Accepted Manuscript

Semiparametric estimation of the random utility model with rank-ordered choice data

Jin Yan, Hong Il Yoo

PII: \quad S0304-4076(19)30052-1
DOI: https://doi.org/10.1016/j.jeconom.2019.03.003
Reference: ECONOM 4650

To appear in: Journal of Econometrics
Received date: 24 February 2018
Revised date: 1 December 2018
Accepted date: 15 March 2019

Please cite this article as: J. Yan and H.I. Yoo, Semiparametric estimation of the random utility model with rank-ordered choice data. Journal of Econometrics (2019), https://doi.org/10.1016/j.jeconom.2019.03.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Semiparametric Estimation of the Random Utiii'v in_odel with Rank-Ordered Choice Dat:

Jin Yan*
The Chinese University of Hong Kong

Hong Il Yoo ${ }^{\dagger}$
Du'`.am University

March 22, 2019

Abstract

We propose semiparametric methods for estimating raı. ${ }^{\text {ºn }}$ m utility models using rank-ordered choice data. Our primary method is the generali. imaxımum score (GMS) estimator. With partially rank-ordered data, the GMS estimator allows . " arbitrary forms of interpersonal heteroskedasticity. With fully rank-ordered data, ive (vin estimator becomes considerably more flexible, allowing for random coefficients anc ${ }^{\prime}$ lterı tive-specific heteroskedasticity and correlations. The GMS estimator has a non-standari as nptotic distribution and a convergence rate of $N^{-1 / 3}$. We proceed to construct its . . . ${ }^{\text {hon }}$ version which is asymptotically normal with a faster convergence rate of $N^{-d /(2 d+1)}$, whe $\epsilon_{\quad} d \geq 2$ increases in the strength of smoothness assumptions.

Keywords: Random utility, ranl-orac ${ }^{1}$. discrete choice, semiparametric estimation, smoothing.
JEL classification: C14, C35

[^0]
1 Introduction

Rank-ordered choices can be elicited using the same type of survey as mu ino ial choices, specifically one that presents an individual with a finite set of mutually exclu. ve aı natives. The two elicitation formats may be distinguished by the amount of information $t^{\prime} \ldots$ is ar. ilable to the econometrician. A multinomial choice reports the individual's "choice" or r nst reteired alternative from the set, whereas a rank-ordered choice reports further on the indiv: $\lambda_{\text {ual }} \mathrm{s}$.reference ordering such as her second and third preferences. One rank-ordered choice obst vation rovides a similar amount of information as several multinomial choice observations, in the se ${ }_{\iota .}{ }^{n}{ }^{\prime}{ }^{\prime}$ at it allows inferring what the individual's choices would have been if her more preferre alt in. tives were not available. This allows fewer individuals to be interviewed to achieve a giv η levpl istatistical precision, and the resulting logistic advantages could be substantial for non-markt valuation studies which typically involve a narrowly defined population of interest (Scarna ϵ_{ι} лl. 2011).

We develop semiparametric methods for estimation of ra. dom utility models using rank-ordered choice data. Despite the wide availability of parametrı counterparts, such semiparametric methods remain almost undeveloped to date. The random $\cdots \cdots f_{11}$ nction of interest has a typical structure: it comprises a systematic component (utility index) $:$ ying with finite-dimensional explanatory variables, and an additive stochastic component ($\mathrm{e}^{\text {r }}{ }^{{ }^{\prime}}{ }^{+}{ }^{+} \mathrm{e}_{1} \cdot \mathrm{~m}$). The objective is to estimate preference parameters, referring to coefficients on the $\mu_{1}^{-1} n$, tory variables. The methods are semiparametric in that they maintain the usual parametric . Vrm^{2} of the systematic component but place only nonparametric restrictions on the stoc $40 \therefore$ component.

The parametric methods are equ. ${ }^{11} \mathrm{~V}$ well established for multinomial choice and rank-ordered choice data. In most cases, an an cysis ot . ultinomial choice data involves maximum (simulated) likelihood estimation of one of $f_{c} \cdot r$ hod ${ }^{\prime}$ s: multinomial logit (MNL), nested MNL, multinomial probit (MNP), and random cor ficient c "mixed" MNL. Each model assumes a different parametric distribution of the stochasti con Λ_{\perp} nent, and has its own rank-ordered choice counterpart that shares the same assumpti n: rank-ordered logit (ROL) of Beggs et al. (1981), nested ROL of Dagsvik and Liu (2009), ra. ${ }^{\text {r }}$ ordered probit (ROP) of Layton and Levine (2003), and mixed ROL of Layton (2000) and C alfe et a_{ι}. (2001). Building on Falmagne (1978) and Barberá and Pattanaik (1986), McFadden (1ヶ~ ${ }^{\circ}$ pr vides a technique that can be applied to translate any parametric multinomial choicf model inco the corresponding rank-ordered choice model.
 several alterna ave metnods exist including Manski (1975), Ruud (1986), Lee (1995), Lewbel (2000),

Fox (2007), Bajari, Fox and Ryan (2008), and Yan (2013). ${ }^{1}$ The special case of binoı ' al choice data has attracted even greater attention, and the respectable menagerie include, \boldsymbol{K}. ud (1983), Manski (1985), Han (1987), Horowitz (1992), Klein and Spady (1993), Sherman (1y. ${ }^{\circ}$), and Cavanagh and Sherman (1998), to name a few. When it comes to rank-ordered choice dan we are aware of only one study that aims at semiparametric estimation of preference parar ete - namely Hausman and Ruud (1987). In their study, the weighted M-estimator (WME) of Ruuc' ' 986) is generalized for use with rank-ordered choice data, whereas the original WME was ir cender for use with multinomial choice data. The generalized WME imposes independence between the exp anatory variables and the error terms, ruling out heteroskedasticity across individuals. 「 nou $\boldsymbol{\rho} \mathrm{h}$ the generalized WME allows consistent estimation under nonparametric stochastic specifi, nons consistency is confined to the ratios of the coefficients on continuous explanatory var. hles and the estimator's asymptotic distribution is unknown outside a special case of Newey (1986).

In this paper, we propose a pair of new semiparame ic mechods for rank-ordered choice data. The primary method that we develop is the genera ${ }^{1}$.us. mum score (GMS) estimator. Unlike the generalized WME, the GMS estimator does not requ independence between the explanatory variables and the error terms, and can accommode f xamle forms of interpersonal heteroskedasticity. We also show that the GMS estimator is $\mathrm{c} .-$ iste + under more general assumptions concerning the explanatory variables than the generalized,$~ V M L$. Roughly speaking, if one of q explanatory variables is continuous, the GMS estimator ${ }^{11}$ ows consistent estimation of the ratios of all coefficients regardless of whether the other $q-1$ variables are continuous or discrete. Like the maximum score (MS) estimator of Manski (198', that it nests as a special case, the GMS estimator has a slow convergence rate of $N^{-1 / 3}$ and a nn- iandard asymptotic distribution. One way to lessen these drawbacks is to introduce e- tra egular conditions and apply Horowitz's (1992) technique to construct a smoothed version c^{c} thin GNs estimator. We show that the smoothed GMS (SGMS) estimator achieves a faster cr.. ${ }^{\text {rggence rese }}$ rate of $N^{-d /(2 d+1)}$, where integer $d \geq 2$ increases in the strength of the smoothness ronditions presented in Section 3.1, and possesses a normal limiting distribution with a covari nce natrix that can be consistently estimated.

The GMS estimator gent. $l_{\text {lizes }}$ the pairwise MS estimator that Fox (2007) has developed for a semiparametric ana' ysis of multinomial choice data. When the individual faces J alternatives, a

[^1]multinomial choice observation allows the econometrician to infer the outcon.es or ${ }^{T}-1$ pairwise comparisons where each pair comprises the individual's actual choice and a. ur chosen alternative. A rank-ordered choice observation provides information that is needed $t 0^{\circ}{ }^{n}$ er the outcomes of other pairwise comparisons; for example, in case the individual ranks all $\Omega{ }^{\circ}$ lternatives from best to worst, her rank-ordered choice allows the econometrician to infer ihe \cdots tcomes of all possible $J(J-1) / 2$ pairwise comparisons. The GMS estimator extends the $\mathrm{N}_{\wedge}{ }^{2}$ ' s stimator by incorporating this type of extra information, which could come from data on par sal rankıngs (e.g., the individual reports her best and second best out of five alternatives) as well a comf ete rankings.

The GMS estimator inherits all attractive properties of ne MS estimator, two of which are particularly relevant to empirical applications. First, the GM.' ' sim: tor allows the econometrician to be agnostic about the form of interpersonal heteroskedastic. "or scale heterogeneity" (Hensher et al., 1999; Fiebig et al., 2010), referring to variations in th. nverall ;cale of utility across individuals. ${ }^{2}$ This property is desirable because in most studies, the $e_{\lambda} .{ }^{-} t$ to $\iota_{1} n$ of interpersonal heteroskedasticity matters only to the extent that its misspecificatic $\quad .0$ inconsistent estimation of the core preference parameters. Second, the GMS estimator is cu. sistent when the data generating process (DGP) comprises an arbitrary mixture of differen m Jutis, provided that it is consistent for each component model. Empirical evidence from 1 ' avic al economics (Harrison and Rutström, 2009; Conte et al., 2011) supports the notion that char tetizing observed choices requires more than one $^{\text {i }}$ model. But consistent parametric estimatioı nt a mixture model is extremely difficult, because it demands the exact knowledge of the number and specifications of component models.

The GMS estimator becomes cons derabı more flexible than the MS estimator when each individual completely ranks all alternatives : . he choice set from best to worst. As we discuss in details in Section 2.3, the GMS estimatr f or complete rankings is consistent for all popular parametric models exhibiting flexible substitutn n pr cterns, whereas the MS estimator is not. ${ }^{3}$ Thus, the GMS estimator more closely satisfis what an empiricist may expect from the use of a semiparametric method, namely the ability ${ }^{\text {tn }}$ estimace all popular parametric models consistently on top of other types of models. ${ }^{4}$ This is n in aresting finding because in the parametric framework, the advantage

[^2]of using rank-ordered choice data instead of multinomial choice data is limitud to © ©iciency gains (Hausman and Ruud, 1987; Beresteanu and Zincenko, 2018) and a multino nia choice model may be more robust to stochastic misspecification than its rank-ordered choict or unterpart (Yan and Yoo, 2014). This kind of efficiency-bias tradeoff does not apply to the cu nparison of the GMS estimator on complete rankings to the MS estimator on multinomial coic \cdots the GMS estimator is more efficient as indicated by smaller root mean square errors (RMS上, : Monte Carlo simulations (Section 4), and is also robust to a wider variety of DGPs.

As noted earlier, the GMS estimator also inherits less attracti» ’ propf ties of the MS estimator, such as the convergence rate of $N^{-1 / 3}$ and the non-standard isymntotic distribution of Cavanagh (1987) and Kim and Pollard (1990). Horowitz (1992) develof ne soothed MS (SMS) estimator that addresses these drawbacks in the context of Manski's ($\wedge^{\wedge} 85$) wiS estimator of binomial choice models. Yan (2013) extends the results to Fox's (2007) I, ${ }^{\text {r }}$ S estim tor of multinomial choice models. The SGMS estimator of rank-ordered choice models tha we pıopose builds on this tradition.

The remainder of this paper is organized as f^{11}..... . nuction 2 develops the GMS estimator and compares it with popular parametric methods. Sec'inn 3 develops the SGMS estimator and states its asymptotic properties. Section 4 presen tr a monte Carlo evidence on the finite sample performance of the proposed estimators. Secti . 5 cc cludes. Proofs of Theorems 1-3 are provided in Appendices and those of Theorems 4-5 are inc'rded in Supplementary Material.

Throughout this paper, we will maintain he tuılowing notations. We write scalars in lightface, vectors in lowercase bold, and matrices in uppercase bold. All vectors are column vectors. \mathbb{R}^{q} is a q-dimensional Euclidean space, $\mathbb{B} ;$ a sue zet of \mathbb{R}^{q}, and other blackboard bold letters such as \mathbb{J} and \mathbb{M} refer to finite sets. We reser \cdot let ers j, k and l for indexing alternatives, and letter n for indexing individuals or observ tior s. Vector $\boldsymbol{x}_{j k}$ denotes the difference between two vectors \boldsymbol{x}_{j} and \boldsymbol{x}_{k}. The first element of $\boldsymbol{x}\left(\boldsymbol{x}_{j}\right.$, is denoted by $x_{j, 1}\left(x_{j k, 1}\right)$, and the subvector comprising its remaining elements is denoted $\sim_{\nu} \tilde{\boldsymbol{x}}_{j}\left(\tilde{\boldsymbol{x}}_{j k}\right)$. Where the distinction needs emphasis, we use $\boldsymbol{x}_{n j}\left(\boldsymbol{x}_{n j k}\right)$ to denote the nth observatinn of raudom vector $\boldsymbol{x}_{j}\left(\boldsymbol{x}_{j k}\right)$. Letters P and E denote a probability and an expectation, respe tive y. Function $F(\cdot)$ denotes a cumulative distribution function (CDF), and function $F(\cdot \mid \cdot)$ der stes . ronditional CDF. The $i^{\text {th }}$ derivative of function $K(\cdot)$ is denoted by $K^{(i)}(\cdot)$. Function $1(\cdot \wedge$ is / n ir dicator function that equals one when the event in the brackets is true, and zero otherwise. © mbols $\backslash,{ }^{\prime}, \Rightarrow$, and \xrightarrow{p} denote a set difference, matrix transposition, convergence in dis ributic 1 , and convergence in probability, respectively.
coefficients, semipnme. nethods are more restrictive than parametric methods and the GMS estimator is no exception. In th s respe ${ }^{+}$, the GMS estimator is as restrictive as the MS estimator, and requires the presence of a continuous exple natory v riable with large support. See Assumption 3 in Section 2.2.

2 The Model and the Generalized Maximum Score Vistı`ator

2.1 A Random Utility Framework and Rank-Ordered Choi e J Jata

Consider a standard random utility model. An individual in the population ${ }^{c}$ interest faces a finite collection of alternatives. Let $\mathbb{J}=\{1, \ldots, J\}$ denote the set of alter atis and let $J \geq 2$ be the number of alternatives contained in \mathbb{J}. The utility from choosing altt. ative j, u_{j}, is assumed as follows:

$$
\begin{equation*}
u_{j}=\boldsymbol{x}_{j}^{\prime} \boldsymbol{\beta}+\varepsilon_{j} \quad \forall j \in \mathbb{J}, \tag{1}
\end{equation*}
$$

 is the preference parameter vector of interest, and ε_{j} is the ur observed component of utility to the econometrician. Let $\boldsymbol{X} \equiv\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{J}\right)^{\prime} \in \mathbb{R}^{J \times c}$ he $i_{\sim} \sim$ matrix of the covariates and $\boldsymbol{\varepsilon} \equiv$ $\left(\varepsilon_{1}, \ldots, \varepsilon_{J}\right)^{\prime} \in \mathbb{R}^{J}$ be the vector of the error terms. The ${ }_{1}+$ ir. index $\boldsymbol{x}_{j}^{\prime} \boldsymbol{\beta}$ is often called systematic (or deterministic) utility, as opposed to the error term ε_{j}, which is called unsystematic (or stochastic) utility.

The random utility function (1) can acc $\curvearrowright m m o$ ate both alternative-specific and individualspecific covariates. To see this point, consider a - +ility function that spells out the distinction the two types of covariates explicitly

$$
\begin{equation*}
u_{j}=\boldsymbol{z}_{j}^{\prime} \boldsymbol{\gamma}+\boldsymbol{s}^{\prime} \boldsymbol{\alpha}_{j}+\varepsilon_{j} \quad \forall j \in \mathbb{J}, \tag{2}
\end{equation*}
$$

where q_{1}-vector \boldsymbol{z}_{j} includes covari tes $t_{1}+{ }^{+}$vary over alternatives (e.g., product attributes), and q_{2}-vector \boldsymbol{s} includes a constant erm as well as covariates that vary across individuals but not over alternatives (e.g., person', age). Nithout loss of generality, we set $\boldsymbol{\alpha}_{1}=\mathbf{0}_{q_{2}}$ for location normalization, where $\mathbf{0}_{q_{2}}$ den' ces . $\boldsymbol{\gamma}_{0}$-vector of zeros. Following Cameron and Trivedi (2005, p.498), equation (2) can be compar $\boldsymbol{\mu}_{\boldsymbol{y}}$ written in the form of equation (1) as follows. Let $\boldsymbol{\alpha}$ denote a vector that collects alternative- ${ }_{\perp}{ }^{\text {aci }}{ }^{\prime}$ c parameter vectors, $\boldsymbol{\alpha} \equiv\left(\mathbf{0}_{q_{2}}^{\prime}, \boldsymbol{\alpha}_{2}^{\prime}, \ldots, \boldsymbol{\alpha}_{J}^{\prime}\right)^{\prime} \in \mathbb{R}^{J q_{2}}$. Next, let \boldsymbol{s}_{j} denote a conformable ector L_{1} at is partitioned into J blocks, where the $j^{\text {th }}$ block is $s \in \mathbb{R}^{q_{2}}$ and each of the rem i_{ij} gg $J-1$ blocks is $\mathbf{0}_{q_{2}}$. For example, $\boldsymbol{s}_{1} \equiv\left(\boldsymbol{s}^{\prime}, \mathbf{0}_{q_{2}}^{\prime}, \ldots, \mathbf{0}_{q_{2}}^{\prime}\right)^{\prime} \in \mathbb{R}^{J q_{2}}$, $\boldsymbol{s}_{2} \equiv\left(\mathbf{0}_{q_{2}}^{\prime}, \boldsymbol{s}^{\prime}, \ldots, \boldsymbol{r}_{q_{2}}^{\prime} \prime^{\prime} \in \mathbb{H} q_{2}\right.$ and so on. Then, it follows that $\boldsymbol{s}^{\prime} \boldsymbol{\alpha}_{j}=\boldsymbol{s}_{j}^{\prime} \boldsymbol{\alpha}$, and equation (1) is obtained by def ning $\boldsymbol{x}_{j} \equiv\left(\boldsymbol{z}_{j}^{\prime}, \boldsymbol{s}_{j}^{\prime}\right)^{\prime} \in \mathbb{R}^{q}$ and $\boldsymbol{\beta} \equiv\left(\boldsymbol{\gamma}^{\prime}, \boldsymbol{\alpha}^{\prime}\right)^{\prime} \in \mathbb{R}^{q}$, where $q=q_{1}+J q_{2}$.

Thus, withr losu venerality, our subsequent discussion focuses on equation (1). Let $r(j, \boldsymbol{u})$ denote the lat nt (or 1 otentially unobserved) ranking of alternative j, based on the underlying utility
vector $\boldsymbol{u} \equiv\left(u_{1}, u_{2}, \ldots, u_{J}\right)^{\prime} \in \mathbb{R}^{J}$. We shall follow the notational convention that $\left.r_{(, j} \boldsymbol{\imath}\right)=m$ when j is the $m^{\text {th }}$ best alternative in the choice set \mathbb{J}, i.e., a smaller ranking alu indicates a more preferred alternative. A more formal definition of the latent ranking is

$$
\begin{equation*}
r(j, \boldsymbol{u}) \equiv 1+\sum_{k=1}^{J} 1\left(u_{j}<u_{k}\right) \tag{3}
\end{equation*}
$$

for any $j \in \mathbb{J}$. For instance, suppose that $J=4$ and $u_{3}>u_{4}>u_{1} . u_{2}$. Then, $r(3, \boldsymbol{u})=1$, $r(4, \boldsymbol{u})=2, r(1, \boldsymbol{u})=3$, and $r(2, \boldsymbol{u})=4$. There is a one-to-one $_$. $n r \cdot n g$ between the choice set $\{1, \ldots, J\}$ and the latent ranking set $\{r(j, \boldsymbol{u}): j=1, \ldots, J\}$ oy $\boldsymbol{r}^{\boldsymbol{c}}$. ition (3). ${ }^{5}$

Next, let r_{j} denote the reported (or actually observ^d) rank; ${ }_{\mathrm{g}} \mathrm{g}$ of alternative j, and $\boldsymbol{r} \equiv$ $\left(r_{1}, \ldots, r_{J}\right)^{\prime} \in \mathbb{N}^{J}$ be the vector of the reported rankings of all $J{ }^{\prime}{ }^{1}$ ternatives in \mathbb{J}. We shall maintain that the reported ranking r_{j} coincides with the latent rann. oor $\left.r^{\prime} j, \boldsymbol{u}\right)$ in case the individual reports the complete ranking of alternatives, and is a censored $v_{c} \cdot$ cion of the latent ranking in case she reports only a partial ranking. To facilitate further Li r $^{-r}$ ussion, suppose that the individual reports the ranking of her best M alternatives where $1 \leq \Xi^{\pi}<. J-1$, and leaves that of the other $J-M$ alternatives unspecified. As before, suppose that $\tau=4$ and $u_{3}>u_{4}>u_{1}>u_{2}$. In case $M=3$, the complete ranking is observed since the ind $\pi^{\circ} \cdot a l$. eports her best, second-best, and third-best alternatives, allowing the econometrician \dagger infor hat the only remaining alternative is her worst one, $\boldsymbol{r}=\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=(3,4,1,2)$, and thaь sach alternative's reported ranking is identical to its latent ranking. In case $M=2$, on \quad. nartial ranking is observed since the individual reports her best and second best alternativ and he econometrician cannot tell whether alternative 1 is preferable to alternative $2, \boldsymbol{r}=(3,3,-2)$, so the reported ranking r_{2} is no longer the same as the latent ranking $r(2, \boldsymbol{u})$. Fi all , in ase $M=1$, the resulting partial ranking observation is identical to a multinomial choj e obse $\boldsymbol{\perp}^{\text {a }}$ tion since the individual reports only her best alternative, $\boldsymbol{r}=(2,2,1,2)$.

A more formal definiti ${ }_{11}{ }^{c}$ the reported ranking that incorporates the above discussion is as follows. Let the random se $\mathbb{N}(\mathbb{M} \subset \mathbb{J})$ denote the set of the best M alternatives for the individual, that is, $\mathbb{M} \equiv\{j: r(j, \boldsymbol{u} \leq M\}$. The reported ranking of alternative j, then, follows the observation

[^3]rule
\[

r_{j}=\left\{$$
\begin{array}{lll}
r(j, \boldsymbol{u}) & \text { if } & r(j, \boldsymbol{u}) \leq M, \text { or equivalently, } j \in \mathbb{M}, \tag{4}\\
M+1 & \text { if } & r(j, \boldsymbol{u})>M, \text { or equivalently, } j \in \mathbb{J} \backslash \mathbb{M} .
\end{array}
$$\right.
\]

When $M=J-1$, the complete ranking is observed. When $M=1$ the resuiting partial ranking is observationally equivalent to a multinomial choice. The interm - ${ }^{-1}$ ate - ses of partial rankings, which occur when $1<M<J-1$ and $J>3$, are much less cor mon ir empirical studies though not unprecedented. ${ }^{7}$

2.2 Identification and the Generalized Maxim m Srn e Estimator

This section introduces identification conditions for th prefer nce parameter vector $\boldsymbol{\beta}$ and the primary method that we propose, the Generalized Mas ' munn score (GMS) estimator. The GMS estimator is semiparametric in the sense that it allow - \quad. without committing to a specific parametric form of the , nnditional distribution of the error vector given observed attributes $\boldsymbol{\varepsilon} \mid \boldsymbol{X}$.

The first assumption presents a key cond $\neg n \mathrm{p}$ rtaining to our identification strategy. This assumption implicitly places a restriction on tı cunditional distribution of $\boldsymbol{\varepsilon} \mid \boldsymbol{X}$, albeit it is a nonparametric restriction satisfied by a range ${ }^{\imath}$ paı ametric functional forms, some of which we will discuss in the subsequent section. Denote the systematic utility of alternative j as $v_{j} \equiv \boldsymbol{x}_{j}^{\prime} \boldsymbol{\beta}$ for any alternative $j \in \mathbb{J}$.

Assumption 1. For any pair of cternatu $s j, k \in \mathbb{J}$ and for almost every $\boldsymbol{X} \in \mathbb{R}^{J \times q}$,

$$
\begin{align*}
& v_{j}>v_{k} \text { if and only if } \\
& P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)>P\left(r_{k}<r_{j} \mid \boldsymbol{X}\right. \tag{5}
\end{align*}
$$

i.e., alternative j generates : ver systematic utility than alternative k if and only if there is a higher chance that j is prefer ole o k (i.e., $r_{j}<r_{k}$) than the reverse (i.e., $r_{k}<r_{j}$), conditional on almost
alternatives 1,2 , and $\left.4\left(\mathbb{M}=1^{\prime}, 4\right\}\right)$, respectively: in her case, $J=4$ and $M=3$. Our proofs can be modified to accommodate this ge erality oxpricitly, though we do not pursue it to avoid carrying around individual subscripts. Note that when J ai d M art considered individual-specific, complete rankings data in our subsequent discussion refer to the case whert $M=-1$ for all individuals, and partial rankings data refer to the case where $M<J-1$ for at least one i uvidual.
${ }^{7}$ See for exa ıple Lay on (2000) and Train and Winston (2007), both of which analyze data on the best and second-best alter atives . heir data structures are $M=2$ and $J>3$ according to our notations.
all covariates.
Assumption 1 immediately implies that $v_{j}=v_{k}$ if and only if $P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)=P\left(r_{j}>r_{k} \mid \boldsymbol{X}\right)$, i.e., alternatives j and k have the same systematic utility if and only if the probar lity that alternative j is preferable to alternative k is the same as the probability that altornai. o k is preferable to alternative j.

Two special types of rank-ordered choice data are worth highlightin ${ }_{\iota}$ First, when $M=1$, the individual reports only her best alternative and we have multir omial hoice data. In this case, alternative j is ranked above alternative $k\left(r_{j}<r_{k}\right)$ if and only if j :c rar sed as the best alternative ($r_{j}=1$), so we have

$$
\begin{equation*}
P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)=P\left(r_{j}=1 \mid \boldsymbol{X}\right) \tag{6}
\end{equation*}
$$

If we replace $P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)$ with $P\left(r_{j}=1 \mid \boldsymbol{X}\right)$ and repı $\left.\circ \vdash_{1 \cdot \kappa}<r_{j} \mid \boldsymbol{X}\right)$ with $P\left(r_{k}=1 \mid \boldsymbol{X}\right)$ in (5), then Assumption 1 becomes the monotonicity prop $n+\ldots$........ ice probabilities (Manski, 1975; Fox, 2007), i.e., the ranking of the choice probability of an à っrnative is the same as the ranking of the systematic utility of that alternative for any gives inc vaual. ${ }^{8}$

Second, when $M=J-1$, the individual soor all alternatives from best to worst, and we have fully rank-ordered choice data. With this c m_{P} 'ete ranking information, we can compare the utilities between any two alternatives. Withu + IUso of generality, let's focus on a pair of alternatives (j, k) such that $j<k$. Alternative j is ranked aoove alternative k if and only if the utility from choosing alternative j is larger than t^{\prime}.e utı. 'y from choosing alternative k, so we have

$$
\begin{align*}
P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right) & =P\left(u_{j}>\iota_{k} \mid \boldsymbol{X}\right) \\
& =P\left(\varepsilon_{k}-: \leqslant v_{i}-v_{k} \mid \boldsymbol{X}\right) \tag{7}
\end{align*}
$$

The "only if" part holds und radefinition of ranking \boldsymbol{r}, and the "if" part is a direct result of complete ranking. The firs ${ }^{\dagger}$ - uality of (7) may not hold if we observe only a partial ranking, i.e., $M<J-1$. This is bec ${ }^{1}$ ise while $r_{j}<r_{k}$ naturally implies $u_{j}>u_{k}, u_{j}>u_{k}$ may not imply $r_{j}<r_{k}$; when neither ; ternaı $\quad j$ nor alternative k belongs to set \mathbb{M}, which includes the best M alternatives, both alt ${ }^{\prime n}{ }^{\dagger}$ ıves j and k are observed with the same ranking, $M+1$, even if $u_{j}>u_{k}$.

For any pair of $a^{1 /}$ rnat s, assume that the distribution of $\varepsilon_{k}-\varepsilon_{j}$ conditional on the explanatory vectors is a strict y incre sing function. Then the well-known pairwise zero conditional median (ZCM) restrictinn,,$\ldots \ln \left(\varepsilon_{k}-\varepsilon_{j} \mid \boldsymbol{X}\right)=0$, is a necessary and sufficient condition for Assumption

[^4]1 when a complete ranking of J alternatives is available. The proof is straishtto rard. ${ }^{9}$ Notice that $P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)+P\left(r_{k}<r_{j} \mid \boldsymbol{X}\right)=1$ when the choice set is fully rank-o der d. For "necessity", Assumption 1 implies that $v_{j}-v_{k}=0$ if and only if $P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)=1 / 2$, or ϵ_{1}; / alently, $P\left(\varepsilon_{k}-\varepsilon_{j}<\right.$ $\left.v_{j}-v_{k} \mid \boldsymbol{X}\right)=1 / 2$ by (7). For "sufficiency", the ZCM assumption implies thu". $v_{j}>v_{k}$ if and only if $P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)>1 / 2$ by (7), or equivalently, $P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)>P\left(r_{k}<{ }^{\prime}{ }_{j} \mid \boldsymbol{X}\right.$

Our second assumption is about scale normalization and the par aeter space. As usual in discrete choice modeling, identification of the preference vector $\boldsymbol{\beta}$ equires scale normalization since they are unique only up to a scale. ${ }^{10}$ When a parametric form of t . e cond ional distribution of $\boldsymbol{\varepsilon} \mid \boldsymbol{X}$ is specified, it is a nearly universal practice to normalize a sc ate parameter of that distribution to achieve identification. ${ }^{11}$ But when no parametric form is speci. \sim, no cale parameter is available for normalization. In the semiparametric framework, identificatu is uerefore achieved by normalizing the preference parameter vector $\boldsymbol{\beta}$ instead. Subject to he prio knowledge that some element of vector $\boldsymbol{\beta}$ is non-zero, we can normalize the magnitude ot hat cuement. ${ }^{12}$ Without loss of generality, we assume that the first element of $\boldsymbol{\beta}$ has absolute , $\quad . \quad$ i.e., $\left|\beta_{1}\right|=1$. Let $\tilde{\boldsymbol{\beta}} \equiv\left(\beta_{2}, \ldots, \beta_{q}\right)^{\prime} \in$ \mathbb{R}^{q-1} be the vector containing the other elements of $\boldsymbol{\beta}$.

Assumption 2. The preference parameter vertor $\dot{\sim}=\mathbb{B}$, where parameter space $\mathbb{B} \equiv\{-1,1\} \times \tilde{\mathbb{B}}$, $\tilde{\mathbb{B}}$ is a compact subset of \mathbb{R}^{q-1}, and $q \geq 2$.

Next we formally define the point identitu $\stackrel{+}{ }$ ion for $\boldsymbol{\beta} \in \mathbb{B}$.
Definition 1. For any vector $\boldsymbol{b} \in \mathbb{B}$, r'Jlo function

$$
\begin{equation*}
Q^{*}(\boldsymbol{b})=\sum_{1 \leq j<k \leq J} E\left[1\left(r_{j}<r_{k}\right) \cdot 1\left(\boldsymbol{x}_{j} \boldsymbol{-}-\boldsymbol{x}_{k}^{\prime} \boldsymbol{b}\right)+1\left(r_{k}<r_{j}\right) \cdot 1\left(\boldsymbol{x}_{k}^{\prime} \boldsymbol{b}>\boldsymbol{x}_{j}^{\prime} \boldsymbol{b}\right)\right] . \tag{8}
\end{equation*}
$$

The parameter vector $\boldsymbol{\beta}$ is poi + identited if $Q^{*}(\boldsymbol{\beta})>Q^{*}(\boldsymbol{b})$ for any $\boldsymbol{b} \in \mathbb{B}$ and $\boldsymbol{b} \neq \boldsymbol{\beta}$.
Identification requires β w be the unique maximizer of function $Q^{*}(\boldsymbol{b})$ for $\boldsymbol{b} \in \mathbb{B}$. Assumption 1 guarantees that $\boldsymbol{\beta}$ maxim: ns $/ \iota^{*}(\boldsymbol{b})$ in the parameter space, which will be shown in Theorem 1 later. However, if all the cov riates in (8) are discrete, then we can always find another vector \boldsymbol{b} in the

[^5]
ACCEPTED MANUSCRIPT

neighborhood of $\boldsymbol{\beta}$ such that \boldsymbol{b} generates the same ranking of utility indexes a.s $\boldsymbol{\beta}$ un ${ }^{\wedge} \varsigma$, and consequently, $Q^{*}(\boldsymbol{b})=Q^{*}(\boldsymbol{\beta})$. To achieve point identification, we need to impose ' n ϵ tra assumption on the covariates, namely, we need a covariate that is continuous conditional u ne other covariates. Recall that $\boldsymbol{x}_{j k} \equiv \boldsymbol{x}_{j}-\boldsymbol{x}_{k} \in \mathbb{R}^{q}, x_{j k, 1}$ is the first element of $\boldsymbol{x}_{j k}$, and $\tilde{\boldsymbol{x}}_{j k} \equiv\left({ }^{\prime}{ }^{\prime}{ }_{2}, \ldots, x_{j k, q}\right)^{\prime} \in \mathbb{R}^{q-1}$ refers to the remainder. Our third assumption states the continuity r quinent on the covariates for point identification.

Assumption 3. The following statements are true.
(a) For any pair of distinct alternatives $j, k \in \mathbb{J}$, the probabili ${ }^{+}$iensuy function of $x_{j k, 1}$ conditional on $\tilde{\boldsymbol{x}}_{j k}, g_{j k}\left(x_{j k, 1} \mid \tilde{\boldsymbol{x}}_{j k}\right)$, is positive everywhere on \mathbb{R} for $\boldsymbol{l}_{\boldsymbol{l}}$ sst ϵ, ery $\tilde{\boldsymbol{x}}_{j k}$.
(b) For any constant vector $\boldsymbol{c} \equiv\left(c_{1}, \ldots, c_{q}\right)^{\prime} \in \mathbb{R}^{q}, P(\boldsymbol{X} \boldsymbol{c}=\mathbf{v}$, $=1$ if and only if $\boldsymbol{c}=\mathbf{0}$.

Assumption 3 is essential for the uniqueness of $\boldsymbol{\beta}$ as $\therefore \circ$ masumizer of $Q^{*}(\boldsymbol{b})$ for $\boldsymbol{b} \in \mathbb{B}$. Assumption 3 (a) avoids the local failure of identification, $\mathrm{w}^{-1}=1$. ...t required by parametric models but important in semiparametric settings. In other words, $\mathrm{t}_{\iota} \times$ semiparametric models relax restrictions on the error distribution at the cost of imposing , int ruriy conditions on the covariates. Assumption $3(\mathrm{~b})$ is analogous to the full-rank conditic for ${ }^{\prime}$ 'e binomial choice model, which prevents the global failure of identification.

The following theorem establishes point, 'onuncation; the proof is available in Appendix A.
Theorem 1. Let Assumptions 1-3 hold The parameter vector $\boldsymbol{\beta}$ is point identified by Definition 1.
Next, we describe the intuition $b^{\prime}{ }^{\prime}$ ind ${ }^{\prime}$ heorem 1. Let $\boldsymbol{b} \equiv\left(b_{1}, \tilde{\boldsymbol{b}}^{\prime}\right)^{\prime}$ be any vector in the parameter space \mathbb{B}. Under Assum tio' 1 , it $\boldsymbol{x}_{j}^{\prime} \boldsymbol{\beta}>\boldsymbol{x}_{k}^{\prime} \boldsymbol{\beta}$, then event $r_{j}<r_{k}$ is more likely to occur than event $r_{k}<r_{j}$; if $\boldsymbol{x}_{k}^{\prime} \boldsymbol{\beta}>\boldsymbol{x}^{\prime} \boldsymbol{\mathcal { J }},{ }^{1}$ en $\mathrm{f}_{\text {vent }} r_{k}<r_{j}$ is more likely to be true than event $r_{j}<r_{k}$; and if $\boldsymbol{x}_{j}^{\prime} \boldsymbol{\beta}=\boldsymbol{x}_{k}^{\prime} \boldsymbol{\beta}$, then event,$<r_{k}$ has the same chance of being true as event $r_{k}<r_{j}$. Therefore, the expected value of the following ratch

$$
\begin{align*}
m_{j k}(\boldsymbol{b}) & \left.=1\left(r_{j}<r_{k}\right) \cdot \boldsymbol{x}_{j}^{\prime} \boldsymbol{b}>\boldsymbol{x}_{k}^{\prime} \boldsymbol{b}\right)+1\left(r_{k}<r_{j}\right) \cdot 1\left(\boldsymbol{x}_{k}^{\prime} \boldsymbol{b}>\boldsymbol{x}_{j}^{\prime} \boldsymbol{b}\right)+1\left(r_{j}<r_{k}\right) \cdot 1\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{b}=\boldsymbol{x}_{k}^{\prime} \boldsymbol{b}\right) \\
& =1\left(r_{j}<r_{k}\right) 1\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{b} \geq \boldsymbol{x}_{k}^{\prime} \boldsymbol{b}\right)+1\left(r_{k}<r_{j}\right) \cdot 1\left(\boldsymbol{x}_{k}^{\prime} \boldsymbol{b}>\boldsymbol{x}_{j}^{\prime} \boldsymbol{b}\right) \tag{9}
\end{align*}
$$

should be maximi¿ ${ }^{\circ} \mathrm{d}$ at t e e true preference parameter vector $\boldsymbol{\beta}$ over $\boldsymbol{b} \in \mathbb{B}$. Since

$$
\begin{equation*}
Q^{*}(\boldsymbol{b})=\sum_{1-1-J} E\left[m_{j k}(\boldsymbol{b})\right] \tag{10}
\end{equation*}
$$

by (8) and (9), function $Q^{*}(\boldsymbol{b})$ is also maximized at $\boldsymbol{\beta}$. Assumption 2 (scalc norı 1 lization) and Assumption 3 (regularity conditions on covariates) guarantee that $\boldsymbol{\beta}$ uniquel m_{c} ximizes $Q^{*}(\boldsymbol{b})$ over $\boldsymbol{b} \in \mathbb{B}$.

Our fourth assumption pertains to sampling. Matrix \boldsymbol{X}_{n} and vectors , and ε_{n} are the $n^{t h}$ observation of matrix \boldsymbol{X} and vectors \boldsymbol{r} and $\boldsymbol{\varepsilon}$, respectively.

Assumption 4. $\left\{\left(\boldsymbol{r}_{n}, \boldsymbol{X}_{n}, \boldsymbol{\varepsilon}_{n}\right): n=1, \ldots, N\right\}$ is a random somple ${ }_{0}{ }^{c}(\boldsymbol{r}, \boldsymbol{X}, \boldsymbol{\varepsilon})$, where $\boldsymbol{r}_{n} \equiv$ $\left(r_{n 1}, \ldots, r_{n J}\right)^{\prime} \in \mathbb{N}^{J}, \boldsymbol{X}_{n} \equiv\left(\boldsymbol{x}_{n 1}, \ldots, \boldsymbol{x}_{n J}\right)^{\prime} \in \mathbb{R}^{J \times q}$, and $\varepsilon_{n} \equiv\left(\varepsilon_{n 1}, . ., \varepsilon_{n J}\right)^{\prime} \in \mathbb{R}^{J}$. For each individual $n=1, \ldots, N,\left(\boldsymbol{r}_{n}, \boldsymbol{X}_{n}\right)$ is observed.

Assumption 4 states that we have N observations of $\left(\boldsymbol{r}, \boldsymbol{L}^{\boldsymbol{T}}\right.$ ind xed by n, and individuals are independently and identically distributed (i.i.d.). For the latte reason, we drop subscript n to avoid notational clutter except when it is needed for clarificat. n.

Next, we describe the intuition behind applying The rem 1 (Identification) and Assumption 4 (Random Sampling) to construct the GMS estimat . עcume $\boldsymbol{x}_{n j}^{\prime} \boldsymbol{b}$ as the \boldsymbol{b}-utility index of alternative j for individual n. Applying the analogy principle, we propose a semiparametric estimator, $\boldsymbol{b}_{N} \equiv\left(b_{N, 1}, \tilde{\boldsymbol{b}}_{N}^{\prime}\right)^{\prime} \in \mathbb{B}$, for $\boldsymbol{\beta}$ as follows:

$$
\begin{equation*}
\boldsymbol{b}_{N} \in \underset{\boldsymbol{b} \in \mathbb{B}}{\operatorname{argmax}} Q_{N}(\boldsymbol{b}), \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\left.Q_{N}(\boldsymbol{b}) \equiv N^{-1} \sum_{n=1}^{N}\left\{\sum_{1 \leq j<k \leq J}\left[1 r_{n j}<\cdot{ }_{i}\right) \cdot 1\left(\boldsymbol{x}_{n j}^{\prime} \boldsymbol{b} \geq \boldsymbol{x}_{n k}^{\prime} \boldsymbol{b}\right)+1\left(r_{n k}<r_{n j}\right) \cdot 1\left(\boldsymbol{x}_{n k}^{\prime} \boldsymbol{b}>\boldsymbol{x}_{n j}^{\prime} \boldsymbol{b}\right)\right]\right\} \tag{12}
\end{equation*}
$$

can be viewed as the sample analog $\iota_{.}^{*} Q^{*}(\boldsymbol{b})$ defined by (8). In the special case of $M=1$, i.e., when we have multinomial choir $\&$ da a, the estimator \boldsymbol{b}_{N} defined by (11) becomes the pairwise maximum score (MS) estimator of Fox ($n 07$). When $J=2$ or we have binomial choice data, the estimator \boldsymbol{b}_{N} becomes the MS estim tor of Manski (1985). For this reason, \boldsymbol{b}_{N} is called the generalized maximum score (GMS) estimator.

When complet 2 rank ggs of three or more alternatives are observed $(J \geq 3$ and $M=J-$ 1), the inner sum ' n sidf the curly brackets in (12) is an increasing function of Kendall's rank correlation be ween bserved rankings and estimated utility indexes across $J(J-1) / 2$ alternative pairs within in ${ }^{\text {l }}$ ividu $1 n$. In this situation, the GMS estimator may be interpreted as an estimator
that maximizes the sample mean of within-individual rank correlation. ${ }^{13}$ Note tha the maximum rank correlation (MRC) estimator of Han (1987) and the rank estimator of \ulcorner avi agh and Sherman (1998) are substantively different from ours, both in regards to the moce 's of interest and the maximands. Their semiparametric estimators are for single-equation indea models, which include binary choice models $(J=2)$ but not more general types of multino rial rice and rank-ordered choice models $(J \geq 3) .{ }^{14}$ In addition, within-individual rank correlation , ross alternative pairs is an irrelevant concept for single-equation index models, and what the 1 KC (rank) estimator maximizes is Kendall's (Spearman's) rank correlation between a dependent variabl and an estimated index across $N(N-1) / 2$ pairs of individuals in the sample. ${ }^{15}$

Again in the same situation ($J \geq 3$ and $M=J-1$), ($\quad \cdots^{\prime}$) is algebraically identical to the objective function of Bajari, Fox and Ryan (2008) at first glaı॰ ${ }^{\circ}$, vut the setup of their econometric analysis is quite different from ours. Rankings in theii analysi are the aggregate sales rankings of alternative products offered by the same supplier 1. a specific market, instead of individuallevel preference orderings that we consider. Their $c^{1}, \cdots, i s$ to estimate a random utility model describing individual-level multinomial choices (that is, $I \geq 3$ and $M=1$ in our notation), in an environment where the econometrician obser os ne aggregate sales rankings instead of the individual-level choices. They show that whe the c ror terms are i.i.d. over alternatives within individuals, a semiparametric estimator of the $n_{1} \cdot \mathrm{lthomial}$ choice model can be constructed using a score function that incorporates all pairw comparisons of the aggregate sales rankings. In comparison, the GMS estimator with complete rankings ($J \geq 3$ and $M=J-1$) can accommodate more flexible error structures that s: isfy u e pairwise ZCM (discussed in Section 2.3), thereby allowing for flexible patterns of heterosk 'ast' ity and correlation over alternatives as well as random coefficients across individuals.

The following theorem estar lisu th strong consistency of the GMS estimator.
Theorem 2. Let Assumptic.ss 1-, hold. The GMS estimator \boldsymbol{b}_{N} defined in (11) converges almost surely to the true preferent pr rameter vector, $\boldsymbol{\beta}$, in the data generating process.

[^6]
2.3 Comparisons with Parametric Methods

From the empiricist's perspective, the question of paramount interest m a r ᄅ how flexible the semiparametric model that the GMS estimator accommodates is relat ve to narametric models that one may consider. Modern desktop computing power makes this r. astio. ospecially relevant. Standard computing resources of today can handle estimation of mod $\mathrm{l}_{\mathrm{s}} \dagger^{\dagger}$ at $\stackrel{\text { ¿ }}{ }$ ature fairly flexible, albeit parametric, error structures. Most semiparametric methods for ${ }^{\prime}$ 'screte choice data relax parametric restrictions on error structures at the price of regı arity . nditions on explanatory variables that parametric methods do not require, and the GMS . \uparrow tim tor is no exception. This section maintains that such conditions hold, which have be in s^{\prime} w d as Assumption 3(a) in the context of the GMS estimator.

When applied to data on complete rankings, i.e. $M=J-^{\wedge}$, the GMS estimator postulates a semiparametric model that can nest all popular parametrin mor and any finite mixture of those models. In most studies on rank-ordered choices, the con. ${ }_{\mathbf{t}}{ }^{\text {lete }}$ rankings are elicited as needed for this result. ${ }^{16}$ Such a degree of flexibility is not sometı \quad ng to be taken for granted. For instance, the MS estimator (Manski, 1975; Fox, 2007) using m parametric models featuring equicorrelated errors (f ., multinomial logit (MNL) and multinomial probit (MNP) with homoskedastic errors that à in the same pairwise correlation), but not for those parametric models that feature more ${ }^{a_{\text {nvibil }}}$ error structures (e.g., nested MNL, MNP with a general error covariance matrix, and mixed $N \mathrm{~N}_{\mathrm{N}} \mathrm{L}$).

This section elaborates on the semir . metric model that the GMS estimator postulates, and its comparisons with popular parametri models To clarify the notion of interpersonal heteroskedasticity here (and later, unobserved \bar{j} terper al heterogeneity), we reinstate individual subscript n. With a slight abuse of notation, \therefore of serv tionally equivalent form of equation (1) may be specified to express the utility that indi sdual \because. erives from alternative j as

$$
\begin{equation*}
u_{n j}=\sigma_{n} \times\left(\boldsymbol{x}_{n j}^{\prime} \boldsymbol{\beta}\right)+\quad \mu_{,} \text {for } n=1,2, \ldots, N \text { and } j \in \mathbb{J}, \tag{13}
\end{equation*}
$$

where the new parame er $o_{n} \subseteq \mathbb{R}_{+}^{1}$ captures that portion of the overall scale of utility which varies across individu is. ${ }^{17}$ Eq ivalently, σ_{n} may be also described as a parameter that is inversely

[^7]
ACCEPTED MANUSCRIPT

proportional to that portion of error variance which varies across individuals. Consis. $n t$ estimation of a parametric model requires the correct specification of both the joint dens cy ${ }^{〔}$ errors $\boldsymbol{\varepsilon}_{n} \mid \boldsymbol{X}_{n}$ and the distribution of σ_{n}. The GMS estimator allows both requirements to be \wedge^{1} xed substantially.

Regardless of the depth of rankings observed (i.e., for every M such \therefore at $1 \leq M \leq J-1$), the GMS estimator is consistent for the semiparametric model that acc modates any form of interpersonal heteroskedasticity via σ_{n}. For verification, note that whe ${ }_{\iota}{ }^{\prime}{ }_{i} \equiv \boldsymbol{x}_{n j}^{\prime} \boldsymbol{\beta}$ and $v_{n k} \equiv \boldsymbol{x}_{n k}^{\prime} \boldsymbol{\beta}$ satisfy the inequality stated in Assumption 1, so does any positi e multipıe of this pair, $\sigma_{n} \times v_{n j}$ and $\sigma_{n} \times v_{n k}$. The GMS estimator, therefore, allows the empiricı t to bf agnostic about the exact distribution of σ_{n}. This is a desirable property because in nust studies, σ_{n} demands attention only to the extent that it must be correctly specified for the cin ister t estimation of the preference parameter vector $\boldsymbol{\beta}$.

The remainder of this section assumes the use of co. nlete r: nkings $(M=J-1)$. This allows the semiparametric model to accommodate any moder ${ }^{h}$ at satisfies the pairwise zero conditional median (ZCM) restriction, i.e.,

$$
\begin{equation*}
\operatorname{median}\left(\varepsilon_{n k}-\varepsilon_{n j} \mid \boldsymbol{X}_{n}\right)=0 \text { for any } j, k \in \uparrow, u \ldots _j \neq k \tag{14}
\end{equation*}
$$

which is then a necessary and sufficient conditı n. \neg. Assumption 1 as long as the distribution of $\left(\varepsilon_{n k}-\varepsilon_{n j}\right) \mid \boldsymbol{X}_{n}$ is a strictly increasing fun the proof in Section 2.2). In comparison, any parametric model involves a much stronger set ol estrictions affecting other moments too, since the density of $\varepsilon_{n} \mid \boldsymbol{X}_{n}$ is specified in full de ${ }^{\star}$ un.

The semiparametric model basec \urcorner (14 offers considerable flexibility not only over possible distributions of idiosyncratic error', but alı, over possible distributions of random coefficients. To see this latter aspect, note that $\sigma_{\perp} _r$ ay $\sqrt{ }$ ew ε_{n} as composite errors comprising individual-specific coefficients heterogeneity $\boldsymbol{\eta}_{n}$ (+ tat has une same dimension as $\boldsymbol{\beta}$) and purely idiosyncratic errors $\boldsymbol{\epsilon}_{n}$ (that has the same dimension as $\varepsilon_{n}{ }^{\prime}$, such that a typical entry in vector $\boldsymbol{\varepsilon}_{n} \equiv \boldsymbol{X}_{n} \boldsymbol{\eta}_{n}+\boldsymbol{\epsilon}_{n}$ is

$$
\begin{equation*}
\varepsilon_{n j} \equiv \boldsymbol{x}_{n j}^{\prime} \boldsymbol{\eta}_{n}+\epsilon_{n j} \tag{15}
\end{equation*}
$$

Suppose now that ic nsy acra ic errors $\boldsymbol{\epsilon}_{n}$ satisfy the pairwise ZCM restriction, median $\left(\epsilon_{n k}-\right.$ $\left.\epsilon_{n j} \mid \boldsymbol{X}_{n}\right)=0$ for an••,$k \in \Xi^{\top}$ and the usual random coefficients modeling assumption, $\left(\boldsymbol{\eta}_{n} \perp \boldsymbol{\epsilon}_{n}\right) \mid \boldsymbol{X}_{n}$, holds. Then, as lc g as ir dividual heterogeneity has ZCM, i.e., median $\left(\boldsymbol{\eta}_{n} \mid \boldsymbol{X}_{n}\right)=\mathbf{0}$, the composite errors ε_{n} saticfy ${ }^{\text {T }}$ pairwise ZCM restriction in (14) too: differencing two composite errors

[^8]results in a linear combination of conditionally independent random variables, $\left(\boldsymbol{x}_{n k}-\boldsymbol{x}_{n j}\right)^{\prime} \boldsymbol{\eta}_{n}$ and $\left(\epsilon_{n k}-\epsilon_{n j}\right)$, each of which has the conditional median of zero. Each element $\mathrm{j}_{\wedge} \boldsymbol{\rho}$ nay be interpreted as the median of a certain random preference coefficient whereas the corre ${ }_{\Delta_{1}}{ }^{\wedge} 1$ ding element in $\boldsymbol{\eta}_{n}$ measures the individual-specific deviation around this median. In comparisu. a parametric random coefficients model places more rigid restrictions on the distribution of ind $\cdots \boldsymbol{d}_{\text {ual }}$ heterogeneity $\boldsymbol{\eta}_{n}$, because the density of $\boldsymbol{\eta}_{n} \mid \boldsymbol{X}_{n}$ needs be fully specified much as that oı ${ }^{-} \mid \boldsymbol{X}_{n}$.

It is easy to verify that the semiparametric model accommodat s the lassic troika of parametric random utility models, MNL (or ROL), nested MNL (or nested 」 OL), \& ad MNP (or ROP). ${ }^{18}$ All three models assume away interpersonal heteroskedasticity ' y setting $\sigma_{n}=1 \forall n=1,2, \ldots, N$, and assume an idiosyncratic error density $\varepsilon_{n} \mid \boldsymbol{X}_{n}$ that imp. the pairwise ZCM condition. In case of MNL, the idiosyncratic errors are i.i.d. extreme valu type 1 over alternatives and, as the celebrated result of McFadden (1974) shows, differencii._ ${ }^{*}$ two el . ors results in a standard logistic random variable that is symmetric around zero. The . nateu MNL directly generalizes the MNL model by specifying the joint density of $\boldsymbol{\varepsilon}_{n} \mid \boldsymbol{X}_{n}$ as ad extreme value (GEV) distribution. This distribution allows for a positive correlation betwe. $\varepsilon_{n j}$ and $\varepsilon_{n k}$ in case alternatives j and k belong to the same "nest" or pre-specified subset , $f \mathbb{J}$ vifferencing two GEV errors still results in a logistic random variable that is symmetric . .ınn rero, though it may not have the unit scale. Finally, in its unrestricted form, the MNP mode^ ge ${ }_{\iota}$ eralizes the nested MNL model by specifying the multivariate normal density $\left.\varepsilon_{n} \mid \boldsymbol{X}_{n} \sim \mu^{\prime} \boldsymbol{\cap}, \boldsymbol{v}_{\varepsilon}\right)$ that allows for heteroskedasticity of $\varepsilon_{n j}$ over alternatives j, and also for any sign of correlation between $\varepsilon_{n j}$ and $\varepsilon_{n k}$. Differencing two zero-mean multivariate normal variables results j. a zer -mean normal variable that is symmetric around zero.

Mixed MNL (or mixed ROL) modt. hav \& become the workhorse of empirical modeling in the recent decade. The semiparametr c m Jdel accommodates the most popular variant of mixed logit models, as well as their extensio as. : th context of error decomposition (15), a mixed MNL model

[^9]has idiosyncratic errors $\boldsymbol{\epsilon}_{n} \mid \boldsymbol{X}_{n}$ as i.i.d. extreme value type 1 over alternati, es aı ${ }^{1}$ incorporates a non-degenerate "mixing" distribution of random heterogeneity $\boldsymbol{\eta}_{n} \mid \boldsymbol{X}_{n}$. W nill the mixing distribution may take any parametric form, specifying $\boldsymbol{\eta}_{n} \mid \boldsymbol{X}_{n} \sim N\left(\mathbf{0}, \boldsymbol{V}_{\boldsymbol{\eta}}\right)$ is $\mathrm{b}, \boldsymbol{f}$. r the most popular choice, so much so that the generic name "mixed logit" is often associated $w . h$ this normal-mixture logit model. Differencing the normal-mixture logit model's composite rro nesults in a linear combination of conditionally independent zero-mean normal and standaı ${ }^{1}$.ogistic random variables, which has the conditional median of zero. Fiebig et al. (2010) a gment the normal-mixture logit model with a log-normally distributed interpersonal heteroskedasi "city ps :ameter σ_{n}, and find that the resulting Generalized Multinomial Logit model is capab' of rapturing the multimodality of preferences. Because the semiparametric model allows for an. ${ }^{\prime}$, rm $\mathrm{f} \sigma_{n}$, it nests the Generalized Multinomial Logit model too. Greene et al. (2006) extend .he nurmal-mixture model in another direction, by allowing the variance-covariance of randc. coeffis ents, $\operatorname{Var}\left(\boldsymbol{\eta}_{n} \mid \boldsymbol{X}_{n}\right)$, to vary with \boldsymbol{X}_{n}. The semiparametric model nests their heteroskeac +ic nurmal-mixture logit model too, since this type of generalization does not affect the condi ${ }^{\cdot}$.............ian of $\boldsymbol{\eta}_{n}$.

The semiparametric model also accommodates any finı ${ }^{2}$ 。 mixture of the aforementioned parametric models, and more generally that of all parametı ~n Jutls satisfying the pairwise ZCM restriction. In other words, it is allowed that the data gei atin $\begin{aligned} \\ \text { process comprises different parametric mod- }\end{aligned}$ els for different individuals. ${ }^{19}$ This flexibility cc nes from the fact that the GMS estimator does not require the density of $\varepsilon_{n} \mid \boldsymbol{X}_{n}$ to be ideı :ral across all individuals $n=1,2, \ldots, N$, as long as each individual's density of the error vector satishes the pairwise ZCM restriction. While the finite mixture of parametric models approa' n has . ot been applied to the analysis of multinomial choice or rank-ordered choice data, it has mov rate . influential studies in the binomial choice analysis of decision making under risk (Harr: ,on ind Kutström, 2009; Conte et al., 2011). The findings from that literature unambiguously s. gge. th er postulating only one parametric model for all individuals may be an unduly restrictive \quad. \quad mption.

3 The Smoothec G.MS Estimator

The maximum score MS, ty`e estimator is $N^{1 / 3}$-consistent, and its asymptotic distribution is studied in Cavanagh ($1 y^{-}{ }^{-1}$) and Kim and Pollard (1990). Kim and Pollard have shown that $N^{1 / 3}$ times the centerec MS es imator converges in distribution to the random variable that maximizes a certain Gaussian nror is for binomial choice data. Their general theorem can be applied to

[^10]multinomial choice data and rank-ordered choice data too. However, the esulu σ asymptotic distribution is too complicated to be used for inference in empirical applir ath us. Delgado et al. (2001) show that subsampling consistently estimates the asymptotic distribu: \cap of the test statistic of the MS estimator. However, subsampling inference is sensitive to the chc or ot subsample size. ${ }^{20}$ Moreover, the standard bootstrap is inconsistent for the MS estimato for hinomial choice data, as shown by Abrevaya and Huang (2005), and also for multinomial and $1,{ }^{*} k$-ordered choice data.

In this section, we propose an estimator that complements ne GMS estimator by addressing these practical limitations, in return for making some additi nal sm sothness assumptions. In the context of Manski's (1985) MS estimator for binomial chr ce data, Horowitz (1992) develops a smoothed maximum score (SMS) estimator that replaces indic + r fur ctions with smooth functions. Yan (2013) applies this technique to derive a smoothed velı ^n ur Fox's (2007) MS estimator for multinomial choice data. We use the same approach to c - rive a s noothed GMS (SGMS) estimator, which offers similar benefits as its SMS predecessors. Spu ificauy, we show that the SGMS estimator is consistent under the same set of assumptions as ". . . . estimator and has a rate of convergence that is faster than $N^{-1 / 3}$ under extra smoothness ${ }^{\circ}$ nditions. Its asymptotic distribution is multivariate-normal with a covariance matrix that cat ve consistently estimated from data.

3.1 The SGMS Estimator and its Asy. npotic Properties

In this section, we first derive the SGMS estirı ${ }^{+}$or and state its consistency result in Theorem 3. Then we summarize the results on its . \quad ' of convergence and asymptotic distribution, and state the formal results on the limiting d^{\prime} itributi n in Theorem 4. Theorem 5 establishes consistent estimation of the parameters in thr limitı. ${ }^{\text {r }}$ distribution of the SGMS estimator.

The objective function in (12, car be ewritten as

$$
\begin{equation*}
\left.Q_{N}(\boldsymbol{b})=N^{-1} \sum_{n=1}^{N} \sum_{1 \leq j, k \leq{ }^{\prime}}\left\{\left\lfloor\perp_{\imath j}<r_{n k}\right)-1\left(r_{n k}<r_{n j}\right)\right] \cdot 1\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b} \geq 0\right)+1\left(r_{n k}<r_{n j}\right)\right\} \tag{16}
\end{equation*}
$$

by replacing $1\left(\boldsymbol{x}_{n k j}^{\prime} \boldsymbol{b}>^{\Upsilon}\right)$ wıı. $\left\ulcorner 1-1\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b} \geq 0\right)\right]$. The indicator function of \boldsymbol{b} in (16) can be replaced by a sufficiently smoo 1 fu ctic $\quad K(\cdot)$, where $K(\cdot)$ is analogous to a cumulative distribution function (CDF). Application of th. © hoothing idea in Horowitz (1992) to the right-hand side of (16) yields the SGMS estima or

[^11]\[

$$
\begin{equation*}
\boldsymbol{b}_{N}^{S} \in \underset{\boldsymbol{b} \in \mathbb{B}}{\operatorname{argmax}} Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right) \tag{17}
\end{equation*}
$$

\]

where

$$
\begin{equation*}
Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right) \equiv N^{-1} \sum_{n=1}^{N} \sum_{1 \leq j<k \leq J}\left\{\left[1\left(r_{n j}<r_{n k}\right)-1\left(r_{n k}<r_{n j}\right)\right] \cdot K\left(i_{n j k} \boldsymbol{b} / h_{N}\right)+1\left(r_{n k}<r_{n j}\right)\right\} \tag{18}
\end{equation*}
$$

and $\left\{h_{N}: N=1,2, \ldots\right\}$ is a sequence of strictly positive rea' nur ${ }^{\wedge} \neg$ rs satisfying $\lim _{N \rightarrow \infty} h_{N}=0$. The next condition states the requirements on function $K_{\text {(}}$, for he consistency of the SGMS estimator.

Condition 1. Let $K(\cdot)$ be a function on \mathbb{R}^{1} such that.
(a) $|K(v)|<C$ for some finite $C \in \mathbb{R}_{+}^{1}$ and all $v \in^{\Psi^{1}}$; and
(b) $\lim _{v \rightarrow-\infty} K(v)=0$ and $\lim _{v \rightarrow \infty} K(v)=1$.

Theorem 3. Let Assumptions 1-4 and Condı"». 1 ıold. The $S G M S$ estimator $\boldsymbol{b}_{N}^{S} \in \mathbb{B}$ defined in (17) converges almost surely to the true pr ${ }^{\text {r monct }}$ narameter vector $\boldsymbol{\beta}$.

By Theorem 3, the consistency of the SGMS estimator holds under the same set of assumptions as the GMS estimator, as long as th smoc h function $K(\cdot)$ is properly chosen. Since any CDF (e.g., the standard normal distribution \boldsymbol{f}_{1} nc ın) satisfies Condition 1, the SGMS estimator does not require more assumptions to chif e strong consistency than the GMS estimator does.

Unlike consistency, extra ass ${ }^{\prime} m_{1}$ ion on the distributions of the error terms and covariates are required in order to derive thf , vmptotic distribution of the SGMS estimator. Choosing a smooth function $K(\cdot)$ that is at least twice differentiable. Assume that the true parameter vector is an interior point in the parar ete space, that is,

Assumption 5. $\tilde{\boldsymbol{\beta}}$ is n i»terucr point of $\tilde{\mathbb{B}}$.
Then the objective fun. ${ }^{+}$' on (18) of the SGMS estimator is a smooth function of \boldsymbol{b} and we can apply a Taylor ser es expa ision method to derive its asymptotic distribution. ${ }^{21}$ Let $b_{N, 1}^{S}$ denote the

[^12]first element of \boldsymbol{b}_{N}^{S} and $\tilde{\boldsymbol{b}}_{N}^{S}$ denote the vector of its remaining elements. Recalı that , he magnitude of first element of $\boldsymbol{\beta}$ is normalized to be one (Assumption 2). By Theorem 3, , ${ }_{N, 1}$ is a sign consistent estimator for β_{1} and the probability $P\left(b_{N, 1}^{S}-\beta_{1}=0\right)$ converges to one as \wedge^{v}, es to infinity. Since $b_{N, 1}^{S}$ converges to the true parameter at a faster rate than the remaining ${ }^{\prime}$ 'sments of the SGMS estimator, we focus on the convergence rate and the asymptotic dic ribr of $\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)$ in the following analysis.

Roughly put, the fastest convergence rate of $\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)$ to zero is ${ }^{-d /\left(2^{d}+1\right)}$, where d is the positive integer that indicates the strength of the smoothness conditions i. Assu aption 6 and Assumption 7 (a) discussed later. When $d=1$, the convergence rate of ne sr MS estimator is $N^{-1 / 3}$ and it has an unknown limiting distribution, thus the SGMS estima... dof, not offer evident advantages over the GMS estimator. When $d \geq 2$, the convergence rate ι° the SGMS estimator, by appropriately choosing the smooth function $K(\cdot)$ and bandwidtı h_{N} (C ondition 2 and Assumption 8), is $N^{-d /(2 d+1)}$, and the asymptotic distribution of the SGMis ${ }^{\text {stimator is multivariate normal, making }}$ statistical inference straightforward. In other word , 'Il order to have the asymptotic normality of the SGMS estimator, we require the conditional nrobablı y of ranking comparison in (5) to be at least twice differentiable with respect to the syste ne ic utility. A larger integer d corresponds to stronger smoothness conditions. Therefore, a $\sim^{h} h^{h}$ er te of convergence of the SGMS estimator is achieved at the cost of making stronger smonthne, s assumptions on the conditional distributions of the error terms and the continuous explanatoı, varıable. For inferential purposes, we assume $d \geq 2$ and treat it as a given/known parameter 22

To facilitate a formal statement o^{\prime} the as umptions required for deriving the asymptotic distribution of the SGMS estimator, we ntron ecf a series of extra notations first. Recall that $v_{j} \equiv \boldsymbol{x}_{j}^{\prime} \boldsymbol{\beta}$ represents the systematic utility \subset.ch osir ${ }^{\circ}$ alternative $j \in \mathbb{J}$. Denote $\boldsymbol{v} \equiv\left(v_{1}, \ldots, v_{J-1}, v_{J}\right)^{\prime} \in \mathbb{R}^{J}$. There is a one-to-one correspon ienct h^{\prime} ween \boldsymbol{X} and $(\boldsymbol{v}, \tilde{\boldsymbol{X}})$ for fixed $\boldsymbol{\beta}$, where $\tilde{\boldsymbol{X}} \equiv\left(\tilde{\boldsymbol{x}}_{1}, \ldots, \tilde{\boldsymbol{x}}_{J}\right)^{\prime} \in$ $\mathbb{R}^{J \times(q-1)}$. Define vector $\iota_{J} \equiv(\perp, \ldots, 1)^{\prime} \in \mathbb{R}^{J}$. For any alternative $j \in \mathbb{J}$, let vector \boldsymbol{v}_{-j} be the
the properties of Horowitz's ($1^{r} y z$, binomial SMS estimator. Since rank-ordered choice data are generated by the same multiple utility function as r ultinomial choice data, deriving its asymptotic distribution is a straightforward extension of the multinomial $\mathrm{SA}_{\mathrm{n}_{n}}$ ostimator in Yan (2013). The sketch for deriving the asymptotic distribution of the SGMS estimator is inc' sded in Supplementary Material.
${ }^{22}$ Following the notatic a su ama zed at the end of Introduction, let $K^{(1)}(\cdot)$ denote the first derivative of $K(\cdot)$. As we will point out shortly, $\left.K \quad{ }^{\prime}.\right)$: \perp our analysis is analogous to a $d^{t h}$ order kernel in kernel density estimation. If a faster convergence rat is desired, the researcher may assume a larger d and choose $K(\cdot)$ that gives the corresponding higher order kernel $I^{(1)}(\cdot)$, k ϵ ping in mind that this gain in the convergence rate is at the cost of making stronger smoothness assumptio - In r ir Monte Carlo experiments, we find that assuming $d=2$ allows the SGMS estimator to perform signif uitly better than the GMS estimator in terms of achieving smaller mean square error under various error distributio is.
difference: $\boldsymbol{v}-v_{j} \iota_{J}$. For example, when $1<j<J$,

$$
\boldsymbol{v}_{-j}=\left(v_{1}-v_{j}, \ldots, v_{j-1}-v_{j}, 0, v_{j+1}-v_{j}, \ldots, v_{J}-v_{j}\right)^{\prime} \in \mathbb{R}^{J}
$$

In words, \boldsymbol{v}_{-j} is computed by subtracting the systematic utility of alter io ive \jmath inom the raw vector of systematic utilities. For any pair of alternatives $j, k \in \mathbb{J}$, define $v_{-} k_{k}=v_{k}-v_{j}$ and $\tilde{\boldsymbol{v}}_{-j, k}$ as the vector that consists of all elements of \boldsymbol{v}_{-j} excluding $v_{-j, k}$. For exa`, ple, w'on $1<j<k<J$,

$$
\tilde{\boldsymbol{v}}_{-j, k} \equiv\left(v_{1}-v_{j}, \ldots, v_{k-1}-v_{j}, v_{k+1}-v_{j}, \ldots, v_{J}-v_{j}\right)^{\prime} \in \mathbb{R}^{J} 1
$$

If $J>2$, for any three different alternatives $j, k, l \in \mathbb{J}$, defint $\mathcal{J}_{-j, k^{\prime}}$ as the vector that consists of all of the elements of \boldsymbol{v}_{-j} excluding $v_{-j, k}$ and $v_{-j, l}$. For exam ${ }^{1}{ }^{\text {n }}$, when $1<j<k<l<J$,

$$
\tilde{\boldsymbol{v}}_{-j, k l} \equiv\left(v_{1}-v_{j}, \ldots, v_{k-1}-v_{j}, v_{k+1}-v_{j}, \ldots, v_{l-1}-v_{j}, v_{l+1}-v_{j}, \ldots, v_{J}-v_{j}\right)^{\prime} \in \mathbb{R}^{J-2}
$$

If $J>3$, for any four different alternatives $j, k, l, m \in{ }^{\top}$ define $\tilde{\boldsymbol{v}}_{\{k, m\}}$ as the vector that consists of all of the elements of \boldsymbol{v} excluding $\left\{v_{k}, v_{m}\right\}$. Th, "e r w one-to-one correspondence between \boldsymbol{v} and $\left(v_{j k}, v_{l m}, \tilde{\boldsymbol{v}}_{\{k, m\}}\right)$.

Let $p_{j k}\left(v_{-j, k} \mid \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$ denote the conditiona' dt. sity of $v_{-j, k}$ given $\left(\tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$. For any integer $i>0$, define the derivatives

$$
p_{j k}^{(i)}\left(v_{-j, k} \mid \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)=\partial^{i} p_{j k}\left(v_{-j, l^{\prime}} \boldsymbol{v}_{-\jmath, \ldots} \tilde{\boldsymbol{X}}\right) / \partial\left(v_{-j, k}\right)^{i}
$$

whenever they exist. Denote $p_{j k}^{(0)}\left(v_{j, k} \mid \tilde{\boldsymbol{v}}_{-j, k} \tilde{\boldsymbol{X}}\right) \equiv p_{j k}\left(v_{-j, k} \mid \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$. Let $p_{j k l}\left(v_{-j, k}, v_{-j, l} \mid \tilde{\boldsymbol{v}}_{-j, k l}, \tilde{\boldsymbol{X}}\right)$ denote the joint density of $\left(v_{-j, k},{ }_{i}\right)$ co ditional on $\left(\tilde{\boldsymbol{v}}_{-j, k l}, \tilde{\boldsymbol{X}}\right)$, and $p_{j k l m}\left(v_{j k}, v_{l m} \mid \tilde{\boldsymbol{v}}_{\{k, m\}}, \tilde{\boldsymbol{X}}\right)$ denote the joint density of $\left(v_{j k}, l_{m}\right)$ concional on $\left(\tilde{\boldsymbol{v}}_{\{k, m\}}, \tilde{\boldsymbol{X}}\right)$.

Given any pair of alternctives : $k \in \mathbb{J}$, there is a one-to-one correspondence between \boldsymbol{X} and $\left(v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$ for fixed,$\in \mathbb{B}$. The probability for each individual to rank alternative j over alternative k depends on $九 \cdots$ ovariates matrix \boldsymbol{X}, or equivalently, $\left(v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$. Define

$$
\begin{equation*}
\left.F_{j k}\left(v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{V}}\right)=P, r_{j}<r_{k} \mid v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{F}_{j k}\left(v_{-j}, \tilde{\boldsymbol{v}}_{-j, k} \tilde{\boldsymbol{X}}\right)=P\left(r_{j}<r_{k} \mid v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)-P\left(r_{k}<r_{j} \mid v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right) \tag{20}
\end{equation*}
$$

Next, for any integer $i>0$, define the following derivatives

$$
\bar{F}_{j k}^{(i)}\left(v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)=\partial^{i} \bar{F}_{j k}\left(v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right) / \partial\left(v_{-j, k}\right)^{i},
$$

whenever the derivatives exist. Likewise, define the scalar constants k a. $d k_{\Omega}$, respectively, by

$$
k_{d}=\int_{-\infty}^{\infty} v^{d} K^{(1)}(v) d v \text { and } k_{\Omega}=\int_{-\infty}^{\infty}\left[K^{(1)}(v)\right]^{2} d v
$$

whenever these quantities exist.
Finally, define the $q-1$ vector \boldsymbol{a}, and the $(q-1) \times(q-) \mathrm{m} \sim \cos \boldsymbol{\Omega}$ and \boldsymbol{H} as follows:

$$
\begin{align*}
& \boldsymbol{a}=\sum_{1 \leq j<k \leq J} k_{d} \sum_{i=1}^{d} \frac{1}{i!(d-i)!} E\left[\bar{F}_{j k}^{(i)}\left(0, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right) p_{j}^{(d-i)}\left(0 \mid \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{x}}_{j k}\right], \tag{21}\\
& \boldsymbol{\Omega}=\sum_{1 \leq j<k \leq J} 2 k_{\Omega} E\left[F_{j k}\left(0, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right) p_{j k}\left(0 \mid \tilde{\boldsymbol{v}}_{,}, \tilde{\boldsymbol{X}}\right) \boldsymbol{x}_{j k} \tilde{\boldsymbol{x}}_{j k}^{\prime}\right], \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
\boldsymbol{H}=\sum_{1 \leq j<k \leq J} E\left[\bar{F}_{j k}^{(1)}\left(0, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right) p_{j k}\left(0 \mid \hat{\boldsymbol{v}}_{-j,}, \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{x}}_{j k} \tilde{\boldsymbol{x}}_{j k}^{\prime}\right] \tag{23}
\end{equation*}
$$

whenever these quantities exist.
Now, we turn to the formal de crip ion of the smoothness conditions on the distributions of the error terms and the continuous con ate

Assumption 6. For any pai of ${ }^{1}$ istinct alternatives $j, k \in \mathbb{J}$, any integer i such that $1 \leq i \leq d$, all $v_{-j, k}$ in a neighborhood of 0 ui nost every $\left(\tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$, and some finite constant $C, \bar{F}_{j k}^{(i)}\left(v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$ exists and is a continuous ${ }^{\boldsymbol{c}_{u}}{ }^{\text {ur }}$ stion of $v_{-j, k}$ satisfying $\left|\bar{F}_{j k}^{(i)}\left(v_{-j, k}, \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)\right|<C$.

By definition (20) fur tion $\bar{F}_{j k}(\cdot)$ can be derived from the conditional distribution of the error terms. Assumption u in essence imposes the differentiability requirement on the conditional distribution function of t . e error vector ε with respect to systematic utilities. Further elaboration on the latter point . sing Ilustrative examples can be downloaded from the corresponding author's website. ${ }^{23}$

[^13]
ACCEPTED MANUSCRIPT

Assumption 7. The following statements on the covariates are true.

(a) For any pair of distinct alternatives $j, k \in \mathbb{J}$, each integer i such that $:<i \leq d-1$, all $v_{-j, k}$ in a neighborhood of 0 , almost every $\left(\tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$, and some finite constw. $+C,{ }_{r_{j k}}^{(i)}\left(v_{-j, k} \mid \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)$ exists and is a continuous function of $v_{-j, k}$ satisfying $\mid p_{j k}^{(i)}\left(v_{-j, k} \nu_{-\jmath} \hat{\boldsymbol{X}}\right)_{\mid}<C$. In addition, for all $v_{-j, k}$ and almost every $\left(\tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right),\left|p_{j k}\left(v_{-j, k} \mid \tilde{\boldsymbol{v}}_{-j, k}, \tilde{\boldsymbol{X}}\right)\right|$
(b) If $J \geq 3$, then for any three distinct alternatives $j, k, l \in \mathbb{J}$, all $\left.{ }^{\prime} v_{-j, k}, v_{-j, l}\right)$, almost every $\left(\tilde{\boldsymbol{v}}_{-j, k l}, \tilde{\boldsymbol{X}}\right)$, and some finite constant $C, p_{j k l}\left(v_{-j, k}, v_{-j, l} \mid \tilde{\boldsymbol{v}}_{-j, k .} \quad \tilde{\boldsymbol{X}}\right)=C$.
(c) If $J \geq 4$, then for any four distinct alternatives $j, k, r \in$, all $\left(v_{j k}, v_{l m}\right)$, almost every $\left(\tilde{\boldsymbol{v}}_{\{k, m\}}, \tilde{\boldsymbol{X}}\right)$, and some finite constant $C, p_{j k l m}\left(v_{j k},\left.v_{l m}\right|^{\prime} \tilde{\wedge}_{r k, m\}}, \tilde{\boldsymbol{X}}\right)<C$.
(d) The components of matrices $\tilde{\boldsymbol{X}}, \operatorname{vec}(\tilde{\boldsymbol{X}}) \operatorname{vec}(\tilde{\boldsymbol{X}})^{\prime}$, ani $\left.{ }^{\prime} \cdot \operatorname{eec} \boldsymbol{K}\right) \operatorname{vec}(\tilde{\boldsymbol{X}})^{\prime} \operatorname{vec}(\tilde{\boldsymbol{X}}) \operatorname{vec}(\tilde{\boldsymbol{X}})^{\prime}$ have finite first absolute moments.

In addition to the continuity requirement imposed by _isumption 3(a), Assumption 7(a) further requires that the conditional probability density in tion of the first explanatory variable, $x_{j k, 1}$, given other explanatory variables is $(d-1)$ time ${ }^{1}$ iffei n ntiable, or equivalently, the conditional CDF of the first explanatory variable, $x_{j k, 1}$, given othe. explanatory variables is d times differentiable.

Given the smoothness parameter d in Assu nption 6 and Assumption 7(a), the smooth function $K(\cdot)$ is chosen in a way such that its first derivative, $K^{(1)}(\cdot)$, is analogous to a $d^{t h}$ order kernel in kernel density estimation. Condition' lists t. e requirements on the smooth function in addition to Condition $1 .{ }^{24}$

Condition 2. The following stale n nts bout $K(\cdot)$ are true.
(a) $K(v)$ is twice different ubu for $v \in \mathbb{R},\left|K^{(1)}(v)\right|$ and $\left|K^{(2)}(v)\right|$ are uniformly bounded, and the integrals $\int_{-\infty}^{\infty}\left[K^{(1)}{ }_{(}\right\rceil^{2} d v, J_{-\infty}^{\infty}\left[K^{(1)}(v)\right]^{4} d v, \int_{-\infty}^{\infty} v^{2}\left|K^{(2)}(v)\right| d v$, and $\int_{-\infty}^{\infty}\left[K^{(2)}(v)\right]^{2} d v$ are finite.
(b) For some intege $d \geq 2, \int_{-\infty}^{\infty}\left|v^{d} K^{(1)}(v)\right| d v<\infty$ and $k_{d} \in(0, \infty)$. For any integer i such that $1 \leq i<d$, integraь. $\Gamma_{\nu}^{\infty}\left|v^{i} K^{(1)}(v)\right| d v<\infty$ and $\int_{-\infty}^{\infty} v^{i} K^{(1)}(v) d v=0$.

[^14](c) For any integer i such that $0 \leq i \leq d$, any $\eta>0$, and any positive sequє.ıce $\{\ldots$,$\} converging$ to 0 ,
$$
\left.\lim _{N \rightarrow \infty} h_{N}^{i-d} \int_{\left|h_{N} v\right|>\eta}\left|v^{i} K^{(1)}(v)\right| d v=0 \text { and } \lim _{N \rightarrow \infty} h_{N}^{-1} \int_{\left|h_{N} v\right|>} \mid h^{\prime ?}\right)(v) \mid \omega v=0
$$

Assumption 8. $(\log N) /\left(N h_{N}^{4}\right) \rightarrow 0$ as $N \rightarrow \infty$, where $\left\{h_{N}\right\}$ is a stı. ${ }^{+l} y$ positive sequence converging to 0 .

Assumption 9. The matrix \boldsymbol{H}, defined by (23), is negative त, ${ }_{\text {, }}$ nite.
Assumptions 6-8, together with Condition 2, are analogous wo ty ical assumptions made in the kernel density estimation. A higher convergence rate of the SG: 'S estimator can be achieved using a higher order kernel $K^{(1)}(\cdot)$ when the required derivativt of $\bar{F}()$ and $p(\cdot)$ exist. The matrix \boldsymbol{H} in Assumption 9 is analogous to the Hessian information ma ix_{x} in the quasi-MLE.

Theorem 4. Let Assumptions 1-9 and Conditions 1-ь hold for some integer $d \geq 2$, and let $\left\{\boldsymbol{b}_{N}^{S}\right\}$ be a sequence of solutions to problem (17). If $N h_{1} \cdots, ~$ as $N \rightarrow \infty$, where $\lambda \in[0, \infty)$, then

$$
\left(N h_{N}\right)^{1 / 2}\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right) \Rightarrow M V N\left(-\lambda^{1 / 2} \boldsymbol{H}^{-1} \bullet \quad-\boldsymbol{\tau}-\boldsymbol{\Omega} \boldsymbol{H}^{-1}\right)
$$

and if $N h_{N}^{2 d+1} \rightarrow \infty$ as $N \rightarrow \infty$, then $\left(h_{N}\right)^{-d}\left(\boldsymbol{b}_{N}^{\text {¢ }}-\tilde{\boldsymbol{\beta}}\right) \xrightarrow{p}-\boldsymbol{H}^{-1} \boldsymbol{a}$.
Theorem 4 implies that given a s nooth. ass condition (where the strength of the smoothness condition is governed by integer d) the $\mathrm{GG} \sqrt{ } \mathrm{NS}$ estimator centered by the true parameter vector, $\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}$, converges in distributic 1 to a rormal vector at the rate of $\left(N h_{N}\right)^{-1 / 2}$ by choosing a bandwidth h_{N} at the rate equa to $\mathcal{c}^{-} \mathrm{f}_{2}$, ter than $N^{-1 /(2 d+1)}$. When the bandwidth h_{N} converges to zero at the rate of $N^{-1 /(2 d}$ ' (i.e., $N h_{N}^{2 d+1}$ converges to a strictly positive real number λ), the
 rate of convergence as ex ain d below.

In the case of unde -smou ${ }^{\text {Ling }}$ (i.e., $N h_{N}^{2 d+1}$ converges to zero), bandwidth h_{N} goes to zero at a rate faster than $\mathrm{V}^{-1}(2 d+1)$ and the centered SGMS estimator converges in distribution to a zero-mean normal wn tor (: ce $\lambda=0$) at the rate of $\left(N h_{N}\right)^{-1 / 2}$, which is slower than the rate of $N^{-d /(2 d+1)}$ becaus $\left.3 N^{-d /} 2 d+1\right) /\left(N h_{N}\right)^{-1 / 2}=\left(N h_{N}^{2 d+1}\right)^{1 /(4 d+2)}$ goes to zero as N goes to infinity. ${ }^{25}$ In the case of oner- $\cdots n$.hing (i.e., $N h_{N}^{2 d+1}$ diverges to infinity), bandwidth h_{N} goes to zero at a

[^15]rate slower than $N^{-1 /(2 d+1)}$ and the centered SGMS estimator converges in probai lity to a bias term at the rate of h_{N}^{d}, which is also slower than the rate of $N^{-d /(2 d+1)}$ becar ,e $I^{-d /(2 d+1)} /\left(h_{N}\right)^{d}=$ $\left(N h_{N}^{2 d+1}\right)^{-d /(2 d+1)}$ goes to zero as N goes to infinity.

To make the results of Theorem 4 useful in statistical inferences, it . necessary to be able to estimate the parameters, $\boldsymbol{a}, \boldsymbol{\Omega}$, and \boldsymbol{H}, in the limiting distribu on $\sim f$ the SGMS estimator consistently from observations of $(\boldsymbol{r}, \boldsymbol{X})$. The next theorem shows how. ${ }^{+}$, is can be done.

Theorem 5. Let Assumptions 1-9 and Conditions 1-2 hold for ome in oger $d \geq 2$ and vector \boldsymbol{b}_{N}^{S} be a consistent estimator based on $h_{N} \propto N^{-1 /(2 d+1)}$. Let $h_{\sim}^{*} \propto{ }^{N^{T-\delta}}{ }^{2 d+1)}$, where real number $\delta \in(0,1)$. Then
(a) $\hat{\boldsymbol{a}}_{N} \xrightarrow{p} \boldsymbol{a}$, where vector

$$
\hat{\boldsymbol{a}}_{N} \equiv\left(h_{N}^{*}\right)^{-d} N^{-1} \sum_{n=1}^{N} \sum_{1 \leq j<k \leq J}\left[1\left(r_{n j}<r_{n k}\right)-1\left(r_{n .}<r_{n j}\right)\right] K^{(1)}\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}_{N}^{S} / h_{N}^{*}\right)\left(\tilde{\boldsymbol{x}}_{n j k} / h_{N}^{*}\right)
$$

(b) $\hat{\boldsymbol{\Omega}}_{N} \xrightarrow{p} \boldsymbol{\Omega}$, where matrix $\left.\hat{\boldsymbol{\Omega}}_{N} \equiv\left(h_{N} / N\right) \sum_{n=1}^{N} \boldsymbol{t}_{N n} \mathbf{l}_{N}^{S}, h_{N}\right) \boldsymbol{t}_{N n}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right)^{\prime}$ and vector

$$
\boldsymbol{t}_{N n}\left(\boldsymbol{b}, h_{N}\right) \equiv \sum_{1 \leq j<k \leq J}\left[1\left(r_{n j}<r_{n k}\right)-1\left(r_{n k}<r_{n j}\right)\right] K^{(1)}\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b} / h_{N}\right)\left(\tilde{\boldsymbol{x}}_{n j k} / h_{N}\right)
$$

for $\boldsymbol{b} \in \mathbb{B}$ and $n=1, \ldots, N$;
(c) and $\boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right) \xrightarrow{p} \boldsymbol{H}$, wh re r_atrix

$$
\boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right) \equiv\left(N h_{N}^{2}\right)^{-1} \sum_{=1} \sum_{1 \leq j<k \leq J}\left[1\left(r_{n j}<r_{n k}\right)-1\left(r_{n k}<r_{n j}\right)\right] K^{(2)}\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}_{N}^{S} / h_{N}\right) \tilde{\boldsymbol{x}}_{n j k} \tilde{\boldsymbol{x}}_{n j k}^{\prime}
$$

3.2 Implementatirn Su_oestions

3.2.1 Asymptotic $\mathbf{T i}^{\mathbf{i}}$. C srrection

Theorem 4 has all swed u. to state earlier that the fastest convergence rate of the SGMS estimator centered at the trut narar eter vector is $N^{-d /(2 d+1)}$, which can be achieved by choosing a bandwidth h_{N} at the rat of $N^{-1 /(2 d+1)}$ under particular smoothness conditions (indicated by integer d). Neither under-sm othinr (i.e., $N h_{N}^{2 d+1} \rightarrow 0$) nor over-smoothing (i.e., $N h_{N}^{2 d+1} \rightarrow \infty$) can achieve this

ACCEPTED MANUSCRIPT

fastest rate. For any real number $\lambda \in(0, \infty)$, choosing the bandwidth such tha. $N h_{N}^{\lambda+1} \rightarrow \lambda$ allows the centered SGMS estimator to achieve this fastest rate. The asymptotic bi o. $N^{d /(2 d+1)}\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)$ is $-\lambda^{d /(2 d+1)} \boldsymbol{H}^{-1} \boldsymbol{a}$ when using bandwidth $h_{N}=(\lambda / N)^{1 /(2 d+1)}$. It follows $\boldsymbol{f}_{\mathrm{r}}$, m Theorem 5 that this bias term can be estimated consistently by $-\lambda^{d /(2 d+1)} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right)^{-1} \boldsymbol{u}_{1 .}$. Therefore, define

$$
\begin{equation*}
\tilde{\boldsymbol{b}}_{N}^{b c}=\tilde{\boldsymbol{b}}_{N}^{S}+(\lambda / N)^{d /(2 d+1)} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right)^{-1} \hat{\boldsymbol{a}}_{N} \tag{24}
\end{equation*}
$$

as the bias-corrected SGMS estimator.

3.2.2 Choice of Bandwidth

Using bandwidth $h_{N}=(\lambda / N)^{1 /(2 d+1)}$ (where λ is a strictly p sitive real number) allows the SGMS estimator centered at the true parameter vector to ack : ${ }^{\text {ve }}$ the fastest rate of convergence given certain smoothness conditions. Next we discuss the chu. \curvearrowleft ot une positive parameter λ.

Let \boldsymbol{W} be any nonstochastic positive semidefinitr uach that $\boldsymbol{a}^{\prime} \boldsymbol{H}^{-1} \boldsymbol{W} \boldsymbol{H}^{-1} \boldsymbol{a} \neq 0$. Denote E_{A} as the expectation with respect to the asymptotic dı ${ }_{\iota}{ }^{\bullet}$ ribution of $N^{d /(2 d+1)}\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)$ and define the mean square error $(M S E)$ as $\left.E_{A}\left[\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right){ }^{\top} \boldsymbol{V} l^{c}{ }^{c}{ }_{N}-\tilde{\boldsymbol{\beta}}\right)\right]$. By the cyclic property of trace, $E_{A}\left[\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)^{\prime} \boldsymbol{W}\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)\right]=\operatorname{trace}\left\{\boldsymbol{W} E_{A}\left[\left(\tilde{\boldsymbol{b}}_{N}^{S} \quad \tilde{\boldsymbol{\beta}}\right)\left(\boldsymbol{c}^{S}-\tilde{\boldsymbol{\beta}}\right)^{\prime}\right]\right\}$. Theorem 4 implies that

$$
\left.E_{A}\left[\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)^{\prime}\right]=N^{-2 d /(2 d+1} \dot{\llcorner }^{1 / 1 \cdot d+1)} \boldsymbol{H}^{-1} \boldsymbol{\Omega} \boldsymbol{H}^{-1}+\lambda^{2 d /(2 d+1)} \boldsymbol{H}^{-1} \boldsymbol{a} \boldsymbol{a}^{\prime} \boldsymbol{H}^{-1}\right] .
$$

Therefore, we calculate

$$
M S E=N^{-2 d /(2 d+1)} \operatorname{trace}\left[\boldsymbol{\Pi} \boldsymbol{H}^{-,}\left(1 /(2 d+1) \boldsymbol{\Omega}+\lambda^{2 d /(2 d+1)} \boldsymbol{a} \boldsymbol{a}^{\prime}\right) \boldsymbol{H}^{-1}\right]
$$

From the first order condition, ve she what $M S E$ is minimized betting λ to be

$$
\lambda^{*}=\left[\operatorname{trace}\left(\boldsymbol{W} \boldsymbol{H}^{-1} \boldsymbol{\Omega} \boldsymbol{H}^{-1}\right)\right] /\left[\tau, \operatorname{ace}\left(2 d \boldsymbol{W} \boldsymbol{H}^{-1} \boldsymbol{a} \boldsymbol{a}^{\prime} \boldsymbol{H}^{-1}\right)\right]
$$

or equivalently, $\left.\lambda^{*}=\left[t^{r} a c \epsilon^{\prime} \cdot \boldsymbol{H}^{-1} \boldsymbol{W} \boldsymbol{H}^{-1}\right)\right] /\left(2 d \boldsymbol{a}^{\prime} \boldsymbol{H}^{-1} \boldsymbol{W} \boldsymbol{H}^{-1} \boldsymbol{a}\right)$ by the cyclic property of trace. In this case $N^{d /(2 d+1)}\left(\boldsymbol{J}_{N}^{S} \quad \tilde{\boldsymbol{\beta}}\right)$ converges to $M V N\left(-\left(\lambda^{*}\right)^{d /(2 d+1)} \boldsymbol{H}^{-1} \boldsymbol{a},\left(\lambda^{*}\right)^{-1 /(2 d+1)} \boldsymbol{H}^{-1} \boldsymbol{\Omega} \boldsymbol{H}^{-1}\right)$ in distribution.

The optimal λ deriv d here can be consistently estimated by Theorem 5 and the continuous mapping theorem. Theref re, one possible way of choosing bandwidth is to set $h_{N}=(\hat{\lambda} / N)^{1 /(2 d+1)}$, where $\hat{\lambda}$ is a c ,nsist $n t$ estimator for λ^{*}. Specifically, the choice of bandwidth can be implemented by taking the ${ }^{\prime}$ llowir g steps given integer $d \geq 2$, i.e., the smoothness conditions.

ACCEPTED MANUSCRIPT

Step 1. Choose a bandwidth $h_{N} \propto N^{-1 /(2 d+1)}$ and another bandwidth $i_{N}^{*} \propto N^{-\delta}{ }^{-\delta /(2 d+1)}$ for $\delta \in(0,1)$.

Step 2. Compute the SGMS estimator \boldsymbol{b}_{N}^{S} using h_{N}. Use \boldsymbol{b}_{N}^{S} and h_{N}^{*} to ${ }^{n}$ pute vector $\hat{\boldsymbol{a}}_{N}$ and use \boldsymbol{b}_{N}^{S} and h_{N} to compute matrices $\hat{\boldsymbol{\Omega}}_{N}$ and $\boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right)$ as Theorem 5 su. ${ }^{\text {redests. }}$

Step 3. Estimate λ^{*} by

$$
\begin{equation*}
\hat{\lambda}_{N}=\frac{\operatorname{trace}\left[\hat{\boldsymbol{\Omega}}_{N} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right)^{-1} \boldsymbol{W} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right)^{-1}\right]}{\left[2 d \hat{\boldsymbol{a}}_{N}^{\prime} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right)^{-1} \boldsymbol{W} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{S}, h_{N}\right)^{-1} \hat{\boldsymbol{a}}_{N}\right]} . \tag{25}
\end{equation*}
$$

Step 4. Calculate the estimated bandwidth $h_{N}^{e}=\left(\hat{\lambda}_{N} / N^{1 /(2 r 1,}\right.$
Step 5. Compute the SGMS estimator using the estimai \wedge b b - - width h_{N}^{e}.
Note that the approach described by steps $1-5$ is analogoui to the plug-in method of kernel density estimation. As usual in the application of tl ~pluc : method, the choice of the initial bandwidth h_{N} and parameter δ would require some exnlor ${ }^{\circ} \cdot{ }^{\circ} \mathrm{n}$, because the estimated bandwidth h_{N}^{e} may be sensitive to that choice. In our Monte ${ }^{\text {Jarlo experiments in the next section, the }}$ bandwidth has been initialized by setting $h_{N}=1 \quad$ d $\delta=0.1$.

3.2.3 Small-Sample Correction

We describe a method, proposed by Horowlu. (1yy2), to remove part of the finite sample bias of $\hat{\boldsymbol{a}}_{N}$. A Taylor series expansion of $\hat{\boldsymbol{a}}_{N}-\boldsymbol{a}$ around $\tilde{\boldsymbol{\beta}}$ yields

$$
\begin{equation*}
\hat{\boldsymbol{a}}_{N}-\boldsymbol{a}=\left[\left(h_{N}^{*}\right)^{-d} \boldsymbol{t}_{N}\left(\boldsymbol{\beta}, h_{N}^{*}\right)-\boldsymbol{u}_{\rfloor}{ }^{1}+\left(h_{N}\right)^{-d} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{*}, h_{N}^{*}\right)\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)\right. \tag{26}
\end{equation*}
$$

with probability approaching one $\sim N$ ses to infinity, where \boldsymbol{b}_{N}^{*} is a vector between \boldsymbol{b}_{N}^{S} and $\boldsymbol{\beta}$. The right-hand side of (26) sh ws that the finite sample bias of $\hat{\boldsymbol{a}}_{N}$ has two components. The first component, $\left(h_{N}^{*}\right)^{-d} \boldsymbol{t}_{N}\left(\boldsymbol{\beta}, h_{N}^{*}\right)-\boldsymbol{a}$, н. S a non-zero mean due to the use of a non-zero bandwidth h_{N}^{*} to estimate \boldsymbol{a}. The secon' cor ponent, $\left(h_{N}^{*}\right)^{-d} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{*}, h_{N}^{*}\right)\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)$, has a non-zero mean due to the use of an estimate of the rue parameter vector $\boldsymbol{\beta}$ in estimating \boldsymbol{a}.

The bias correctio mf hod described here is aimed at removing the second component of bias by order $N^{-(1-\delta) d /\left(2 d_{\top}\right.}$, N^{\prime} ce that the second component of the right-hand side of (26) can be written as

$$
\left(h_{N}^{*}\right)^{-d} \boldsymbol{F}_{N}\left(\boldsymbol{b}_{N}^{*}, n_{N}\right)\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)=\left[N h_{N}\left(h_{N}^{*}\right)^{2 d}\right]^{-1 / 2} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{*}, h_{N}^{*}\right)\left(N h_{N}\right)^{1 / 2}\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)
$$

The probability limit of $\boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{*}, h_{N}^{*}\right)$ is \boldsymbol{H} by Lemmas $7-8$ in Supplementary Macerial, $n d\left(N h_{N}\right)^{1 / 2}\left(\tilde{\boldsymbol{b}}_{N}^{S}-\right.$ $\tilde{\boldsymbol{\beta}})$ converges in distribution to $M V N\left(-\lambda^{1 / 2} \boldsymbol{H}^{-1} \boldsymbol{a}, \boldsymbol{H}^{-1} \boldsymbol{\Omega} \boldsymbol{H}^{-1}\right)$ by Theorf n 4 Therefore,

$$
\left[N h_{N}\left(h_{N}^{*}\right)^{2 d}\right]^{1 / 2}\left(h_{N}^{*}\right)^{-d} \boldsymbol{H}_{N}\left(\boldsymbol{b}_{N}^{*}, h_{N}^{*}\right)\left(\tilde{\boldsymbol{b}}_{N}^{S}-\tilde{\boldsymbol{\beta}}\right)
$$

converges in distribution to $M V N\left(-\lambda^{1 / 2} \boldsymbol{a}, \boldsymbol{\Omega}\right)$.
Based on the above analysis, we treat $\hat{\boldsymbol{a}}_{N}$ as an estimator of $\left\{1-\left[N h_{v}\left(\iota_{N}^{*}\right)^{2 d}\right]^{-1 / 2} \lambda^{1 / 2}\right\} \boldsymbol{a}$ rather than that of \boldsymbol{a}. Thus, the bias-corrected estimator of vector \boldsymbol{a} is

$$
\begin{equation*}
\hat{\boldsymbol{a}}_{N}^{c}=\hat{\boldsymbol{a}}_{N} /\left\{1-\left[\lambda^{-1} N h_{N}\left(h_{N}^{*}\right)^{2 d}\right]^{-1 / 2}\right\} \tag{27}
\end{equation*}
$$

which is applied as the estimator of \boldsymbol{a} in our Monte Car¹॰ exper nents.

4 Monte Carlo Experiments

In this section, we use Monte Carlo simulation res 'Its . . cudy finite-sample properties of the GMS estimator \boldsymbol{b}_{N} and the SGMS estimator \boldsymbol{b}_{N}^{S}. W cons der six data generating processes (DGPs). In each DGP, individual n 's utility from alternative $i, \sim n j$, is specified as

$$
\begin{equation*}
u_{n j}=z_{n j, 1} \gamma_{1}+z_{n j, 2} \gamma_{n 2}+\alpha_{j}+\varepsilon_{n j} \text { for } n=:, 2, \ldots, N \text { and } j=1,2,3,4 \tag{28}
\end{equation*}
$$

Each DGP is used to simulate two s 's of 1010 random samples of N individuals, where $N=500$ in the first set and 1000 in the secr ad set.

In all DGPs, the intercept ve +or $\mathrm{s} \boldsymbol{\alpha} \equiv\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)^{\prime}=(0,0.25,0.5,0.75)^{\prime}$. The first preference parameter γ_{1} is a determir ${ }^{\text {stic co }}{ }^{\prime}$ 'ıcient and takes the value of one for all individuals: $\gamma_{1}=1$. In DGPs 1-4, the second pre eren ${ }^{\prime}$ varameter $\gamma_{n 2}$ is also a deterministic coefficient and takes the value of one for all indivic ${ }_{\iota}{ }_{\iota} \cdot \gamma_{n 2}=\gamma_{2}=1$ for all n. In DGPs $5-6$, however, $\gamma_{n 2}$ is a random coefficient that varies acre s individuals, and each individual's coefficient value is a random draw from distribution $N(11): \gamma_{n 2}-=\gamma_{2}+\eta_{n}$, where $\gamma_{2}=1$ and η_{n} is distributed as $N(0,1) .{ }^{26}$ Each DGP specifies its own ${ }^{1}$ is srib' cion of error terms $\varepsilon_{n j}$: we provide more details below. ${ }^{27}$

[^16]The econometrician observes a utility-based ranking \boldsymbol{r}_{n} of $J=4$ alternaııes . \mathbb{J}, as well as attributes $z_{n j, 1}$ and $z_{n j, 2}$ for $j=1, \ldots, 4$ and $n=1, \ldots, N .{ }^{28}$ As usual, the dep nco observed rankings influences the finite sample precision of an estimator; and in the contex \quad f our semparametric estimators, it also influences the degree of flexibility that semiparametric n. dels offer. Recall that when the complete rankings $(M=J-1=3)$ are observed and \dagger^{\prime} ert ${ }^{\circ}$ at least one variable satisfying Assumption 3 such as $z_{n j, 1}$ and $z_{n j, 2}$ in our DGPs, the se ${ }_{\perp}{ }^{2}$ arametric model nests all popular parametric models as special cases; when only partial ankins $(M<3)$ are available, this is not the case because the semiparametric model cannot ccomn odate alternative-specific heteroekedasticity and flexible correlation patterns. We wil' ineretore explore the finite sample behavior of the estimators at three depth levels: $M=1$ wher ${ }^{\wedge}$, y th \rightleftharpoons best alternative is observed, $M=2$ when the best and second alternatives are observed, a. $\quad \mathrm{d} \boldsymbol{m}=3$ when the complete ranking is observed. In all DGPs, observed attribute $z_{n j, 1}$ is . randor draw from $N(0,2)$ and $z_{n j, 2}$ is generated as a ratio of two different uniform draws: spt: :ficaıy, $z_{n j, 2} \equiv q_{n j} / w_{n}$ where $q_{n j}$ is drawn from $U(0,3)$ and w_{n} is drawn from $U\left(\frac{1}{5}, 5\right) .{ }^{29}$ Note $\sim_{\sim_{n j, 1}}$ and $q_{n j}$ vary across both individuals and alternatives, whereas w_{n} varies only across individua.. All three distributions that generate the observed attributes are independent of one anothe a a a i.i.d. across the subscripted dimension(s).

For comparison with our GMS and SGN. astin ates, we also compute maximum likelihood estimates using three popular parametric models suıımarized in Section 2.3, namely rank-ordered logit (ROL), rank-ordered probit (ROP), anu nıxeu ROL (MROL). We do not estimate the nested ROL model, primarily because our analysis already includes the ROP model which is a more flexible parametric method to incorporate cor elatea rrors. In case of ROP and MROL, we opt to place no constraint on the variance-covariance pu $\cdot \mathrm{m} \mathrm{m}$.ers of the underlying multivariate normal densities. ${ }^{30}$ This allows us to compare our sem par metric methods with both restrictive (ROL) and very flexible (ROP and MROL) parametric retı. ds .

In all estimation runs, wr at $\alpha_{1}=0$ for location normalization. Following the notation in

[^17]section 2, let $\beta_{1} \equiv \gamma_{1}$ and $\tilde{\boldsymbol{\beta}} \equiv\left(\gamma_{2}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)^{\prime}$. Our discussion focuses on scal.d pà • meter vector, $\tilde{\boldsymbol{\beta}} / \beta_{1}$, which is identified in both parametric and semiparametric models. In he discrete choice analysis of individual preferences, the main parameter of interest often tance the form of a ratio between coefficients on non-price and price attributes; this type of ratio .. known as, inter alia, equivalent prices (Hausman and Ruud, 1987), implicit prices (Calfee t a ${ }^{\circ} 001$), and willingness-to-pay (Small et al., 2005). In parametric models, we normalize the se 1 of the error terms in the usual manner to estimate $\left(\beta_{1}, \tilde{\boldsymbol{\beta}}^{\prime}\right)^{\prime}$, and then use the results to eerıve estımated counterparts to $\tilde{\boldsymbol{\beta}} / \beta_{1}$. In semiparametric models, we normalize $\left|\beta_{1}\right|=1$ and esti nate $\tilde{\boldsymbol{\beta}}$ together with the sign of β_{1}, and then compute the estimate of the ratio of interest $\tilde{\boldsymbol{\beta}} / \operatorname{\operatorname {lgn}}\left(\beta_{1}\right) . \circ 1$

Since the GMS estimator entails maximizing a sum of $s{ }^{\sim}$ funt tions, we use a global search method to compute the GMS estimates: specifically the dı`nenual evolution algorithm of Storn and Price (1997), which was also Fox's (2007) preferred -ethod or computing his multinomial MS estimates. As to the SGMS estimator, we assume $d=?$ (wnich is the minimum requirement on smoothness conditions for its asymptotic normality)ement a particular version which uses the standard normal distribution function as the smoolı function $K(\cdot) .{ }^{32}$ The resulting objective function is differentiable, and can be maximized b, st rung any of usual gradient-based algorithms from a set of initial search points. The bandw ${ }^{+}+h_{c} h_{c}$ been initialized by setting $h_{N}=N^{-1 / 5}$ and $\delta=0.1$, and optimized subsequently by applying the five steps described in Section 3.2.2 using an identity matrix as the weight matrix \boldsymbol{W}.

Table 1 summarizes the true distribution of the error terms in each DGP and whether particular methods can estimate $\tilde{\boldsymbol{\beta}} / \beta_{1}$ consisten 1 y . T_{L} ? summary presents a strong case for the importance of considering semiparametric methoas f_{nr} ank-ordered choice data: the GMS/SGMS estimator using complete rankings is the o ly rethod that remains consistent throughout all DGPs. The GMS/SGMS estimator using pr"tia. "zn ings is consistent when the error terms are homoskedastic (DGPs 1-2) or heteroskedastic a ${ }^{\text {oss }}$ individuals (DGP 3), but becomes inconsistent in the presence of alternative-specific heterockedastic.ty (DGP 4) and/or random coefficients (DGPs 5-6). As usual, a parametric method is c, nsis ent only when the DGP happens to coincide with the postulated parametric model itself or its necial cases.

Tables 2 through 7 rep rt the bias and root mean square error (RMSE) of each method (in Table 1) using 1,000 samples oı $i_{7} N$ simulated from DGPs 1 through 6 . The last column of each table

[^18]reports the empirical coverage probability（CP）of the asymptotic 95% confiuenct nterval of the SGMS estimator．While all reported estimation results are for scaled param ter，$\tilde{\boldsymbol{\beta}} / \beta_{1}$ ，henceforth we will not stress division by $\beta_{1} \equiv \gamma_{1}$ explicitly for the simplicity of notatio $=1 d$ discussion．

We first focus on the slope coefficient γ_{2} ，the results for which vary mu っ wiuely across DGPs and estimators．The GMS estimator using complete rankings（i．e．，$N=?$ ）is consistent under all six DGPs，and displays a small finite sample bias，which is less thaı $\%$ of the coefficient＇s true value in DGPs 1 and 2，and 1% in DGPs 3 through 6 ．In additio ，the sstımator＇s RMSE declines noticeably in all DGPs as the sample size grows from $N=500 っ N=1000$ ，suggesting that its finite sample distribution becomes tighter around the coefficie ι s true value．The potential benefit of using complete rankings in semiparametric estimation appt \backsim con iderable．The GMS estimator using partial rankings（ $M=1$ or $M=2$ ）is consistent undeı＇Gro 1,2 and 3 but not under DGPs 4,5 and 6 ．While the partial rankings estimator still dis．lays a \ddagger nall bias under DGPs 1,2 and 3， it can be subject to a bias that is about 22%（at $M=1$ ，$ヶ \downarrow \boldsymbol{r}$（at $M=2$ ）in DGP 4，and 14%（at $M=1$ ）or 5%（at $M=2$ ）in DGP 6 ；the complete zero in both DGPs．Comparisons of the SGMS estimatoı \subsetneq ross alternative depth levels and sample sizes lead to similar conclusions，though each SG．IS estumator tends to display a larger bias and a smaller RMSE than its GMS counterpart， t^{\prime} oxpe ted trade－offs from using a smoothing kernel to construct a surrogate objective function．For \uparrow Gis 1,2 ，and 5 ，at least one parametric method allows consistent maximum likelihood estima ${ }^{\circ} \cdot{ }^{\prime}$ n．ihe results suggest that the efficiency gains（as measured by the reduction in RMSE）that a consistent SGMS estimator offers over a consistent GMS estimator are comparable to w^{\prime} ．at a c insistent parametric estimator offers over the SGMS estimator itself．

The results for γ_{2} in DGPs 3．4，a id 6 present particularly interesting examples of the benefit from using our semiparametric reetı ds．Jnder each of these DGPs，none of the popular parametric methods is consistent but arg ．hly at least one of the parametric methods postulates an approx－ imately correct model．We nhserve，nevertheless，that even an approximately correct parametric method may display a siz able oias．In DGP 3，for instance，ROP is a correct specification apart from its failure to capt re in rpersonal heteroskedasticity；yet，the ROP estimator＇s bias ranges from 37% to 45% of te t ue r arameter value．In DGP 4 and DGP 6，there is alternative－specific heteroskedasticity inducei vi ．a normal error component which multiplies the second attribute $z_{n j, 2}$ ； MROL can readil：absor L_{L} this component into the normal random coefficient on $z_{n j, 2}$ ，and is there－ fore a correct specheatir．apart from its inclusion of a redundant extreme value error component． While the MP JL esi nator＇s bias is indeed small when only the best alternative indicator is used in estimation $(M=1)$ ．he bias becomes amplified as deeper ranking information is used and exceeds
13% with the use of complete rankings $(M=3)$.
While the results pertaining to the strong consistency of the GMS and Sr M. estimators appear reassuring, the results pertaining to the asymptotic normal distribution $\mathrm{c}_{2}^{2}+1 \mathrm{e}$ SGMS estimator sound a cautionary note. The asymptotic 95% confidence intervals for γ_{2}. ve empirical coverage probabilities ranging from 88% to 91% when $N=500$, and 89% tc 92% when $N=1000$, even when one confines attention to those SGMS estimators that are cons. ${ }^{+}$. $n t$ under a given DGP. ${ }^{33}$ It appears that for the asymptotic approximation to work well, , ne must consider larger sample sizes than what we have examined. For the SMS estimator of 1 nomia choice models, Horowitz (1992) finds an even larger amount of distortion in samples $\perp N=500$, which does not improve considerably in larger samples of $N=1000$, though makin ${ }_{\varepsilon}{ }^{2}$ ad-1 J-head comparisons with our results is difficult given the use of different DGPs. His subst. \cdot •en ${ }^{-}$work (Horowitz, 2002) provides a bootstrapping procedure that removes the empirical 'istortio almost entirely. Our conjecture is that the use of bootstrapping will bring about similaı ${ }^{\text {. }}$. satıfactory improvement in the present context too. In our view, verification of this con:dy be best addressed in a dedicated study, for both theoretical and computational reasons. C. the theoretical side, one should formally extend Horowitz's (2002) bootstrapping method no ne SMS estimator to the SGMS estimator, and verify the validity of the resulting methoc. $\cap_{\mathrm{n}} \mathrm{t}_{1}$ 。computational side, we note that obtaining the current set of simulation results for the cast of $N=1000$ and $M=3$ under one DGP took an average of 10 hours on a powerful worksta'inn; ubtaining reliable bootstrapping results involves repeating this type of computing task over several hundred times per each triple of N, M and DGP. ${ }^{34}$ Exploring the performance of bootst apping across alternative DGPs, sample size configurations and preference depths is likely to requi sev ral months of computer time, even when one exploits parallel computing.

For the alternative-specific ;nter ${ }^{\circ} \mathrm{vts}\left(\alpha_{2}, \alpha_{3}\right.$, and $\left.\alpha_{3}\right)$, all parametric and semiparametric estimators display practically $\mathrm{sr}^{2}{ }^{11}$ biases, even under those DGPs where the estimators in question are inconsistent. We are not aware uf any formal explanation for this general robustness, though it appears intuitively plau sble chat estimating the fixed part of every individual's utility (intercept vector $\boldsymbol{\alpha}$) is an easier tar ${ }^{1} \mathrm{k}$ in (mparison to estimating the marginal utility weight on an explanatory

[^19]variable that varies across alternatives and individuals $\left(\gamma_{2}\right.$ on $\left.z_{n j, 2}\right)$. The resuts aı suggest that the asymptotic normal distribution of the SGMS estimator provides a bette ap roximation to the finite sample distribution of the intercept estimator than that of the slope cu, Ψ° cient estimator. For each intercept α_{j} for $j=2,3,4$, the empirical coverage probability of the $c_{\mathrm{L}} \quad$ fidence interval often comes fairly close to the nominal 95% level.

The Monte Carlo experiments were primarily designed to study the roperties of our semiparametric methods, but the results provide a fresh perspective on "te dehate over the reliability of rank-ordered choice data. Based on the intuitively convincing pr mise tl at ranking is a more cognitively demanding task than making a choice, some research is contend that in case a parametric method produces different estimates depending on whether c.+. on irst preferences $(M=1)$ and deeper rankings $(2 \leq M \leq J-1)$ are used, the econometricin n sruuld opt for $M=1$ since deeper ranking information may have been compromised by fac 1 rs suci as decision heuristics: see Chapman and Staelin (1982) and Ben-Akiva et al. (1992) for ${ }^{\text {Ne innuential proponents of this view. The }}$ results in DGPs 3 through 6 , however, caution again ons the reliability of data via comparisons of parametric estimates across alternative levels of M. Shı \because inconsistent parametric estimators may not be equally biased at all levels of M, they may, ro' uce estimates that vary across M even when the reliability of data is beyond any doubt as . . nur : imulated samples.

Recall that as Assumption 3(a) in Section 2.4 staves, for point identification of parameters, our semiparametric methods requires the presen^ n of a continuous covariate with large support such as $z_{n j, 1}$ in the Monte Carlo DGPs. In comparıson, parametric methods do not require such a covariate. When Assumption 3(a) fail, ther may be a set of parameter vectors that maximize the probability limit of the GMS objective ${ }^{\circ} \cdot \mathrm{nc}^{+}$。on, instead of a unique parameter vector. Though a detailed theoretical analysis of suc 1 pa tial or set identification is beyond the scope of our paper, we have conducted another Monte Sar. stu 1 y to develop more insight into the practical consequences of point identification failure $n \cdot$ ing variants of DGP 3 that replace $z_{n j, 1}$ and $z_{n j, 2}$ with bounded discrete covariates. ${ }^{35}$ A summary of the results can be downloaded from the corresponding author's website. ${ }^{36}$ We observe th th GMS estimates of the slope parameter γ_{2} vary over intervals that are narrow relative to th ว cot. " . ient's true value as well as RMSEs in Table 4, but those of intercept $\alpha_{j} \mathrm{~s}$ vary over much w der ntervals. Considering the robustness of the parametric estimators of $\alpha_{j} \mathrm{~s}$ noted earlier, it apnears $\quad h_{a}$ the complementary use of parametric and semiparametric methods

[^20]
ACCEPTED MANUSCRIPT

could be a useful strategy when Assumption 3(a) is violated. The results a a_{s} so pu $\mathfrak{n t}$ to another potential benefit of using complete rankings in semiparametric estimatior, a` intervals become tighter as the depth of ranking increases from $M=1$ through $M=3$.

5 Conclusions

To collect more preference information from a given sample of in ${ }^{\prime}$, viduels, multinomial choice surveys can be readily modified to elicit rank-ordered choices. All pa. ametri methods for multinomial choices have their rank-ordered choice counterparts that expl, it the extra information to estimate the underlying random utility model more efficiently. But sen. n ' iam tric methods for rank-ordered choices remain undeveloped, apart from the seminal work of $\iota \cdot$ יısnudn and Ruud (1987), which rules out interpersonal heteroskedasticity and is only applice ${ }^{\text {¹ le le to }} \mathrm{C}$ ntinuous regressors. Building on Fox's (2007) maximum score (MS) estimator of semipaı metıu multinomial choice models, we develop the generalized maximum score (GMS) estima $\quad \therefore \quad$.... parametric rank-ordered choice models. We show that the GMS estimator allows for arbitraı, forms of interpersonal heteroskedasticity and consistent estimation of coefficients on all typ Vo^{+}rezressors, as long as there is one continuous regressor with large support that can be used nor 'alize the scale of utility. Like other MS-type estimators, the GMS estimator has a slow convery nce rate of $N^{-1 / 3}$ and a non-standard asymptotic distribution. In the context of binomial chole moucls, Horowitz (1992) develops the smoothed MS estimator that addresses similar drawbacks of Manski's (1985) MS estimator in return for making stronger assumptions. Yan (2013) ext nds tı ? results to Fox's (2007) MS estimator of multinomial choice models. Following this tradition, we ropose the smoothed GMS (SGMS) estimator which achieves a faster convergence rate and nas an asymptotic normal distribution.

Our study finds that rank-or dere chr ${ }_{\wedge}$ ces provide an interesting data environment which can facilitate and benefit from the dr , ${ }^{1}$ npment of semiparametric methods. Most interestingly, our results show that using extra information frum rank-ordered choices is not just a matter of efficiency gains, to the contrary of what p ram stric analyses might lead one to anticipate. For our semiparametric estimators, it is also a ratte. of consistency in the sense that using complete rankings instead of partial rankings allow the estinators to become robust to wider classes of stochastic specifications. More specifically, the $M_{N}{ }^{\prime}{ }^{\prime}$ mator using multinomial choices and the GMS estimator using partial rankings do $n \mathrm{t}$ allow for an error variance-covariance structure that varies across alternatives, meaning that they $\mathrm{ann}_{\mathrm{n}}$. consistently estimate flexible parametric models including nested logit, unrestricted F obit, e ld mixed logit. By contrast, the GMS estimator using complete rankings (i.e., fully rank-ordt od ch sices) can accommodate error structures as such, fulfilling the usual expecta-
tions that a semiparametric model should nest competing parametric models. The nain intuition behind this contrast is that the use of complete rankings allows one to inf 1 , hich alternative is more preferred in every possible pair of alternatives in a choice set. The sı॰ r f consistency of the GMS estimator (and hence that of the SGMS estimator) using fully rank- wdered choices can be therefore shown under almost the same assumptions as the strong cor iste $m \mathrm{v}$ of the MS estimator using binomial choices, without invoking stronger assumptions needea - address more analytically complex cases of multinomial choices or partially rank-ordered cb ices.

Together with our Monte Carlo evidence on the bias of param tric m thods under misspecification, this finding calls for a reconsideration of the convention . wisdom prevailing in the empirical literature. Since Chapman and Staelin (1982), several studies h ve cr ntended that in case the estimates using complete rankings diverge from the estimates usır r inıurmation on the best alternative alone (or other types of partial rankings), one should he ${ }^{\circ}$ o more aith in the latter set of estimates and question the reliability of data on deeper preferenc raınmgs. But with our semiparametric methods, it is the former set of estimates that is cr inder a wider variety of true models. And with parametric methods, the discrepancy may $\operatorname{ar}_{\ldots}$ ~ even when the reliability of data is beyond any doubt as in our simulated samples, beca. se ne amount of misspecification bias may vary (non-monotonically) in the depth of rankings .od. Vhile the premise that an individual finds it easier to tell her best alternative than, say third- r ruurth-best alternative, is intuitively appealing, testing the validity of the conventional wisdu. cans for the use of a semiparametric method which offers the same degree of robustness regardless of the depth of rankings used in estimation. In our view, the development of a method as such \perp a promising avenue for future research.

Acknowledgements

We thank the editor, associa ${ }^{+}$- ${ }^{\text {ditor, }}$ and anonymous reviewers for their constructive comments on our initial draft. We alsn thank irie Beresteanu, Xu Cheng, Liran Einav, Jeremy Fox, Bryan Graham, Bruce Hansen, 「 an Iong, Arthur Lewbel, Taisuke Otsu, Joris Pinkse, Jack Porter, Xiaoxia Shi, and seminar partici, ${ }_{1}$ nts at the 2015 Tsinghua Econometric Conference, Academia Sinica, Sun Yat-Sen Universi y, t^{\prime} e 1^{n} th International Symposium on Econometric Theory and Applications, the 2016 Asian anu ${ }^{\top} 11$ opean Meetings of the Econometric Society, Newcastle University, the Chinese Universit: of Hoı $\stackrel{\text { g Kong, the }}{>}$ 2nd Guangzhou Econometrics Workshop, and National University of Singaport $f_{\mathrm{or}} \mathrm{v}$ duable comments and discussions. Jin Yan acknowledges funding support provided by tie Hol^ ${ }^{〔}$ Kong Research Grants Council General Research Fund 2014/2015 (Project No.14413214) . nd siv anonymous referee reports for the project proposal. All errors are ours.

ACCEPTED MANUSCRIPT

Appendices

We provide the proofs of Theorems 1-3 and those of relevant lemmas i Ar pendices A and B. Specifically, Appendix A provides the proof of identification (Theorem 1) , nd A_{\perp} nendix B includes the proofs of the strong consistency of the proposed estimators (Ther . $\mathrm{E} \cdot \mathrm{s} 2-\mathrm{v}$ and Lemmas 1-3). The derivation of the asymptotic distribution of the SGMS estimato anr the results for statistical inference (Theorems 4-5 and Lemmas 4-8) require a relatively lon" 'ist oı echnical conditions; we present these conditions and associated proofs in Supplementary Materic .
 Law of Large Numbers, and Dominated Convergence Theor m. . es ectively. Set \mathbb{Z}_{+}denotes the collection of positive integers. Symbol $\|\boldsymbol{v}\|$ denotes the L^{\top} norm - . vector \boldsymbol{v} and $|\boldsymbol{v}|$ denotes the vector of the absolute value of each element in \boldsymbol{v}. Symbol $\left.O(1) O_{p}(1)\right)$ denotes a sequence that is bounded (bounded in probability) and symbol $o(1)\left(o_{p}\left({ }^{1}\right) u^{\circ}{ }^{n+}\right.$ s a sequence that converges to zero (converges to zero in probability). For any summation inde $\quad . d$ by an alternative (alternatives), we suppress the statement that the alternative (alternatı \sim) is (are) in the choice set \mathbb{J}. For example, $\sum_{j<k}$ means $\sum_{j<k, j \in \mathbb{J}, k \in \mathbb{J}}$, or equivalently, $\sum_{1 \leq J} k \leq$.

A Identification

Proof. (Theorem 1) Recall that in Definition

$$
\begin{align*}
Q^{*}(\boldsymbol{b}) & \equiv \sum_{j<k} E\left[1\left(r_{j}<r_{k}\right) \cdot\left(\boldsymbol{x}_{j}^{\prime} \boldsymbol{b} \geq \boldsymbol{x}_{k}^{\prime} \boldsymbol{b}\right)+1\left(r_{k}<r_{j}\right) \cdot 1\left(\boldsymbol{x}_{k}^{\prime} \boldsymbol{b}>\boldsymbol{x}_{j}^{\prime} \boldsymbol{b}\right)\right] \\
& =\sum_{j<k} E\left\{\left[1\left(r_{j}<\cdot{ }_{k}\right) \cdot 1\left(r_{k}<r_{j}\right)\right] \cdot 1\left(\boldsymbol{x}_{j k}^{\prime} \boldsymbol{b} \geq 0\right)+1\left(r_{k}<r_{j}\right)\right\}, \tag{A1}
\end{align*}
$$

where $\boldsymbol{x}_{j k}^{\prime} \boldsymbol{\beta} \equiv \boldsymbol{x}_{j}^{\prime} \boldsymbol{\beta}-\boldsymbol{x}_{k}^{\prime} \boldsymbol{\beta}$. A, ply $_{\ldots}{ }^{\imath}$ the LIE to the right-hand side (RHS) of (A1) yields

$$
\begin{equation*}
\left.Q^{*}(\boldsymbol{b})=\sum_{j<k} E\left\{\left[F r_{i}, r_{k} \mid \boldsymbol{X}\right)-P\left(r_{k}<r_{j} \mid \boldsymbol{X}\right)\right] \cdot 1\left(\boldsymbol{x}_{j k}^{\prime} \boldsymbol{b} \geq 0\right)+P\left(r_{k}<r_{j} \mid \boldsymbol{X}\right)\right\} \tag{A2}
\end{equation*}
$$

By Assumption 1, the u. e pr ameter vector $\boldsymbol{\beta}$ globally maximizes $Q^{*}(\boldsymbol{b})$ in (A2) for $\boldsymbol{b} \in \mathbb{B}$ because the sign of the diff rence $\left[P\left(r_{j}<r_{k} \mid \boldsymbol{X}\right)-P\left(r_{k}<r_{j} \mid \boldsymbol{X}\right)\right]$, is the same as the sign of $\boldsymbol{x}_{j k}^{\prime} \boldsymbol{\beta}$.

Next, we show that F^{-}is a unique global maximizer of $Q^{*}(\boldsymbol{b})$. Consider a different parameter vector $\boldsymbol{\beta}^{-} \in \mathbb{P}$. If, f f r values of \boldsymbol{X} with positive probability, $\boldsymbol{\beta}$ and $\boldsymbol{\beta}^{-}$yield different rankings of systematic ut.'ities, \dagger ıen $\boldsymbol{\beta}^{-}$will not maximize $Q^{*}(\boldsymbol{b})$. In other words, for any \boldsymbol{X} with positive
probability, if we observe that $\boldsymbol{x}_{j k}^{\prime} \boldsymbol{\beta}$ and $\boldsymbol{x}_{j k}^{\prime} \boldsymbol{\beta}^{-}$have opposite signs for some pair v_{i} distinct alternatives $j, k \in \mathbb{J}$, then we can conclude $Q^{*}(\boldsymbol{\beta})>Q^{*}\left(\boldsymbol{\beta}^{-}\right)$. By scale normaliz dio in Assumption 2, we will show this argument for $\beta_{1}=1$; the argument for $\beta_{1}=-1$ is similaı. ${ }^{\prime}$ the first element of $\boldsymbol{\beta}^{-}, \beta_{1}^{-}$, is also 1 , then the set of covariates where $\boldsymbol{\beta}$ and $\boldsymbol{\beta}^{-}$yield differenı ${ }^{\text {}}$ nnkıngs of systematic utilities is ${ }^{37}$

$$
\begin{aligned}
D\left(\boldsymbol{\beta}, \boldsymbol{\beta}^{-}\right) & =\left\{\boldsymbol{X} \mid \boldsymbol{x}_{j k}^{\prime} \boldsymbol{\beta}<0<\boldsymbol{x}_{j k}^{\prime} \boldsymbol{\beta}^{-} \text {for some } j, k \in \mathbb{J},\right. \text { w. } \\
& =\left\{\boldsymbol{X} \mid \tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{\beta}}<-x_{j k, 1}<\tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{\beta}}^{-} \text {for some } j, k=\mathbb{J}, \text { wh re } j \neq k\right\} .
\end{aligned}
$$

By Assumption $3(\mathrm{a})$, the set $D\left(\boldsymbol{\beta}, \boldsymbol{\beta}^{-}\right)$has probability zer if nd only if $\tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{\beta}}=\tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{\beta}}^{-}$with probability one for any pair of distinct alternatives $j, k \in{ }_{\boldsymbol{L}}$, that ${ }^{=}, \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{X} \boldsymbol{\beta}^{-}$with probability one. This contradicts Assumption 3(b). If $\beta_{1}^{-}=-1$, the set of pc nts where $\boldsymbol{\beta}$ and $\boldsymbol{\beta}^{-}$give different predictions is

$$
D\left(\boldsymbol{\beta}, \boldsymbol{\beta}^{-}\right)=\left\{\boldsymbol{X} \mid x_{j k, 1}<\min \left(\tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{\beta}}^{-},-\tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{\beta}}\right) \therefore{ }^{\boldsymbol{r}} \text { some } j, k \in \mathbb{J}, \text { where } j \neq k\right\}
$$

The $D\left(\boldsymbol{\beta}, \boldsymbol{\beta}^{-}\right)$has positive probability by Assump in $3(\mathrm{a})$. Thus, we have proved that the true preference parameter vector $\boldsymbol{\beta}$ uniquely maxim $Q^{\prime}(\boldsymbol{b})$ for $\boldsymbol{b} \in \mathbb{B}$ under Assumptions 1-3.

B Strong Consistency of the G ${ }^{\text {T}}$ S and the SGMS Estimators

We prove Lemmas 1-3 to establish th strong sonsistency of the GMS and SGMS estimators (Theorem 2-3). Lemma 1 verifies the con ${ }^{\star}$ inuity \wedge^{r} r perty of function $Q^{*}(\boldsymbol{b})$, which is the probability limit of the objective functions of the $i \mathrm{M}^{r}$ an ${ }^{\prime}$. SGMS estimators. Lemmas 2 and 3 show the uniform convergence of the GMS object ve fuı.^ ${ }^{\wedge}$ on, $Q_{N}(\boldsymbol{b})$, and the SGMS objective function, $Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right)$, to this probability limit func ${ }^{\dagger}$ on ${ }^{\text {* }}(\boldsymbol{b})$, respectively.

Lemma 1. Under Assum,tions $2-3, Q^{*}(\boldsymbol{b})$ is continuous in $\boldsymbol{b} \in \mathbb{B}$.
Proof. Denote each ter a ir the summation on the RHS of (A1) as

$$
\begin{equation*}
\left.\left.\left.Q_{j k}^{*}(\boldsymbol{b}) \equiv E \sum_{\substack{ \\\Gamma_{1}(}} r_{j}<k\right)-1\left(r_{k}<r_{j}\right)\right] \cdot 1\left(\boldsymbol{x}_{j k}^{\prime} \boldsymbol{b} \geq 0\right)+1\left(r_{k}<r_{j}\right)\right\} \tag{B1}
\end{equation*}
$$

[^21]Then,

$$
\begin{equation*}
Q^{*}(\boldsymbol{b})=\sum_{j<k} Q_{j k}^{*}(\boldsymbol{b}) \tag{B2}
\end{equation*}
$$

Therefore, it is sufficient to prove that $Q_{j k}^{*}(\boldsymbol{b})$ is continuous in $\boldsymbol{b} \in{ }^{\pi}$, for ${ }^{\sim}{ }^{\top}{ }^{\boldsymbol{w}}$ pair of alternatives $j<k$. Consider the case $b_{1}=1$ by the scale normalization in Assurı, ion 2. The argument for $b_{1}=-1$ is symmetric. Applying the LIE to the RHS of (B1) yiel s

$$
\begin{align*}
& Q_{j k}^{*}(\boldsymbol{b})=E\left\{\left[P\left(r_{j}<r_{k} \mid \boldsymbol{x}_{j k}\right)-P\left(r_{k}<r_{j} \mid \boldsymbol{x}_{j k}\right)\right] \cdot 1\left(\boldsymbol{x}_{j k}^{\prime} \boldsymbol{b}-\mathrm{v}\right)\right\}+\boldsymbol{r}\left(r_{k}<r_{j}\right) \\
&\left.=\int\left\{\int_{-\tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{b}}}^{\infty}\left[P\left(r_{j}<r_{k} \mid \boldsymbol{x}_{j k}\right)-P\left(r_{k}<r_{j} \mid \boldsymbol{x}_{j k}\right)\right] \cdot g_{j k}^{\prime} x_{j k, 1} \mid \tilde{\boldsymbol{x}}_{j k}\right) d x_{j k, 1}\right\} d F\left(\tilde{\boldsymbol{x}}_{j k}\right) \tag{B3}\\
&+P\left(r_{k}<r_{j}\right)
\end{align*}
$$

where the second equality in (B3) holds by Assumptio. 3(a) and $F\left(\tilde{\boldsymbol{x}}_{j k}\right)$ denotes the CDF of $\tilde{\boldsymbol{x}}_{j k}$. The curly brackets inner integral on the RHS of , 5.J. function of $\tilde{\boldsymbol{x}}_{j k}$ and $\tilde{\boldsymbol{b}}$ that is continuous in $\tilde{\boldsymbol{b}} \in \tilde{\mathbb{B}}$.

Lemma 2. Under Assumption 4, $Q_{N}(\boldsymbol{b})$ cnnverg, s almost surely to $Q^{*}(\boldsymbol{b})$ uniformly over $\boldsymbol{b} \in \mathbb{B}$.
Proof. Denote the sample analog of (B1) as

$$
\begin{equation*}
Q_{N j k}(\boldsymbol{b}) \equiv N^{-1} \sum_{n=1}^{N}\left\{\left[1\left(r_{n j}<r_{n k},-\left(_{n k}<r_{n j}\right)\right] \cdot 1\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b} \geq 0\right)+1\left(r_{n k}<r_{n j}\right)\right\}\right. \tag{B4}
\end{equation*}
$$

By (B1), (B4), and Assumptior 4, wt \because ve $E\left[Q_{N j k}(\boldsymbol{b})\right]=Q_{j k}^{*}(\boldsymbol{b})$ for any pair of alternatives $j<k$. By (12),

$$
\begin{equation*}
\left.Q_{N}(\boldsymbol{b})=\sum_{j<k} Q_{N j l} \boldsymbol{b}\right) \tag{B5}
\end{equation*}
$$

Combination of (B2) c $r^{\prime}\left(\mathrm{B} 5\right.$, implies that it is sufficient to show that $Q_{N j k}(\boldsymbol{b})$ converges almost surely to $Q_{j k}^{*}(\boldsymbol{b})$ v a 1 ormly u ver $\boldsymbol{b} \in \mathbb{B}$ for any pair of alternatives $j<k$. Assumption 4 and the uniform SLLN (T. eorem . 2 of Rao (1962) or Lemma 4 of Manski (1985)) imply that

$$
\begin{equation*}
P\left[\lim _{N \rightarrow \alpha} \sup _{\boldsymbol{h} \in \mathbb{B}}\left|6_{N j k}(\boldsymbol{b})-Q_{j k}^{*}(\boldsymbol{b})\right|=0\right]=1 \tag{B6}
\end{equation*}
$$

ACCEPTED MANUSCRIPT

for each pair of alternatives.

Proof. (Theorem 2) The proof of strong consistency of the GMS estimator . volves verifying the conditions of Theorem 2.1 in Newey and McFadden (1994):
(1) $Q^{*}(\boldsymbol{b})$ is uniquely maximized at $\boldsymbol{\beta} \in \mathbb{B}$;
(2) The parameter space \mathbb{B} is compact;
(3) $Q^{*}(\boldsymbol{b})$ is continuous in $\boldsymbol{b} \in \mathbb{B}$; and
(4) The objective function converges almost surely to its probaı ${ }^{1}$ ity lin nit, $Q^{*}(\boldsymbol{b})$, uniformly over $\boldsymbol{b} \in \mathbb{B}$.

Condition (1) is verified by Theorem 1, Condition (2) is guar nteed by Assumption 2, and Conditions (3) and (4) are verified by Lemmas 1 and 2, respeci. oly. Therefore, the GMS estimator that maximizes its objective function $Q_{N}(\boldsymbol{b})$ converges to ${ }^{\top}$ o tru parameter vector $\boldsymbol{\beta}$ almost surely under Assumptions 1-4.

Lemma 3. Under Assumptions 2-4 and Condition 1, $\mathfrak{c}_{\llcorner } S_{r}\left(\boldsymbol{b}, h_{N}\right)$ converges almost surely to $Q^{*}(\boldsymbol{b})$ uniformly over $\boldsymbol{b} \in \mathbb{B}$.

Proof. First, we show that the SGMS object, t finn tion $Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right)$ converges almost surely to $Q_{N}(\boldsymbol{b})$ uniformly over $\boldsymbol{b} \in \mathbb{B}$ following the mothoc in Lemma 4 of Horowitz (1992). By definitions (12) and (18), we calculate

$$
\begin{equation*}
\left.\left.\left|Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right)-Q_{N}(\boldsymbol{b})\right| \leq \frac{1}{N} \sum_{\gamma=1}^{N} \sum_{i<k} \right\rvert\, 1 \boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}>0\right)-K\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b} / h_{N}\right) \mid \tag{B7}
\end{equation*}
$$

The RHS of $(\mathrm{B} 7))$ is the sum of $\left.c_{N \perp} \eta\right)$ ad $c_{N 2}(\eta)$, where

$$
\begin{aligned}
& \left.c_{N 1}(\eta) \equiv \frac{1}{N} \sum_{n=1}^{N} \sum_{j<}^{1^{-}} \boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}>0\right)-K\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b} / h_{N}\right) \mid \cdot 1\left(\left|\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}\right| \geq \eta\right), \\
& \left.\left.c_{N 2}(\eta) \equiv \frac{1}{N} \sum_{n=1}^{N} \sum_{j<n} \right\rvert\, 1, \boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}>0\right)-K\left(\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b} / h_{N}\right) \mid \cdot 1\left(\left|\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}\right|<\eta\right),
\end{aligned}
$$

and $\eta \in \mathbb{R}_{+}^{1}$ is a p sitive r imber. Condition $1(\mathrm{~b})$ implies that for any $\delta>0$, there exists $c>0$ such that $\mid K(v)-1^{\prime} \delta \delta \cdot v^{\prime} \quad$ and $|K(-v)|<\delta \cdot J^{-2}$ for any $v>c$. As $h_{N} \rightarrow 0$, there exists an integer $N_{0} \in \mathbb{Z}_{+}$sucl that $\eta^{\prime} h_{N}>c$ for any $N>N_{0}$. Therefore, $c_{N 1}(\eta)<\delta$ for any $N>N_{0}$. We have
shown that for each $\eta>0, c_{N 1}(\eta) \rightarrow 0$ uniformly over $\boldsymbol{b} \in \mathbb{B}$ as $N \rightarrow \infty$. Next consı ${ }^{1} \supset r c_{N 2}(\eta)$. By Condition 1(a), there is a finite C such that

$$
\begin{equation*}
c_{N 2}(\eta) \leq \sum_{j<k} C \cdot\left[N^{-1} \sum_{n=1}^{N} 1\left(\left|\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}\right|<\eta\right)\right] . \tag{B8}
\end{equation*}
$$

Assumption 4 and the uniform SLLN (Theorem 7.2 of Rao, 1962) ; ply iat

$$
\begin{equation*}
P\left\{\lim _{N \rightarrow \infty} \sup _{\boldsymbol{b} \in \mathbb{B}}\left|C \cdot\left[N^{-1} \sum_{n=1}^{N} 1\left(\left|\boldsymbol{x}_{n j k}^{\prime} \boldsymbol{b}\right|<\eta\right)\right]-C \cdot P\left(\left|\boldsymbol{x}_{j k}^{\prime} \boldsymbol{\jmath}\right|<\boldsymbol{\prime} \mid\right)\right|=0\right\}=1 \tag{B9}
\end{equation*}
$$

for any pair of alternatives $j<k$. Next, we prove that $P\left(\left|\boldsymbol{x}_{j k}\right|<\eta\right) \rightarrow 0$ uniformly over $\boldsymbol{b} \in \mathbb{B}$ as $\eta \rightarrow 0$ by verifying the three conditions (i.e., continuity, monoto icity, and pointwise convergence) of Dini's theorem (Theorem 7.13 of Rudin, 1976). We cu vider $b_{1}=1$; case $b_{1}=-1$ is similar. By Assumption 3(a),

$$
\begin{equation*}
P\left(\left|\boldsymbol{x}_{j k}^{\prime} \boldsymbol{b}\right|<\eta\right)=\int_{-\eta-\tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{b}}}^{\eta-\tilde{\boldsymbol{x}}_{j k}^{\prime} \tilde{\boldsymbol{b}}} g_{j k}\left(x_{j k, 1} \mid \tilde{\boldsymbol{x}}_{j k}\right) d x_{j k}+\lambda F\left(\tilde{\boldsymbol{x}}_{j k}\right) \tag{B10}
\end{equation*}
$$

Define a sequence of functions $\left.\left\{f_{i}^{j k}(\boldsymbol{b}) \equiv-\boldsymbol{a}_{j k}^{\prime} \boldsymbol{h}<i^{-1}\right): i \in \mathbb{Z}_{+}\right\}$for each pair of alternatives $j<k$. By Assumption 3(a) and (B10), it is stra- orhtforward to verify that $f_{i}^{j k}(\boldsymbol{b})$ is continuous in \boldsymbol{b} and $f_{i}^{j k}(\boldsymbol{b})>f_{i+1}^{j k}(\boldsymbol{b})$ for any $i \in \mathbb{Z}$ _ aı $^{{ }^{1}} \boldsymbol{b} \in \mathbb{B}$. As $i \rightarrow \infty, f_{i}^{j k}(\boldsymbol{b})$ converges to zero at each $\boldsymbol{b} \in \mathbb{B}$ by Assumption 3(a). Since \mathbb{B} is , comf act space (Assumption 2), this pointwise convergence of $f_{i}^{j k}(\boldsymbol{b})$ to zero implies the unifc m ronve gence of $f_{i}^{j k}(\boldsymbol{b})$ to zero over $\boldsymbol{b} \in \mathbb{B}$ by Dini's theorem. By (B9), the RHS of (B8) also c nv arge almost surely to zero uniformly over $\boldsymbol{b} \in \mathbb{B}$ as $N \rightarrow \infty$ and $\eta \rightarrow 0$. The absolute differ nce $\left|Q_{N}\left(\boldsymbol{b}, h_{N}\right)-Q_{N}(\boldsymbol{b})\right|$ converges almost surely to zero uniformly over $\boldsymbol{b} \in \mathbb{B}$ as $N \rightarrow \infty$ because the RHS of (B7) is the sum of $c_{N 1}(\eta)$ and $c_{N 2}(\eta)$ for any $\eta>0$. Since

$$
\begin{equation*}
\sup _{\boldsymbol{b} \in \mathbb{B}}\left|Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right)-\quad Q^{*}(\boldsymbol{b})\right| \leq \sup _{\boldsymbol{b} \in \mathbb{B}}\left|Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right)-Q_{N}(\boldsymbol{b})\right|+\sup _{\boldsymbol{b} \in \mathbb{B}}\left|Q_{N}(\boldsymbol{b})-Q^{*}(\boldsymbol{b})\right| \tag{B11}
\end{equation*}
$$

and each term on + .e RHS of (B11) converges to zero almost surely, we have shown that $Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right)$ converges to its pı ${ }^{\text {babili}}{ }^{\boldsymbol{y}}$ limit $Q^{*}(\boldsymbol{b})$ almost surely uniformly over $\boldsymbol{b} \in \mathbb{B}$.

Proof. (Theo ? ${ }^{\text {m }} \mathbf{3}^{\text {' }}$ The proof of strong consistency of the SGMS estimator is similar to that
of the GMS estimator, which involves verifying the four conditions of Theort.n 2.1 in Newey and McFadden (1994). As shown in Theorem 2, the first three conditions are erı ed by Theorem 1, Assumption 2, and Lemma 1, respectively. The last condition is proved by ${ }^{\top}$ mma 3. Therefore, the SGMS estimator that maximizes its objective function $Q_{N}^{S}\left(\boldsymbol{b}, h_{N}\right)$ convt. res to $\boldsymbol{\beta}$ almost surely under Assumptions 1-4 and Condition 1.

ACCEPTED MANUSCRIPT

References

[1] Abrevaya J and Huang J. 2005. On the bootstrap of the maximum score stir ator. Econometrica 73: 1175-1204.
[2] Bajari P, Fox JT and Ryan SP. 2008. Evaluating wireless carrier ons n'ntion using semiparametric demand estimation. Quantitative Marketing and Economics u. 999-338.
[3] Barberá S and Pattanaik PK. 1986. Falmagne and the ration lizabilı y of stochastic choices in terms of random orderings. Econometrica 54: 707-715.
[4] Beggs S, Cardell S, and Hausman J. 1981. Assessing the poter ial demand for electric cars. Journal of Econometrics 16: 1-19.
[5] Ben-Akiva M, Morikawa T, and Shiroishi F. 1992. A. 1 lysic the reliability of preference ranking data. Journal of Business Research 24: 149-164.
[6] Beresteanu A, Zincenko F. 2018. Efficiency C : inc in hank-ordered Multinomial Logit Models. Oxford Bulletin of Economics and Statistics: 80. 1 $\angle 2-134$.
[7] Calfee J and Winston C. 1998. The value of a 'to nobile travel time: implications for congestion policy. Journal of Public Economics 69: ১¿ ${ }^{1} \mathrm{UL}$.
[8] Calfee J, Winston C, and Stempsk: - 2001. Econometric issues in estimating consumer preferences from stated preference $d+a$: A ase study of the value of automobile travel time. Review of Economics and Statis ${ }^{\prime}$ ics 83: ~ \quad 9-707.
[9] Cameron AC and Trivedi PY. ¿८.5. गicroeconometrics: Methods and Applications. Cambridge University Press.
[10] Cavanagh C. 1987 imiting behavior of estimators defined by optimization. Unpublished manuscripu, Γ epartment of Economics, Harvard University, Cambridge, MA.
[11] Cavanagh C. a d 'رher san, R. 1998. Rank estimators for monotonic index models. Journal of Economotrici ${ }^{\circ}$: 351-381.
[12] Chapman RG nd St elin R. 1982. Exploiting rank ordered choice set data within the stochastic utility modf .. sournal of Marketing Research 19: 288-301.
［13］Conte A，Hey JD，and Moffatt PG．2011．Mixture models of cholu under risk． Journal of Econometrics 162：79－88．
［14］Dagsvik JK and Liu G．2009．A framework for analyzing rank orde $\sim d$ da \cap with application to automobile demand．Transportation Research Part A 43：1－12．
［15］Delgado MA，Rodríguez－Poo JM，and Wolf M．2001．Subsampling $1^{{ }^{c}}$ rence in cube root asymp－ totics with an application to Manski＇s maximum score estimato ．Ecor गmics Letters 73：241－250．
［16］Falmagne JC．1978．A representation theorem for hı．$^{\circ}{ }^{-2}$ random scale systems． Journal of Mathematical Psychology 18：52－72．
［17］Fiebig DG，Keane MP，Louviere J，and Wasi N．2010．The＂eneralized multinomial logit model： Accounting for scale and coefficient heterogeneity．Maı॰っt Scir ace 29：393－421．
［18］Fok D，Paap R，Van Dijk B．2012．A Rank－Ordered • git Model With Unobserved Hetero－ geneity in Ranking Capabilities．Journal of Appliea＿－ onometrics 27：831－846．
［19］Fox JT．2007．Semiparametric estimation of $\mathrm{m}_{.} \mathrm{r}^{\top}$ nomial discrete－choice models using a subset of choices．RAND Journal of Economics 38：‘へへ－1 19 ．
［20］Goeree JK，Holt CA，and Palfrey＇ \boldsymbol{n} ．．005．Regular quantal response equilibrium． Experimental Economics 8：347－367．
［21］Greene WH，Hensher DA，and＇ose J．006．Accounting for heterogeneity in the variance of unobserved effects in mixed logit modt．Iransportation Research Part B 40：75－92．
［22］Han AK．1987．Non－parametrı nal sis of a generalized regression model：The maximum rank correlation estimator．Jourr ．${ }^{1}$ of Econometrics 35：303－316．
［23］Harrison GW and Ru^{+}， $\mathrm{H} \cdot \mathrm{m}$ EE．2009．Expected utility theory and prospect theory：one wed－ ding and a decent fune ${ }^{1}{ }^{1}$ Jxperimental Economics 12：133－158．
［24］Hausman JA and Ru d P 1．1987．Specifying and testing econometric models for rank－ordered data．Journal of Frono ot ics 34：83－104．
［25］Hensher D，Touvie e J，and Swait J．1999．Combining sources of preference data． Journal of F unometrics 89：197－221．

ACCEPTED MANUSCRIPT

[26] Horowitz JL. 1992. A smoothed maximum score estimator for the bin rry iv nonse model. Econometrica 60: 505-531.
[27] Horowitz JL. 2002. Bootstrap critical values for tests based on the noolıd maximum score estimator. Journal of Econometrics 111: 141-167.
[28] Kim J and Pollard D. 1990. Cube root asymptotics. Annals of Sta'itics 18: 191-219.
[29] Klein RW and Spady RH. 1993. An efficient semiparamet ic estir ator for binary response models. Econometrica 61: 387-421.
[30] Layton DF. 2000. Random coefficient models .or stated preference surveys. Journal of Environmental Economics and Management 40: 21-36.
[31] Layton DF and Levine RA. 2003. How much d as L_{-}- ar future matter? A hierarchical Bayesian analysis of the public's willingness to mitioats cological impacts of climate change. Journal of the American Statistical Association 98: :23-544.
[32] Lee L. 1995. Semiparametric maximum likelih. ?. estimation of polychotomous and sequential choice models. Journal of Econometrics 65: \therefore 42c
[33] Lewbel A. 2000. Semiparametric quaı १ure esponse model estimation with unknown heteroscedasticity or instrumental variables. Jourıal of Econometrics 97: 145-177.
[34] Manski CF. 1975. Maximum sore es imation of the stochastic utility model of choice. Journal of Econometrics 3: 205-^28.
[35] Manski CF. 1985. Semipar»mu ic a ıalysis of discrete response: Asymptotic properties of the maximum score estimator. .rnal ot Econometrics 27: 313-333.
[36] McCabe C, Brazier J u. ${ }^{\prime} k s$ P, Tsuchiya A, Roberts J, O’Hagan A, Stevens K. 2006. Using rank data to estimate is \wedge^{1+}. state utility models. Journal of Health Economics 25: 418-431.
[37] McFadden D. 19-4. C ond tional logit analysis of qualitative choice behavior. In: Zarembka P. (Ed.), Frontiers in Ecoı \imath^{\wedge} etrics. Academic Press: New York, pp.105-142.
[38] McFadden D. 1986. 7 he choice theory approach to market research. Marketing Science 5: 275297.

ACCEPTED MANUSCRIPT

[39] Newey WK. 1986. Linear instrumental variable estimation of limited deper.dent , riable models with endogenous explanatory variables. Journal of Econometrics 32: 127- 41.
[40] Newey WK and McFadden D. 1994. Large sample estimation and : vpothesis testing. Handbook of Econometrics Vol 4: 2111-2245.
[41] Oviedo JL and Yoo H. 2017. A latent class nested logit modeı ~ ${ }^{\circ}$ r rank-ordered data with application to cork oak reforestation. Environmental and Resor rce Er nomics 68: 1021-1051.
[42] Rao R.R. 1962. Relations between weak and uniform convermonce \sim neasures with applications. The Annals of Mathematical Statistics 33: 659-680.
[43] Rudin WR. 1976. Principles of Mathematical Analysis. 1: ird Edition. McGraw-Hill.
[44] Ruud PA. 1983. Sufficient conditions for the cor isten of maximum likelihood estimation despite misspecification of distribution in multinomial dr rete choice models. Econometrica 51: 225-228.
[45] Ruud PA. 1986. Consistent estimation of limı, ${ }^{\circ}$ dependent variable models despite misspecification of distribution. Journal of Econome」"-3ヶ. 157-187.
 rank ordered choice data to estimate benefits of tourism in alpine grazing commons. American Journal of Agricultural F onoı : cs 93: 813-828.
[47] Sherman RP. 1993. The limi ing an ${ }^{+}$. bution of the maximum rank correlation estimator. Econometrica 61: 123-137.
[48] Siikamaki J, Layton DF. $\int^{\wedge n 7}$. Discrete choice survey experiments: A comparison using flexible methods. Journal of Environmenta. Economics and Management 53: 122-139.
[49] Small KA, Winston L a a d Yan J. 2005. Uncovering the distribution of motorists' preferences $^{\text {a }}$ for travel time and r liarility. Econometrica 73: 1367-1382.
[50] Storn R and Price n $1^{\prime}, 97$. Differential evolution-A simple and efficient heuristic for global optimization ov ir cont, uous spaces. Journal of Global Optimization 11: 341-359.
[51] Train KE and Winston C. 2007. Vehicle choice behavior and the declining market share of U.S. automakers Intern tional Economic Review 48: 1469-1496.
[52] Yan J. 2013. A smoothed maximum score estimator for multinomial discrete hoice models. Working Paper.
[53] Yan J and Yoo H. 2014. The seeming unreliability of rank-ordered Jata a consequence of model misspecification. MPRA Paper No. 56285. http://mpra.ub.ur`...uenc. en.de/56285/
[54] Yoo H and Doiron D. 2013. The use of alternative preference ellu: 'tion methods in complex discrete choice experiments. Journal of Health Economics 32: 1 1.66-1179.

Table 1: Consistency of estimators by Monte Carlo _ GPs

DGP	Distribution of $\varepsilon_{n j}$	ROL	ROP	MRC	GM, 3 \& SGMS
	(a) True parameters: $\gamma_{1}=1, \gamma_{n 2}=1$ for ${ }^{\circ} \stackrel{n}{ }$, a n d $\alpha_{j}=(j-1) / 4$				
1	$\varepsilon_{n j}$ is i.i.d. $E V(0,1,0)$	Yes	No		Yes
2	$\varepsilon_{n j}$ is i.i.d. $N\left(0, \pi^{2} / 6\right)$	No	Yes	No	Yes
3	$\varepsilon_{n j}=0.82 \bar{z}_{n, 2} \epsilon_{n j}$ where $\epsilon_{n j}$ is i.i.d. $N(0,1)$	No			Yes
4	$\varepsilon_{n j}=0.75 z_{n j, 2} \epsilon_{n j}$ where $\epsilon_{n j}$ is i.i.d. $N(0,1)$ (b) True parameters:	No 1,	$\stackrel{\text { + }}{ }$	No $N(1,$	No when $M<3$; Yes when $M=3$ $\alpha_{j}=(j-1) / 4$
5	$\varepsilon_{n j}$ is i.i.d. $E V(0,1,0)$		No	Yes	No when $M<3$; Yes when $M=3$
6	$\varepsilon_{n j}=0.75 z_{n j, 2} \epsilon_{n}$ where $\epsilon_{n j}$ is i.i.u. $N^{\top}(0,1$,		No	No	No when $M<3$; Yes when $M=3$

Note: $E V(0,1,0)$ stands for the ${ }^{\text {treme value type } 1} 1$ distribution, assumed by the ROL model, with a mean of 0.577 and ariance of $\pi^{2} / 6$. Where relevant, the error component is i.i.d. for $n=1, \ldots, N$ and $j=1 \ldots J . M=3(M<3)$ refers to an estimator that incorporates the complete (partial) rank ngs. Ves (No) means the estimator of $\tilde{\boldsymbol{\beta}} / \beta_{1}$ is (not) consistent given the DGP. $\bar{z}_{n, 2}$ is the withi ${ }_{1}$ in' ividual average of the second covariate, i.e., $\bar{z}_{n, 2}=J^{-1} \sum_{j=1}^{J} z_{n j, 2}$.
Table 2: Monte Carlo results of DGP 1 (extreme value type 1 errors)

			ROL		ROP		MROL		GMS		SGMS		
${ }^{*}$	N		Bias	RMSE	CP								
1	00	γ_{2}	- ${ }^{0} 92$	0.1200	0.0110	0.1249	0.0215	0.1271	0.0490	0.2650	0.0925	0.2067	0.920
			0.00 !2	0.1709	0.0162	0.2415	-0.0005	0.1683	0.0213	0.3362	0.0235	0.2325	0.944
		α	-0.002r	(.. 376	0.0210	0.2259	-0.0124	0.1647	0.0215	0.3291	0.0366	0.2328	0.947
		α_{4}	u.00	?.16.	0.0386	0.2221	-0.0154	0.1619	0.0057	0.3280	0.0565	0.2259	0.940
	1000	γ_{2}	0.0001	C.J854	$0 \mathrm{JOO}_{4}$	0.0881	0.0103	0.0915	0.0248	0.2075	0.0690	0.1555	0.901
		α_{2}	0.0053	0.1174	J. 0266	U.. 753	0.0016	0.1159	0.0064	0.2666	0.0166	0.1605	0.947
		α_{3}	0.0041	0.1142	$0.03^{\text {J J }}$	$\bigcirc 172$	-0.0039	0.1131	0.0150	0.2491	0.0401	0.1597	0.951
		α_{4}	0.0008	0.1150	0.04 .	$0.1 \quad 59$	-0.0120	0.1151	0.0045	0.2534	0.0519	0.1685	0.940
2	500	γ_{2}	0.0042	0.0869	0.0034	0.0898	0,1,6	. 0905	0.0365	0.2097	0.0744	0.1572	0.905
		α_{2}	0.0020	0.1215	0.0096	0.1280	J. 0^{1+}	0.12 r	0.0170	0.2627	0.0173	0.1669	0.937
		α_{3}	-0.0032	0.1174	0.0074	0.1226	-0.0095	r 166	0.0070	0.2587	0.0296	0.1669	0.949
		α_{4}	-0.0014	0.1169	0.0136	0.1234	-0.0109	0.116	0.01 . 3	0.2620	0.0491	0.1751	0.937
	1000	γ_{2}	0.0004	0.0597	-0.0043	0.0611	0.0073	0.0623	. 027	$0.59{ }^{-}$	0.0558	0.1125	0.910
		α_{2}	0.0004	0.0816	0.0064	0.0856	-0.0018	0.0810	-0.00 ${ }^{\text {a }}$	J.21\%	0.0099	0.1136	0.950
		α_{3}	0.0016	0.0832	0.0118	0.0878	-0.0031	0.0828	0.0034	0. 059	J.02\%	0.1194	0.943
		α_{4}	-0.0009	0.0838	0.0114	0.0869	-0.0080	0.0842	0.0038	$0.20 y \mathrm{v}$	0.0397	J. 9.58	0.927
3	500	γ_{2}	0.0021	0.0730	-0.0041	0.0759	0.0099	0.0751	0.0184	0.1864	0.067	0.5375	$00^{\prime}{ }^{\prime}$
		α_{2}	-0.0027	0.0998	-0.0008	0.1032	-0.0055	0.0987	0.0073	0.2387	0.0134	0. 40^{-}	942
		α_{3}	-0.0059	0.0997	-0.0046	0.1037	-0.0114	0.0992	0.0043	0.2353	0.0271	0.1417	0.952
		α_{4}	-0.0056	0.1010	-0.0044	0.1054	-0.0136	0.1015	0.0091	0.2431	0.0453	0.1509	0.935
	1000	γ_{2}	0.0013	0.0519	-0.0062	0.0533	0.0073	0.0542	0.0135	0.1442	0.0498	0.0976	0.905
		α_{2}	-0.0004	0.0670	0.0026	0.0699	-0.0024	0.0665	-0.0014	0.1838	0.0071	0.0954	0.945
		α_{3}	0.0029	0.0680	0.0042	0.0708	-0.0012	0.0677	0.0053	0.1848	0.0271	0.1023	0.953
		α_{4}	-0.0005	0.0714	-0.0008	0.0741	-0.0065	0.0717	0.0080	0.1862	0.0357	0.1080	0.927

Table 3: Monte Carlo results of DGP 2 (normal errors)

			ROL		ROP		MROL		GMS		SGMS		
N	N		Bias	RMSE	CP								
1	00		$\bigcirc{ }^{2} 044$	0.1140	0.0074	0.1157	0.0192	0.1220	0.0367	0.2559	0.0928	0.2070	0.912
			0.0124	0.1611	-0.0033	0.2276	0.0011	0.1604	0.0020	0.3316	0.0105	0.2203	0.953
		c	-0.002	U. 554	-0.0053	0.2102	-0.0052	0.1549	-0.0098	0.3265	0.0280	0.2211	0.945
		α_{4}	-0.0r 15	?. 15	0.0003	0.2085	-0.0064	0.1544	0.0017	0.3140	0.0538	0.2208	0.945
	1000	γ_{2}	0.0051	6.0828	¢ J0bu	0.0826	0.0170	0.0893	0.0329	0.2009	0.0726	0.1532	0.904
		α_{2}	0.0015	0.1131	0.001 ${ }^{4}$	บ. 584	0.0010	0.1130	-0.0050	0.2659	0.0140	0.1536	0.952
		α_{3}	0.0069	0.1123	0.004	ๆ. 15	0.0056	0.1120	0.0079	0.2571	0.0378	0.1619	0.944
		α_{4}	0.0012	0.1097	0.00 \sim	0.1 19	-0.0009	0.1096	0.0077	0.2517	0.0546	0.1680	0.933
2	500	γ_{2}	0.0077	0.0874	0.0048	0.0855	$0,1,2$	J920	0.0371	0.2140	0.0761	0.1610	0.911
		α_{2}	0.0000	0.1203	-0.0022	0.1252	J. 02^{-}	J. $11{ }^{\circ}$	0.0081	0.2808	0.0143	0.1640	0.958
		α_{3}	-0.0032	0.1156	-0.0042	0.1169	-0.0084	- 140	0.0021	0.2771	0.0281	0.1670	0.948
		α_{4}	-0.0053	0.1215	-0.0048	0.1243	-0.0133	0.121	0.00 .1	0.2724	0.0463	0.1755	0.946
	1000	γ_{2}	0.0063	0.0616	0.0022	0.0595	0.0130	0.0671	. $02 \cdot$	0 62 ${ }^{\text {r }}$	0.0600	0.1201	0.892
		α_{2}	0.0025	0.0853	0.0028	0.0870	0.0006	0.0847	0.00:	, 225	0.0109	0.1196	0.957
		α_{3}	0.0017	0.0882	0.0015	0.0899	-0.0021	0.0875	0.0027	0.: 207	J.025	0.1288	0.946
		α_{4}	0.0012	0.0859	0.0016	0.0878	-0.0048	0.0858	0.0010	0.2200	0.0418	..9?2	0.934
3	500	γ_{2}	0.0115	0.0803	0.0039	0.0767	0.0184	0.0842	0.0230	0.1991	0.072¢	0.121	0. 5 ,
		α_{2}	0.0002	0.1087	0.0009	0.1044	-0.0036	0.1072	0.0010	0.2560	0.0139	0. 54 f	r 946
		α_{3}	-0.0037	0.1067	-0.0015	0.1048	-0.0114	0.1062	-0.0051	0.2620	0.0239	0.1582	0.943
		α_{4}	-0.0034	0.1121	-0.0022	0.1093	-0.0145	0.1121	-0.0035	0.2648	0.0434	0.1668	0.937
	1000	γ_{2}	0.0107	0.0586	0.0029	0.0546	0.0141	0.0619	0.0226	0.1550	0.0574	0.1133	0.895
		α_{2}	-0.0018	0.0747	-0.0009	0.0732	-0.0051	0.0740	0.0024	0.2017	0.0092	0.1084	0.956
		α_{3}	-0.0015	0.0789	0.0000	0.0775	-0.0080	0.0784	0.0095	0.2113	0.0241	0.1170	0.937
		α_{4}	0.0021	0.0775	0.0021	0.0750	-0.0077	0.0771	0.0057	0.2135	0.0416	0.1220	0.931

Table 4: Monte Carlo results of DGP 3 (heteroskedastic errors across individuals)

			ROL		ROP		MROL		GMS		SGMS		
	N		Bias	RMSE	CP								
1	00		- 2192	0.3378	-0.3686	0.3873	-0.0902	0.1515	0.0054	0.2117	0.0576	0.1669	0.892
			-0.0141	0.1102	0.0193	0.1841	-0.0244	0.0993	-0.0043	0.1822	0.0112	0.1188	0.962
		a	-0.006r	(.1. 32	0.0264	0.1741	-0.0527	0.1122	-0.0102	0.1807	0.0258	0.1232	0.950
		α	-u.0¢ 6	?.111	0.0349	0.1714	-0.0844	0.1319	-0.0075	0.1776	0.0437	0.1269	0.938
	1000	γ_{2}	${ }^{-0.3221}$	6. 3320	-r.385	0.3988	-0.0870	0.1224	0.0022	0.1601	0.0450	0.1156	0.903
		α_{2}	-0.0030	0.0770	0.020:	v. 229	-0.0249	0.0700	0.0031	0.1367	0.0066	0.0812	0.967
		α_{3}	-0.0014	0.0776	$0.0{ }^{\text {a }}$ o	0.12 <	-0.0504	0.0824	0.0014	0.1356	0.0236	0.0838	0.956
		α_{4}	0.0002	0.0732	$0.030{ }^{\circ}$	0.7 65	-0.0823	0.1042	0.0020	0.1306	0.0384	0.0878	0.941
2	500	γ_{2}	-0.3432	0.3546	-0.4182	0.4284	-r $1: 27$	1590	0.0092	0.1663	0.0490	0.1263	0.903
		α_{2}	0.0018	0.0773	0.0067	0.0910	O.C 8	$0.06{ }^{\circ}$	0.0006	0.1358	0.0167	0.0778	0.972
		α_{3}	-0.0020	0.0795	0.0019	0.0918	-0.0526	¢ 84 :	${ }^{0} 0.0034$	0.1362	0.0265	0.0849	0.947
		α_{4}	${ }_{-0.0036}$	0.0783	0.0020	0.0865	-0.0833	0.106	$0.0 r{ }^{5} 7$	0.1366	0.0402	0.0917	0.921
	1000	γ_{2}	-0.3439	0.3495	-0.4267	0.4316	-0.1332	0.1474	. 007	0.30^{+}	0.0364	0.0891	0.900
		α_{2}	-0.0001	0.0562	0.0035	0.0653	-0.0243	0.0535	$0.00-$	J.10'	0.0084	0.0585	0.957
		α_{3}	0.0014	0.0554	0.0063	0.0634	-0.0516	0.0692	0.0009	0. 074	J.02U.	0.0599	0.937
		α_{4}	0.0009	0.0553	0.0066	0.0625	-0.0815	0.0938	0.0013	0.1041	0.0313	, $\bigcirc^{\text {® } 46}$	0.912
3	500	γ_{2}	-0.3546	0.3644	-0.4372	0.4449	-0.1378	0.1589	0.0054	0.1554	0.045	0.) 47	$0 \sim$
		α_{2}	0.0008	0.0661	0.0013	0.0731	-0.0254	0.0601	-0.0003	0.1191	0.0136	0. 168°	958
		α_{3}	-0.0034	0.0690	-0.0025	0.0770	-0.0557	0.0792	-0.0014	0.1196	0.0235	0.0736	0.942
		α_{4}	-0.0040	0.0691	-0.0022	0.0760	-0.0833	0.1015	-0.0026	0.1194	0.0368	0.0811	0.921
	1000	γ_{2}	-0.3563	0.3609	-0.4455	0.4492	-0.1396	0.1506	0.0002	0.1247	0.0342	0.0837	0.897
		α_{2}	0.0008	0.0466	-0.0005	0.0505	-0.0256	0.0462	0.0050	0.0954	0.0094	0.0502	0.947
		α_{3}	0.0017	0.0471	0.0010	0.0515	-0.0515	0.0643	0.0051	0.0928	0.0206	0.0506	0.946
		α_{4}	0.0021	0.0485	0.0026	0.0526	-0.0782	0.0878	0.0045	0.0983	0.0312	0.0580	0.911

Table 5: Monte Carlo results of DGP 4 (heteroskedastic errors across alternatives)

			ROL		ROP		MROL		GMS		SGMS		
	N		Bias	RMSE	CP								
1	00	γ_{2}	- 1981	0.2324	-0.2150	0.2503	-0.0137	0.1284	0.2192	0.3093	0.2844	0.3266	0.540
			-0.0 90	0.1204	0.0208	0.1995	-0.0302	0.1067	-0.0065	0.1830	0.0093	0.1242	0.957
		c	-0.009'	บ. 195	0.0352	0.1995	-0.0597	0.1183	-0.0081	0.1795	0.0247	0.1241	0.953
		α_{4}	-0.0r 55	?.11	0.0486	0.1901	-0.0888	0.1366	-0.0018	0.1703	0.0459	0.1288	0.939
	1000	γ_{2}	-0.2017	C. 2199	-r 2442	0.2620	-0.0153	0.0921	0.2201	0.2786	0.2645	0.2881	0.359
		α_{2}	0.0003	0.0821	0.024 ¢	U. 126	-0.0251	0.0736	-0.0002	0.1332	0.0095	0.0843	0.954
		α_{3}	-0.0006	0.0825	$0.0{ }^{2} 1$?.13	-0.0563	0.0889	0.0011	0.1334	0.0241	0.0881	0.948
		α_{4}	0.0016	0.0776	0.044	0.1 , 35	-0.0902	0.1123	0.0016	0.1312	0.0378	0.0901	0.938
2	500	γ_{2}	-0.3540	0.3651	-0.3691	0.3802	-0.195	1414	0.0794	0.1890	0.1246	0.1735	0.772
		α_{2}	-0.0021	0.0769	0.0024	0.0908	J. $04^{\text {- }}$	J.068	0.0050	0.1292	0.0134	0.0777	0.960
		α_{3}	-0.0049	0.0791	-0.0002	0.0928	-0.0542	- 240	ग. 0016	0.1304	0.0237	0.0843	0.945
		α_{4}	-0.0038	0.0796	0.0032	0.0903	-0.0820	0.106	J. $00^{\prime} 1$	0.1290	0.0396	0.0902	0.922
	1000	γ_{2}	-0.3560	0.3619	-0.3811	0.3869	-0.1132	0.1290	. $07 / 2$	052 r	0.1143	0.1423	0.710
		α_{2}	0.0003	0.0593	0.0047	0.0709	-0.0236	0.0549	$0.00{ }^{\text {- }}$. 106	0.0091	0.0596	0.941
		α_{3}	-0.0010	0.0569	0.0058	0.0670	-0.0533	0.0711	0.0000	0.2 706	J.019e	0.0595	0.942
		α_{4}	-0.0002	0.0567	0.0075	0.0664	-0.0817	0.0946	-0.0019	0.098	0.0308	. ${ }^{-72}$	0.906
3	500	γ_{2}	-0.4579	0.4654	-0.4568	0.4641	-0.1588	0.1771	-0.0040	0.1600	$0.042{ }^{\text {2 }}$	0.145	0.5
		α_{2}	-0.0017	0.0645	-0.0010	0.0709	-0.0254	0.0585	-0.0009	0.1083	0.0122	0. 66 f) 949
		α_{3}	-0.0038	0.0663	-0.0033	0.0747	-0.0527	0.0760	-0.0001	0.1063	0.0231	0.0725	0.942
		α_{4}	-0.0039	0.0688	-0.0023	0.0754	-0.0776	0.0970	-0.0024	0.1047	0.0381	0.0797	0.924
	1000	γ_{2}	-0.4598	0.4638	-0.4656	0.4693	-0.1591	0.1688	-0.0007	0.1274	0.0328	0.0847	0.901
		α_{2}	0.0016	0.0469	0.0016	0.0516	-0.0235	0.0448	0.0035	0.0854	0.0103	0.0500	0.936
		α_{3}	0.0002	0.0461	0.0012	0.0511	-0.0503	0.0626	0.0052	0.0863	0.0201	0.0508	0.931
		α_{4}	0.0002	0.0477	0.0020	0.0526	-0.0759	0.0854	0.0021	0.0855	0.0308	0.0575	0.906

Table 6: Monte Carlo results of DGP 5 (random coefficient with extreme value errors)

			ROL		ROP		MROL		GMS		SGMS		
	N		Bias	RMSE	CP								
1	00	γ_{2}	- 9998	0.3328	-0.3508	0.3808	-0.0116	0.1741	-0.0346	0.2975	0.0304	0.2326	0.904
			0.0126	0.1781	0.0147	0.2795	-0.0029	0.1725	0.0205	0.3495	0.0265	0.2372	0.950
			0.011	บ. 911	0.0358	0.2771	-0.0000	0.1744	0.0250	0.3331	0.0572	0.2428	0.932
		α_{4}	U.01. 4	ๆ. 17	0.0520	0.2653	-0.0060	0.1661	0.0244	0.3457	0.0852	0.2476	0.936
	1000	γ_{2}	-0.2920	C. 3099	-r 3503	0.3715	-0.0011	0.1230	-0.0391	0.2358	0.0182	0.1737	0.914
		α_{2}	-0.0006	0.1264	0.017?	U. ${ }^{\text {2 }}$ 51	-0.0041	0.1217	-0.0036	0.2653	0.0111	0.1690	0.951
		α_{3}	0.0014	0.1208	$0.0{ }^{2} 3$	9.19 ,	-0.0068	0.1179	0.0006	0.2642	0.0360	0.1715	0.945
		α_{4}	0.0003	0.1193	0.04 -	0.1,85	-0.0116	0.1181	0.0065	0.2633	0.0543	0.1768	0.932
2	500	γ_{2}	-0.2848	0.3116	-0.3407	0.3630	-0 J1 2	1268	-0.0226	0.2447	0.0432	0.1880	0.910
		α_{2}	0.0030	0.1242	0.0091	0.1348	J.Or Jor	J.119 ${ }^{-1}$	0.0076	0.2707	0.0208	0.1681	0.958
		α_{3}	0.0042	0.1315	0.0144	0.1402	-0.0003	- 167	J. 0112	0.2741	0.0421	0.1819	0.935
		α_{4}	0.0037	0.1234	0.0179	0.1308	-0.0040	0.120).00' \%	0.2740	0.0620	0.1840	0.924
	1000	γ_{2}	-0.2766	0.2898	-0.3401	0.3515	-0.0008	0.0866	. 015	0 34	0.0408	0.1392	0.921
		α_{2}	-0.0025	0.0897	0.0034	0.0952	-0.0037	0.0874	-0.00. $=$. 216	0.0073	0.1269	0.936
		α_{3}	-0.0017	0.0877	0.0088	0.0917	-0.0049	0.0858	-0.0006	0. 160	J.02\%	0.1291	0.934
		α_{4}	-0.0014	0.0862	0.0120	0.0916	-0.0070	0.0853	-0.0107	0.2184	0.0433	. ${ }^{6} 6$	0.923
3	500	γ_{2}	-0.2817	0.3060	-0.3368	0.3567	-0.0079	0.1143	0.0024	0.2357	0.0581	0.116	0.8
		α_{2}	0.0007	0.1064	0.0035	0.1105	-0.0008	0.1022	0.0088	0.2484	0.0178	0. $46{ }^{\text {c }}$	- 964
		α_{3}	0.0016	0.1126	0.0059	0.1178	-0.0017	0.1085	0.0111	0.2503	0.0390	0.1615	0.927
		α_{4}	0.0022	0.1099	0.0035	0.1145	-0.0039	0.1065	0.0188	0.2575	0.0609	0.1662	0.925
	1000	γ_{2}	-0.2721	0.2839	-0.3332	0.3434	0.0016	0.0786	-0.0015	0.1867	0.0510	0.1339	0.907
		α_{2}	-0.0043	0.0756	-0.0019	0.0781	-0.0046	0.0732	-0.0104	0.1972	0.0074	0.1073	0.949
		α_{3}	-0.0014	0.0742	0.0021	0.0773	-0.0034	0.0728	-0.0058	0.1982	0.0263	0.1104	0.945
		α_{4}	-0.0011	0.0750	-0.0003	0.0776	-0.0045	0.0736	-0.0069	0.2049	0.0410	0.1192	0.921

Table 7: Monte Carlo results of DGP 6 (random coefficients with heteroskedastic errors)

			ROL		ROP		MROL		GMS		SGMS		
	N		Bias	RMSE	CP								
1	00	γ_{2}	- 3556	0.3781	-0.4000	0.4216	-0.0435	0.1601	0.1450	0.3046	0.2061	0.2931	0.761
			-0.0 28	0.1265	0.0252	0.2047	-0.0191	0.1094	0.0085	0.2018	0.0183	0.1338	0.942
			-0.000	บ. 272	0.0388	0.1977	-0.0376	0.1143	0.0043	0.1933	0.0379	0.1389	0.936
		α_{4}	U.0\%,9	$\bigcirc .12$	0.0498	0.1937	-0.0626	0.1251	0.0101	0.1939	0.0539	0.1398	0.938
	1000	γ_{2}	-0.3532	C. 3650	-r 4109	0.4243	-0.0448	0.1186	0.1399	0.2483	0.1984	0.2430	0.684
		α_{2}	-0.0048	0.0914	J.019\%	ט. 193	-0.0225	0.0787	-0.0001	0.1482	0.0072	0.0934	0.955
		α_{3}	-0.0007	0.0849	$0.0{ }^{3} 5$. 13	-0.0435	0.0840	-0.0025	0.1468	0.0263	0.0921	0.948
		α_{4}	-0.0006	0.0827	0.04 u :	0.157	-0.0703	0.1023	0.0009	0.1454	0.0410	0.0983	0.942
2	500	γ_{2}	-0.4686	0.4800	-0.4957	0.5056	-0.4 55	1564	0.0597	0.2352	0.1041	0.1913	0.847
		α_{2}	-0.0003	0.0903	0.0047	0.1050	J. 0 8r	0.074	0.0034	0.1456	0.0150	0.0913	0.956
		α_{3}	-0.0017	0.0901	0.0048	0.1022	-0.0418	- 246	ग. 0029	0.1451	0.0311	0.0958	0.937
		α_{4}	0.0006	0.0893	0.0084	0.1021	-0.0636	0.099). 00 '3	0.1414	0.0486	0.1035	0.926
	1000	γ_{2}	-0.4687	0.4746	-0.5035	0.5084	-0.1129	0.1383	. $04{ }^{\prime} 4$	077°	0.0905	0.1469	0.825
		α_{2}	-0.0019	0.0641	0.0030	0.0733	-0.0221	0.0554	-0.00.	. 111	0.0075	0.0649	0.948
		α_{3}	0.0028	0.0603	0.0107	0.0696	-0.0434	0.0647	0.0007	0.2 768	J.024.	0.0641	0.954
		α_{4}	-0.0014	0.0616	0.0070	0.0706	-0.0712	0.0881	-0.0025	0.11uv	0.0336	. ${ }^{710}$	0.921
3	500	γ_{2}	-0.5453	0.5536	-0.5522	0.5596	-0.1334	0.1688	0.0050	0.2087	0.0471	0.175	0.5
		α_{2}	-0.0002	0.0763	-0.0007	0.0825	-0.0203	0.0617	-0.0009	0.1223	0.0143	0. $76{ }^{\text {r }}$	r 948
		α_{3}	-0.0020	0.0752	-0.0016	0.0822	-0.0429	0.0734	0.0032	0.1278	0.0315	0.0834	0.929
		α_{4}	-0.0012	0.0782	0.0005	0.0833	-0.0648	0.0904	0.0001	0.1249	0.0465	0.0911	0.917
	1000	γ_{2}	-0.5431	0.5474	-0.5563	0.5599	-0.1379	0.1551	-0.0115	0.1579	0.0331	0.1111	0.887
		α_{2}	-0.0021	0.0541	-0.0024	0.0585	-0.0229	0.0477	-0.0019	0.0948	0.0082	0.0544	0.950
		α_{3}	0.0033	0.0534	0.0025	0.0566	-0.0426	0.0594	-0.0025	0.0949	0.0240	0.0565	0.940
		α_{4}	-0.0015	0.0554	-0.0010	0.0593	-0.0684	0.0813	-0.0013	0.0969	0.0331	0.0635	0.914

[^0]: ${ }^{*}$ Corresponding aul ${ }^{\circ} \mathrm{r}$. Γ partment of Economics, The Chinese University of Hong Kong, Esther Lee Building, Chung Chi Road ma Liı Shui, New Territories, Hong Kong. Email: jyan@cuhk.edu.hk.
 ${ }^{\dagger}$ Durham Un versity 1 usiness School, Durham University, Mill Hill Lane, Durham DH1 3LB, United Kingdom. Email: h.i.yoo@a nham c.uk.

[^1]: ${ }^{1}$ Bajari, Fox and R 1 ($20 \cup^{-}$stands out from other studies in this list, since their objective is to estimate a multinomial choice n sdel in η environment where the econometrician does not observe multinomial choices made by individuals; instea the ec' nometrician observes aggregated data on sales rankings of alternative products across different markets. This . . .e poses some challenges for taxonomy. We agree with Fox (2007, p.1004) on classifying their estimator s a m: 'tinomial choice method, considering that the behavioral model used in their proofs is a multinomial cho e mode

[^2]: ${ }^{2}$ This property explains : major : fference between the GMS estimator and the maximum rank correlation (MRC) estimator of Han (1987) a d Sł srman (1993). The GMS method utilizes the observed ranking information and does pairwise comparisons of a. \quad r ativ's within each individual, allowing the conditional joint distribution of the error terms to vary across in ${ }^{\text {riwidua. }} \mathrm{n}$ comparison, the MRC estimator does pairwise comparisons between individuals and requires the error cerms t be independent of the explanatory variables, ruling out the possibility of interpersonal heteroskedasticity.
 ${ }^{3}$ The difference aris hor use the complete ranking information allows us to replace the assumption of equicorrelated errors or " f chang' ability" (Goeree et al., 2005; Fox, 2007) with a much weaker assumption of zero conditional median.
 ${ }^{4}$ When it com to = sumptions on explanatory variables that are needed for the point identification of utility

[^3]: ${ }^{5}$ We ignore utility ties ht. bec use they happen with probability zero under the assumptions we impose later for point identification.
 ${ }^{6}$ Like the popular saramet, c methods that we will review in Section 2.3, our semiparametric method allows both the choice set $\mathbb{J}=\{1, \ldots \ldots, J\}$ nd the dimension of the subset $\mathbb{M} \subset \mathbb{J}$, and hence J and M, to vary across individuals. For example, per a nıay face choice set $\mathbb{J}=\{1,2,3,4,5\}$, and report his first and second-best alternatives as alternatives 2 a d $3(\mathbb{M}=\{2,3\})$, respectively: in his case, $J=5$ and $M=2$. Person b, on the other hand, may face $\mathbb{J}=\left\{1,2,3,{ }^{1}\right\}$ and \boldsymbol{j} port a complete ranking on it, e.g., her first, second-best, and third-best alternatives are

[^4]: ${ }^{8}$ See Fox $(20,7)$ for a,$\overline{\text { etailed discussion of }}$ sufficient conditions for the monotonicity property of choice probabilities.

[^5]: ${ }^{9}$ This proof does not $\mathrm{a}_{\mathrm{L}}{ }^{\prime}$ to artially rank-ordered choice data, of which multinomial choice data is a special case, because the first r sality - (7) does not hold. Goeree et al. (2005) give an example showing that the ZCM assumption is not suf icient fu the monotonicity property of the choice probabilities.
 ${ }^{10}$ Multiplying both he pref rence parameter vector $\boldsymbol{\beta}$ and the error term $\boldsymbol{\varepsilon}$ by any positive constant leads to the same rank-ordered -hoicu ' .a.
 ${ }^{11}$ For instance in the inomial probit model, the variance of the conditional distribution is assumed to be one.
 ${ }^{12}$ For example econom its may agree that the coefficient on the own price variable is negative.

[^6]: ${ }^{13}$ Let $m_{n}(\boldsymbol{b})$ denote inner suı. \quad side the curly brackets in (12) for individual n, then Kendall's rank correlation between observed rankings $n j$ and u 'lity indexes $\boldsymbol{x}_{n j}^{\prime} \boldsymbol{b}$, where $j=1, \ldots, J$, equals $\left[2 m_{n}(\boldsymbol{b})-1\right] \times[J(J-1) / 2]^{-1}$ for this individual. Clearly, $C_{\mathrm{N}}\left(\boldsymbol{b}^{\prime} \mathrm{s}\right.$ th sample mean of $m_{n}(\boldsymbol{b})$, where $n=1, \ldots, N$, and hence is an increasing function of the sample mean of witı. ndiv dual Kendall's rank correlation.
 ${ }^{14}$ Single-equation in ${ }^{{ }^{1}}$... modt. include, inter alia, Tobit, binary probit, ordered probit, and univariate duration models; the assumed lata get rating process involves a single latent dependent variable. In comparison, the random utility model for mui :nomial and rank-ordered choice data can be viewed as a system of $J-1$ latent dependent variables where e^{-1} var.... is the utility difference between alternative j and alternative J for $j=1,2, \ldots, J-1$.
 ${ }^{15}$ More precis y , the i nk estimator of Cavanagh and Sherman (1998) is a class of related estimators, of which one that maximizes , vearma's rank correlation is a special case.

[^7]: ${ }^{16}$ See for example, F-ygs e_{ι} i. (1981), Hausman and Ruud (1987), Calfee and Winston (1998), Calfee et al. (2001), McCabe et c . (200c Siikamaki and Layton (2007), Scarpa et al. (2011), Yoo and Doiron (2013), and Oviedo and Yoo (201).
 ${ }^{17}$ Since any pos ${ }^{i^{+\cdots}}$ e nı onic transformation of the utilities preserves the rank order of the original utilities, the random utility s, ecificai ${ }^{\circ}$ n (13) is observationally equivalent to $u_{n j}=\boldsymbol{x}_{n j}^{\prime} \boldsymbol{\beta}+\varepsilon_{n j} / \sigma_{n}$. The slight abuse of notation refers to that $\varepsilon_{j} \eta$ equati $n(1)$ corresponds to $\varepsilon_{n j} / \sigma_{n}$, rather than $\varepsilon_{n j}$ alone. Note that the presence of a parameter

[^8]: like σ_{n} does not affect an of our earlier results because they do not rely on $\varepsilon_{n j}$ having a standardized scale.

[^9]: ${ }^{18}$ A major parametric alternativ $:$ to hese three models is the heteroskedastic rank-ordered logit (HROL) model of Hausman and Ruud (1987). Originalıy introduced as an ad hoc specification to address mounting empirical evidence against the ROL mor' $1(1$ ausman and Ruud, 1987), the HROL model has subsequently inspired several other specifications that share imi ar motivations (Ben-Akiva et al., 1992; Fok et al., 2012; Yoo and Doiron, 2013). We do not consider the HR $\mathcal{L} \mathrm{mu}$ ' \cap because it stands on its own behavioral foundation that is not shared by other random utility models. In ont ast to the microeconomic interpretation of a ranking as a preference ordering based on a single set of utility,$~ \overbrace{}^{c}$, the AROL model equates a ranking observation with a collection of observations on stage-by-stage choices that ha $\quad \mathrm{b}$ en made as follows. In stage 1 , the individual chooses the best out of J alternatives based on a set of utili y draws and excludes it from further consideration; in stage 2, she chooses the best out of the remaining $J-1$ alte natives ased on a new set of utility draws and eliminates it from further consideration too; and she repeats this pi ress r til stage $J-1$ after which only one alternative is left for further consideration. In her observed ranking $;_{n}$, her $m^{\iota n}$ best alternative corresponds to her choice in stage m. The hallmark of this framework is that the indi dual's F eferences for alternatives change from one stage to another even when those alternatives are available in a. ${ }^{1}$ stager

[^10]: ${ }^{19}$ For exampl the ne ed MNL model may generate $1 / 3$ of the population while the mixed MNL may generate the rest.

[^11]: ${ }^{20}$ The computationat not of subsampling is very high for the MS (or GMS) estimator because a global search method is neede to solve the maximization problem for each subsample.

[^12]: ${ }^{21}$ Unlike binom is cholce uata, which are generated by a single latent random utility function, multinomial choice data and rank-c dered c. oice data are generated by multiple latent random utility functions. Yan (2013) explains the challenge of teriving the asymptotic distribution of the SMS estimator for multinomial choice data based on

[^13]: ${ }^{23}$ https://sites.b 'ngle $\mathrm{Jm} /$ site/yanjin2011/research-2

[^14]: ${ }^{24}$ These extra requ ements, tated in Condition 2, on the smooth function $K(\cdot)$ are similar to those in Assumption 7 of Horowitz (1992).

[^15]: ${ }^{25}$ In certain a plicatios ; under-smoothing may be a more straightforward way to implement statistical inference because it does n_{c} rear e bias-correction, which is discussed in Section 3.2.

[^16]: ${ }^{26}$ In random coeffi rents r רdels, we are often interested in discovering a certain central tendency of the random preference coeff ient, su h as its mean or its median. The mixed logit estimator will consistently estimate
 mate median (γ_{r}.) unde* Assumptions 1-4. For the simplicity of demonstration, we choose $\gamma_{n 2} \sim N(1,1)$ such that $E\left(\gamma_{n 2}\right)=$ media $\imath\left(\gamma_{n 2}\right)=1$.
 ${ }^{27}$ In all DGPs, \quad ger rate $\varepsilon_{n j}$ with variance equal to $\pi^{2} / 6$, subject to rounding errors.

[^17]: ${ }^{28}$ Here we use a relatively sr \cdots choice set mainly because the probit and the mixed logit specifications yield objective functions that requi \& mv tivariate integration, and consequently a considerable amount of computation time. The computation time $u_{i}{ }^{+1}$ e GMS and SGMS estimators per se is affordable even if the choice set is very large, e.g., $J=100$ in Yan 2013).
 ${ }^{29}$ This pair of uniform d^{\prime}, trib tions ensures that the second observed attribute has approximately the same variance as the first attribute, i.e., $\sim\left(q_{n j} w_{n}\right)=1.9882 \simeq 2$.
 ${ }^{30}$ Our ROP specifica+ ${ }^{\cdot}$ requ. s estimating five utility index parameters ($\gamma_{1}, \gamma_{2}, \alpha_{2}, \alpha_{3}$ and α_{4}) and five identified variance-covariance f ramet ϵ. of pairwise error differences. Our MROL specification assumes that both slope coefficients are random a d bivari te normal: we estimate two mean coefficients (γ_{1} and γ_{2}), three variance-covariance parameters of thein biva. , normal density, and three alternative-specific intercepts (α_{2}, α_{3} and α_{4}). The ROP (MROL) model 1 as bec estimated in Stata using command -asroprobit- (-mixlogit-); the likelihood function has been simulated , v taking 200 pseudo-random draws from Hammersley (Halton) sequences.

[^18]: ${ }^{31}$ The estimator of he sign $\mathrm{f} \beta_{1}$ will converge at a much faster rate than the estimators for other parameters such that there is no need t anal e the finite-sample property of the sign estimator.
 ${ }^{32}$ We follow al' une implementation suggestions in Section 3.2 in computing the SGMS estimator, by conducting bias-correction, sing the plug-in method to choose the bandwidth, and making a small sample correction.

[^19]: ${ }^{33}$ As summarized in $\mathrm{T}_{\mathrm{i}} \cdot \overline{1} \mathrm{e} \sqrt{7}$, the jGMS estimators using partial rankings are not consistent under DGPs 4-6. In these cases, the coverage prou hil; res of the asymptotic 95% confidence intervals are not informative about how well asymptotic properties nave F^{1} ayed out. While the coverage probabilities are sometimes widely off the mark under DGP 4 and DGP 6 ven $M<3$, those results are not alarming considering that the underlying estimators are inconsistent.
 ${ }^{34}$ We compute ne SGMS estimates using Matlab 2018a for 64 -bit Windows on a machine with a 3.6 GHz Intel Xeon CPU E3-1 :71 and. 16GB RAM.

[^20]: ${ }^{35}$ We use DGP 3 ; r illustr tion because it incorporates interpersonal heteroskedasticity (while DGPs 1-2 have homoskedastic errors) $n d$ th GMS estimator is consistent across all levels of rankings M under DGP 3 but not DGPs 4-6.
 ${ }^{36}$ https://site google.c m/site/yanjin2011/research-2

[^21]: ${ }^{37}$ Recall that $\boldsymbol{x}_{j k} \equiv \boldsymbol{x}_{j}-\boldsymbol{x}$ for any $j, k \in \mathbb{J}$, where $j \neq k$, so we have $\boldsymbol{x}_{j k}=-\boldsymbol{x}_{k j}$. The set $\left\{\boldsymbol{X} \mid \boldsymbol{x}_{j k}^{\prime} \boldsymbol{\beta}^{-}<0<\right.$ $\boldsymbol{x}_{j k}^{\prime} \boldsymbol{\beta}$ for some $\left.j, k-\mathbb{J}, \cdots \quad j j \neq k\right\}$ is the same as the set $\left\{\boldsymbol{X} \mid \boldsymbol{x}_{k j}^{\prime} \boldsymbol{\beta}<0<\boldsymbol{x}_{k j}^{\prime} \boldsymbol{\beta}^{-}\right.$for some $k, j \in \mathbb{J}$, where $\left.j \neq k\right\}$.

