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Abstract

We propose semiparametric methods for estimating random utility models using rank-ordered

choice data. Our primary method is the generalized maximum score (GMS) estimator. With

partially rank-ordered data, the GMS estimator allows for arbitrary forms of interpersonal het-

eroskedasticity. With fully rank-ordered data, the GMS estimator becomes considerably more

�exible, allowing for random coe�cients and alternative-speci�c heteroskedasticity and correla-

tions. The GMS estimator has a non-standard asymptotic distribution and a convergence rate

of N−1/3. We proceed to construct its smoothed version which is asymptotically normal with

a faster convergence rate of N−d/(2d+1), where d ≥ 2 increases in the strength of smoothness

assumptions.
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1 Introduction

Rank-ordered choices can be elicited using the same type of survey as multinomial choices, specif-

ically one that presents an individual with a �nite set of mutually exclusive alternatives. The two

elicitation formats may be distinguished by the amount of information that is available to the econo-

metrician. A multinomial choice reports the individual's �choice� or most preferred alternative from

the set, whereas a rank-ordered choice reports further on the individual's preference ordering such

as her second and third preferences. One rank-ordered choice observation provides a similar amount

of information as several multinomial choice observations, in the sense that it allows inferring what

the individual's choices would have been if her more preferred alternatives were not available. This

allows fewer individuals to be interviewed to achieve a given level of statistical precision, and the

resulting logistic advantages could be substantial for non-market valuation studies which typically

involve a narrowly de�ned population of interest (Scarpa et al., 2011).

We develop semiparametric methods for estimation of random utility models using rank-ordered

choice data. Despite the wide availability of parametric counterparts, such semiparametric methods

remain almost undeveloped to date. The random utility function of interest has a typical structure:

it comprises a systematic component (utility index) varying with �nite-dimensional explanatory vari-

ables, and an additive stochastic component (error term). The objective is to estimate preference

parameters, referring to coe�cients on the explanatory variables. The methods are semiparamet-

ric in that they maintain the usual parametric form of the systematic component but place only

nonparametric restrictions on the stochastic component.

The parametric methods are equally well-established for multinomial choice and rank-ordered

choice data. In most cases, an analysis of multinomial choice data involves maximum (simulated)

likelihood estimation of one of four models: multinomial logit (MNL), nested MNL, multinomial

probit (MNP), and random coe�cient or �mixed� MNL. Each model assumes a di�erent parametric

distribution of the stochastic component, and has its own rank-ordered choice counterpart that

shares the same assumption: rank-ordered logit (ROL) of Beggs et al. (1981), nested ROL of

Dagsvik and Liu (2009), rank-ordered probit (ROP) of Layton and Levine (2003), and mixed ROL

of Layton (2000) and Calfee et al. (2001). Building on Falmagne (1978) and Barberá and Pattanaik

(1986), McFadden (1986) provides a technique that can be applied to translate any parametric

multinomial choice model into the corresponding rank-ordered choice model.

The literature on the semiparametric methods is more lopsided. For multinomial choice data,

several alternative methods exist including Manski (1975), Ruud (1986), Lee (1995), Lewbel (2000),
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Fox (2007), Bajari, Fox and Ryan (2008), and Yan (2013).1 The special case of binomial choice data

has attracted even greater attention, and the respectable menagerie includes Ruud (1983), Manski

(1985), Han (1987), Horowitz (1992), Klein and Spady (1993), Sherman (1993), and Cavanagh and

Sherman (1998), to name a few. When it comes to rank-ordered choice data, we are aware of only

one study that aims at semiparametric estimation of preference parameters, namely Hausman and

Ruud (1987). In their study, the weighted M-estimator (WME) of Ruud (1986) is generalized for use

with rank-ordered choice data, whereas the original WME was intended for use with multinomial

choice data. The generalized WME imposes independence between the explanatory variables and the

error terms, ruling out heteroskedasticity across individuals. Though the generalized WME allows

consistent estimation under nonparametric stochastic speci�cation, this consistency is con�ned to

the ratios of the coe�cients on continuous explanatory variables and the estimator's asymptotic

distribution is unknown outside a special case of Newey (1986).

In this paper, we propose a pair of new semiparametric methods for rank-ordered choice data.

The primary method that we develop is the generalized maximum score (GMS) estimator. Unlike

the generalized WME, the GMS estimator does not require independence between the explanatory

variables and the error terms, and can accommodate �exible forms of interpersonal heteroskedastic-

ity. We also show that the GMS estimator is consistent under more general assumptions concerning

the explanatory variables than the generalized WME. Roughly speaking, if one of q explanatory

variables is continuous, the GMS estimator allows consistent estimation of the ratios of all coe�-

cients regardless of whether the other q− 1 variables are continuous or discrete. Like the maximum

score (MS) estimator of Manski (1985) that it nests as a special case, the GMS estimator has a

slow convergence rate of N−1/3 and a non-standard asymptotic distribution. One way to lessen

these drawbacks is to introduce extra regular conditions and apply Horowitz's (1992) technique to

construct a smoothed version of the GMS estimator. We show that the smoothed GMS (SGMS)

estimator achieves a faster convergence rate of N−d/(2d+1), where integer d ≥ 2 increases in the

strength of the smoothness conditions presented in Section 3.1, and possesses a normal limiting

distribution with a covariance matrix that can be consistently estimated.

The GMS estimator generalizes the pairwise MS estimator that Fox (2007) has developed for

a semiparametric analysis of multinomial choice data. When the individual faces J alternatives, a

1Bajari, Fox and Ryan (2008) stands out from other studies in this list, since their objective is to estimate a
multinomial choice model in an environment where the econometrician does not observe multinomial choices made
by individuals; instead, the econometrician observes aggregated data on sales rankings of alternative products across
di�erent markets. This feature poses some challenges for taxonomy. We agree with Fox (2007, p.1004) on classifying
their estimator as a multinomial choice method, considering that the behavioral model used in their proofs is a
multinomial choice model.
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multinomial choice observation allows the econometrician to infer the outcomes of J − 1 pairwise

comparisons where each pair comprises the individual's actual choice and an unchosen alternative.

A rank-ordered choice observation provides information that is needed to infer the outcomes of

other pairwise comparisons; for example, in case the individual ranks all J alternatives from best

to worst, her rank-ordered choice allows the econometrician to infer the outcomes of all possible

J(J − 1)/2 pairwise comparisons. The GMS estimator extends the MS estimator by incorporating

this type of extra information, which could come from data on partial rankings (e.g., the individual

reports her best and second best out of �ve alternatives) as well as complete rankings.

The GMS estimator inherits all attractive properties of the MS estimator, two of which are

particularly relevant to empirical applications. First, the GMS estimator allows the econometrician

to be agnostic about the form of interpersonal heteroskedasticity or �scale heterogeneity� (Hensher et

al., 1999; Fiebig et al., 2010), referring to variations in the overall scale of utility across individuals.2

This property is desirable because in most studies, the exact form of interpersonal heteroskedasticity

matters only to the extent that its misspeci�cation leads to inconsistent estimation of the core

preference parameters. Second, the GMS estimator is consistent when the data generating process

(DGP) comprises an arbitrary mixture of di�erent models, provided that it is consistent for each

component model. Empirical evidence from behavioral economics (Harrison and Rutström, 2009;

Conte et al., 2011) supports the notion that characterizing observed choices requires more than one

model. But consistent parametric estimation of a mixture model is extremely di�cult, because it

demands the exact knowledge of the number and speci�cations of component models.

The GMS estimator becomes considerably more �exible than the MS estimator when each indi-

vidual completely ranks all alternatives in her choice set from best to worst. As we discuss in details

in Section 2.3, the GMS estimator on complete rankings is consistent for all popular parametric

models exhibiting �exible substitution patterns, whereas the MS estimator is not.3 Thus, the GMS

estimator more closely satis�es what an empiricist may expect from the use of a semiparametric

method, namely the ability to estimate all popular parametric models consistently on top of other

types of models.4 This is an interesting �nding because in the parametric framework, the advantage

2This property explains a major di�erence between the GMS estimator and the maximum rank correlation (MRC)
estimator of Han (1987) and Sherman (1993). The GMS method utilizes the observed ranking information and does
pairwise comparisons of alternatives within each individual, allowing the conditional joint distribution of the error
terms to vary across individuals. In comparison, the MRC estimator does pairwise comparisons between individuals
and requires the error terms to be independent of the explanatory variables, ruling out the possibility of interpersonal
heteroskedasticity.

3 The di�erence arises because the complete ranking information allows us to replace the assumption of equicorre-
lated errors or �exchangeability� (Goeree et al., 2005; Fox, 2007) with a much weaker assumption of zero conditional
median.

4When it comes to assumptions on explanatory variables that are needed for the point identi�cation of utility
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of using rank-ordered choice data instead of multinomial choice data is limited to e�ciency gains

(Hausman and Ruud, 1987; Beresteanu and Zincenko, 2018) and a multinomial choice model may

be more robust to stochastic misspeci�cation than its rank-ordered choice counterpart (Yan and

Yoo, 2014). This kind of e�ciency-bias tradeo� does not apply to the comparison of the GMS

estimator on complete rankings to the MS estimator on multinomial choices; the GMS estimator is

more e�cient as indicated by smaller root mean square errors (RMSE) in Monte Carlo simulations

(Section 4), and is also robust to a wider variety of DGPs.

As noted earlier, the GMS estimator also inherits less attractive properties of the MS estimator,

such as the convergence rate of N−1/3 and the non-standard asymptotic distribution of Cavanagh

(1987) and Kim and Pollard (1990). Horowitz (1992) develops the smoothed MS (SMS) estimator

that addresses these drawbacks in the context of Manski's (1985) MS estimator of binomial choice

models. Yan (2013) extends the results to Fox's (2007) MS estimator of multinomial choice models.

The SGMS estimator of rank-ordered choice models that we propose builds on this tradition.

The remainder of this paper is organized as follows. Section 2 develops the GMS estimator

and compares it with popular parametric methods. Section 3 develops the SGMS estimator and

states its asymptotic properties. Section 4 presents the Monte Carlo evidence on the �nite sample

performance of the proposed estimators. Section 5 concludes. Proofs of Theorems 1-3 are provided

in Appendices and those of Theorems 4-5 are included in Supplementary Material.

Throughout this paper, we will maintain the following notations. We write scalars in lightface,

vectors in lowercase bold, and matrices in uppercase bold. All vectors are column vectors. Rq is
a q-dimensional Euclidean space, B is a subset of Rq, and other blackboard bold letters such as

J and M refer to �nite sets. We reserve letters j, k and l for indexing alternatives, and letter n

for indexing individuals or observations. Vector xjk denotes the di�erence between two vectors xj

and xk. The �rst element of xj (xjk) is denoted by xj,1 (xjk,1), and the subvector comprising its

remaining elements is denoted by x̃j (x̃jk). Where the distinction needs emphasis, we use xnj (xnjk)

to denote the nth observation of random vector xj (xjk). Letters P and E denote a probability

and an expectation, respectively. Function F (·) denotes a cumulative distribution function (CDF),

and function F (· | ·) denotes a conditional CDF. The ith derivative of function K(·) is denoted by

K(i)(·). Function 1(·) is an indicator function that equals one when the event in the brackets is

true, and zero otherwise. Symbols \, ′, ⇒, and
p−→ denote a set di�erence, matrix transposition,

convergence in distribution, and convergence in probability, respectively.

coe�cients, semiparametric methods are more restrictive than parametric methods and the GMS estimator is no
exception. In this respect, the GMS estimator is as restrictive as the MS estimator, and requires the presence of a
continuous explanatory variable with large support. See Assumption 3 in Section 2.2.
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2 The Model and the Generalized Maximum Score Estimator

2.1 A Random Utility Framework and Rank-Ordered Choice Data

Consider a standard random utility model. An individual in the population of interest faces a �nite

collection of alternatives. Let J = {1, . . . , J} denote the set of alternatives and let J ≥ 2 be the

number of alternatives contained in J. The utility from choosing alternative j, uj , is assumed as

follows:

uj = x′jβ + εj ∀ j ∈ J, (1)

where xj ≡ (xj,1, . . . , xj,q)
′ ∈ Rq is an observed q-vector of covariates, β ≡ (β1, . . . , βq)

′ ∈ Rq

is the preference parameter vector of interest, and εj is the unobserved component of utility to

the econometrician. Let X ≡ (x1, . . . ,xJ)′ ∈ RJ×q be the matrix of the covariates and ε ≡
(ε1, . . . , εJ)′ ∈ RJ be the vector of the error terms. The utility index x′jβ is often called systematic

(or deterministic) utility, as opposed to the error term εj , which is called unsystematic (or stochastic)

utility.

The random utility function (1) can accommodate both alternative-speci�c and individual-

speci�c covariates. To see this point, consider a utility function that spells out the distinction

the two types of covariates explicitly

uj = z′jγ + s′αj + εj ∀ j ∈ J, (2)

where q1-vector zj includes covariates that vary over alternatives (e.g., product attributes), and

q2-vector s includes a constant term as well as covariates that vary across individuals but not

over alternatives (e.g., person's age). Without loss of generality, we set α1 = 0q2 for location

normalization, where 0q2 denotes a q2-vector of zeros. Following Cameron and Trivedi (2005, p.498),

equation (2) can be compactly written in the form of equation (1) as follows. Let α denote a vector

that collects alternative-speci�c parameter vectors, α ≡ (0′q2 ,α
′
2, . . . ,α

′
J)′ ∈ RJq2 . Next, let sj

denote a conformable vector that is partitioned into J blocks, where the jth block is s ∈ Rq2

and each of the remaining J − 1 blocks is 0q2 . For example, s1 ≡ (s′,0′q2 , . . . ,0
′
q2)′ ∈ RJq2 ,

s2 ≡ (0′q2 , s
′, . . . ,0′q2)′ ∈ RJq2 and so on. Then, it follows that s′αj = s′jα, and equation (1)

is obtained by de�ning xj ≡ (z′j , s
′
j)
′ ∈ Rq and β ≡ (γ ′,α′)′ ∈ Rq, where q = q1 + Jq2.

Thus, without loss of generality, our subsequent discussion focuses on equation (1). Let r(j,u)

denote the latent (or potentially unobserved) ranking of alternative j, based on the underlying utility
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vector u ≡ (u1, u2, . . . , uJ)′ ∈ RJ . We shall follow the notational convention that r(j,u) = m when

j is the mth best alternative in the choice set J, i.e., a smaller ranking value indicates a more

preferred alternative. A more formal de�nition of the latent ranking is

r(j,u) ≡ 1 +

J∑

k=1

1(uj < uk) (3)

for any j ∈ J. For instance, suppose that J = 4 and u3 > u4 > u1 > u2. Then, r(3,u) = 1,

r(4,u) = 2, r(1,u) = 3, and r(2,u) = 4. There is a one-to-one mapping between the choice set

{1, . . . , J} and the latent ranking set {r(j,u) : j = 1, . . . , J} by de�nition (3).5

Next, let rj denote the reported (or actually observed) ranking of alternative j, and r ≡
(r1, . . . , rJ)′ ∈ NJ be the vector of the reported rankings of all J alternatives in J. We shall maintain

that the reported ranking rj coincides with the latent ranking r(j,u) in case the individual reports

the complete ranking of alternatives, and is a censored version of the latent ranking in case she

reports only a partial ranking. To facilitate further discussion, suppose that the individual reports

the ranking of her best M alternatives where 1 ≤ M ≤ J − 1, and leaves that of the other J −M
alternatives unspeci�ed. As before, suppose that J = 4 and u3 > u4 > u1 > u2. In case M = 3,

the complete ranking is observed since the individual reports her best, second-best, and third-best

alternatives, allowing the econometrician to infer that the only remaining alternative is her worst

one, r = (r1, r2, r3, r4) = (3, 4, 1, 2), and that each alternative's reported ranking is identical to

its latent ranking. In case M = 2, only a partial ranking is observed since the individual reports

her best and second best alternatives, and the econometrician cannot tell whether alternative 1

is preferable to alternative 2, r = (3, 3, 1, 2), so the reported ranking r2 is no longer the same

as the latent ranking r(2,u). Finally, in case M = 1, the resulting partial ranking observation is

identical to a multinomial choice observation since the individual reports only her best alternative,

r = (2, 2, 1, 2).

A more formal de�nition of the reported ranking that incorporates the above discussion is as

follows. Let the random set M (M ⊂ J) denote the set of the bestM alternatives for the individual,

that is,M ≡ {j : r(j,u) ≤M}.6 The reported ranking of alternative j, then, follows the observation

5We ignore utility ties here because they happen with probability zero under the assumptions we impose later for
point identi�cation.

6Like the popular parametric methods that we will review in Section 2.3, our semiparametric method allows both
the choice set J = {1, 2, ..., J} and the dimension of the subset M ⊂ J, and hence J andM , to vary across individuals.
For example, person a may face choice set J = {1, 2, 3, 4, 5}, and report his �rst and second-best alternatives as
alternatives 2 and 3 (M = {2, 3}), respectively: in his case, J = 5 and M = 2. Person b, on the other hand, may
face J = {1, 2, 3, 4} and report a complete ranking on it, e.g., her �rst, second-best, and third-best alternatives are
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rule

rj =





r(j,u) if r(j,u) ≤M, or equivalently, j ∈M,

M + 1 if r(j,u) > M, or equivalently, j ∈ J \M.
(4)

When M = J − 1, the complete ranking is observed. When M = 1, the resulting partial ranking

is observationally equivalent to a multinomial choice. The intermediate cases of partial rankings,

which occur when 1 < M < J − 1 and J > 3, are much less common in empirical studies though

not unprecedented.7

2.2 Identi�cation and the Generalized Maximum Score Estimator

This section introduces identi�cation conditions for the preference parameter vector β and the

primary method that we propose, the Generalized Maximum Score (GMS) estimator. The GMS

estimator is semiparametric in the sense that it allows the econometrician to estimate β consistently,

without committing to a speci�c parametric form of the conditional distribution of the error vector

given observed attributes ε|X.

The �rst assumption presents a key condition pertaining to our identi�cation strategy. This

assumption implicitly places a restriction on the conditional distribution of ε|X, albeit it is a

nonparametric restriction satis�ed by a range of parametric functional forms, some of which we will

discuss in the subsequent section. Denote the systematic utility of alternative j as vj ≡ x′jβ for any

alternative j ∈ J.

Assumption 1. For any pair of alternatives j, k ∈ J and for almost every X ∈ RJ×q,

vj > vk if and only if

P (rj < rk|X) > P (rk < rj |X), (5)

i.e., alternative j generates larger systematic utility than alternative k if and only if there is a higher

chance that j is preferable to k (i.e., rj < rk) than the reverse (i.e., rk < rj), conditional on almost

alternatives 1, 2, and 4 (M = {1, 2, 4}), respectively: in her case, J = 4 and M = 3. Our proofs can be modi�ed to
accommodate this generality explicitly, though we do not pursue it to avoid carrying around individual subscripts.
Note that when J and M are considered individual-speci�c, complete rankings data in our subsequent discussion
refer to the case where M = J − 1 for all individuals, and partial rankings data refer to the case where M < J − 1
for at least one individual.

7See for example Layton (2000) and Train and Winston (2007), both of which analyze data on the best and
second-best alternatives; their data structures are M = 2 and J > 3 according to our notations.
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all covariates.

Assumption 1 immediately implies that vj = vk if and only if P (rj < rk|X) = P (rj > rk|X), i.e.,

alternatives j and k have the same systematic utility if and only if the probability that alternative

j is preferable to alternative k is the same as the probability that alternative k is preferable to

alternative j.

Two special types of rank-ordered choice data are worth highlighting. First, when M = 1, the

individual reports only her best alternative and we have multinomial choice data. In this case,

alternative j is ranked above alternative k (rj < rk) if and only if j is ranked as the best alternative

(rj = 1), so we have

P (rj < rk|X) = P (rj = 1|X). (6)

If we replace P (rj < rk|X) with P (rj = 1|X) and replace P (rk < rj |X) with P (rk = 1|X) in (5),

then Assumption 1 becomes the monotonicity property of choice probabilities (Manski, 1975; Fox,

2007), i.e., the ranking of the choice probability of an alternative is the same as the ranking of the

systematic utility of that alternative for any given individual.8

Second, when M = J − 1, the individual reports all alternatives from best to worst, and we

have fully rank-ordered choice data. With this complete ranking information, we can compare the

utilities between any two alternatives. Without loss of generality, let's focus on a pair of alternatives

(j, k) such that j < k. Alternative j is ranked above alternative k if and only if the utility from

choosing alternative j is larger than the utility from choosing alternative k, so we have

P (rj < rk|X) = P (uj > uk|X)

= P (εk − εj < vj − vk|X).
(7)

The �only if� part holds under the de�nition of ranking r, and the �if� part is a direct result of

complete ranking. The �rst equality of (7) may not hold if we observe only a partial ranking, i.e.,

M < J − 1. This is because while rj < rk naturally implies uj > uk, uj > uk may not imply

rj < rk; when neither alternative j nor alternative k belongs to set M, which includes the best M

alternatives, both alternatives j and k are observed with the same ranking, M + 1, even if uj > uk.

For any pair of alternatives, assume that the distribution of εk−εj conditional on the explanatory
vectors is a strictly increasing function. Then the well-known pairwise zero conditional median

(ZCM) restriction, median(εk − εj |X) = 0, is a necessary and su�cient condition for Assumption

8See Fox (2007) for a detailed discussion of su�cient conditions for the monotonicity property of choice probabil-
ities.
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1 when a complete ranking of J alternatives is available. The proof is straightforward.9 Notice

that P (rj < rk|X) + P (rk < rj |X) = 1 when the choice set is fully rank-ordered. For �necessity�,

Assumption 1 implies that vj−vk = 0 if and only if P (rj < rk|X) = 1/2, or equivalently, P (εk−εj <
vj − vk|X) = 1/2 by (7). For �su�ciency�, the ZCM assumption implies that vj > vk if and only if

P (rj < rk|X) > 1/2 by (7), or equivalently, P (rj < rk|X) > P (rk < rj |X).

Our second assumption is about scale normalization and the parameter space. As usual in

discrete choice modeling, identi�cation of the preference vector β requires scale normalization since

they are unique only up to a scale.10 When a parametric form of the conditional distribution of ε|X
is speci�ed, it is a nearly universal practice to normalize a scale parameter of that distribution to

achieve identi�cation.11 But when no parametric form is speci�ed, no scale parameter is available for

normalization. In the semiparametric framework, identi�cation is therefore achieved by normalizing

the preference parameter vector β instead. Subject to the prior knowledge that some element of

vector β is non-zero, we can normalize the magnitude of that element.12 Without loss of generality,

we assume that the �rst element of β has absolute value one, i.e., |β1| = 1. Let β̃ ≡ (β2, . . . , βq)
′ ∈

Rq−1 be the vector containing the other elements of β.

Assumption 2. The preference parameter vector β ∈ B, where parameter space B ≡ {−1, 1} × B̃,
B̃ is a compact subset of Rq−1, and q ≥ 2.

Next we formally de�ne the point identi�cation for β ∈ B.

De�nition 1. For any vector b ∈ B, de�ne function

Q∗(b) =
∑

1≤j<k≤J
E[1(rj < rk) · 1(x′jb ≥ x′kb) + 1(rk < rj) · 1(x′kb > x

′
jb)]. (8)

The parameter vector β is point identi�ed if Q∗(β) > Q∗(b) for any b ∈ B and b 6= β.

Identi�cation requires β to be the unique maximizer of function Q∗(b) for b ∈ B. Assumption 1

guarantees that β maximizes Q∗(b) in the parameter space, which will be shown in Theorem 1 later.

However, if all the covariates in (8) are discrete, then we can always �nd another vector b in the

9This proof does not apply to partially rank-ordered choice data, of which multinomial choice data is a special
case, because the �rst equality in (7) does not hold. Goeree et al. (2005) give an example showing that the ZCM
assumption is not su�cient for the monotonicity property of the choice probabilities.

10Multiplying both the preference parameter vector β and the error term ε by any positive constant leads to the
same rank-ordered choice data.

11For instance, in the binomial probit model, the variance of the conditional distribution is assumed to be one.
12For example, economists may agree that the coe�cient on the own price variable is negative.
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neighborhood of β such that b generates the same ranking of utility indexes as β does, and conse-

quently, Q∗(b) = Q∗(β). To achieve point identi�cation, we need to impose an extra assumption on

the covariates, namely, we need a covariate that is continuous conditional on the other covariates.

Recall that xjk ≡ xj−xk ∈ Rq, xjk,1 is the �rst element of xjk, and x̃jk ≡ (xjk,2, . . . , xjk,q)
′ ∈ Rq−1

refers to the remainder. Our third assumption states the continuity requirement on the covariates

for point identi�cation.

Assumption 3. The following statements are true.

(a) For any pair of distinct alternatives j, k ∈ J, the probability density function of xjk,1 conditional

on x̃jk, gjk(xjk,1|x̃jk), is positive everywhere on R for almost every x̃jk.

(b) For any constant vector c ≡ (c1, . . . , cq)
′ ∈ Rq, P (Xc = 0) = 1 if and only if c = 0.

Assumption 3 is essential for the uniqueness of β as the maximizer of Q∗(b) for b ∈ B . Assump-

tion 3(a) avoids the local failure of identi�cation, which is not required by parametric models but

important in semiparametric settings. In other words, the semiparametric models relax restrictions

on the error distribution at the cost of imposing continuity conditions on the covariates. Assump-

tion 3(b) is analogous to the full-rank condition for the binomial choice model, which prevents the

global failure of identi�cation.

The following theorem establishes point identi�cation; the proof is available in Appendix A.

Theorem 1. Let Assumptions 1-3 hold. The parameter vector β is point identi�ed by De�nition 1.

Next, we describe the intuition behind Theorem 1. Let b ≡ (b1, b̃
′
)′ be any vector in the

parameter space B. Under Assumption 1, if x′jβ > x
′
kβ, then event rj < rk is more likely to occur

than event rk < rj ; if x
′
kβ > x

′
jβ, then event rk < rj is more likely to be true than event rj < rk;

and if x′jβ = x′kβ, then event rj < rk has the same chance of being true as event rk < rj . Therefore,

the expected value of the following match

mjk(b) = 1(rj < rk) · 1(x′jb > x
′
kb) + 1(rk < rj) · 1(x′kb > x

′
jb) + 1(rj < rk) · 1(x′jb = x′kb)

= 1(rj < rk) · 1(x′jb ≥ x′kb) + 1(rk < rj) · 1(x′kb > x
′
jb)

(9)

should be maximized at the true preference parameter vector β over b ∈ B. Since

Q∗(b) =
∑

1≤j<k≤J
E[mjk(b)] (10)
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by (8) and (9), function Q∗(b) is also maximized at β. Assumption 2 (scale normalization) and

Assumption 3 (regularity conditions on covariates) guarantee that β uniquely maximizes Q∗(b) over

b ∈ B.
Our fourth assumption pertains to sampling. Matrix Xn and vectors rn and εn are the nth

observation of matrix X and vectors r and ε, respectively.

Assumption 4. {(rn,Xn, εn) : n = 1, . . . , N} is a random sample of (r,X, ε), where rn ≡
(rn1, . . . , rnJ)′ ∈ NJ , Xn ≡ (xn1, . . . ,xnJ)′ ∈ RJ×q, and εn ≡ (εn1, . . . , εnJ)′ ∈ RJ . For each

individual n = 1, . . . , N, (rn,Xn) is observed.

Assumption 4 states that we have N observations of (r,X), indexed by n, and individuals are

independently and identically distributed (i.i.d.). For the latter reason, we drop subscript n to avoid

notational clutter except when it is needed for clari�cation.

Next, we describe the intuition behind applying Theorem 1 (Identi�cation) and Assumption 4

(Random Sampling) to construct the GMS estimator. De�ne x′njb as the b-utility index of alter-

native j for individual n. Applying the analogy principle, we propose a semiparametric estimator,

bN ≡ (bN,1, b̃
′
N )′ ∈ B, for β as follows:

bN ∈ argmax
b∈B

QN (b), (11)

where

QN (b) ≡ N−1
N∑

n=1





∑

1≤j<k≤J

[
1(rnj < rnk) · 1(x′njb ≥ x′nkb) + 1(rnk < rnj) · 1(x′nkb > x

′
njb)

]




(12)

can be viewed as the sample analog of Q∗(b) de�ned by (8). In the special case ofM = 1, i.e., when

we have multinomial choice data, the estimator bN de�ned by (11) becomes the pairwise maximum

score (MS) estimator of Fox (2007). When J = 2 or we have binomial choice data, the estimator bN

becomes the MS estimator of Manski (1985). For this reason, bN is called the generalized maximum

score (GMS) estimator.

When complete rankings of three or more alternatives are observed (J ≥ 3 and M = J −
1), the inner sum inside the curly brackets in (12) is an increasing function of Kendall's rank

correlation between observed rankings and estimated utility indexes across J(J − 1)/2 alternative

pairs within individual n. In this situation, the GMS estimator may be interpreted as an estimator
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that maximizes the sample mean of within-individual rank correlation.13 Note that the maximum

rank correlation (MRC) estimator of Han (1987) and the rank estimator of Cavanagh and Sherman

(1998) are substantively di�erent from ours, both in regards to the models of interest and the

maximands. Their semiparametric estimators are for single-equation index models, which include

binary choice models (J = 2) but not more general types of multinomial choice and rank-ordered

choice models (J ≥ 3).14 In addition, within-individual rank correlation across alternative pairs is an

irrelevant concept for single-equation index models, and what the MRC (rank) estimator maximizes

is Kendall's (Spearman's) rank correlation between a dependent variable and an estimated index

across N(N − 1)/2 pairs of individuals in the sample.15

Again in the same situation (J ≥ 3 and M = J − 1), QN (b) is algebraically identical to the

objective function of Bajari, Fox and Ryan (2008) at �rst glance, but the setup of their econometric

analysis is quite di�erent from ours. Rankings in their analysis are the aggregate sales rankings

of alternative products o�ered by the same supplier in a speci�c market, instead of individual-

level preference orderings that we consider. Their objective is to estimate a random utility model

describing individual-level multinomial choices (that is, J ≥ 3 and M = 1 in our notation), in

an environment where the econometrician observes the aggregate sales rankings instead of the

individual-level choices. They show that when the error terms are i.i.d. over alternatives within

individuals, a semiparametric estimator of the multinomial choice model can be constructed using

a score function that incorporates all pairwise comparisons of the aggregate sales rankings. In

comparison, the GMS estimator with complete rankings (J ≥ 3 and M = J − 1) can accommodate

more �exible error structures that satisfy the pairwise ZCM (discussed in Section 2.3), thereby

allowing for �exible patterns of heteroskedasticity and correlation over alternatives as well as random

coe�cients across individuals.

The following theorem establishes the strong consistency of the GMS estimator.

Theorem 2. Let Assumptions 1-4 hold. The GMS estimator bN de�ned in (11) converges almost

surely to the true preference parameter vector, β, in the data generating process.

13Let mn(b) denote inner sum inside the curly brackets in (12) for individual n, then Kendall's rank correlation
between observed rankings rnj and utility indexes x′njb, where j = 1, . . . , J , equals [2mn(b)− 1]× [J(J − 1)/2]−1 for
this individual. Clearly, QN (b) is the sample mean of mn(b), where n = 1, . . . , N , and hence is an increasing function
of the sample mean of within-individual Kendall's rank correlation.

14Single-equation index models include, inter alia, Tobit, binary probit, ordered probit, and univariate duration
models; the assumed data generating process involves a single latent dependent variable. In comparison, the random
utility model for multinomial and rank-ordered choice data can be viewed as a system of J − 1 latent dependent
variables where each variable is the utility di�erence between alternative j and alternative J for j = 1, 2, ..., J − 1.

15More precisely, the rank estimator of Cavanagh and Sherman (1998) is a class of related estimators, of which one
that maximizes Spearman's rank correlation is a special case.
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2.3 Comparisons with Parametric Methods

From the empiricist's perspective, the question of paramount interest may be how �exible the

semiparametric model that the GMS estimator accommodates is relative to parametric models

that one may consider. Modern desktop computing power makes this question especially relevant.

Standard computing resources of today can handle estimation of models that feature fairly �exible,

albeit parametric, error structures. Most semiparametric methods for discrete choice data relax

parametric restrictions on error structures at the price of regularity conditions on explanatory

variables that parametric methods do not require, and the GMS estimator is no exception. This

section maintains that such conditions hold, which have been stated as Assumption 3(a) in the

context of the GMS estimator.

When applied to data on complete rankings, i.e. M = J − 1, the GMS estimator postulates a

semiparametric model that can nest all popular parametric models and any �nite mixture of those

models. In most studies on rank-ordered choices, the complete rankings are elicited as needed for

this result.16 Such a degree of �exibility is not something to be taken for granted. For instance, the

MS estimator (Manski, 1975; Fox, 2007) using multinomial choice data is consistent for a family of

parametric models featuring equicorrelated errors (e.g., multinomial logit (MNL) and multinomial

probit (MNP) with homoskedastic errors that exhibit the same pairwise correlation), but not for

those parametric models that feature more �exible error structures (e.g., nested MNL, MNP with

a general error covariance matrix, and mixed MNL).

This section elaborates on the semiparametric model that the GMS estimator postulates, and its

comparisons with popular parametric models. To clarify the notion of interpersonal heteroskedas-

ticity here (and later, unobserved interpersonal heterogeneity), we reinstate individual subscript n.

With a slight abuse of notation, an observationally equivalent form of equation (1) may be speci�ed

to express the utility that individual n derives from alternative j as

unj = σn × (x′njβ) + εnj for n = 1, 2, ..., N and j ∈ J, (13)

where the new parameter σn ∈ R1
+ captures that portion of the overall scale of utility which

varies across individuals.17 Equivalently, σn may be also described as a parameter that is inversely

16 See for example, Beggs et al. (1981), Hausman and Ruud (1987), Calfee and Winston (1998), Calfee et al.

(2001), McCabe et al. (2006), Siikamaki and Layton (2007), Scarpa et al. (2011), Yoo and Doiron (2013), and
Oviedo and Yoo (2017).

17Since any positive monotonic transformation of the utilities preserves the rank order of the original utilities, the
random utility speci�cation (13) is observationally equivalent to unj = x′njβ + εnj/σn. The slight abuse of notation
refers to that εj in equation (1) corresponds to εnj/σn, rather than εnj alone. Note that the presence of a parameter
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proportional to that portion of error variance which varies across individuals. Consistent estimation

of a parametric model requires the correct speci�cation of both the joint density of errors εn|Xn and

the distribution of σn. The GMS estimator allows both requirements to be relaxed substantially.

Regardless of the depth of rankings observed (i.e., for every M such that 1 ≤ M ≤ J − 1),

the GMS estimator is consistent for the semiparametric model that accommodates any form of

interpersonal heteroskedasticity via σn. For veri�cation, note that when vnj ≡ x′njβ and vnk ≡ x′nkβ
satisfy the inequality stated in Assumption 1, so does any positive multiple of this pair, σn × vnj
and σn × vnk. The GMS estimator, therefore, allows the empiricist to be agnostic about the exact

distribution of σn. This is a desirable property because in most studies, σn demands attention

only to the extent that it must be correctly speci�ed for the consistent estimation of the preference

parameter vector β.

The remainder of this section assumes the use of complete rankings (M = J − 1). This allows

the semiparametric model to accommodate any model that satis�es the pairwise zero conditional

median (ZCM) restriction, i.e.,

median(εnk − εnj |Xn) = 0 for any j, k ∈ J, where j 6= k, (14)

which is then a necessary and su�cient condition for Assumption 1 as long as the distribution of

(εnk − εnj)|Xn is a strictly increasing function (see the proof in Section 2.2). In comparison, any

parametric model involves a much stronger set of restrictions a�ecting other moments too, since the

density of εn|Xn is speci�ed in full detail.

The semiparametric model based on (14) o�ers considerable �exibility not only over possible

distributions of idiosyncratic errors, but also over possible distributions of random coe�cients. To

see this latter aspect, note that one may view εn as composite errors comprising individual-speci�c

coe�cients heterogeneity ηn (that has the same dimension as β) and purely idiosyncratic errors εn

(that has the same dimension as εn) such that a typical entry in vector εn ≡Xnηn + εn is

εnj ≡ x′njηn + εnj . (15)

Suppose now that idiosyncratic errors εn satisfy the pairwise ZCM restriction, median(εnk −
εnj |Xn) = 0 for any j, k ∈ J, and the usual random coe�cients modeling assumption, (ηn⊥εn)|Xn,

holds. Then, as long as individual heterogeneity has ZCM, i.e., median(ηn|Xn) = 0, the compos-

ite errors εn satisfy the pairwise ZCM restriction in (14) too: di�erencing two composite errors

like σn does not a�ect any of our earlier results because they do not rely on εnj having a standardized scale.
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results in a linear combination of conditionally independent random variables, (xnk − xnj)′ηn and

(εnk− εnj), each of which has the conditional median of zero. Each element in β may be interpreted

as the median of a certain random preference coe�cient whereas the corresponding element in ηn

measures the individual-speci�c deviation around this median. In comparison, a parametric random

coe�cients model places more rigid restrictions on the distribution of individual heterogeneity ηn,

because the density of ηn|Xn needs be fully speci�ed much as that of εn|Xn.

It is easy to verify that the semiparametric model accommodates the classic troika of parametric

random utility models, MNL (or ROL), nested MNL (or nested ROL), and MNP (or ROP).18 All

three models assume away interpersonal heteroskedasticity by setting σn = 1 ∀ n = 1, 2, ..., N ,

and assume an idiosyncratic error density εn|Xn that implies the pairwise ZCM condition. In

case of MNL, the idiosyncratic errors are i.i.d. extreme value type 1 over alternatives and, as the

celebrated result of McFadden (1974) shows, di�erencing two errors results in a standard logistic

random variable that is symmetric around zero. The nested MNL directly generalizes the MNL

model by specifying the joint density of εn|Xn as a generalized extreme value (GEV) distribution.

This distribution allows for a positive correlation between εnj and εnk in case alternatives j and k

belong to the same �nest� or pre-speci�ed subset of J. Di�erencing two GEV errors still results in

a logistic random variable that is symmetric around zero, though it may not have the unit scale.

Finally, in its unrestricted form, the MNP model generalizes the nested MNL model by specifying

the multivariate normal density εn|Xn ∼ N(0,V ε) that allows for heteroskedasticity of εnj over

alternatives j, and also for any sign of correlation between εnj and εnk. Di�erencing two zero-mean

multivariate normal variables results in a zero-mean normal variable that is symmetric around zero.

Mixed MNL (or mixed ROL) models have become the workhorse of empirical modeling in the

recent decade. The semiparametric model accommodates the most popular variant of mixed logit

models, as well as their extensions. In the context of error decomposition (15), a mixed MNL model

18A major parametric alternative to these three models is the heteroskedastic rank-ordered logit (HROL) model
of Hausman and Ruud (1987). Originally introduced as an ad hoc speci�cation to address mounting empirical
evidence against the ROL model (Hausman and Ruud, 1987), the HROL model has subsequently inspired several
other speci�cations that share similar motivations (Ben-Akiva et al., 1992; Fok et al., 2012; Yoo and Doiron, 2013).
We do not consider the HROL model because it stands on its own behavioral foundation that is not shared by other
random utility models. In contrast to the microeconomic interpretation of a ranking as a preference ordering based
on a single set of utility draws, the HROL model equates a ranking observation with a collection of observations on
stage-by-stage choices that have been made as follows. In stage 1, the individual chooses the best out of J alternatives
based on a set of utility draws and excludes it from further consideration; in stage 2, she chooses the best out of the
remaining J − 1 alternatives based on a new set of utility draws and eliminates it from further consideration too;
and she repeats this process until stage J − 1 after which only one alternative is left for further consideration. In her
observed ranking rn, her m

th best alternative corresponds to her choice in stage m. The hallmark of this framework
is that the individual's preferences for alternatives change from one stage to another even when those alternatives
are available in all stages.
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has idiosyncratic errors εn|Xn as i.i.d. extreme value type 1 over alternatives and incorporates

a non-degenerate �mixing� distribution of random heterogeneity ηn|Xn. While the mixing distri-

bution may take any parametric form, specifying ηn|Xn ∼ N(0,V η) is by far the most popular

choice, so much so that the generic name �mixed logit� is often associated with this normal-mixture

logit model. Di�erencing the normal-mixture logit model's composite errors results in a linear com-

bination of conditionally independent zero-mean normal and standard logistic random variables,

which has the conditional median of zero. Fiebig et al. (2010) augment the normal-mixture logit

model with a log-normally distributed interpersonal heteroskedasticity parameter σn, and �nd that

the resulting Generalized Multinomial Logit model is capable of capturing the multimodality of

preferences. Because the semiparametric model allows for any form of σn, it nests the Generalized

Multinomial Logit model too. Greene et al. (2006) extend the normal-mixture model in another

direction, by allowing the variance-covariance of random coe�cients, V ar(ηn|Xn), to vary with

Xn. The semiparametric model nests their heteroskedastic normal-mixture logit model too, since

this type of generalization does not a�ect the conditional median of ηn.

The semiparametric model also accommodates any �nite mixture of the aforementioned paramet-

ric models, and more generally that of all parametric models satisfying the pairwise ZCM restriction.

In other words, it is allowed that the data generating process comprises di�erent parametric mod-

els for di�erent individuals.19 This �exibility comes from the fact that the GMS estimator does

not require the density of εn|Xn to be identical across all individuals n = 1, 2, ..., N , as long as

each individual's density of the error vector satis�es the pairwise ZCM restriction. While the �nite

mixture of parametric models approach has not been applied to the analysis of multinomial choice

or rank-ordered choice data, it has motivated in�uential studies in the binomial choice analysis of

decision making under risk (Harrison and Rutström, 2009; Conte et al., 2011). The �ndings from

that literature unambiguously suggest that postulating only one parametric model for all individuals

may be an unduly restrictive assumption.

3 The Smoothed GMS Estimator

The maximum score (MS) type estimator is N1/3-consistent, and its asymptotic distribution is

studied in Cavanagh (1987) and Kim and Pollard (1990). Kim and Pollard have shown that N1/3

times the centered MS estimator converges in distribution to the random variable that maximizes

a certain Gaussian process for binomial choice data. Their general theorem can be applied to

19For example, the nested MNL model may generate 1/3 of the population while the mixed MNL may generate
the rest.
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multinomial choice data and rank-ordered choice data too. However, the resulting asymptotic

distribution is too complicated to be used for inference in empirical applications. Delgado et al.

(2001) show that subsampling consistently estimates the asymptotic distribution of the test statistic

of the MS estimator. However, subsampling inference is sensitive to the choice of subsample size.20

Moreover, the standard bootstrap is inconsistent for the MS estimator for binomial choice data, as

shown by Abrevaya and Huang (2005), and also for multinomial and rank-ordered choice data.

In this section, we propose an estimator that complements the GMS estimator by address-

ing these practical limitations, in return for making some additional smoothness assumptions. In

the context of Manski's (1985) MS estimator for binomial choice data, Horowitz (1992) develops a

smoothed maximum score (SMS) estimator that replaces indicator functions with smooth functions.

Yan (2013) applies this technique to derive a smoothed version of Fox's (2007) MS estimator for

multinomial choice data. We use the same approach to derive a smoothed GMS (SGMS) estimator,

which o�ers similar bene�ts as its SMS predecessors. Speci�cally, we show that the SGMS estimator

is consistent under the same set of assumptions as the GMS estimator and has a rate of conver-

gence that is faster than N−1/3 under extra smoothness conditions. Its asymptotic distribution is

multivariate-normal with a covariance matrix that can be consistently estimated from data.

3.1 The SGMS Estimator and its Asymptotic Properties

In this section, we �rst derive the SGMS estimator and state its consistency result in Theorem 3.

Then we summarize the results on its rate of convergence and asymptotic distribution, and state

the formal results on the limiting distribution in Theorem 4. Theorem 5 establishes consistent

estimation of the parameters in the limiting distribution of the SGMS estimator.

The objective function in (12) can be rewritten as

QN (b) = N−1
N∑

n=1

∑

1≤j<k≤J

{
[1(rnj < rnk)− 1(rnk < rnj)] · 1(x′njkb ≥ 0) + 1(rnk < rnj)

}
(16)

by replacing 1(x′nkjb > 0) with [1−1(x′njkb ≥ 0)]. The indicator function of b in (16) can be replaced

by a su�ciently smooth functionK(·), whereK(·) is analogous to a cumulative distribution function
(CDF). Application of this smoothing idea in Horowitz (1992) to the right-hand side of (16) yields

the SGMS estimator

20The computational cost of subsampling is very high for the MS (or GMS) estimator because a global search
method is needed to solve the maximization problem for each subsample.
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bSN ∈ argmax
b∈B

QSN (b, hN ), (17)

where

QSN (b, hN ) ≡ N−1
N∑

n=1

∑

1≤j<k≤J

{
[1(rnj < rnk)− 1(rnk < rnj)] ·K

(
x′njkb/hN

)
+ 1(rnk < rnj)

}
(18)

and {hN : N = 1, 2, . . .} is a sequence of strictly positive real numbers satisfying limN→∞hN = 0.

The next condition states the requirements on function K(·) for the consistency of the SGMS

estimator.

Condition 1. Let K(·) be a function on R1 such that :

(a) |K(v)| < C for some �nite C ∈ R1
+ and all v ∈ R1; and

(b) limv→−∞K(v) = 0 and limv→∞K(v) = 1.

Theorem 3. Let Assumptions 1-4 and Condition 1 hold. The SGMS estimator bSN ∈ B de�ned in

(17) converges almost surely to the true preference parameter vector β.

By Theorem 3, the consistency of the SGMS estimator holds under the same set of assumptions

as the GMS estimator, as long as the smooth function K(·) is properly chosen. Since any CDF

(e.g., the standard normal distribution function) satis�es Condition 1, the SGMS estimator does

not require more assumptions to achieve strong consistency than the GMS estimator does.

Unlike consistency, extra assumptions on the distributions of the error terms and covariates are

required in order to derive the asymptotic distribution of the SGMS estimator. Choosing a smooth

function K(·) that is at least twice di�erentiable. Assume that the true parameter vector is an

interior point in the parameter space, that is,

Assumption 5. β̃ is an interior point of B̃.

Then the objective function (18) of the SGMS estimator is a smooth function of b and we can

apply a Taylor series expansion method to derive its asymptotic distribution.21 Let bSN,1 denote the

21Unlike binomial choice data, which are generated by a single latent random utility function, multinomial choice
data and rank-ordered choice data are generated by multiple latent random utility functions. Yan (2013) explains
the challenge of deriving the asymptotic distribution of the SMS estimator for multinomial choice data based on
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�rst element of bSN and b̃
S
N denote the vector of its remaining elements. Recall that the magnitude

of �rst element of β is normalized to be one (Assumption 2). By Theorem 3, bSN,1 is a sign consistent

estimator for β1 and the probability P (bSN,1 − β1 = 0) converges to one as N goes to in�nity. Since

bSN,1 converges to the true parameter at a faster rate than the remaining elements of the SGMS

estimator, we focus on the convergence rate and the asymptotic distribution of (b̃
S
N − β̃) in the

following analysis.

Roughly put, the fastest convergence rate of (b̃
S
N−β̃) to zero isN−d/(2d+1), where d is the positive

integer that indicates the strength of the smoothness conditions in Assumption 6 and Assumption

7(a) discussed later. When d = 1, the convergence rate of the SGMS estimator is N−1/3 and it

has an unknown limiting distribution, thus the SGMS estimator does not o�er evident advantages

over the GMS estimator. When d ≥ 2, the convergence rate of the SGMS estimator, by appropri-

ately choosing the smooth function K(·) and bandwidth hN (Condition 2 and Assumption 8), is

N−d/(2d+1), and the asymptotic distribution of the SGMS estimator is multivariate normal, making

statistical inference straightforward. In other words, in order to have the asymptotic normality of

the SGMS estimator, we require the conditional probability of ranking comparison in (5) to be at

least twice di�erentiable with respect to the systematic utility. A larger integer d corresponds to

stronger smoothness conditions. Therefore, a higher rate of convergence of the SGMS estimator is

achieved at the cost of making stronger smoothness assumptions on the conditional distributions of

the error terms and the continuous explanatory variable. For inferential purposes, we assume d ≥ 2

and treat it as a given/known parameter.22

To facilitate a formal statement of the assumptions required for deriving the asymptotic distri-

bution of the SGMS estimator, we introduce a series of extra notations �rst. Recall that vj ≡ x′jβ
represents the systematic utility of choosing alternative j ∈ J. Denote v ≡ (v1, . . . , vJ−1, vJ)′ ∈ RJ .
There is a one-to-one correspondence between X and (v, X̃) for �xed β, where X̃ ≡ (x̃1, ..., x̃J)′ ∈
RJ×(q−1). De�ne vector ιJ ≡ (1, . . . , 1)′ ∈ RJ . For any alternative j ∈ J, let vector v−j be the

the properties of Horowitz's (1992) binomial SMS estimator. Since rank-ordered choice data are generated by the
same multiple utility functions as multinomial choice data, deriving its asymptotic distribution is a straightforward
extension of the multinomial SMS estimator in Yan (2013). The sketch for deriving the asymptotic distribution of
the SGMS estimator is included in Supplementary Material.

22Following the notations summarized at the end of Introduction, let K(1)(·) denote the �rst derivative of K(·). As
we will point out shortly, K(1)(·) in our analysis is analogous to a dth order kernel in kernel density estimation. If a
faster convergence rate is desired, the researcher may assume a larger d and choose K(·) that gives the corresponding
higher order kernel K(1)(·), keeping in mind that this gain in the convergence rate is at the cost of making stronger
smoothness assumptions. In our Monte Carlo experiments, we �nd that assuming d = 2 allows the SGMS estimator
to perform signi�cantly better than the GMS estimator in terms of achieving smaller mean square error under various
error distributions.
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di�erence: v − vjιJ . For example, when 1 < j < J ,

v−j = (v1 − vj , . . . , vj−1 − vj , 0, vj+1 − vj , . . . , vJ − vj)′ ∈ RJ .

In words, v−j is computed by subtracting the systematic utility of alternative j from the raw vector

of systematic utilities. For any pair of alternatives j, k ∈ J, de�ne v−j,k = vk − vj and ṽ−j,k as the
vector that consists of all elements of v−j excluding v−j,k. For example, when 1 < j < k < J ,

ṽ−j,k ≡ (v1 − vj , . . . , vk−1 − vj , vk+1 − vj , . . . , vJ − vj)′ ∈ RJ−1.

If J > 2, for any three di�erent alternatives j, k, l ∈ J, de�ne ṽ−j,kl as the vector that consists of
all of the elements of v−j excluding v−j,k and v−j,l. For example, when 1 < j < k < l < J ,

ṽ−j,kl ≡ (v1 − vj , . . . , vk−1 − vj , vk+1 − vj , . . . , vl−1 − vj , vl+1 − vj , . . . , vJ − vj)′ ∈ RJ−2.

If J > 3, for any four di�erent alternatives j, k, l,m ∈ J, de�ne ṽ{k,m} as the vector that consists
of all of the elements of v excluding {vk, vm}. There is a one-to-one correspondence between v and

(vjk, vlm, ṽ{k,m}).

Let pjk(v−j,k|ṽ−j,k, X̃) denote the conditional density of v−j,k given (ṽ−j,k, X̃). For any integer

i > 0, de�ne the derivatives

p
(i)
jk (v−j,k|ṽ−j,k, X̃) = ∂ipjk(v−j,k|ṽ−j,k, X̃)/∂(v−j,k)

i,

whenever they exist. Denote p
(0)
jk (v−j,k|ṽ−j,k, X̃) ≡ pjk(v−j,k|ṽ−j,k, X̃). Let pjkl(v−j,k, v−j,l|ṽ−j,kl, X̃)

denote the joint density of (v−j,k, v−j,l) conditional on (ṽ−j,kl, X̃), and pjklm(vjk, vlm|ṽ{k,m}, X̃) de-

note the joint density of (vjk, vlm) conditional on (ṽ{k,m}, X̃).

Given any pair of alternatives j, k ∈ J, there is a one-to-one correspondence between X and

(v−j,k, ṽ−j,k, X̃) for �xed β ∈ B. The probability for each individual to rank alternative j over

alternative k depends on her covariates matrix X, or equivalently, (v−j,k, ṽ−j,k, X̃). De�ne

Fjk(v−j,k, ṽ−j,k, X̃) = P (rj < rk|v−j,k, ṽ−j,k, X̃) (19)

and

F̄jk(v−j,k, ṽ−j,k, X̃) = P (rj < rk|v−j,k, ṽ−j,k, X̃)− P (rk < rj |v−j,k, ṽ−j,k, X̃). (20)
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Next, for any integer i > 0, de�ne the following derivatives

F̄
(i)
jk (v−j,k, ṽ−j,k, X̃) = ∂iF̄jk(v−j,k, ṽ−j,k, X̃)/∂(v−j,k)

i,

whenever the derivatives exist. Likewise, de�ne the scalar constants kd and kΩ, respectively, by

kd =

ˆ ∞

−∞
vdK(1)(v)dv and kΩ =

ˆ ∞

−∞
[K(1)(v)]2dv,

whenever these quantities exist.

Finally, de�ne the q − 1 vector a, and the (q − 1)× (q − 1) matrices Ω and H as follows:

a =
∑

1≤j<k≤J
kd

d∑

i=1

1

i!(d− i)! E
[
F̄

(i)
jk (0, ṽ−j,k, X̃) p

(d−i)
jk (0|ṽ−j,k, X̃)x̃jk

]
, (21)

Ω =
∑

1≤j<k≤J
2kΩE

[
Fjk(0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)x̃jkx̃

′
jk

]
, (22)

and

H =
∑

1≤j<k≤J
E
[
F̄

(1)
jk (0, ṽ−j,k, X̃) pjk(0|ṽ−j,k, X̃)x̃jkx̃

′
jk

]
, (23)

whenever these quantities exist.

Now, we turn to the formal description of the smoothness conditions on the distributions of the

error terms and the continuous covariate.

Assumption 6. For any pair of distinct alternatives j, k ∈ J, any integer i such that 1 ≤ i ≤ d, all
v−j,k in a neighborhood of 0, almost every (ṽ−j,k, X̃), and some �nite constant C, F̄

(i)
jk (v−j,k, ṽ−j,k, X̃)

exists and is a continuous function of v−j,k satisfying |F̄ (i)
jk (v−j,k, ṽ−j,k, X̃)| < C.

By de�nition (20), function F̄jk(·) can be derived from the conditional distribution of the er-

ror terms. Assumption 6 in essence imposes the di�erentiability requirement on the conditional

distribution function of the error vector ε with respect to systematic utilities. Further elaboration

on the latter point using illustrative examples can be downloaded from the corresponding author's

website.23

23https://sites.google.com/site/yanjin2011/research-2
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Assumption 7. The following statements on the covariates are true.

(a) For any pair of distinct alternatives j, k ∈ J, each integer i such that 1 ≤ i ≤ d−1, all v−j,k in

a neighborhood of 0, almost every (ṽ−j,k, X̃), and some �nite constant C, p
(i)
jk (v−j,k|ṽ−j,k, X̃)

exists and is a continuous function of v−j,k satisfying |p(i)
jk (v−j,k|ṽ−j,k, X̃)| < C. In addition,

for all v−j,k and almost every (ṽ−j,k, X̃), |pjk(v−j,k|ṽ−j,k, X̃)| < C.

(b) If J ≥ 3, then for any three distinct alternatives j, k, l ∈ J, all (v−j,k, v−j,l), almost every

(ṽ−j,kl, X̃), and some �nite constant C, pjkl(v−j,k, v−j,l|ṽ−j,kl, X̃) < C.

(c) If J ≥ 4, then for any four distinct alternatives j, k, l,m ∈ J, all (vjk, vlm), almost every

(ṽ{k,m}, X̃), and some �nite constant C, pjklm(vjk, vlm|ṽ{k,m}, X̃) < C.

(d) The components of matrices X̃, vec(X̃)vec(X̃)′, and vec(X̃)vec(X̃)′vec(X̃)vec(X̃)′ have �-

nite �rst absolute moments.

In addition to the continuity requirement imposed by Assumption 3(a), Assumption 7(a) further

requires that the conditional probability density function of the �rst explanatory variable, xjk,1,

given other explanatory variables is (d−1) times di�erentiable, or equivalently, the conditional CDF

of the �rst explanatory variable, xjk,1, given other explanatory variables is d times di�erentiable.

Given the smoothness parameter d in Assumption 6 and Assumption 7(a), the smooth function

K(·) is chosen in a way such that its �rst derivative, K(1)(·), is analogous to a dth order kernel in

kernel density estimation. Condition 2 lists the requirements on the smooth function in addition to

Condition 1.24

Condition 2. The following statements about K(·) are true.

(a) K(v) is twice di�erentiable for v ∈ R, |K(1)(v)| and |K(2)(v)| are uniformly bounded, and

the integrals
´∞
−∞[K(1)(v)]2dv,

´∞
−∞[K(1)(v)]4dv,

´∞
−∞ v

2|K(2)(v)|dv, and
´∞
−∞[K(2)(v)]2dv are

�nite.

(b) For some integer d ≥ 2,
´∞
−∞ |vdK(1)(v)|dv <∞ and kd ∈ (0,∞). For any integer i such that

1 ≤ i < d, integrals
´∞
−∞ |viK(1)(v)|dv <∞ and

´∞
−∞ v

iK(1)(v)dv = 0.

24These extra requirements, stated in Condition 2, on the smooth function K(·) are similar to those in Assumption
7 of Horowitz (1992).



24

(c) For any integer i such that 0 ≤ i ≤ d, any η > 0, and any positive sequence {hN} converging
to 0,

lim
N→∞

hi−dN

ˆ

|hNv|>η
|viK(1)(v)|dv = 0 and lim

N→∞
h−1
N

ˆ

|hNv|>η
|K(2)(v)|dv = 0.

Assumption 8. (logN)/(Nh4
N ) → 0 as N → ∞, where {hN} is a strictly positive sequence con-

verging to 0.

Assumption 9. The matrix H, de�ned by (23), is negative de�nite.

Assumptions 6-8, together with Condition 2, are analogous to typical assumptions made in the

kernel density estimation. A higher convergence rate of the SGMS estimator can be achieved using

a higher order kernel K(1)(·) when the required derivatives of F̄ (·) and p(·) exist. The matrix H in

Assumption 9 is analogous to the Hessian information matrix in the quasi-MLE.

Theorem 4. Let Assumptions 1-9 and Conditions 1-2 hold for some integer d ≥ 2, and let {bSN}
be a sequence of solutions to problem (17). If Nh2d+1

N → λ as N →∞, where λ ∈ [0,∞), then

(NhN )1/2(b̃
S
N − β̃)⇒MVN

(
−λ1/2H−1a, H−1ΩH−1

)
,

and if Nh2d+1
N →∞ as N →∞, then (hN )−d(b̃

S
N − β̃)

p−→ −H−1a.

Theorem 4 implies that given a smoothness condition (where the strength of the smoothness

condition is governed by integer d), the SGMS estimator centered by the true parameter vector,

b̃
S
N − β̃, converges in distribution to a normal vector at the rate of (NhN )−1/2 by choosing a

bandwidth hN at the rate equal to or faster than N−1/(2d+1). When the bandwidth hN converges

to zero at the rate of N−1/(2d+1) (i.e., Nh2d+1
N converges to a strictly positive real number λ), the

convergence rate of the centered SGMS estimator is (NhN )−1/2 = N−d/(2d+1), which is the fastest

rate of convergence as explained below.

In the case of under-smoothing (i.e., Nh2d+1
N converges to zero), bandwidth hN goes to zero

at a rate faster than N−1/(2d+1) and the centered SGMS estimator converges in distribution to a

zero-mean normal vector (since λ = 0) at the rate of (NhN )−1/2, which is slower than the rate of

N−d/(2d+1) because N−d/(2d+1)/(NhN )−1/2 = (Nh2d+1
N )1/(4d+2) goes to zero as N goes to in�nity.25

In the case of over-smoothing (i.e., Nh2d+1
N diverges to in�nity), bandwidth hN goes to zero at a

25In certain applications, under-smoothing may be a more straightforward way to implement statistical inference
because it does not require bias-correction, which is discussed in Section 3.2.
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rate slower than N−1/(2d+1) and the centered SGMS estimator converges in probability to a bias

term at the rate of hdN , which is also slower than the rate of N
−d/(2d+1) because N−d/(2d+1)/(hN )d =

(Nh2d+1
N )−d/(2d+1) goes to zero as N goes to in�nity.

To make the results of Theorem 4 useful in statistical inferences, it is necessary to be able

to estimate the parameters, a, Ω, and H, in the limiting distribution of the SGMS estimator

consistently from observations of (r,X). The next theorem shows how this can be done.

Theorem 5. Let Assumptions 1-9 and Conditions 1-2 hold for some integer d ≥ 2 and vector bSN

be a consistent estimator based on hN ∝ N−1/(2d+1). Let h∗N ∝ N−δ/(2d+1), where real number

δ ∈ (0, 1). Then

(a) âN
p−→ a, where vector

âN ≡ (h∗N )−dN−1
N∑

n=1

∑

1≤j<k≤J
[1(rnj < rnk)− 1(rnk < rnj)]K

(1)
(
x′njkb

S
N/h

∗
N

)
(x̃njk/h

∗
N );

(b) Ω̂N
p−→ Ω, where matrix Ω̂N ≡ (hN/N)

N∑

n=1

tNn(bSN , hN )tNn(bSN , hN )′ and vector

tNn(b, hN ) ≡
∑

1≤j<k≤J
[1(rnj < rnk)− 1(rnk < rnj)]K

(1)
(
x′njkb/hN

)
(x̃njk/hN ),

for b ∈ B and n = 1, . . . , N ;

(c) and HN (bSN , hN )
p−→H, where matrix

HN (bSN , hN ) ≡ (Nh2
N )−1

N∑

n=1

∑

1≤j<k≤J
[1(rnj < rnk)− 1(rnk < rnj)]K

(2)
(
x′njkb

S
N/hN

)
x̃njkx̃

′
njk.

3.2 Implementation Suggestions

3.2.1 Asymptotic Bias Correction

Theorem 4 has allowed us to state earlier that the fastest convergence rate of the SGMS estimator

centered at the true parameter vector is N−d/(2d+1), which can be achieved by choosing a bandwidth

hN at the rate of N−1/(2d+1) under particular smoothness conditions (indicated by integer d). Nei-

ther under-smoothing (i.e., Nh2d+1
N → 0) nor over-smoothing (i.e., Nh2d+1

N →∞) can achieve this
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fastest rate. For any real number λ ∈ (0,∞), choosing the bandwidth such that Nh2d+1
N → λ allows

the centered SGMS estimator to achieve this fastest rate. The asymptotic bias of Nd/(2d+1)(b̃
S
N − β̃)

is −λd/(2d+1)H−1a when using bandwidth hN = (λ/N)1/(2d+1). It follows from Theorem 5 that

this bias term can be estimated consistently by −λd/(2d+1)HN (bSN , hN )−1âN . Therefore, de�ne

b̃
bc
N = b̃

S
N + (λ/N)d/(2d+1)HN (bSN , hN )−1âN (24)

as the bias-corrected SGMS estimator.

3.2.2 Choice of Bandwidth

Using bandwidth hN = (λ/N)1/(2d+1) (where λ is a strictly positive real number) allows the SGMS

estimator centered at the true parameter vector to achieve the fastest rate of convergence given

certain smoothness conditions. Next we discuss the choice of the positive parameter λ.

LetW be any nonstochastic positive semide�nite matrix such that a′H−1WH−1a 6= 0. Denote

EA as the expectation with respect to the asymptotic distribution of Nd/(2d+1)(b̃
S
N − β̃) and de�ne

the mean square error (MSE) as EA[(b̃
S
N − β̃)′W (b̃

S
N − β̃)]. By the cyclic property of trace,

EA[(b̃
S
N − β̃)′W (b̃

S
N − β̃)] = trace{WEA[(b̃

S
N − β̃)(b̃

S
N − β̃)′]}. Theorem 4 implies that

EA[(b̃
S
N − β̃)(b̃

S
N − β̃)′] = N−2d/(2d+1)

[
λ−1/(2d+1)H−1ΩH−1 + λ2d/(2d+1)H−1aa′H−1

]
.

Therefore, we calculate

MSE = N−2d/(2d+1)trace
[
WH−1

(
λ−1/(2d+1)Ω + λ2d/(2d+1)aa′

)
H−1

]
.

From the �rst order condition, we show that MSE is minimized by setting λ to be

λ∗ = [trace(WH−1ΩH−1)]/[trace(2dWH−1aa′H−1)],

or equivalently, λ∗ = [trace(ΩH−1WH−1)]/(2da′H−1WH−1a) by the cyclic property of trace.

In this case Nd/(2d+1)(b̃
S
N − β̃) converges to MVN

(
−(λ∗)d/(2d+1)H−1a, (λ∗)−1/(2d+1)H−1ΩH−1

)

in distribution.

The optimal λ∗ derived here can be consistently estimated by Theorem 5 and the continuous

mapping theorem. Therefore, one possible way of choosing bandwidth is to set hN = (λ̂/N)1/(2d+1),

where λ̂ is a consistent estimator for λ∗. Speci�cally, the choice of bandwidth can be implemented

by taking the following steps given integer d ≥ 2, i.e., the smoothness conditions.
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Step 1. Choose a bandwidth hN ∝ N−1/(2d+1) and another bandwidth h∗N ∝ N−δ/(2d+1) for

δ ∈ (0, 1).

Step 2. Compute the SGMS estimator bSN using hN . Use b
S
N and h∗N to compute vector âN and

use bSN and hN to compute matrices Ω̂N and HN (bSN , hN ) as Theorem 5 suggests.

Step 3. Estimate λ∗ by

λ̂N =
trace

[
Ω̂NHN (bSN , hN )−1WHN (bSN , hN )−1

]

[
2dâ′NHN (bSN , hN )−1WHN (bSN , hN )−1âN

] . (25)

Step 4. Calculate the estimated bandwidth heN = (λ̂N/N)1/(2d+1).

Step 5. Compute the SGMS estimator using the estimated bandwidth heN .

Note that the approach described by steps 1-5 is analogous to the plug-in method of kernel

density estimation. As usual in the application of the plug-in method, the choice of the initial

bandwidth hN and parameter δ would require some exploration, because the estimated bandwidth

heN may be sensitive to that choice. In our Monte Carlo experiments in the next section, the

bandwidth has been initialized by setting hN = N−1/5 and δ = 0.1.

3.2.3 Small-Sample Correction

We describe a method, proposed by Horowitz (1992), to remove part of the �nite sample bias of

âN . A Taylor series expansion of âN − a around β̃ yields

âN − a =
[
(h∗N )−dtN (β, h∗N )− a

]
+ (h∗N )−dHN (b∗N , h

∗
N )(b̃

S
N − β̃) (26)

with probability approaching one as N goes to in�nity, where b∗N is a vector between bSN and β.

The right-hand side of (26) shows that the �nite sample bias of âN has two components. The �rst

component, (h∗N )−dtN (β, h∗N )−a, has a non-zero mean due to the use of a non-zero bandwidth h∗N
to estimate a. The second component, (h∗N )−dHN (b∗N , h

∗
N )(b̃

S
N − β̃), has a non-zero mean due to

the use of an estimate of the true parameter vector β in estimating a.

The bias correction method described here is aimed at removing the second component of bias

by order N−(1−δ)d/(2d+1). Note that the second component of the right-hand side of (26) can be

written as

(h∗N )−dHN (b∗N , h
∗
N )(b̃

S
N − β̃) =

[
NhN (h∗N )2d

]−1/2
HN (b∗N , h

∗
N )(NhN )1/2(b̃

S
N − β̃).
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The probability limit ofHN (b∗N , h
∗
N ) isH by Lemmas 7-8 in Supplementary Material, and (NhN )1/2(b̃

S
N−

β̃) converges in distribution to MVN(−λ1/2H−1a, H−1ΩH−1) by Theorem 4. Therefore,

[
NhN (h∗N )2d

]1/2
(h∗N )−dHN (b∗N , h

∗
N )(b̃

S
N − β̃)

converges in distribution to MVN(−λ1/2a, Ω).

Based on the above analysis, we treat âN as an estimator of {1− [NhN (h∗N )2d]−1/2λ1/2}a rather

than that of a. Thus, the bias-corrected estimator of vector a is

âcN = âN/

{
1−

[
λ−1NhN (h∗N )2d

]−1/2
}
, (27)

which is applied as the estimator of a in our Monte Carlo experiments.

4 Monte Carlo Experiments

In this section, we use Monte Carlo simulation results to study �nite-sample properties of the GMS

estimator bN and the SGMS estimator bSN . We consider six data generating processes (DGPs). In

each DGP, individual n's utility from alternative j, unj , is speci�ed as

unj = znj,1γ1 + znj,2γn2 + αj + εnj for n = 1, 2, ..., N and j = 1, 2, 3, 4. (28)

Each DGP is used to simulate two sets of 1000 random samples of N individuals, where N = 500

in the �rst set and 1000 in the second set.

In all DGPs, the intercept vector is α ≡ (α1, α2, α3, α4)′ = (0, 0.25, 0.5, 0.75)′. The �rst prefer-

ence parameter γ1 is a deterministic coe�cient and takes the value of one for all individuals: γ1 = 1.

In DGPs 1-4, the second preference parameter γn2 is also a deterministic coe�cient and takes the

value of one for all individuals: γn2 = γ2 = 1 for all n. In DGPs 5-6, however, γn2 is a random

coe�cient that varies across individuals, and each individual's coe�cient value is a random draw

from distribution N(1, 1): γn2 = γ2 + ηn, where γ2 = 1 and ηn is distributed as N(0, 1).26 Each

DGP speci�es its own distribution of error terms εnj : we provide more details below.27

26In random coe�cients models, we are often interested in discovering a certain central tendency of the ran-
dom preference coe�cient, such as its mean or its median. The mixed logit estimator will consistently estimate
E(γn2) under correct parametric speci�cations and the proposed semiparametric estimators can consistently esti-
mate median(γn2) under Assumptions 1-4. For the simplicity of demonstration, we choose γn2 ∼ N(1, 1) such that
E(γn2) = median(γn2) = 1.

27In all DGPs, we generate εnj with variance equal to π2/6, subject to rounding errors.
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The econometrician observes a utility-based ranking rn of J = 4 alternatives in J, as well as
attributes znj,1 and znj,2 for j = 1, ..., 4 and n = 1, ..., N .28 As usual, the depth of observed rankings

in�uences the �nite sample precision of an estimator; and in the context of our semparametric

estimators, it also in�uences the degree of �exibility that semiparametric models o�er. Recall that

when the complete rankings (M = J − 1 = 3) are observed and there is at least one variable

satisfying Assumption 3 such as znj,1 and znj,2 in our DGPs, the semiparametric model nests all

popular parametric models as special cases; when only partial rankings (M < 3) are available,

this is not the case because the semiparametric model cannot accommodate alternative-speci�c

heteroekedasticity and �exible correlation patterns. We will therefore explore the �nite sample

behavior of the estimators at three depth levels: M = 1 when only the best alternative is observed,

M = 2 when the best and second alternatives are observed, and M = 3 when the complete ranking

is observed. In all DGPs, observed attribute znj,1 is a random draw from N(0, 2) and znj ,2 is

generated as a ratio of two di�erent uniform draws: speci�cally, znj,2 ≡ qnj/wn where qnj is drawn

from U(0, 3) and wn is drawn from U(1
5 , 5).29 Note that znj,1 and qnj vary across both individuals

and alternatives, whereas wn varies only across individuals. All three distributions that generate the

observed attributes are independent of one another, and i.i.d. across the subscripted dimension(s).

For comparison with our GMS and SGMS estimates, we also compute maximum likelihood

estimates using three popular parametric models summarized in Section 2.3, namely rank-ordered

logit (ROL), rank-ordered probit (ROP), and mixed ROL (MROL). We do not estimate the nested

ROL model, primarily because our analysis already includes the ROP model which is a more �exible

parametric method to incorporate correlated errors. In case of ROP and MROL, we opt to place no

constraint on the variance-covariance parameters of the underlying multivariate normal densities.30

This allows us to compare our semiparametric methods with both restrictive (ROL) and very �exible

(ROP and MROL) parametric methods.

In all estimation runs, we set α1 = 0 for location normalization. Following the notation in

28Here we use a relatively small choice set mainly because the probit and the mixed logit speci�cations yield
objective functions that require multivariate integration, and consequently a considerable amount of computation
time. The computation time of the GMS and SGMS estimators per se is a�ordable even if the choice set is very
large, e.g., J = 100 in Yan (2013).

29This pair of uniform distributions ensures that the second observed attribute has approximately the same variance
as the �rst attribute, i.e., V ar(qnj/wn) = 1.9882 ' 2.

30Our ROP speci�cation requires estimating �ve utility index parameters (γ1, γ2, α2, α3 and α4) and �ve identi�ed
variance-covariance parameters of pairwise error di�erences. Our MROL speci�cation assumes that both slope coef-
�cients are random and bivariate normal: we estimate two mean coe�cients (γ1 and γ2), three variance-covariance
parameters of their bivariate normal density, and three alternative-speci�c intercepts (α2, α3 and α4). The ROP
(MROL) model has been estimated in Stata using command -asroprobit- (-mixlogit-); the likelihood function has
been simulated by taking 200 pseudo-random draws from Hammersley (Halton) sequences.
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section 2, let β1 ≡ γ1 and β̃ ≡ (γ2, α2, α3, α4)′. Our discussion focuses on scaled parameter vector,

β̃/β1, which is identi�ed in both parametric and semiparametric models. In the discrete choice

analysis of individual preferences, the main parameter of interest often takes the form of a ratio

between coe�cients on non-price and price attributes; this type of ratio is known as, inter alia,

equivalent prices (Hausman and Ruud, 1987), implicit prices (Calfee et al., 2001), and willingness-

to-pay (Small et al., 2005). In parametric models, we normalize the scale of the error terms in the

usual manner to estimate (β1, β̃
′
)′, and then use the results to derive estimated counterparts to

β̃/β1. In semiparametric models, we normalize |β1| = 1 and estimate β̃ together with the sign of

β1, and then compute the estimate of the ratio of interest β̃/sign(β1).31

Since the GMS estimator entails maximizing a sum of step functions, we use a global search

method to compute the GMS estimates: speci�cally the di�erential evolution algorithm of Storn

and Price (1997), which was also Fox's (2007) preferred method for computing his multinomial MS

estimates. As to the SGMS estimator, we assume d = 2 (which is the minimum requirement on

smoothness conditions for its asymptotic normality) and implement a particular version which uses

the standard normal distribution function as the smooth function K(·).32 The resulting objective

function is di�erentiable, and can be maximized by starting any of usual gradient-based algorithms

from a set of initial search points. The bandwidth has been initialized by setting hN = N−1/5 and

δ = 0.1, and optimized subsequently by applying the �ve steps described in Section 3.2.2 using an

identity matrix as the weight matrix W .

Table 1 summarizes the true distribution of the error terms in each DGP and whether particular

methods can estimate β̃/β1 consistently. The summary presents a strong case for the importance

of considering semiparametric methods for rank-ordered choice data: the GMS/SGMS estimator

using complete rankings is the only method that remains consistent throughout all DGPs. The

GMS/SGMS estimator using partial rankings is consistent when the error terms are homoskedastic

(DGPs 1-2) or heteroskedastic across individuals (DGP 3), but becomes inconsistent in the presence

of alternative-speci�c heteroskedasticity (DGP 4) and/or random coe�cients (DGPs 5-6). As usual,

a parametric method is consistent only when the DGP happens to coincide with the postulated

parametric model itself or its special cases.

Tables 2 through 7 report the bias and root mean square error (RMSE) of each method (in Table

1) using 1,000 samples of size N simulated from DGPs 1 through 6. The last column of each table

31The estimator of the sign of β1will converge at a much faster rate than the estimators for other parameters such
that there is no need to analyze the �nite-sample property of the sign estimator.

32We follow all the implementation suggestions in Section 3.2 in computing the SGMS estimator, by conducting
bias-correction, using the plug-in method to choose the bandwidth, and making a small sample correction.
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reports the empirical coverage probability (CP) of the asymptotic 95% con�dence interval of the

SGMS estimator. While all reported estimation results are for scaled parameters, β̃/β1, henceforth

we will not stress division by β1 ≡ γ1 explicitly for the simplicity of notation and discussion.

We �rst focus on the slope coe�cient γ2, the results for which vary more widely across DGPs

and estimators. The GMS estimator using complete rankings (i.e., M = 3) is consistent under all

six DGPs, and displays a small �nite sample bias, which is less than 3% of the coe�cient's true

value in DGPs 1 and 2, and 1% in DGPs 3 through 6. In addition, the estimator's RMSE declines

noticeably in all DGPs as the sample size grows from N = 500 to N = 1000, suggesting that its

�nite sample distribution becomes tighter around the coe�cient's true value. The potential bene�t

of using complete rankings in semiparametric estimation appears considerable. The GMS estimator

using partial rankings (M = 1 or M = 2) is consistent under DGPs 1,2 and 3 but not under DGPs

4, 5 and 6. While the partial rankings estimator still displays a small bias under DGPs 1, 2 and 3,

it can be subject to a bias that is about 22% (at M = 1) or 8% (at M = 2) in DGP 4, and 14% (at

M = 1) or 5% (at M = 2) in DGP 6; the complete rankings estimator's (M = 3) bias is practically

zero in both DGPs. Comparisons of the SGMS estimator across alternative depth levels and sample

sizes lead to similar conclusions, though each SGMS estimator tends to display a larger bias and

a smaller RMSE than its GMS counterpart, the expected trade-o�s from using a smoothing kernel

to construct a surrogate objective function. For DGPs 1, 2, and 5, at least one parametric method

allows consistent maximum likelihood estimation. The results suggest that the e�ciency gains (as

measured by the reduction in RMSE) that a consistent SGMS estimator o�ers over a consistent

GMS estimator are comparable to what a consistent parametric estimator o�ers over the SGMS

estimator itself.

The results for γ2 in DGPs 3, 4, and 6 present particularly interesting examples of the bene�t

from using our semiparametric methods. Under each of these DGPs, none of the popular parametric

methods is consistent but arguably at least one of the parametric methods postulates an approx-

imately correct model. We observe, nevertheless, that even an approximately correct parametric

method may display a sizable bias. In DGP 3, for instance, ROP is a correct speci�cation apart

from its failure to capture interpersonal heteroskedasticity; yet, the ROP estimator's bias ranges

from 37% to 45% of the true parameter value. In DGP 4 and DGP 6, there is alternative-speci�c

heteroskedasticity induced via a normal error component which multiplies the second attribute znj,2;

MROL can readily absorb this component into the normal random coe�cient on znj,2, and is there-

fore a correct speci�cation apart from its inclusion of a redundant extreme value error component.

While the MROL estimator's bias is indeed small when only the best alternative indicator is used in

estimation (M = 1), the bias becomes ampli�ed as deeper ranking information is used and exceeds
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13% with the use of complete rankings (M = 3).

While the results pertaining to the strong consistency of the GMS and SGMS estimators appear

reassuring, the results pertaining to the asymptotic normal distribution of the SGMS estimator

sound a cautionary note. The asymptotic 95% con�dence intervals for γ2 have empirical coverage

probabilities ranging from 88% to 91% when N = 500, and 89% to 92% when N = 1000, even

when one con�nes attention to those SGMS estimators that are consistent under a given DGP.33

It appears that for the asymptotic approximation to work well, one must consider larger sample

sizes than what we have examined. For the SMS estimator of binomial choice models, Horowitz

(1992) �nds an even larger amount of distortion in samples of N = 500, which does not improve

considerably in larger samples of N = 1000, though making head-to-head comparisons with our

results is di�cult given the use of di�erent DGPs. His subsequent work (Horowitz, 2002) provides

a bootstrapping procedure that removes the empirical distortion almost entirely. Our conjecture

is that the use of bootstrapping will bring about similarly satisfactory improvement in the present

context too. In our view, veri�cation of this conjecture may be best addressed in a dedicated

study, for both theoretical and computational reasons. On the theoretical side, one should formally

extend Horowitz's (2002) bootstrapping method for the SMS estimator to the SGMS estimator,

and verify the validity of the resulting method. On the computational side, we note that obtaining

the current set of simulation results for the case of N = 1000 and M = 3 under one DGP took

an average of 10 hours on a powerful workstation; obtaining reliable bootstrapping results involves

repeating this type of computing task over several hundred times per each triple ofN ,M and DGP.34

Exploring the performance of bootstrapping across alternative DGPs, sample size con�gurations

and preference depths is likely to require several months of computer time, even when one exploits

parallel computing.

For the alternative-speci�c intercepts (α2, α3, and α3), all parametric and semiparametric es-

timators display practically small biases, even under those DGPs where the estimators in question

are inconsistent. We are not aware of any formal explanation for this general robustness, though

it appears intuitively plausible that estimating the �xed part of every individual's utility (intercept

vector α) is an easier task in comparison to estimating the marginal utility weight on an explanatory

33As summarized in Table 1, the SGMS estimators using partial rankings are not consistent under DGPs 4-6. In
these cases, the coverage probabilities of the asymptotic 95% con�dence intervals are not informative about how well
asymptotic properties have played out. While the coverage probabilities are sometimes widely o� the mark under
DGP 4 and DGP 6 when M < 3, those results are not alarming considering that the underlying estimators are
inconsistent.

34We compute the SGMS estimates using Matlab 2018a for 64-bit Windows on a machine with a 3.6 GHz Intel
Xeon CPU E3-1271 and a 16GB RAM.
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variable that varies across alternatives and individuals (γ2 on znj,2). The results also suggest that

the asymptotic normal distribution of the SGMS estimator provides a better approximation to the

�nite sample distribution of the intercept estimator than that of the slope coe�cient estimator. For

each intercept αj for j = 2, 3, 4, the empirical coverage probability of the con�dence interval often

comes fairly close to the nominal 95% level.

The Monte Carlo experiments were primarily designed to study the properties of our semipara-

metric methods, but the results provide a fresh perspective on the debate over the reliability of

rank-ordered choice data. Based on the intuitively convincing premise that ranking is a more cog-

nitively demanding task than making a choice, some researchers contend that in case a parametric

method produces di�erent estimates depending on whether data on �rst preferences (M = 1) and

deeper rankings (2 ≤ M ≤ J − 1) are used, the econometrician should opt for M = 1 since deeper

ranking information may have been compromised by factors such as decision heuristics: see Chap-

man and Staelin (1982) and Ben-Akiva et al. (1992) for the in�uential proponents of this view. The

results in DGPs 3 through 6, however, caution against testing the reliability of data via comparisons

of parametric estimates across alternative levels ofM . Since inconsistent parametric estimators may

not be equally biased at all levels of M , they may produce estimates that vary across M even when

the reliability of data is beyond any doubt as in our simulated samples.

Recall that as Assumption 3(a) in Section 2.2 states, for point identi�cation of parameters, our

semiparametric methods requires the presence of a continuous covariate with large support such

as znj,1 in the Monte Carlo DGPs. In comparison, parametric methods do not require such a

covariate. When Assumption 3(a) fails, there may be a set of parameter vectors that maximize the

probability limit of the GMS objective function, instead of a unique parameter vector. Though a

detailed theoretical analysis of such partial or set identi�cation is beyond the scope of our paper, we

have conducted another Monte Carlo study to develop more insight into the practical consequences

of point identi�cation failure, using variants of DGP 3 that replace znj,1 and znj,2 with bounded

discrete covariates.35 A summary of the results can be downloaded from the corresponding author's

website.36 We observe that the GMS estimates of the slope parameter γ2 vary over intervals that

are narrow relative to the coe�cient's true value as well as RMSEs in Table 4, but those of intercept

αjs vary over much wider intervals. Considering the robustness of the parametric estimators of αjs

noted earlier, it appears that the complementary use of parametric and semiparametric methods

35We use DGP 3 for illustration because it incorporates interpersonal heteroskedasticity (while DGPs 1-2 have
homoskedastic errors) and the GMS estimator is consistent across all levels of rankings M under DGP 3 but not
DGPs 4-6.

36https://sites.google.com/site/yanjin2011/research-2
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could be a useful strategy when Assumption 3(a) is violated. The results also point to another

potential bene�t of using complete rankings in semiparametric estimation; all intervals become

tighter as the depth of ranking increases from M = 1 through M = 3.

5 Conclusions

To collect more preference information from a given sample of individuals, multinomial choice sur-

veys can be readily modi�ed to elicit rank-ordered choices. All parametric methods for multinomial

choices have their rank-ordered choice counterparts that exploit the extra information to estimate

the underlying random utility model more e�ciently. But semiparametric methods for rank-ordered

choices remain undeveloped, apart from the seminal work of Hausman and Ruud (1987), which rules

out interpersonal heteroskedasticity and is only applicable to continuous regressors. Building on

Fox's (2007) maximum score (MS) estimator of semiparametric multinomial choice models, we de-

velop the generalized maximum score (GMS) estimator of semiparametric rank-ordered choice mod-

els. We show that the GMS estimator allows for arbitrary forms of interpersonal heteroskedasticity

and consistent estimation of coe�cients on all types of regressors, as long as there is one continuous

regressor with large support that can be used to normalize the scale of utility. Like other MS-type

estimators, the GMS estimator has a slow convergence rate of N−1/3 and a non-standard asymptotic

distribution. In the context of binomial choice models, Horowitz (1992) develops the smoothed MS

estimator that addresses similar drawbacks of Manski's (1985) MS estimator in return for making

stronger assumptions. Yan (2013) extends the results to Fox's (2007) MS estimator of multinomial

choice models. Following this tradition, we propose the smoothed GMS (SGMS) estimator which

achieves a faster convergence rate and has an asymptotic normal distribution.

Our study �nds that rank-ordered choices provide an interesting data environment which can fa-

cilitate and bene�t from the development of semiparametric methods. Most interestingly, our results

show that using extra information from rank-ordered choices is not just a matter of e�ciency gains,

to the contrary of what parametric analyses might lead one to anticipate. For our semiparametric

estimators, it is also a matter of consistency in the sense that using complete rankings instead of

partial rankings allows the estimators to become robust to wider classes of stochastic speci�cations.

More speci�cally, the MS estimator using multinomial choices and the GMS estimator using par-

tial rankings do not allow for an error variance-covariance structure that varies across alternatives,

meaning that they cannot consistently estimate �exible parametric models including nested logit,

unrestricted probit, and mixed logit. By contrast, the GMS estimator using complete rankings (i.e.,

fully rank-ordered choices) can accommodate error structures as such, ful�lling the usual expecta-
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tions that a semiparametric model should nest competing parametric models. The main intuition

behind this contrast is that the use of complete rankings allows one to infer which alternative is

more preferred in every possible pair of alternatives in a choice set. The strong consistency of the

GMS estimator (and hence that of the SGMS estimator) using fully rank-ordered choices can be

therefore shown under almost the same assumptions as the strong consistency of the MS estimator

using binomial choices, without invoking stronger assumptions needed to address more analytically

complex cases of multinomial choices or partially rank-ordered choices.

Together with our Monte Carlo evidence on the bias of parametric methods under misspeci�ca-

tion, this �nding calls for a reconsideration of the conventional wisdom prevailing in the empirical

literature. Since Chapman and Staelin (1982), several studies have contended that in case the esti-

mates using complete rankings diverge from the estimates using information on the best alternative

alone (or other types of partial rankings), one should have more faith in the latter set of estimates

and question the reliability of data on deeper preference rankings. But with our semiparametric

methods, it is the former set of estimates that is consistent under a wider variety of true models.

And with parametric methods, the discrepancy may arise even when the reliability of data is be-

yond any doubt as in our simulated samples, because the amount of misspeci�cation bias may vary

(non-monotonically) in the depth of rankings used. While the premise that an individual �nds it

easier to tell her best alternative than, say third- or fourth-best alternative, is intuitively appealing,

testing the validity of the conventional wisdom calls for the use of a semiparametric method which

o�ers the same degree of robustness regardless of the depth of rankings used in estimation. In our

view, the development of a method as such is a promising avenue for future research.
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Appendices

We provide the proofs of Theorems 1-3 and those of relevant lemmas in Appendices A and B.

Speci�cally, Appendix A provides the proof of identi�cation (Theorem 1) and Appendix B includes

the proofs of the strong consistency of the proposed estimators (Theorems 2-3 and Lemmas 1-3).

The derivation of the asymptotic distribution of the SGMS estimator and the results for statistical

inference (Theorems 4-5 and Lemmas 4-8) require a relatively long list of technical conditions; we

present these conditions and associated proofs in Supplementary Material.

Throughout, we use acronyms, LIE, SLLN, and DCT, for Law of Iterated Expectations, Strong

Law of Large Numbers, and Dominated Convergence Theorem, respectively. Set Z+ denotes the

collection of positive integers. Symbol ‖v‖ denotes the L2 norm of vector v and |v| denotes the
vector of the absolute value of each element in v. Symbol O(1) (Op(1)) denotes a sequence that is

bounded (bounded in probability) and symbol o(1) (op(1)) denotes a sequence that converges to zero

(converges to zero in probability). For any summation indexed by an alternative (alternatives), we

suppress the statement that the alternative (alternatives) is (are) in the choice set J. For example,∑
j<k means

∑
j<k, j∈J, k∈J, or equivalently,

∑
1≤j<k≤J .

A Identi�cation

Proof. (Theorem 1) Recall that in De�nition 1

Q∗(b) ≡
∑

j<k

E
[
1(rj < rk) · 1(x′jb ≥ x′kb) + 1(rk < rj) · 1(x′kb > x

′
jb)
]

=
∑

j<k

E
{

[1(rj < rk)− 1(rk < rj)] · 1(x′jkb ≥ 0) + 1(rk < rj)
}
,

(A1)

where x′jkβ ≡ x′jβ − x′kβ. Applying the LIE to the right-hand side (RHS) of (A1) yields

Q∗(b) =
∑

j<k

E
{

[P (rj < rk|X)− P (rk < rj |X)] · 1(x′jkb ≥ 0) + P (rk < rj |X)
}
. (A2)

By Assumption 1, the true parameter vector β globally maximizes Q∗(b) in (A2) for b ∈ B because

the sign of the di�erence, [P (rj < rk|X)− P (rk < rj |X)], is the same as the sign of x′jkβ.

Next, we show that β is a unique global maximizer of Q∗(b). Consider a di�erent parameter

vector β− ∈ B. If, for values of X with positive probability, β and β− yield di�erent rankings of

systematic utilities, then β− will not maximize Q∗(b). In other words, for any X with positive
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probability, if we observe that x′jkβ and x′jkβ
− have opposite signs for some pair of distinct alter-

natives j, k ∈ J, then we can conclude Q∗(β) > Q∗(β−). By scale normalization in Assumption 2,

we will show this argument for β1 = 1; the argument for β1 = −1 is similar. If the �rst element of

β−, β−1 , is also 1, then the set of covariates where β and β− yield di�erent rankings of systematic

utilities is 37

D(β,β−) = {X |x′jkβ < 0 < x′jkβ
− for some j, k ∈ J, where j 6= k}

= {X | x̃′jkβ̃ < −xjk,1 < x̃′jkβ̃
−

for some j, k ∈ J, where j 6= k}.

By Assumption 3(a), the set D(β,β−) has probability zero if and only if x̃′jkβ̃ = x̃′jkβ̃
−

with

probability one for any pair of distinct alternatives j, k ∈ J, that is, Xβ = Xβ− with probability

one. This contradicts Assumption 3(b). If β−1 = −1, the set of points where β and β− give di�erent

predictions is

D(β,β−) = {X |xjk,1 < min(x̃′jkβ̃
−
,−x̃′jkβ̃) for some j, k ∈ J, where j 6= k}.

The D(β,β−) has positive probability by Assumption 3(a). Thus, we have proved that the true

preference parameter vector β uniquely maximizes Q∗(b) for b ∈ B under Assumptions 1-3.

B Strong Consistency of the GMS and the SGMS Estimators

We prove Lemmas 1-3 to establish the strong consistency of the GMS and SGMS estimators (Theo-

rem 2-3). Lemma 1 veri�es the continuity property of function Q∗(b), which is the probability limit

of the objective functions of the GMS and SGMS estimators. Lemmas 2 and 3 show the uniform

convergence of the GMS objective function, QN (b), and the SGMS objective function, QSN (b, hN ),

to this probability limit function Q∗(b), respectively.

Lemma 1. Under Assumptions 2-3, Q∗(b) is continuous in b ∈ B.

Proof. Denote each term in the summation on the RHS of (A1) as

Q∗jk(b) ≡ E
{

[1(rj < rk)− 1(rk < rj)] · 1(x′jkb ≥ 0) + 1(rk < rj)
}
. (B1)

37Recall that xjk ≡ xj − xk for any j, k ∈ J, where j 6= k, so we have xjk = −xkj . The set {X |x′jkβ− < 0 <
x′jkβ for some j, k ∈ J, where j 6= k} is the same as the set {X |x′kjβ < 0 < x′kjβ

− for some k, j ∈ J, where j 6= k}.
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Then,

Q∗(b) =
∑

j<k

Q∗jk(b). (B2)

Therefore, it is su�cient to prove that Q∗jk(b) is continuous in b ∈ B for any pair of alternatives

j < k. Consider the case b1 = 1 by the scale normalization in Assumption 2. The argument for

b1 = −1 is symmetric. Applying the LIE to the RHS of (B1) yields

Q∗jk(b) = E
{

[P (rj < rk|xjk)− P (rk < rj |xjk)] · 1(x′jkb ≥ 0)
}

+ P (rk < rj)

=

ˆ

{
ˆ ∞

−x̃′jkb̃
[P (rj < rk|xjk)− P (rk < rj |xjk)] · gjk(xjk,1|x̃jk)dxjk,1

}
dF (x̃jk)

+P (rk < rj),

(B3)

where the second equality in (B3) holds by Assumption 3(a) and F (x̃jk) denotes the CDF of x̃jk.

The curly brackets inner integral on the RHS of (B3) is a function of x̃jk and b̃ that is continuous

in b̃ ∈ B̃.

Lemma 2. Under Assumption 4, QN (b) converges almost surely to Q∗(b) uniformly over b ∈ B.

Proof. Denote the sample analog of (B1) as

QNjk(b) ≡ N−1
N∑

n=1

{
[1(rnj < rnk)− 1(rnk < rnj)] · 1(x′njkb ≥ 0) + 1(rnk < rnj)

}
. (B4)

By (B1), (B4), and Assumption 4, we have E[QNjk(b)] = Q∗jk(b) for any pair of alternatives j < k.

By (12),

QN (b) =
∑

j<k

QNjk(b). (B5)

Combination of (B2) and (B5) implies that it is su�cient to show that QNjk(b) converges almost

surely to Q∗jk(b) uniformly over b ∈ B for any pair of alternatives j < k. Assumption 4 and the

uniform SLLN (Theorem 7.2 of Rao (1962) or Lemma 4 of Manski (1985)) imply that

P

[
lim
N→∞

sup
b∈B

∣∣QNjk(b)−Q∗jk(b)
∣∣ = 0

]
= 1 (B6)
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for each pair of alternatives.

Proof. (Theorem 2) The proof of strong consistency of the GMS estimator involves verifying the

conditions of Theorem 2.1 in Newey and McFadden (1994):

(1) Q∗(b) is uniquely maximized at β ∈ B;
(2) The parameter space B is compact;

(3) Q∗(b) is continuous in b ∈ B; and
(4) The objective function converges almost surely to its probability limit, Q∗(b), uniformly over

b ∈ B.
Condition (1) is veri�ed by Theorem 1, Condition (2) is guaranteed by Assumption 2, and

Conditions (3) and (4) are veri�ed by Lemmas 1 and 2, respectively. Therefore, the GMS estimator

that maximizes its objective function QN (b) converges to the true parameter vector β almost surely

under Assumptions 1-4.

Lemma 3. Under Assumptions 2-4 and Condition 1, QSN (b, hN ) converges almost surely to Q∗(b)

uniformly over b ∈ B.

Proof. First, we show that the SGMS objective function QSN (b, hN ) converges almost surely to

QN (b) uniformly over b ∈ B following the method in Lemma 4 of Horowitz (1992). By de�nitions

(12) and (18), we calculate

∣∣QSN (b, hN )−QN (b)
∣∣ ≤ 1

N

N∑

n=1

∑

j<k

∣∣1
(
x′njkb > 0

)
−K

(
x′njkb/hN

)∣∣ . (B7)

The RHS of (B7)) is the sum of cN1(η) and cN2(η), where

cN1(η) ≡ 1

N

N∑

n=1

∑

j<k

∣∣1
(
x′njkb > 0

)
−K

(
x′njkb/hN

)∣∣ · 1
(∣∣x′njkb

∣∣ ≥ η
)
,

cN2(η) ≡ 1

N

N∑

n=1

∑

j<k

∣∣1
(
x′njkb > 0

)
−K

(
x′njkb/hN

)∣∣ · 1
(∣∣x′njkb

∣∣ < η
)
,

and η ∈ R1
+ is a positive number. Condition 1(b) implies that for any δ > 0, there exists c > 0 such

that |K(v)− 1| < δ · J−2 and |K(−v)| < δ · J−2 for any v > c. As hN → 0, there exists an integer

N0 ∈ Z+ such that η/hN > c for any N > N0. Therefore, cN1(η) < δ for any N > N0. We have
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shown that for each η > 0, cN1(η)→ 0 uniformly over b ∈ B as N →∞. Next consider cN2(η). By

Condition 1(a), there is a �nite C such that

cN2(η) ≤
∑

j<k

C ·
[
N−1

N∑

n=1

1
(∣∣x′njkb

∣∣ < η
)
]
. (B8)

Assumption 4 and the uniform SLLN (Theorem 7.2 of Rao, 1962) imply that

P

{
lim
N→∞

sup
b∈B

∣∣∣∣∣C ·
[
N−1

N∑

n=1

1
(∣∣x′njkb

∣∣ < η
)
]
− C · P (|x′jkb| < η)

∣∣∣∣∣ = 0

}
= 1 (B9)

for any pair of alternatives j < k. Next, we prove that P (|x′jkb| < η)→ 0 uniformly over b ∈ B as

η → 0 by verifying the three conditions (i.e., continuity, monotonicity, and pointwise convergence)

of Dini's theorem (Theorem 7.13 of Rudin, 1976). We consider b1 = 1; case b1 = −1 is similar. By

Assumption 3(a),

P (|x′jkb| < η) =

ˆ η−x̃′jkb̃

−η−x̃′jkb̃
gjk(xjk,1|x̃jk)dxjk,1dF (x̃jk). (B10)

De�ne a sequence of functions {f jki (b) ≡ P (|x′jkb| < i−1) : i ∈ Z+} for each pair of alternatives

j < k. By Assumption 3(a) and (B10), it is straightforward to verify that f jki (b) is continuous in

b and f jki (b) > f jki+1(b) for any i ∈ Z+ and b ∈ B. As i → ∞, f jki (b) converges to zero at each

b ∈ B by Assumption 3(a). Since B is a compact space (Assumption 2), this pointwise convergence

of f jki (b) to zero implies the uniform convergence of f jki (b) to zero over b ∈ B by Dini's theorem.

By (B9), the RHS of (B8) also converges almost surely to zero uniformly over b ∈ B as N → ∞
and η → 0. The absolute di�erence

∣∣QSN (b, hN )−QN (b)
∣∣ converges almost surely to zero uniformly

over b ∈ B as N → ∞ because the RHS of (B7) is the sum of cN1(η) and cN2(η) for any η > 0.

Since

sup
b∈B

∣∣QSN (b, hN )−Q∗(b)
∣∣ ≤ sup

b∈B

∣∣QSN (b, hN )−QN (b)
∣∣+ sup

b∈B
|QN (b)−Q∗(b)| (B11)

and each term on the RHS of (B11) converges to zero almost surely, we have shown that QSN (b, hN )

converges to its probability limit Q∗(b) almost surely uniformly over b ∈ B.

Proof. (Theorem 3) The proof of strong consistency of the SGMS estimator is similar to that
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of the GMS estimator, which involves verifying the four conditions of Theorem 2.1 in Newey and

McFadden (1994). As shown in Theorem 2, the �rst three conditions are veri�ed by Theorem 1,

Assumption 2, and Lemma 1, respectively. The last condition is proved by Lemma 3. Therefore,

the SGMS estimator that maximizes its objective function QSN (b, hN ) converges to β almost surely

under Assumptions 1-4 and Condition 1.
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Table 1: Consistency of estimators by Monte Carlo DGPs

DGP Distribution of εnj ROL ROP MROL GMS & SGMS

(a) True parameters: γ1 = 1, γn2 = 1 for all n, and αj = (j − 1)/4

1 εnj is i.i.d. EV (0, 1, 0) Yes No Yes Yes

2 εnj is i.i.d. N(0, π2/6) No Yes No Yes

3 εnj = 0.82zn,2εnj No No No Yes
where εnj is i.i.d. N(0, 1)

4 εnj = 0.75znj,2εnj No No No No when M < 3;
where εnj is i.i.d. N(0, 1) Yes when M = 3

(b) True parameters: γ1 = 1, γn2
i.i.d.∼ N(1, 1), and αj = (j − 1)/4

5 εnj is i.i.d. EV (0, 1, 0) No No Yes No when M < 3;
Yes when M = 3

6 εnj = 0.75znj,2εnj No No No No when M < 3;
where εnj is i.i.d. N(0, 1) Yes when M = 3

Note: EV (0, 1, 0) stands for the extreme value type 1 distribution, assumed by the ROL model,
with a mean of 0.577 and a variance of π2/6. Where relevant, the error component is i.i.d. for
n = 1, . . . , N and j = 1, . . . , J . M = 3 (M < 3) refers to an estimator that incorporates the
complete (partial) rankings. Yes (No) means the estimator of β̃/β1 is (not) consistent given the
DGP. zn,2 is the within-individual average of the second covariate, i.e., zn,2 = J−1

∑J
j=1 znj,2.
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