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ABSTRACT
Long-term observations have shown that black hole X-ray binaries exhibit strong, aperiodic
variability on time-scales of a few milliseconds to seconds. The observed light curves display
various characteristic features like a lognormal distribution of flux and a linear rms–flux
relation, which indicate that the underlying variability process is stochastic in nature. It is also
thought to be intrinsic to accretion. This variability has been modelled as inward propagating
fluctuations of mass accretion rate, although the physical process driving the fluctuations
remains puzzling. In this work, we analyse five exceptionally long-duration general relativistic
magnetohydrodynamic (GRMHD) simulations of optically thin, geometrically thick, black
hole accretion flows to look for hints of propagating fluctuations in the simulation data. We
find that the accretion profiles from these simulations do show evidence for inward propagating
fluctuations below the viscous frequency by featuring strong radial coherence and positive time
lags when comparing smaller to larger radii, although these time lags are generally shorter
than the viscous time-scale and are frequency-independent. Our simulations also support the
notion that the fluctuations in Ṁ build up in a multiplicative manner, as the simulations
exhibit linear rms–mass flux relations, as well as lognormal distributions of their mass fluxes.
When combining the mass fluxes from the simulations with an assumed emissivity profile,
we additionally find broad agreement with observed power spectra and time lags, including a
recovery of the frequency dependency of the time lags.
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1 IN T RO D U C T I O N

A large fraction of the galactic black hole X-ray binaries (BHXRBs,
e.g. GX 339–4, XTE J1550–64, and GRO J1655–40) are generically
variable, both spectrally and temporally, as may be associated
with changes to the geometry and nature of accretion flows. They
occasionally undergo outbursts during which the luminosity varies
by several orders of magnitude, and the X-ray spectral states
evolve – a phenomena termed ‘state transitions’. The two main
spectral states seen in these systems are a high-luminosity, ‘soft’
state, dominated by thermal emission from the accretion disc, and
a variable-luminosity, ‘hard’ state, dominated by a non-thermal
Comptonized X-ray spectrum, with a weak or absent thermal
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component (see, e.g. the review by Done, Gierliński & Kubota
2007).

The X-ray light curves of BHXRBs, particularly in the hard
state, are dominated by strong, aperiodic variability (flicker-type
noise) on time-scales of milliseconds to seconds (van der Klis
1995). This manifests as a continuous band of power present
over a wide range of frequencies in the power spectral densities
(PSDs), which also change during the state transitions. The other
important variability features reported in these systems are a linear
rms–flux relation and lognormal distribution of flux, indicating
that the underlying stochastic process could be non-linear and
multiplicative in nature (Uttley & McHardy 2001; Uttley, McHardy
& Vaughan 2005). Further hints on the origin of variability may
be derived from the frequency-dependent time lags and strong
coherence observed between different energy bands (Miyamoto &
Kitamoto 1989; Nowak et al. 1999; McHardy et al. 2004). Similar
variability features are observed to occur in active galactic nuclei
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(AGN) on time-scales of hours to months (McHardy 1988; Gaskell
2004).

In addition to the black hole systems, broad-band variability is
also observed in other accreting systems: neutron star systems (in
X-rays) (Wijnands & van der Klis 1999), accreting white dwarfs
(in optical/UV band) (Scaringi et al. 2013; Van de Sande, Scaringi
& Knigge 2015), and young stellar objects (in IR/optical band;
Scaringi et al. 2015). The remarkable similarity in the variability
across different systems suggests that the underlying physical
mechanism at work may be the same in all these systems.

Lyubarskii (1997) suggested a model where fluctuations of
viscosity generated in the disc at different radii on viscous time-
scales cause mass accretion rate (Ṁ) fluctuations that propagate
inwards by modulating subsequent fluctuations driven at smaller
radii. Since the fluctuations couple together, this model readily
explains multiple observed features: (a) The accretion rate, and
thereby the emission flux from the inner regions, carries the imprints
of fluctuations generated over a wide range of radii associated
with a wide range of variability time-scales, thus producing a
broad PSD; and (b) the high-frequency fluctuations presumed to
be driven at smaller radii are modulated by the longer time-
scale fluctuations coming from larger radii, thus giving rise to the
rms–flux relation over all time-scales. Furthermore, this coupling
through a multiplicative combination of fluctuations naturally leads
to a lognormal distribution. The observed energy-dependent PSDs,
where the higher photon-energy bands show relatively more high-
frequency power than lower photon energy bands, can be explained
by this model if the hard X-rays are produced from a concentrated
region close to the central object and the soft X-rays come from an
extended region further away. This basic picture also explains the
strong coherence and time lags that appear between the different X-
ray energy bands – as the fluctuations propagate inwards, they first
appear in the softer energy bands and later in the harder energy bands
(Kotov, Churazov & Gilfanov 2001; Mahmoud & Done 2018a).
Additionally, outward propagating fluctuations from inner radii
could potentially cause negative lags at higher frequencies, whether
they are carried by waves (Mushtukov, Ingram & van der Klis 2018)
or matter.1 Since the accretion process carrying the fluctuations
inwards is diffusive in nature, any fluctuations generated on time-
scales shorter than the diffusion time-scales will be damped before
they can reach the inner radii. Thus, to explain the observed
high-amplitude, high-frequency variability power in the PSDs of
BHXRBs may require the relatively short characteristic time-scales
associated with geometrically thick, optically thin accretion flows
(Churazov, Gilfanov & Revnivtsev 2001; Arévalo & Uttley 2006;
Ingram & Done 2011; Mahmoud & Done 2018a).

Our general understanding of accretion discs is largely based
on the concepts of Shakura & Sunyaev (1973), which describes
geometrically thin and optically thick discs, emitting thermal
blackbody-like radiation. However, that model was soon found to be
incapable of producing the observed hard X-rays (∼100 keV) from
Cygnus X-1 (Lightman & Shapiro 1975). Various models were
invoked to explain the observed spectral properties through hot,
optically thin, and geometrically thick flows at low luminosities, in
the inner disc regions around the black hole (Thorne & Price 1975;
Shapiro, Lightman & Eardley 1976), which were later modified to
include advection to ensure thermal stability and became what is

1The velocity field in three-dimensional discs is non-trivial and even thin
α-discs are known to exhibit backflows (Urpin 1984; Kluzniak & Kita 2000;
Regev & Gitelman 2002; Philippov & Rafikov 2017)

known as advection-dominated accretion flows (ADAFs; Ichimaru
1977; Narayan & Yi 1995b). In these flows, the energy released
through viscous dissipation is stored in the accreted matter and
advected radially into the black hole (Narayan & Yi 1994). Thus,
these flows are hot and radiatively inefficient, therefore sometimes
are referred to as radiatively inefficient accretion flows (RIAFs).
The typical temperatures in ADAFs are close to virial and thus
have the potential to explain the observed hard spectra through
inverse-Compton scattering by hot electrons. These flows are,
however, susceptible to the convective instability, which can play
a vital role in launching outflows (Narayan & Yi 1995a). Further
studies have developed analytical solutions that treat convection as
a dominant process in transporting angular momentum (Narayan,
Igumenshchev & Abramowicz 2000; Quataert & Gruzinov 2000);
such solutions are sometimes referred to as convection-dominated
accretion flows (CDAFs). Disc winds could also carry away the
angular momentum from the accretion flow, in which case the
net advected energy on to the black hole is reduced (Blandford
& Begelman 1999). It is now widely accepted that ADAFs can
consistently account for the observations of a number of low-
luminosity state BHXRBs and AGN, including Sgr A∗ (Rees et al.
1982; Narayan et al. 1998).

All these ADAF models (see e.g. Yuan & Narayan 2014) are
self-similar analytic solutions derived primarily by assuming a
constant α-viscosity parameter. However, real accretion discs are
magnetized and thought to be subject to the magnetorotational
instability (MRI; Balbus & Hawley 1991), which acts as a natural
source of turbulence, mediating the outward transport of angular
momentum, thus allowing for accretion.

Many numerical simulations of ADAFs have been performed so
far in the interest of understanding the details of their flow dynamics
and their observational relevance, yet the presence of aperiodic vari-
ability in these simulations remains relatively unexplored. Only re-
cent MHD simulations of geometrically thin discs2 have been exam-
ined in such a way Wellons et al. (2014), Hogg & Reynolds (2016).

In our work, we are motivated to search for aperiodic variability
in ADAFs using GRMHD simulations for at least two main reasons:
(a) the association of broad-band variability with hard X-ray flux
in BHXRBs suggests they come from ADAF discs; and (b) the
characteristic time-scales of standard, thin discs cannot explain
the high-amplitude, high-frequency variability power in the PSDs
of BHXRBs (Churazov et al. 2001). The GRMHD simulations
analysed in this work are notable for their extremely long time
duration, which makes it possible to probe a wider frequency range
of broad-band variability. However, a drawback of the fast time-
scales associated with ADAFs is that simulations of them can be
particularly sensitive to the initial conditions used (White, Quataert
& Gammie 2020); for this reason, we analyse simulations with
different initial conditions, which can help discern the robustness
of the propagating fluctuations in these flows.

Our paper is organized as follows. We provide brief descriptions
of the simulations used in this analysis in Section 2. Since we use the
mass accretion rate (Ṁ) as a proxy for the luminosity, we describe
our analysis of Ṁ in Section 3. In Section 4, we present our results
in the form of power spectra, coherence plots, time lags, rms–Ṁ

relations, and Ṁ distributions. In Section 5, we compare our results
with observations and conclude in Section 6.

2These discs are thought to be more relevant to X-ray binaries in the high/soft
state, white dwarfs systems, and young stellar objects.
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3810 D. A. Bollimpalli et al.

Table 1. Parameters of the simulations considered for analysis in this paper.

Simulation a∗ rmax rin � B field Run length Dump interval
(rg) (rg) (number of loops) (rg/c) (rg/c)

A 0 52 25.0 4/3 Nr = 6, Nθ = 4 440 000 100 (1)a

B 0 52 25.0 4/3 Nr = 6, Nθ = 1 220 000 100
C 0 52 25.1 5/3 Nr = 6, Nθ = 4 220 000 100
R 0 19.2 10.0 5/3 Nr = 8, Nθ = 1 200 000 10
D 0.5 40 22.0 4/3 Nr = 1, Nθ = 1 63 000 100

aFor this particular simulation, we also have the high-cadence data with dumping interval equal to 1 GM/c3 for variables
at a few predetermined radii

2 D E SCRIP TION O F SIMULATIONS

We analyse the accretion rate data from five different simulations
of ADAFs, which were initiated using different initial conditions
and were performed using different GRMHD codes. While we
performed simulation D in the interest of this work, simulations
A, B, and C were taken from White et al. (2020), while simulation
R comes from Narayan et al. (2012). In this section, we briefly
describe the numerical set-ups of each simulation and discuss their
key differences. For more details of simulations A, B, C, and R, we
refer the reader to the original papers.

First, we describe the similarities between the simulations before
we delve into the differences. All five simulations are non-radiative,
which allows us to scale our results to any required black hole
mass. However, this implies that we do not have a direct estimation
of luminosity from the simulations, limiting us to use the mass
accretion rate as a proxy for luminosity/flux. All the simulations
are initiated from a rotating, hydrostatic equilibrium torus of matter
governed by gravity, pressure, and centrifugal forces. The mass of
the torus is assumed negligible compared to the mass of the black
hole so that the gravity is fixed by the black hole space–time. Each
torus is threaded with weak magnetic fields that are susceptible
to the MRI (Balbus & Hawley 1991). Once the simulations start,
the MRI grows and produces turbulence, which is responsible
for transporting angular momentum outwards, allowing matter to
accrete inwards. Thus, the inner region of the torus turns into an
accretion flow while the outer region acts as a matter reservoir,
feeding the accretion flow throughout the simulation. Below, we
provide details of the equilibrium torus solutions and the magnetic
field configurations used for the initial set-up of each simulation.
Key simulation parameters are summarized in Table 1.

2.1 Simulations A, B, and C

These simulations are performed using the GRMHD code,
ATHENA++ (White, Stone & Gammie 2016; Stone et al. 2020).
They are initialized using the torus solution of Fishbone & Moncrief
(1976), in which uφut (in Boyer Lindquist coordinates) is constant.
The torus has a pressure maximum located at rmax = 52 rg, where
rg = GM/c2 is the gravitational radius. The peak density at rmax is
normalized to 1. Simulation A is run for the longest time period, up
to t = 4.4 × 105 GM/c3, while the variants of this simulation – B
and C – are run up to t = 2.2 × 105 GM/c3. For A and B, the inner
edge of the torus is set at rin = 25 rg, while for C, rin = 25.1 rg. A
polytropic equation of state is used in each case, with an adiabatic
index of � = 4/3 for simulations A and B and � = 5/3 for simulation
C. The initial magnetic field is chosen to be purely poloidal with the
number of alternating polarity loops set along the radial and polar
directions, Nr and Nθ , different for each simulation. For simulations
A and C, Nr = 6 and Nθ = 4, while for simulation B, Nr = 6 and Nθ

= 1. Using the alternating poloidal loops prevents the accumulation
of large net magnetic flux in the accretion flow.

These simulations are evolved in the space–time of a non-
spinning black hole (a∗ = Jc/GM2 = 0) using spherical Kerr–
Schild coordinates. Grid cells are logarithmically spaced in the
radial direction extending from r = 1.7 to 104 rg and compressed
towards the equator in the polar direction to increase the resolution
close to the symmetry plane of the disc. The base grid, covering the
entire sphere, consists of 120 × 20 × 20 cells in the radial, polar,
and azimuthal directions with an additional one level refinement
introduced in the region θ ∈ (π /5, 4π /5) and another level of
refinement on top of that in the region θ ∈ (3π /10, 7π /10).

The key finding of these simulations is that the resulting flow
structure of ADAFs is sensitive to the initial conditions. The larger
magnetic field loops in simulation B build up a coherent vertical
flux that drives polar outflows. For the same reason, simulation B
attains a ‘semi-MAD’ (magnetically arrested disc) state with the
magnetic flux on the horizon reaching a limiting value for a brief
period. Simulations A and C, on the other hand, exhibit polar inflows
and equatorial backflows, which cannot be explained by convective
stability/meridional circulation. Just the difference in � causes a
much more spherical distribution of mass in simulation C compared
to simulations A and B that present a more standard disc picture,
with high density near the equatorial region and low density close
to the polar region. Further details of these simulations are provided
in White et al. (2020).

2.2 Simulation R

This simulation is performed using the 3D GRMHD code, HARM

(Gammie, McKinney & Tóth 2003; McKinney 2006; McKinney
& Blandford 2009). The simulation is set up using a torus solution
similar to the Polish doughnut (Penna, Kulkarni & Narayan 2013),
for which rin = 10 rg and the outer radius is 1000 rg. The pressure
maximum is located around 19.21 rg. The angular momentum in
the torus (−uφ /ut) is constant within 42 rg; beyond this radius, it
is set to 71 percent of the Keplerian value. A polytropic equation
of state is used with � = 5/3. The initial magnetic field is purely
poloidal with eight centres of poloidal loops with alternating
polarity set along the radial direction (Nr = 8, Nθ = 1).

This simulation is also evolved in the space–time of a non-
spinning black hole (a∗ = 0) using spherical Kerr–Schild coor-
dinates. Grid cells are logarithmically spaced at smaller radii and
hyperlogarithmically at the larger radii. Grid cells along the polar
direction are non-uniformly spaced so as to increase the resolution
close to both the equatorial region and the poles. This simulation
uses a grid of 256 × 128 × 64 cells in the radial, polar, and azimuthal
directions without any additional refinement.

Simulation R never reaches a MAD state even though the
initial magnetic field configuration is similar to simulation B. This
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Figure 1. Profiles of the normalized accretion rate, ṁ, through the black hole horizon for all five simulations. Discarded data for simulations B, C, and D (first
six Porb) and simulations A and R (first nine Porb) are shown in lighter shades.

simulation is convectively stable. Further details of this simulation
are provided in Narayan et al. (2012).

2.3 Simulation D

This simulation is performed using the 3D GRMHD code,
COSMOS++ (Anninos, Fragile & Salmonson 2005; Fragile et al.
2012; Fragile, Olejar & Anninos 2014). The simulation is set up
following the torus solution given by Chakrabarti (1985), for which
we set rin = 22 rg and rmax = 40 rg. The angular momentum inside
the torus follows a power-law distribution in radius. The torus is
threaded with a single poloidal magnetic field loop. The simulation
is evolved in the space–time of a spinning black hole with a∗ = 0.5
using spherical Kerr–Schild coordinates. A polytropic equation of
state is used with � = 4/3. This simulation uses a grid of 192 × 128
× 32 cells in the radial, polar, and azimuthal directions without
any additional refinement. For more details on this simulation, see
Appendix A.

3 AC C R E T I O N R ATE

The mass accretion rate, Ṁ , at a given radius and time is computed
by integrating the mass flux over a spherical shell:

Ṁ(r, t) = −
“

ρur
√−gdθdφ , (1)

where ρ is the rest mass density, ur is radial four-velocity, and the
negative sign is included to make Ṁ positive when matter is flowing
inwards towards the black hole. We calculate this expression in
spherical Kerr–Schild coordinates. In our analysis, we discard the
initial six orbital periods (Porb) of simulation data for simulations
B, C, and D and nine orbital periods for simulations A and R, where
Porb is measured at rmax. Ṁ for each simulation is then re-normalized

by its maximum value outside the discarded initial transient phase.
In the rest of this paper, we report the normalized accretion rate,
ṁ = Ṁ/max(Ṁ)|rH , where rH is the horizon radius.

Fig. 1 shows the evolution of the accretion rate on to the black
hole for all five simulations. The discarded data, corresponding to
the initial transient phase of the simulations, are shown in lighter
shade. Simulation C remains at a comparatively high accretion
rates throughout, while simulations A and B show secular declines
beyond ≈100 000 GM/c3, with the decrease in ṁ nearly two
orders of magnitude for simulation A. Simulation R, as well,
shows a significant decline in ṁ, while no such decline is seen
in simulation D, though this simulation is run for a shorter time
period. This secular decline behaviour of ṁ can be attributed to two
principal causes: (a) The disc loses its mass through the horizon at
a rate faster than it is supplied by the surrounding torus (see, e.g.
fig. 6 in Narayan et al. 2012); and (b) since the torus mass is not
replenished in any of the simulations, ṁ must inevitably begin to
decline at some point as the mass reservoir becomes drained.

Among the several models in the literature that try to explain X-
ray variability, a common assumption is that the underlying process
is stationary, i.e. the mean and variance of the time series do not
change over time. However, this is not what we see in our ṁ profiles,
especially for simulations A and R, which are far from being
stationary. Therefore, it may be worthwhile to try to correct for any
secular behaviour seen in these simulations. Unfortunately, there is
no foolproof method for doing so, and any procedure presents the
risk of introducing artefacts into the data. Nevertheless, for purposes
of comparison, we adapt the method of Reynolds & Miller (2009)
to apply an exponential fit to ṁ. Since simulation D does not show
much of a decline and simulation C instead shows an increase
followed by a late decline, we present the corrected accretion rate
(ṁcor) profiles at rH only for simulations A, B, and R in Fig. 2,
while the raw rates from Fig. 1 are reproduced as dotted curves.
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3812 D. A. Bollimpalli et al.

Figure 2. .Profiles of the mass accretion rates at rH for simulations A (left-hand panel), B (middle panel), and R (right-hand panel), corrected for their secular
declines (ṁcor). The original (uncorrected) data (ṁ) are shown as dotted curves, with the corresponding exponential fits overplotted as black dashed curves.

The exponential fit used in each case is shown as a black dashed
curve. In the following subsections, we shall use these ṁcor profiles
to understand if a secular decline alters any of our results.

In Fig. 3, we show space–time plots of ṁ for each simulation
after 30Porb over a window of 5Porb. Over this time window, the
simulations are all in inflow equilibrium within 30 rg. Simulations
A, B, and C show lower overall ṁ during this period and lower
variability. Simulation R shows an interesting chevron pattern,
which indicates that there are ṁ changes originating between r
= 10 and 15 rg that are then propagating inwards and outwards.
Simulation D is distinguished by exhibiting the most small-scale
variability.

4 R ESULTS

4.1 Power spectra

We primarily use power spectra to look for traces of variability
in these simulations. The power spectra are computed using the
normalized ṁ for each simulation following the steps presented
in Uttley et al. (2014). At each radius, the time series data, i.e.
the normalized accretion rate, are binned into a certain number of
segments with the requirement that the number of time intervals
per segment (N) be an integral power of 2. For each segment, a
normalized periodogram, P, is computed as

P = 2	t

〈ṁ〉2N
| ˜̇m(ν)|2 , (2)

where ˜̇m(ν) is the discrete Fourier transform of ṁ (defined as in
equation 1 of Uttley et al. 2014) and the angle brackets denote a
time-average value. We compute P below the maximum frequency
of 1/(2	t) and above a minimum frequency given by the inverse
of the segment length. Here 	t is the sampling time of the data,
i.e. the dumping interval from the original simulation (provided in
Table 1). The average of the periodograms obtained from all the
segments yields the average PSD. To further reduce the noise, the
resulting power spectrum from the previous procedure is re-binned
logarithmically over frequencies and averaged over each frequency
bin. This gives the normalized root mean square PSD, which is what
we plot in all the power spectra figures. The frequencies in all the

power spectra are reported in Hz, assuming a unit solar mass black
hole; therefore, by simply dividing by the mass in solar units, the
frequencies for any other black hole mass can be extracted.

For all the space–frequency plots discussed in this section, we also
plot three characteristic frequencies of disc dynamics: the Keplerian,
radial epicyclic, and viscous frequencies. The viscous frequency
(νvisc) is simply computed as

νvisc(r) = 〈V r (r, t)〉
r

, (3)

so it is directly related to the accretion time-scale, where Vr is the
density-weighted, radial component of the three-velocity averaged
over poloidal and azimuthal angles within one scale height of the
mid-plane.

For all the simulations, we also extract the power spectra at 2,
10, and 20 rg. Of course, we certainly would not expect significant
radiation to come from r = 2rg, but as Fig. 3 shows, the mass flux
is nearly uniform for all simulations at radii less than the innermost
stable circular orbit (ISCO; at 4.23 rg for simulation D and 6 rg for
the rest). This indifference to the presence of an ISCO is a common
feature of ADAFs. Thus, the choice to consider ṁ at radii below the
ISCO should not adversely affect our variability analysis. For each
of the resulting power spectra, we do a least-squares fitting with
either a single power law, P∝νβ , or a broken power law, with P ∝
νβ1 for ν < νbreak (break frequency) and P ∝ νβ2 for ν > νbreak.
In almost all cases, we find that the power spectra of 2 and 10 rg

are highly similar below the viscous frequency of 10 rg and so we
present the power-law fittings3 to the averaged PSD of 2 and 10 rg.

4.1.1 Simulation A

Fig. 4 shows the power spectra of ṁ from simulation A computed
over a time window [38 900, 440 000] GM/c3, during which inflow
equilibrium is established out to 100 rg. Each segmented bin is
of the length 0.13 (M/M�) s. It is interesting to note the power

3Note that, although we plot Pν in the spectral plot, the respective power-law
indices labelled in the plots correspond to the fitting made to P and not Pν.
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Variability in GRMHD simulations 3813

Figure 3. Space–time diagrams of ṁ for all five simulations from t = 30 to 35 Porb. Note that the colour scale is different for each panel. The faint vertical
stripes seen in simulations A, B, and C are artefacts of extracting ṁ over multiple refinement layers.

beyond the radial epicyclic frequency curve4 and within the viscous

4Hereafter, by beyond the radial epicyclic curve, we mean at frequencies
above the radial epicyclic curve for radii larger than where that curve peaks.

frequency curve. Between these curves, we find significantly less
power. The power above the radial epicyclic frequency is possibly
due to pressure waves, analogous to discoseismic p modes, which
are likely non-dissipative and therefore will not contribute to the
observed flux variations (Noble & Krolik 2009). Power below the
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3814 D. A. Bollimpalli et al.

Figure 4. Normalized power spectra of ṁ for simulation A computed for
the time chunk [38 900, 440 000] GM/c3, binned into segments of length
0.13 (M/M�) s. The blue dash–dotted, solid green, and red dashed curves
show the Keplerian, radial epicyclic, and viscous frequencies, respectively.

viscous frequency is likely due to propagating fluctuations. More
evidence for the second statement will be provided in the later
subsections when we discuss radial coherence and time lags. Below
the epicyclic curve, as the frequency increases, the power drops and
reaches a broad minimum at a factor of a few below the Keplerian
frequency. This is not a true break in the power spectrum, as the
power recovers at larger frequencies. However, it is interesting to
note that in the case of geometrically thin discs, a break frequency
has been predicted to correspond to the dynamo time-scale (King
et al. 2004), which is a few times the Keplerian time-scale. This
was later confirmed by the simulations of Hogg & Reynolds (2016)
and may be related to what we are seeing here. A similar break,
happening below the local Keplerian frequency, has recently been
inferred from X-ray pulsar data (Mushtukov et al. 2019).

Since ṁ does not vary noticeably across the ISCO, as pointed out
in the previous section, it is not surprising that the power spectra

here and in subsequent sections also do not bear any signature of it.
This in contrast with thin disc simulations, where the nature of the
variability changes dramatically at the ISCO (Reynolds & Miller
2009; Mishra, Kluźniak & Fragile 2019).

In the left-hand panel of Fig. 5, we extract the power spectra at
radii r = 2, 10, and 20 rg, shown as blue, orange, and green solid
curves with decreasing line thickness, respectively. The chosen bin
length is close to 0.16 (M/M�) s. For both the plots in Fig. 5, we use
the high-cadence data with 	t = 1 GM/c3, which is available only
for simulation A and only for radii r = 2, 5, 10, and 20 rg. The PSDs
are well fit by a broken power law with an index close to −1.55
for low frequencies, and an index ∼−2.57 for high frequencies.
The break occurs at around 103(M�/M) Hz, which happens to be
where Fig. 4 cuts off. The low-frequency slope is slightly steeper
than flicker-type noise (index ≈ −1), and the high-frequency slope
is slightly steeper than red-noise behaviour (index ≈ −2).

If we study Fig. 5 closely, we see that the spectrum at each radius
shows strong correlation with the spectra of smaller radii below the
local viscous frequency. For example, the curves of power spectra
at 2, 10, and 20 rg are virtually the same below the dashed line
corresponding to the viscous frequency at 20 rg. Similarly, the PSD
amplitudes of 2 and 10 rg are nearly identical below the dashed line
showing the viscous frequency at 10 rg. This seems to disagree
with the assumption of the propagating fluctuations model that
each independent annulus produces fluctuations with most of the
variability power centred at the local viscous frequency. Moreover,
it rules out the damping of propagating fluctuations (Arévalo &
Uttley 2006; Rapisarda, Ingram & van der Klis 2017; Mahmoud
& Done 2018b). Fig. 5 also shows that the break frequencies of
the spectra do not correspond directly to any of the characteristic
frequencies we consider, but do lie close to the local Keplerian
frequencies.

Since the observed flux is usually an integration of the emission
from a range of disc radii, we compute the average of the PSD
at radii 2, 5, 10, and 20 rg, shown as the thin red curve in
the right-hand panel of Fig. 5. The broken power-law fits are
shown in thin red dash–dotted and dotted lines, respectively. We

Figure 5. Normalized power spectra of ṁ for simulation A at selected radii using the high-cadence data (	t = 1 GM/c3) over a time window of
[38 900, 440 000] GM/c3. Left-hand panel: PSDs for radii r = 2, 10, and 20 rg computed using bins of size 0.16 (M/M�) s, shown in blue, orange and
green curves, respectively, with decreasing line thickness. The average slopes of the broken power-law fittings to all three curves are indicated with black dash–
dotted and dotted lines. The Keplerian frequencies for 10 and 20 rg are marked near the x-axes in thin orange and thick green dash–dotted lines, respectively.
The viscous frequencies for all three radii are shown as vertical dashed lines. Right-hand panel: average of the normalized PSDs for radii 2, 5, 10, and 20 rg

using longer bins of length 0.65 (M/M�) s shown in thin red and thick blue curves for the original ṁ and corrected ṁcor data. The respective broken power-law
fittings are shown in dash–dotted and dotted lines. The vertical dashed line shows the maximum of the radial epicyclic frequency, which occurs at 8 rg.
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Variability in GRMHD simulations 3815

Figure 6. Normalized power spectra of ṁ for simulation B. Left-hand panel: variation of power with frequency and radius computed over the time period
[38 900, 220 000] GM/c3 using bins of length 0.13 (M/M�) s. Blue dash–dotted, solid green, and red dashed curves show the Keplerian, radial epicyclic and
viscous frequencies, respectively. Right-hand panel: PSDs at 2, 10, and 20 rg for the same time period but with longer segment lengths of 0.25 (M/M�) s. The
average slope of the single power-law fittings to the 2 and 10 rg curves is indicated by the dotted line. The black dashed lines labeled with radii represent the
local viscous frequencies, while the thin orange and thick green dash–dotted lines near the x-axes mark the Keplerian frequencies at 10 and 20 rg, respectively.

then checked if the results differ when we use the accretion rate
corrected for the secular decline. The thick blue curve in the
same plot shows the average PSD computed for the same radii
but now using ṁcor data. The segment length used in this plot
is 0.65 (M/M�) s, and so the power spectrum extends down to
1.5 (M�/M) Hz, where we see a significant difference between
the PSD of ṁ and ṁcor. When compared to the left-hand panel,
which has shorter segment length (i.e. 0.16 (M/M�) s), the PSD
of ṁcor coincides with the PSD of the original (uncorrected) ṁ at
all the frequencies except the high frequency tail, which starts to
differ above ≈3000 (M�/M) Hz. Thus, the difference in the PSDs
from the original ṁ to the corrected ṁcor data starts to become
significant as the length of the binned segments increases. Perhaps,
this is because the longer time-period variations imposed by the
secular decline in ṁ can be traced better if the segments are longer,
which leads to dominant power at low frequencies in the power
spectra.

The break frequencies of the average PSD in the right-hand
panel of Fig. 5 do not correspond to the viscous nor the Keplerian
frequencies of any of the four radii (2, 5, 10, and 20 rg). Neither
do they correspond to any of the characteristic frequencies of the
inflow-equilibrium radius. Instead, they appear to be more related
to the peak of the radial epicyclic frequency curve, κmax.

4.1.2 Simulation B

The left-hand panel in Fig. 6 shows the power spectra for
simulation B, for radii within 50 rg, computed over the time
period [38 900, 220 000] GM/c3 binned into segments of length
0.13 (M/M�) s (same as for simulation A). There is definitely
more power above the radial epicyclic frequency, but power within
the viscous frequency curve is not as prevalent as in simulation A.
In this particular simulation, power along the radial epicyclic and
Keplerian frequency curves is more evident, and it seems to be
present throughout the simulation period.

The usual interpretation of observations put forward by the
propagating fluctuation model requires that at higher frequencies,
smaller radii should exhibit more power than larger radii. The
right-hand panel of Fig. 6 seems to contradict this. In the figure,

we plot the PSDs for the same radii (r = 2, 10, and 20 rg) as Fig. 5
with a longer segment length of 0.25 (M/M�) s. Clearly, the PSD
at 20 rg has more power at higher frequencies compared to 2 and
10 rg . This excess is coming from the power present around the
radial epicyclic and Keplerian frequencies seen in the left-hand
panel (note that the peak of the green curve in the right-hand panel
coincides with the Keplerian frequency at 20 rg marked by the
thick green dash–dotted line).

We do not see any clear break in any of the power spectra in the
right-hand panel of Fig. 6, most likely because we are not going to
high enough frequencies due to the lower sampling rate of this data.
A single power-law fit, with an index close to −1.5 (black dashed
line), matches the 2 and 10 rg curves fairly well. Since ṁ does not
decrease significantly for simulation B, the PSD of ṁcor is similar
to the PSD of ṁ, and hence we do not show it here.

4.1.3 Simulation C

We do a similar analysis for simulation C and the results are shown
in Fig. 7. The left-hand panel shows the power spectra for radii
within 50 rg using the same segment length, i.e. 0.13 (M/M�) s,
and over the same time window, [38 900, 220 000] GM/c3, as
simulation B. Unlike the previous two simulations, simulation C
does not seem to exhibit a strong preference for power above
the radial epicyclic frequency. There is also no dominant power
along the radial epicyclic frequency/Keplerian frequency curve, nor
is there much distinction between inside and outside the viscous
frequency curve. This agrees with Fig. 3, where we see that
simulation C shows less rapid variability compared to the other
simulations.

In the right-hand panel, we plot the PSDs for the same radii (r =
2, 10, and 20 rg) with the longer segment length of 0.25 (M/M�) s.
Similar to simulation B, we see more high-frequency power at
large radii than small and see no evidence for a break in the power
spectrum, likely for the same reason as for simulation B. A single
power-law fit to the power spectra is provided (black dotted line),
with an index close to −1.91, which is perhaps consistent with
red-noise behaviour.
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3816 D. A. Bollimpalli et al.

Figure 7. Normalized power spectra of ṁ for simulation C. Left-hand panel: variation of power with frequency and radius computed over the time period
[38 900, 220 000] GM/c3 using bins of length 0.13 (M/M�) s. Blue dash–dotted, solid green, and red dashed curves show the Keplerian, radial epicyclic and
viscous frequencies, respectively. Right-hand panel: PSDs at 2, 10, and 20 rg for the same time period but with longer segment lengths of 0.25 (M/M�) s. The
average slope of the single power-law fittings to all three curves is indicated by the dotted line. The black dashed lines labeled with radii represent the local
viscous frequencies and the thin orange and thick green dash–dotted lines near the x-axes mark the Keplerian frequencies at 10 and 20 rg, respectively.

Figure 8. Normalized power spectra of ṁ for simulation R computed for
the time period [50 000, 236 670] GM/c3 binned into segments of length
0.11 (M/M�) s. The blue dash–dotted, solid green, and red dashed curves
show the Keplerian, radial epicyclic and viscous frequencies, respectively.

4.1.4 Simulation R

Simulation R has a higher sampling frequency (	t = 10 GM/c3),
which gives the advantage of being able to study higher frequencies
and also obtain better spectra as each bin will now have more data
points to average out the noise. In Fig. 8, we show the power spectra
of ṁ computed over the time period [50 000, 236 670] GM/c3,
during which the flow has reached inflow equilibrium to beyond
50 rg (see table 1 and fig. 6 of Narayan et al. 2012), with a
segment length of 0.11 (M/M�) s. Interestingly, simulation R
exhibits dominant power above the viscous frequency and does not
show any difference in power with respect to the radial epicyclic
nor Keplerian frequencies. It is worth noting that the power drops
drastically at higher frequencies, roughly at the maximum radial
epicyclic frequency.

In Fig. 9, we show the power spectra extracted at different radii.
The left-hand panel shows the spectra at radii 2, 10 and 20 rg

computed using segments of 0.2 (M/M�) s over the time window5

[12 000, 236 670] GM/c3. As in simulation A, we can clearly see
that the power spectrum at a given radius is highly coherent with
the spectra at smaller radii below the local viscous frequency. This
is the case in the other simulations (B, C, and D) as well, but it is
harder to notice with the power spectra limited to a small Fourier
frequency range due to the relatively poor sampling frequency.
Simulation R spectra exhibit a clear break in the frequency, at about
800 (M�/M) Hz, where the power-law index changes from ∼−1.46
at low frequencies to ∼−2.63 at high frequencies.

Similar to simulation A, we show a comparison of the radially
averaged power spectra for ṁ and ṁcor in the right-hand panel of
Fig. 9 using segments of length 0.8 (M/M�) s. The thin red curves
represent the spectra obtained from averaging the PSD of ṁ at
all radii within 20 and 50 rg. The thick blue curves represent the
same for ṁcor. Power-law fittings for the averaged spectra within
20 rg are included. The spectra from ṁcor have a slope that is 15
percent flatter at low frequencies compared to the spectra from the
original ṁ. Similar to the average spectra from simulation A, the
frequency break in the right-hand panel of Fig. 9 occurs very close
to the maximum radial epicyclic frequency. As we noted earlier,
this is attributable to the steep decrease in power above roughly
1 (M�/M) kHz.

4.1.5 Simulation D

Simulation D is run for a shorter duration, so the power spectra are
computed from the averaged periodograms of only two bins with
segment lengths close to 0.13 (M/M�) s. We use the ṁ data over
the time window [11 000, 63 000] GM/c3. The left-hand panel of
Fig. 10 shows the frequency–radius variation of power spectra and
the right-hand panel shows the spectra for the same binning at radii
2, 10 and 20 rg . Even with less data, we can see that there is dominant
power above the radial epicyclic frequency (for r > 8 rg) and some
power within the viscous frequency curve, similar to simulations A
and R. The right-hand panel does not show any clear evidence of

5By 12 000 GM/c3, inflow equilibrium is established up to a radius of 20 rg.
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Variability in GRMHD simulations 3817

Figure 9. Normalized power spectra of ṁ for simulation R at chosen radii. Left-hand panel: PSDs computed from the time window [12 000, 236 000] GM/c3

using bins of length 0.2 (M/M�) s are shown in blue, orange, and green curves with decreasing line thickness for radii r = 2, 10, and 20 rg, respectively. The
average slopes of the power-law fittings to the 2 and 10 rg curves are indicated by the black dash–dotted and dotted lines. The Keplerian frequencies at 10 and
20 rg are marked near the x-axes in thin orange and thick green dash–dotted lines. The viscous frequencies for all three radii are shown with vertical dashed
lines. Right-hand panel: average of the PSDs from all radii within 20 rg for the original ṁ and corrected ṁcor data using longer bins of 0.8 (M/M�) s are shown
in thin red and thick blue curves, respectively. Similar curves for averaged PSD within 50 rg are shown in lighter shades. The broken power-law fittings for
the 20 rg averaged data are shown in the dash–dotted and dotted lines. The vertical dashed line shows the maximum of the radial epicyclic frequency, which
occurs at 8 rg.

Figure 10. Power spectra of ṁ for simulation D. Left-hand panel: normalized PSD computed for the data in the time window [11 000, 63 000] GM/c3 using
segments of length 0.13 (M/M�) s. Right-hand panel: plot of radial slices at r = 2, 10, and 20 rg. The dotted line shows the average slope obtained from
averaging the power-law fits for 2 and 10 rg curves. Vertical dashed lines give the viscous frequency for labelled radii, and the thin orange and thick green
dash–dotted lines close to the x-axis mark the Keplerian frequencies for 10 and 20 rg, respectively.

a break, most likely because of the low sampling frequency of the
data. We find the averaged slope of the single power-law fits to the 2
and 10 rg curves is around −1.25, closer to flicker-noise behaviour,
whereas the best fit to the 20 rg curve has a slope of −0.77. Here,
and in Figs 6 and 7, the large error bars are most likely due to the
fact that the number of time intervals (N) in each segment is only a
couple of hundred, i.e. at least an order of magnitude less than what
is possible for simulations A and R (Figs 5 and 9).

The large amount of power found above the viscous frequency,
and even above the radial epicyclic frequency, in these spectra is
certainly not what is expected from the propagating fluctuation
model. To explore this further, in Fig. 11, we include power spectra
from simulation D where we limit the vertical extent of the domain
included in the calculation. We consider both the mid-plane value of
ṁ (left-hand panel) and ṁ within one scale height of the mid-plane
(right-hand panel). In both cases, the relative power found above the

radial epicyclic frequency is greatly reduced (compared to Fig. 10).
However, most of the power is still above the viscous frequency.

4.2 Radial coherence

We turn our focus now, though, to the variability power found
below the viscous frequency, the source of which could be the
propagating fluctuations we are searching for. According to the
propagating fluctuations model, fluctuations driven at different radii
should modulate the fluctuations at smaller radii as they propagate in
on the viscous time-scale. Any fluctuations above the local viscous
frequency should be damped, so they are unable to make it to smaller
radii. Thus, the model predicts that the accretion rate between any
two radii should exhibit high coherence below the viscous frequency
and low coherence above it. In X-ray observations, this translates
into a strong coherence between light curves in different energy
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3818 D. A. Bollimpalli et al.

Figure 11. Normalized power spectra of the mid-plane value of ṁ (left-hand panel) and ṁ within one scale height of the mid-plane (right-hand panel) for
simulation D. Spectra are computed over the time window [11 000, 63 000] GM/c3 using bins of length 0.13 (M/M�) s. The blue dash–dotted, solid green,
and red dashed curves show the Keplerian, radial epicyclic, and viscous frequencies, respectively.

bands, with the assumption that higher energy bands originate from
radii closer to the black hole and lower energy bands come from
further out.

Coherence fundamentally describes the fractional variance be-
tween two curves, which can be predicted via a linear transformation
between them (Vaughan & Nowak 1997). In our case, let h(t) and s(t)
denote ṁ curves at any two radii, r1 and r2, with respective Fourier
transforms H(ν) and S(ν). Then, following Uttley et al. (2014), we
compute the radial coherence of ṁ between r1 and r2 using

γ 2(νj ) = |CHS(νj )|2
PH(νj )PS(νj )

, (4)

where CHS = H∗S is the cross-spectrum averaged over multiple
time segments and frequency bins and PH(ν j) and PS(ν j) are the
power spectra obtained from h(t) and s(t), respectively, with similar
averaging. If h(t) and s(t) are related through a linear transformation
in time, the two are said to be perfectly coherent, and γ 2 reaches its
maximum value of 1. When h(t) and s(t) are completely unrelated,
γ 2 = 0 and they are said to be incoherent.

In Fig. 12, we show the radial coherence of all radii up to
50 rg with respect to the inner radius (black hole horizon) for
all five simulations. The black dashed line represents the viscous
frequency, while the white dash–dotted line gives the Keplerian
frequency. We consider the same binning of ṁ as we did for the
radius-frequency plots of power spectra in the previous section.
We find that in all cases, ṁ shows remarkable coherence below
the local viscous frequency at all radii. Similar radial coherence
is observed in the simulations and models of geometrically thin
discs (Hogg & Reynolds 2016; Mushtukov et al. 2018). In addition,
simulations A and C exhibit significant coherence even above the
viscous frequency, up to a factor few below the Keplerian frequency,
particularly at larger radii. It is interesting to note that these are the
two simulations that show equatorial backflow.

4.3 Time lags

The presence of frequency-dependent, radial coherence indicates
that fluctuations at different radii are causally connected. However,
information about the direction of propagation of these fluctuations
is missing from a simple coherence plot. To extract this information,

Table 2. Accretion time-scales and time lags for different radii within each
simulation.

Simulation r tacc tlag

(rg) [(M/M�) ms] [(M/M�) ms]

A 2 4.57 0.25
6 4.41 0.18

10 3.46 0.08
B 2 3.44 0.46

6 3.28 0.4
10 2.52 0.25

C 2 1.36 0.25
6 1.26 0.18

10 0.98 0.09
R 2 1.65 0.44

6 1.57 0.37
10 1.23 0.21

D 2 7.79 1.59
6 7.37 1.5

10 5.32 0.88

Note. The time lags are averaged from values below the viscous frequency
at 15rg.

we compute the time leads/lags between ṁ at different radii. The
strong coherence seen in Fig. 12 implies that the two mass fluxes
must be related by a phase shift (	�) that can be calculated from
the ratio of the imaginary and real parts of the cross-spectrum, CHS.
Time lags are then obtained using 	τ = 	�/(2πν).

In Fig. 13, we show the time lags of ṁ at r = 2 (blue solid curve),
6 (orange dashed curve), and 10 rg (green dash–dotted curve) with
respect to 15 rg. We do not show the lags where the coherence drops
below 0.1. We find in all simulations that fluctuations below the
viscous frequency at 15 rg (black dashed line) show positive, definite
lags when comparing small radii to larger radii, and for the most
part, the magnitudes of the lags increase for larger radial separations.
However, comparing the measured lags to the local accretion time-
scale (tacc = ∫ 15

r
V r (r, t) dr) for each radius (Table 2), we find they

are uniformly shorter, too short to correspond to the viscous time-
scale and more consistent with the local Keplerian time-scale.

We also find some evidence for negative lags at frequencies higher
than the viscous frequency. Negative lags are also present in the
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Variability in GRMHD simulations 3819

Figure 12. Radial coherence measured with respect to the inner radius. The white dash–dotted curve represents the Keplerian frequency and the black dashed
curve represents the viscous frequency below which strong coherence is maintained.

thin-disc model of Mushtukov et al. (2018, see fig. 9b of their
paper), where they are explained as high-frequency variability from
the inner disc affecting variability at larger radii, due to outward
propagating waves; in contrast, inward-propagating high-frequency
fluctuations from large radii are damped before they reach the
inner disc, according to the model. The picture from our thick-
disc simulations is less clear, however, as we only see negative lags
in some of the simulations. In principle, in regions of backflow
(which are present in simulations A and C), mass accretion rate
fluctuations may also be simply transmitted outwards by the fluid
moving away from the black hole.

One issue with Fig. 13 is that for frequencies below the viscous
one we do not find a well-defined frequency dependence in the
time lags. In our analysis, the time lags simply correspond to the
propagation times between 15 rg and the inner radii, which are
independent of the Fourier frequency. It could be that the dissipative
processes that convert ṁ into luminosity in real discs are selective to
certain frequencies (perhaps set by the local dissipation time-scale).
This could potentially be the source of the frequency dependence

observed in time lags measured from actual light curves. Going
by this argument, ṁ may not be a good proxy for luminosity when
studying timing properties that involve dissipative processes. Propa-
gating fluctuation models (Kotov et al. 2001; Arévalo & Uttley 2006;
Mahmoud & Done 2018a) get around this problem and recover
frequency-dependent time lags by weighting the propagation time
of the fluctuations by an emissivity profile that accounts for the
conversion of mass accretion rate into luminosity. We will perform
a similar procedure in Section 5.

4.4 The rms–flux relationship

Observed light curves for several black hole binaries and AGNs
display a linear relationship between the rms and the mean of
the flux (Uttley & McHardy 2001), indicating that the brighter
the source, the more variable it is. This linear rms–flux relation is
considered to be a more important and fundamental characteristic of
X-ray variability than power spectra for two main reasons: (a) This
relationship is observed during all spectral states of BHXRBs, while
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3820 D. A. Bollimpalli et al.

Figure 13. Time lags of the ṁ fluctuations for radii 2, 6, and 10 rg with respect to 15 rg for all five simulations. The dashed line represents the viscous
frequency at 15 rg. Lags with coherence less than 0.1 are omitted.

the PSD shape evolves during these spectral transitions (Gleissner
et al. 2004); and (b) PSD alone cannot distinguish between different
variability models, while the rms–flux relation can.

Even a casual examination of Fig. 1 reveals that the amplitude
of ṁ variability in all our simulations increases and decreases in
proportion to the magnitude of ṁ, consistent with an rms–mass flux
relationship. To test this formally, we compute the rms–mean flux
relationship for ṁ at the ISCO, (which is 6 rg for all simulations
except simulation D, which has its ISCO at 4.24 rg). The usual way
to compute the rms–flux relation is to divide the ṁ data into a certain
number of bins, and then compute the mean and absolute rms of ṁ

in each bin, which can then be plotted to get the relationship. This

method obviously does not discriminate between the propagating
fluctuations assumed in the model and possible non-dissipative,
high-frequency fluctuations. One way we could filter out the non-
dissipative fluctuations while computing the rms–mean relationship
is to compute the rms using power spectra. Since we compute the
root-mean square normalized power spectra, one can obtain the rms
by simply integrating the power over the desired frequency range
and taking the square root of it. Our radial coherence plots and time
lag plots strongly suggest that below the local viscous frequency,
dissipative fluctuations propagate inwards, which sets the upper
limit on the relevant frequency range. Following a procedure similar
to Uttley & McHardy (2001), we divide the ṁ data into a certain
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Variability in GRMHD simulations 3821

Figure 14. rms–mean relation computed for ṁ at the ISCO for all five simulations. Fits using equation (5) are provided for each case.

number of bins and for each bin we compute its periodogram, as
described in Section 4.1, except that now we do not average the
periodograms obtained over all the segments, but we do average
the periodograms over each logarithmically spaced frequency bin
to obtain the (rms/mean)2 power spectra. Next, we multiply the
spectrum by the squared, mean value of ṁ in that bin and integrate
over all the frequencies below the viscous frequency. Finally, we
take the square root of the result to recover the rms value. We repeat
this procedure for each bin and then plot the results in Fig. 14. For all
simulations except D, we use the same binning as for their radius-
frequency power spectra, i.e. segments of length 0.13 (M/M�) s
for simulations A, B, and C, and 0.11 (M/M�) s for simulation R.
Since we need more than two points to look for a trend, we consider
smaller segments of length 0.06 (M/M�) s for simulation D. Data

from each simulation are fit with the following linear function using
a least-squares method (Uttley & McHardy 2001):

σrms = k〈ṁ〉 + C. (5)

The resulting relations along with their least-squares fits are reported
in Fig. 14.

Simulations A, B, and R, seem to show strong linear rms–mass
flux relations, as observed in nature. However the slopes are smaller
than what is typically observed in BHXRBs. For Cygnus X-1, for
example, the observed slope in the low/hard state is close to 0.3, and
only decreases to around ∼0.16 in the high/soft state (Gleissner et al.
2004). Simulation D exhibits the highest slope at ≈0.4 (but perhaps,
this is not reliable as it is anchored by a single low-frequency point),
followed by simulations B and R with slopes at ≈0.2. Simulations A
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3822 D. A. Bollimpalli et al.

Figure 15. Distribution of ṁ for simulations A, B, C, and R for different time segments during which ṁ is reasonably stationary. The best fits of normal and
lognormal distributions are shown in red dashed and blue solid curves, respectively.

and C appear to show linear rms–ṁ relations, although their slopes
are quite small. For simulation A, this could be the result of the
secular decline in ṁ. For simulation C, this could possibly be due
to the initial rise followed by a decline in ṁ. We note that upon
using the corrected ṁcor curves, the rms–ṁ relation is actually more
scattered, possibly due to residuals between the actual decay and
the exponential fit.

4.5 Lognormal distribution

Another signature of an underlying non-linear variability process is
a lognormal distribution of the observed flux (Uttley et al. 2005). The
presence of a lognormal distribution indicates that the variability
is caused by a multiplicative process, which here happens to be
the coupling between fluctuations at different radii. Before testing
our distributions of ṁ for lognormality, it is important to note
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Variability in GRMHD simulations 3823

Table 3. Parameters for the normal and lognormal fits to the mass flux histograms, corresponding to the plots in Fig. 15.

Simulation Normal Lognormal

μ σ χ2/d.o.f. μ σ τ χ2/d.o.f.

A 0.57 0.06 252.4/13 − 2.44 0.58 0.47 23.8/12
0.09 0.005 182.5/14 − 4.0 0.28 0.07 14.7/13
0.03 0.002 609.4/17 − 5.0 0.30 0.03 13.8/16

B 0.46 0.13 277.8/16 − 1.25 0.41 0.15 16.0/15
0.39 0.08 71.8/16 − 1.16 0.24 0.07 28.1/15
0.2 0.05 86.1/16 − 2.11 0.38 0.07 32.1/15

C 0.49 0.02 11./13 − 0.38 0.03 − 0.2 11.1/12
R 0.18 0.04 1459.1/38 − 2.29 0.36 0.07 217.0/37

0.11 0.02 1257.4/42 − 2.1 0.2 − 0.02 278.2/41
0.05 0.02 1726.1/42 − 3.38 0.42 0.01 216.8/41

that the phenomenological models used to explain the lognormal
distribution of flux assume that the light curve is at least weakly
stationary, i.e. the mean and variance do not change significantly
within the time window of interest, while the higher ‘moments’
may change. As we noted in earlier sections, ṁ, for most of
our simulations, undergoes a secular decline, implying it is not
stationary over the period we wish to analyse. For this reason, we
compute the distributions of ṁ at the horizon only for data segments
during which ṁ is reasonably stationary6 as shown in Fig. 15. In
Appendix B, we show what the distributions look like if the entire
simulation duration is considered.

In Fig. 15, in the top row of each panel, we show the ṁ

segments used for each simulation. Below that, we show the
resulting histograms, fitted with both normal (red dashed curve)
and lognormal (blue solid curve) distributions. The lognormal fit is
made using

f (x; μ, σ, τ ) = 1√
2πσ (x − τ )

exp

{
−
[
log(x − τ ) − μ

]2

2σ 2

}
, (6)

with τ as an offset parameter. Best-fitting parameters for these
distributions are provided in Table 3.

Although simulation A shows significant decline in ṁ, there are
sufficiently long time segments during which ṁ is stationary enough
to reasonably expect a well-defined distribution. We found that,
indeed, the ṁ distributions in these segments are statistically well
fit by a lognormal distribution, with χ2/d.o.f. = 1.98, 1.13, and 0.86.
This is not true for the entire simulation data (see Fig. B1).

Similar to simulation A, the shorter time segments of simulation B
show statistically significant lognormal distributions, with χ2/d.o.f.
= 1.10, 1.87, and 2.14. Even though, in this case, the secular
decline is not very steep, the entire simulation data are still not
well fit by a lognormal distribution (see Table B1). None of the
data segments give an acceptable fit for a Gaussian distribution (see
Table 3).

In the case of simulation C, the steady increase in ṁ initially,
followed by its gradual decline, makes it hard to find a reasonably
long time segment in which ṁ is stationary. In Fig. 15, we show
a segment chosen towards the end of the simulation, where ṁ

is nearly stationary. In contrast to the previous results, we find
this distribution to be well fitted by either a normal or lognormal
distribution.

6We select these segments by ‘eye’, so the results may not be representative
of the statistical results of the full data.

For different time segments in simulation R, we find that both
visibly and based on 	χ2 values, a lognormal distribution fits better
than a normal one. However, the obtained χ2/d.o.f. for the lognormal
fits are not statistically acceptable. A similar conclusion is reached
when the entire duration is considered (see Table B1).

Simulation D does not exhibit as significant a decline as the other
simulations, so we show its entire distribution of ṁ in Fig. B1,
along with the other simulations. This simulation is well fitted by a
lognormal distribution with χ2/d.o.f. = 1.12.

5 C OMPARI SON W I TH OBSERVATI ONS

One must take care when comparing the results of these simulations
to light curves, as of course observed light curves are not a
result of just the mass accretion rate profiles present in the flow,
but a product of the ṁ time series with their associated spectral
emission components. Indeed, the mass accretion rate behaviour
at a given radius may be effectively invisible to observers if there
is no corresponding emission mechanism at that location, or the
variability at a given radius may be greatly amplified in observations
if the relevant emission mechanism at that radius happens to
dominate the observed energy band. Drawing direct analogies to
observed light curves is, therefore, risky, but we can begin to draw
some qualitative comparisons nevertheless.

The power spectral profile exhibited by simulations A and R,
in particular (Figs 5 and 9), show many interesting points of
overlap with observation. As in these simulations, an abundance
of power over a broad frequency range with a break at high-
frequencies is commonly observed in X-ray binary light curves at
low accretion rates (e.g. Gierlinski et al. 1997; Axelsson 2008).
This high-frequency break has generally been attributed to the
viscous frequency at the inner edge of the accretion flow, although
interference effects may lower the actual frequency (Ingram & Done
2011). In this picture, it would be strange then for the power from
2, 10, and 20 rg to have very similar break frequencies. However,
we note that observations of light curves in different energy bands
from a given source (Wilkinson & Uttley 2009; De Marco et al.
2015) exhibit high-frequency breaks in the same range, often with
no apparent correlation with band centroid energy consistent with
our simulation results.

The presence of inter-annular time lags also represents an excel-
lent bridge between simulations and observations. The model for
how inter-band time lags arise in observed accretion flows requires
that fluctuations generated in the outer disc first liberate energy
there, before propagating inwards to modulate emission at smaller
radii and produce the observed lag (Lyubarskii 1997). For a typical
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Figure 16. Power spectra of simulation R for hard and soft energy bands,
overlayed with the observational data of Cygnus X-1 in the hard state, taken
from Revnivtsev, Gilfanov & Churazov (2000) (RXTE ObsID P30157).
Here, we assume MCyg X-1 = 15 M�.

10-M� BH, Fig. 13 and Table 2 indicate lags of the order of 1–
10 ms, which are comparable to the lags observed between low-
and high-energy X-ray bands in many sources in the hard state (De
Marco et al. 2017; Mahmoud & Done 2018b).

One aspect missing from the GRMHD results is the power-law
decay in time lag with frequency commonly seen in observations. In
our simulations, lags are simply explained by the propagation time
from one radius to another and therefore are frequency-independent.
However, the dissipative processes that convert ṁ into luminosity
could potentially introduce some frequency dependence in the lags.
Often in models, these dissipative processes are well captured by
radially dependent emissivity profiles (see for example Ingram &
Done 2011; Ingram & van der Klis 2013). Here we follow a similar
procedure and compute the emissivity-weighted flux observed in a
particular energy band as

f (t) =
rout∑

r=rH

ε(r) ṁ(r, t) , (7)

where we take the emissivity profile ε(r) = (dr/r) r2−γe , and γ e is
the emissivity index, which is a free parameter. The higher energy
rout = 25 rg band is expected to have a steeper emissivity profile
compared to the soft-energy band; therefore, we take γ e = 5.5 and
2.3 for the hard and soft energy bands, respectively. Fig. 16 shows
the power spectra of the thus-obtained light curves in the hard and
soft energy bands for simulation R. Within the measurable range,
the simulation hard band power spectrum is consistent with the
power seen in, e.g. the hard states of Cygnus X-1 (Revnivtsev et al.
2000). Note that, due to the limited duration of these simulations,
our power spectra can only go down to ν ∼ 10 (M�/M) Hz. This
means we cannot probe the range where one typically sees what is
called the low-frequency break, ν ∼ 0.1 to 1 (M�/M) Hz.

We can also use our synthetic light curves to measure the time
lags between the hard and soft bands. Results for simulation R are
shown in Fig. 17. Unlike the lags measured from coherent ṁ fluc-
tuations between any two radii, which are frequency-independent
(see Fig. 13), these lags vary with the frequency (e.g. declining
monotonically, within error, between 5 and 100 Hz in Fig. 17) and
match well with the lag spectra between different energy bands for
Cygnus X-1 in the hard spectral state (Nowak et al. 1999; Poutanen
2001). This simple exercise indicates that dissipative processes

Figure 17. Lag spectrum of hard band versus soft band for simulation R,
compared with the observed lags in low/hard state of Cygnus X-1 (Nowak
et al. 1999; Poutanen 2001). Here, we assume MCyg X-1 = 15 M�.

could play a vital role in modulating the underlying variability
in ṁ, as it is imprinted on the light curve. GRMHD simulations
that include radiative processes will be needed to explore this idea
further.

Taken together, the presence of inter-annular time lags of mag-
nitude matching the observations, the presence of high-frequency
breaks in many of the power spectra, and the systematic trends
in the coherence represent an excellent starting point from which
observers may begin to interpret real light curves in terms of the
underlying ṁ behaviour.

6 C O N C L U S I O N S

In this work, we tested the hypothesis that the broad-band X-
ray variability observed in black hole X-ray binaries and AGN is
attributable to mass–flux variations in the accretion flow. We did this
through analysis of a suite of long-duration, GRMHD simulations.
We considered the mass accretion rate as a proxy for luminosity
to identify multiple variability features. We found that, despite the
differences in the initial set-ups and outcomes of the simulations,
each one showed evidence for inward propagating fluctuations. Our
findings include the following:

(i) In general, the power spectra from these simulations have two
components: low-frequency power below the viscous frequency
and high frequency power above the Keplerian frequency, with the
exception of simulation C, which shows relatively less ṁ variability.

(ii) Simulations show evidence for power along and above the
Keplerian frequency curve. The presence of this power causes the
high frequency power at larger radii to dominate that at smaller
radii. While this is in contrast to X-ray observations, in which
higher energy bands exhibit more high-frequency power compared
to lower energy bands, the presence of the high frequencies only
above the Keplerian curve strongly suggests they are associated
with p modes, which are not likely to strongly modulate the light
curve. Perhaps, with proper treatment of radiative processes (i.e.
radiative GRMHD simulations), we would be able to filter out the
non-dissipative, high-frequency fluctuations by obtaining the power
spectra directly from the luminosity.

(iii) The ṁ power spectra at a given radius exhibit strong
similarity with spectra at smaller radii below the local viscous
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frequency. This is in contrast to model assumptions that emission
at each radius peaks at the local viscous frequency.

(iv) All simulations show remarkable radial coherence below the
viscous frequency. This agrees well with how most models explain
the strong coherence between energy bands.

(v) All simulations display positive time lags below the viscous
frequency, when comparing the fluctuations of ṁ at smaller radii
with those at larger radii. This, together with the radial coherence,
strongly supports the presence of inward propagating fluctuations
in the accretion flow.

(vi) The time lags between highly coherent fluctuations of ṁ

between any two fixed radii are frequency-independent.
(vii) When they are measured between two synthetic energy

bands, generated using power-law emissivity profiles, the same ṁ

fluctuations yield frequency-dependent time lags, consistent with
X-ray observations.

(viii) All simulations show a linear rms–mean ṁ relation, al-
though the slopes obtained are smaller than typically observed from
linear rms–mean flux relations in BHXRBs.

(ix) All simulations, except R, show lognormal behaviour within
those time segments in which ṁ is approximately stationary. This
strongly supports the notion that the fluctuations arise from a
multiplicative, stochastic process.

In conclusion, this work is a promising step toward confirming
the propagating fluctuation model and connecting simulations with
observations.
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Done C., Gierliński M., Kubota A., 2007, A&AR, 15, 1
Fishbone L. G., Moncrief V., 1976, ApJ, 207, 962
Fragile P. C., Gillespie A., Monahan T., Rodriguez M., Anninos P., 2012,

ApJS, 201, 9
Fragile P. C., Olejar A., Anninos P., 2014, ApJ, 796, 22
Gammie C. F., McKinney J. C., Tóth G., 2003, ApJ, 589, 444
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APP ENDIX A : D ETAILS OF SIMULATION D

This simulation is performed using a spherical-polar grid with the
computational domain extending from 1.8 to 801.5 rg in the radial
direction. We set small cut-outs near the poles with θ ∈ [0.02π ,
0.98π ] to keep the time-step reasonable. In the azimuthal direction,
we simulate only a π /2 wedge. We use logarithmic spacing in the
radial direction of the form

x1 = 1 + ln

(
r

rH

)
. (A1)

In the polar direction, we chose θ of the form (McKinney 2006)

θ = x2 + 1

2
[1 − q] sin(2x2) , (A2)

where the parameter q (set to 0.5) determines the concentration of
grid zones near the equator. We set outflow boundary conditions
(copying scalar fields to ghost zones, while ensuring the velocity
component normal to the boundary points outward) at the inner and
outer edges of the domain in both the radial and poloidal directions.
We use periodic boundary conditions in the φ-direction.

We set the poloidal magnetic field by using a purely azimuthal
vector potential of the form

Aφ = S

(
ρ

ut
√−g

− 0.2ρmax

)2

sin

[
2 log

(
r

1.1rin

)]
, (A3)

where S = 1 if θ < π and S = −1 if θ > π ; ρmax is the maximum
density of the torus, located at rmax; rin is the inner edge of the torus;
and ut is the time component of the four-velocity.

The COSMOS++ code uses an explicit five-stage, strong-stability-
preserving Runge–Kutta time integration scheme (Spiteri & Ruuth
2002), set to third order. Conserved variables are updated at
each time-step using the high-resolution shock-capturing (HRSC)
method. The reconstruction of the primitive variables at different
spatial locations is done through piecewise parabolic method
(PPM) interpolation with a monotonized central limiter (Colella &
Woodward 1984). This is followed by the calculation of flux terms
at the zone faces using the Harten–Lax–van Leer (HLL) Riemann
solver. In order to maintain a divergence-free magnetic field during
the evolution, we use the staggered, constrained transport scheme
described in Fragile et al. (2012). For the primitive inversion step,
we primarily use the ‘2D’ solver from Noble et al. (2006), with a
5D numerical inversion scheme as a backup. In cases where both
solvers fail, we use the entropy instead of the conserved energy to
recover the primitive variables.

Figure A1. Evolution of mass accretion rate (arbitrary units; top panel),
magnetic flux (second panel), energy flux (third panel), and angular
momentum flux (bottom panel) through the horizon for simulation D.

Since this simulation has not been described elsewhere in the
literature, we report some basic diagnostics here. First, in Fig. A1,
we plot various fluxes through the event horizon. We define the
magnetic flux (�B), energy flux (Ė), and angular momentum flux
(L̇) as

�B = 1

2

∮
|Br |√−gdθdφ , (A4)

Ė = −
∮

T r
t

√−gdθdφ , (A5)

L̇ =
∮

T r
φ

√−gdθdφ , (A6)

where Br is the radial component of the primitive magnetic field,
which is already scaled by the

√
4π factor. T r

t and T r
φ are compo-

nents of the stress energy tensor (see equation 4 in Fragile et al.
2012). The modest value of the magnetization parameter, �B/

√
Ṁ ,

throughout the simulation indicates that we maintain a SANE
(standard and normal evolution) flow, even though we initiate the
simulation with a single poloidal field loop. These fluxes generally
agree well with the other simulations, especially R (Narayan et al.
2012). The one exception is that the magnetic flux through the
horizon is somewhat lower than the others, likely due to the choice
of boundary conditions in COSMOS++ (see, e.g. Porth et al. 2019).

In Fig. A2, we show the azimuthally and time-averaged velocity
vectors superimposed on the averaged density. Time averaging is
performed for the last 10 000 GM/c3 period of the simulation.
The white dashed line represents the time average of the density
scale height. The resulting accretion flow is clearly geometrically
thick, with dominant inflow of matter at all latitudes within ∼ 20 rg

unlike simulations A, B, and C that exhibit outflows/convective
motions. Beyond this radius, there are signatures of outflows at
higher latitudes. Small convective loops can be noticed in some
locations. In general, these results are similar to simulation R.
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Figure A2. Azimuthally and time-averaged velocity vectors with the
background colour representing the similarly averaged density. The white
dashed line indicates the time average of the density scale height. Time
averaging is done over the last 10 000 GM/c3 of the simulation.

A P P E N D I X B: LO G N O R M A L D I S T R I BU T I O N
F O R FU L L ṁ

In Section 4.5, we analysed histograms of ṁ selected for periods
when the mean accretion rate was reasonably constant. Here we
repeat the analysis for the full distribution of ṁ for every simulation,
excluding the discarded initial transient data (see Fig. 1). Fig. B1
shows the resulting histograms. In the top panels, we show the
distribution for the original ṁ data, with the best fits for normal and
lognormal distributions shown in red dashed and blue solid curves,
respectively. We find that, except for simulation D, none of the fits
have a statistically significant χ2/d.o.f. value (see Table B1). To test
whether subtracting off a simple exponential fit to the raw ṁ could
improve the fit, we also present histograms of ṁcor in the bottom
panel of Fig. B1. Best-fitting parameters for all the distributions are
provided in Table B1, along with the respective χ2/d.o.f. values for
the fits. Although the fits for ṁcor do show smaller χ2/d.o.f. values,
they are still not statistically acceptable. We re-emphasize though
that Fig. 15 and Table 3 show that whenever ṁ oscillates around
a time-steady mean, the fluctuations are well fit by a lognormal
distribution.

Figure B1. Histograms of the normalized accretion rate (ṁ) at the horizon (rH) for all five simulations. Top panels: histograms for the uncorrected ṁ. Bottom
panels: same for the corrected accretion rates, ṁcor. Best-fitting normal and lognormal distributions are shown in red dashed and blue solid curves, respectively.
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Table B1. Parameters for the normal and lognormal fits to the mass flux histograms in Fig. B1.

Simulation Normal Lognormal

μ σ χ2/d.o.f. μ σ τ χ2/d.o.f.

A ṁ 0.21 0.22 9880.4/30 − 2.64 1.57 0.03 2067.1/29
ṁcor 1.03 0.22 117.8/33 1.32 0.06 − 2.72 127.3/32

B ṁ 0.32 0.14 1632.3/25 − 1.19 0.43 − 0.01 216.2/24
ṁcor 1.04 0.30 281.5/20 − 0.22 0.35 0.19 150.3/19

C ṁ 0.54 0.11 509.1/31 0.24 0.08 − 0.74 368.1/30
ṁcor 1.02 0.20 491.4/31 0.93 0.08 − 1.51 351.7/30

R ṁ 0.13 0.12 532 778 977.8/122 − 2.77 1.07 0.02 1288.5/121
ṁcor 1.05 0.36 729 349.7/113 0.02 0.31 − 0.02 6454.4/112

D ṁ 0.27 0.14 2353.8/18 − 1.4 0.52 − 0.01 19.1/17
ṁcor 1.11 0.55 792.8/21 − 0.27 0.57 0.21 25.8/20

This paper has been typeset from a TEX/LATEX file prepared by the author.
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