > operty of function Q*(b), which is the probability limit
of the objective functions of the 1M an® SGMS estimators. Lemmas 2 and 3 show the uniform
convergence of the GMS object ve fu.. "t on, Qn(b), and the SGMS objective function, Q}%(b, hn),
to this probability limit funct.on 7*(b), respectively.

Lemma 1. Under Assum stior s 2-3, Q*(b) is continuous in b € B.

Proof. Denote each ter a ir the summation on the RHS of (A1) as

Q;‘k(b) =F {[1(73 < x)— L(rg <rj)]- l(wg-kb >0)+ 1(rg < rj)} ) (B1)

3"Recall that a;, = =; —a for any 5,k € J, where j # k, so we have a;;, = —xy;. The set {X |28~ <0<
a8 forsomej, k = J, .o .j # k} is the same as the set {X |x};8 < 0 < a};8” forsomek,j € J, wherej # k}.
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Then,

Q"(b) = ) Qji(b). (B2)
i<k
Therefore, it is sufficient to prove that @7, (b) is continuous in b € T, for v pair of alternatives
j < k. Consider the case by = 1 by the scale normalization in Assun., <ion 2. The argument for
by = —1 is symmetric. Applying the LIE to the RHS of (B1) yiel s

Qb)) = E {[P(Tj < rilegy) — Plre < rjlee)] - Lalb O+ e <)

(B3)

-~

= / {/ [P(rj < rileje) — Plri <rjli)] ‘gjh’ﬂ«"jk,llijk)dfﬁjk,l} dF(Z;i)
+P(7”k < Tj),
where the second equality in (B3) holds by Assumptio. 3(a) and F(&;j) denotes the CDF of &jy.

The curly brackets inner integral on the RHS of (0, "= - function of Z;; and b that is continuous
in b e B. ]

Lemma 2. Under Assumption 4, Qn(b) conwverg. s almost surely to Q*(b) uniformly over b € B.

Proof. Denote the sample analog of (B1) as

N
Qnjk(b) = N_lz {[1(rnj < Ty — (o < Tnj)] - 1(w;jkb >0)+ 1(rpe < rnj)} ) (B4)
n=1
By (B1), (B4), and Assumptior 4, we "~ ve E[Qn;r(b)] = Q;k(b) for any pair of alternatives j < k.
By (12),

Qn(b) = Y Qnji b). (B5)
i<k

Combination of (B2) <~ (BF, implies that it is sufficient to show that Qnjx(b) converges almost
surely to Q;fk(b) v atorely over b € B for any pair of alternatives j < k. Assumption 4 and the
uniform SLLN (T. eorem .2 of Rao (1962) or Lemma 4 of Manski (1985)) imply that

P lin sup € njn(b) — Qb)) =0 =1 (B6)

N—oox &
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for each pair of alternatives. O

Proof. (Theorem 2) The proof of strong consistency of the GMS estimator . ‘volves verifying the
conditions of Theorem 2.1 in Newey and McFadden (1994):

(1) @*(b) is uniquely maximized at 3 € B;

2)

(3) @*(b) is continuous in b € B; and

(1)
b e B.

Condition (1) is verified by Theorem 1, Condition (2) 15 guar-nteed by Assumption 2, and

The parameter space B is compact;

The objective function converges almost surely to its probav lity ' nit, Q*(b), uniformly over

Conditions (3) and (4) are verified by Lemmas 1 and 2, respecu. -ely. Therefore, the GMS estimator
that maximizes its objective function @y (b) converges to e tru  parameter vector 3 almost surely

under Assumptions 1-4. O

Lemma 3. Under Assumptions 2-4 and Condition 1, Q?v(b, hn) converges almost surely to Q*(b)

uniformly over b € B.

Proof. First, we show that the SGMS object. ¢ “unction Q3 (b, hy) converges almost surely to
QN (b) uniformly over b € B following the ~~thoc in Lemma 4 of Horowitz (1992). By definitions
(12) and (18), we calculate

N
|QR (b, hn) — Qn(b)| < %Z N1z b > 0) - K (@),,b/hy)| - (B7)

=1 i<k

The RHS of (B7)) is the sum of ¢y, 7) ad cy2(n), where

N
1 .
eni(n) = i E E b > 0) — K (2,,b/hy) | -1 (|20 > n),

n=1 j< .

N
1
NZ S |1 @b >0) — K (@,,b/hn)| - 1 (|@),,b| <n),

=1l j<n

cna(n)

and 7 € R} is a p. sitive r 1mber. Condition 1(b) implies that for any § > 0, there exists ¢ > 0 such
that |[K(v) —1' 6. ~and |K(—v)| < &-J72 for any v > c¢. As hy — 0, there exists an integer
Ny € Zy sucl that 1 'hy > ¢ for any N > Ny. Therefore, cy1(n) < § for any N > Ny. We have



40

shown that for each n > 0, c¢y1(n) — 0 uniformly over b € B as N — co. Next cons.’r cya(n). By
Condition 1(a), there is a finite C' such that

cna(n) <Y C-

i<k

N
N‘lz 1 (|0 < n)} . (BS)
n=1

Assumption 4 and the uniform SLLN (Theorem 7.2 of Rao, 1962) ** ply . at

N
NS 1 (|a,b] < n)

n=1

P{ lim sup |C-

N—oco peB

|
—C-P(jo,0] < 0| = 0} =1 (B9)

for any pair of alternatives j < k. Next, we prove that P(|a:j,€"| < 1) — 0 uniformly over b € B as
n — 0 by verifying the three conditions (i.e., continuity, “onoto iicity, and pointwise convergence)
of Dini’s theorem (Theorem 7.13 of Rudin, 1976). We cu ~sider by = 1; case by = —1 is similar. By
Assumption 3(a),

n—:f:"jkb ~ y
Pl <) = [ guepalas)de,  Flap). (B10)
7n7:i;-kb
Define a sequence of functions {ffk(b) =.wh < i~1) 14 € Z,} for each pair of alternatives

j < k. By Assumption 3(a) and (B10), it is stra’ghtforward to verify that fij *(b) is continuous in
b and ffk(b) > fffl(b) forany i € Z_ an'b e B. Asi — oo, fljk(b) converges to zero at each
b € B by Assumption 3(a). Since B is ~ comy act space (Assumption 2), this pointwise convergence
of fij *(b) to zero implies the unife m conve_ gence of fij *(b) to zero over b € B by Dini’s theorem.
By (B9), the RHS of (B8) also ¢. v rge: almost surely to zero uniformly over b € B as N — oo
and 7 — 0. The absolute differ mce |QN\b, hn) — QN(b)} converges almost surely to zero uniformly
over b € B as N — oo because the RHS of (B7) is the sum of ¢y1(n) and cy2(n) for any n > 0.

Since

sup |Qx (b, hn) - Q)| < sup|QF (b, hn) — Qn(b)] + sup|Qn(b) — Q% (b)) (B11)
beB beB beB

and each term on *.e RFS or (B11) converges to zero almost surely, we have shown that Q% (b, hy)

converges to its p1 “babilif y limit @*(b) almost surely uniformly over b € B. O

Proof. (Theo.~m 3’ The proof of strong consistency of the SGMS estimator is similar to that
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of the GMS estimator, which involves verifying the four conditions of Theorem 2., ‘n Newey and
McFadden (1994). As shown in Theorem 2, the first three conditions are = er1 ed by Theorem 1,
Assumption 2, and Lemma 1, respectively. The last condition is proved by T :mma 3. Therefore,
the SGMS estimator that maximizes its objective function Q%(b, hn) conve. ~es to B almost surely

under Assumptions 1-4 and Condition 1. O
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Table 1: Consistency of estimators by Monte Carlo XGPs
DGP Distribution of €, ROL ROP MRC. GM5 & SGMS

(a) True parameters: 71 =1, yp2 = 1 for 2 m, and o = (j — 1)/4

1 €nj is i.i.d. EV(0,1,0) Yes No Yeo Yes
2 Enj is i.4.d. N(0,7m%/6) No Yes  No Yes
3 enj = 0.82Zy 26y No No Mo Yes

where €,; is i.i.d. N(0,1)

4 €nj = 0.752p; 2€n; No Mo No No when M < 3;
where €,; is i.i.d. N(0,1) Yes when M =3

(b) True parameters: 71 - 1, Yp2 kg N(1,1),and aj = (j — 1)/4

5 €nj is i.i.d. EV(0,1,0° No No Yes No when M < 3;
Yes when M =3

6 enj = 0.752pj2€n No No No No when M < 3;
where €, is i.4.u.. N0,7, Yes when M =3

Note: EV(0,1,0) stands for the « treme value type 1 distribution, assumed by the ROL model,
with a mean of 0.577 and . ariance of 7r2/6. Where relevant, the error component is i.4.d. for
n=1...,Nand j =1 ... J. M =3 (M < 3) refers to an estimator that incorporates the
complete (partial) rank'ngs. “Ves (No) means the estimator of 3/8; is (not) consistent given the
DGP. z,,2 is the withi i-in‘ 1vidual average of the second covariate, i.e., Zpo = J ! Z}'le Znj,2-
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