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Abstract
Graph embeddings have become a key and widely used technique within the field of graph mining, proving to be successful 
across a broad range of domains including social, citation, transportation and biological. Unsupervised graph embedding 
techniques aim to automatically create a low-dimensional representation of a given graph, which captures key structural 
elements in the resulting embedding space. However, to date, there has been little work exploring exactly which topological 
structures are being learned in the embeddings, which could be a possible way to bring interpretability to the process. In this 
paper, we investigate if graph embeddings are approximating something analogous to traditional vertex-level graph features. 
If such a relationship can be found, it could be used to provide a theoretical insight into how graph embedding approaches 
function. We perform this investigation by predicting known topological features, using supervised and unsupervised meth-
ods, directly from the embedding space. If a mapping between the embeddings and topological features can be found, then 
we argue that the structural information encapsulated by the features is represented in the embedding space. To explore this, 
we present extensive experimental evaluation with five state-of-the-art unsupervised graph embedding techniques, across 
a range of empirical graph datasets, measuring a selection of topological features. We demonstrate that several topological 
features are indeed being approximated in the embedding space, allowing key insight into how graph embeddings create 
good representations.

Keywords Graph embeddings · Neural networks · Representation learning

1 Introduction

Representing the complex and inherent links and relation-
ships between and within datasets in the form of a graph is a 
widely performed practice across many scientific disciplines 
[1]. One reason for the popularity is that the structure or 
topology of the resulting graph can reveal important and 

unique insights into the data it represents. Recently, ana-
lysing and making predictions about graph using machine 
learning has shown significant advances in a range of com-
monly performed tasks over traditional approaches [2]. Such 
tasks include predicting the formation of new edges within 
the graph and the classification of vertices [3]. However, 
graphs are inherently complex structures and do not natu-
rally lend themselves as input into existing machine learning 
methods, most of which operate on vectors of real numbers.

Graph embeddings1 are a family of machine learning 
models which learn latent representations for the vertices 
within a graph. The goal of all graph embedding techniques 
is broadly the same: to transform a complex graph, with no 
inherent representation in vector space, into a low-dimen-
sional vector (often in the range of 50–300) representation 
of the graph or its elements. More concretely, the objective 
of a graph embedding technique is to learn some function 

 * Stephen Bonner 
 s.a.r.bonner@durham.ac.uk

 Boguslaw Obara 
 boguslaw.obara@durham.ac.uk

1 Department of Computer Science, Durham University, 
Durham, UK

2 InlecomSystems, Brussels, Belgium
3 School of Computer Science and Engineering, SUSTech, 

Shenzhen, China
4 School of Computing, Newcastle University, Newcastle, UK

1 In this work, we focus on vertex representation learning 
approaches.

http://orcid.org/0000-0001-6008-358X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-0097-5&domain=pdf


270 S. Bonner et al.

1 3

f ∶ V → ℝ
d which is a mapping from the set of vertices V to 

a set of embeddings for the vertices, where d is the required 
dimensionality of the resulting embedding. This results in 
the mapping function f producing a matrix of dimensions 
|V| by d, i.e. an embedding of size d for each vertex in the 
graph. It should be noted that this mapping is intended to 
capture the latent structure from a graph by mapping similar 
vertices together in the embedding space. Many of the recent 
approaches are able to produce low-dimensional graph rep-
resentations without the need for labelled datasets. These 
representations can then be utilised as input to secondary 
supervised models for downstream prediction tasks, includ-
ing classification [4] or link prediction [5]. Thus, unsuper-
vised graph embeddings are becoming a key area of research 
as they act as a translation layer between the raw graph and 
some desired machine learning model.

However, to date, there has been little research performed 
into why graph embedding approaches have been so success-
ful. They all aim to capture as much topological information 
as possible during the embedding process, but how this is 
achieved, or even exactly what structure is being captured, 
is currently not known. In this work, we focus solely upon 
unsupervised graph embedding techniques as we want to 
explore what features the techniques learn from the topol-
ogy alone, without the requirement for labels. In previous 
work [6], we provided a framework which could be used to 
directly measure the ability of graph embeddings to capture 
a good representation of a graph’s topology. In this paper, we 
expand upon this work by attempting to provide insight into 
the graph embedding process itself. We attempt to explore 
if the known and mathematically understood range of topo-
logical features [1] is being approximated in the embedding 
space. To achieve this, we investigate if a mapping from the 
embedding space to a range of topological features is pos-
sible. We hypothesise that if such a mapping can be found, 
then the topological structure represented by that feature is 
thus approximately captured in the embedding space. Such a 
discovery could start to provide a theoretical framework for 
the use of graph embeddings, by experimentally demonstrat-
ing which topological structures are approximated to create 
the representations.

Our methodology employs a combination of supervised 
and unsupervised models to predict topological features 
directly from the embeddings. The features we are inves-
tigating first go through a pre-processing step to transform 
them into discrete classes to enable classification. We make 
the following contributions whilst exploring this area:

– We investigate if unsupervised graph embeddings are 
learning something analogous with traditional vertex-
level graph features. If this is the case, is there a par-
ticular type of feature which is being approximated most 
frequently?

– We empirically show, to the best of our knowledge for 
the first time, that several known topological features are 
present in graph embeddings. This can be used to help 
bring interpretability to the graph embedding process by 
detailing which graph features are key in creating high-
quality representations.

– We provide detailed experimental evidence, with 
five state-of-the-art unsupervised graph embedding 
approaches, across seven topological features and six 
empirical graph datasets to support our claims.

Reproducibility—we make all experiments performed in this 
paper reproducible by open-sourcing our code,2 reporting 
key model hyper-parameters and presenting results on public 
benchmark graph datasets.

In Sect. 2 we explore prior work. In Sect. 3 we detail 
our approach for providing an experimental methodology 
for assessing known topological features approximated by 
graph embeddings; Sect. 4 details the experiment set-up. In 
Sect. 5 we present our results, and in Sect. 6 we conclude 
this paper along with suggestions for further expansions of 
this work.

1.1  Notation

We adopt here the commonly used notation for represent-
ing a graph or network3 G = (V ,E) as an undirected graph 
which comprises a finite set of vertices (sometimes referred 
to as nodes) V and a finite set of edges E. The elements of 
E are an unordered tuple {u, v} of vertices u, v ∈ V  . Here G 
could be a graph-based representation of a social, citation 
or biological network [7]. The adjacency matrix � = (ai,j) 
for a graph is symmetric matrix of size |V| by |V|, where 
(ai,j ) is 1 if an edge is present between vertices i and j or 
0 otherwise.

2  Previous Work

This section explores the prior research regarding graph 
embedding techniques and previous approaches measur-
ing known features in embeddings. We first introduce the 
notation of graph embeddings, detail supervised and factor-
isation-based approaches, explore in detail state-of-the-art 
unsupervised approaches which will be used throughout the 
rest of the paper and finally review past attempts to provide 
interpretability to embedding approaches.

2 https ://githu b.com/sbonn er0/unsup ervis ed-graph -embed ding/.
3 To avoid confusion with neural networks we will use the term 
graph throughout the remainder of the paper without loss of general-
ity.

https://github.com/sbonner0/unsupervised-graph-embedding/
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2.1  Introduction to Graph Embeddings

The ability to automatically learn some descriptive numer-
ical-based representation for a given graph is an attractive 
goal and could provide a timely solution to some com-
mon problem within the field of graph mining. Traditional 
approaches have relied upon extracting features—such as 
various measures of a vertex’s centrality [8]—capturing the 
required information about a graph’s topology, which could 
then be used in some downstream prediction task [9–12]. 
However, such a feature extraction-based approach relies 
solely upon the handcrafted features being a good represen-
tation of the target graph. Often a user must use extensive 
domain knowledge to select the correct features for a given 
task, with a change in task often requiring the selection of 
new features [9].

Graph embedding models are a collection of machine 
learning techniques which attempt to learn key features 
from a graph’s topology automatically, in either a super-
vised or unsupervised manner, removing the often cumber-
some task of end-users manually selecting representative 
graph features [4]. This process, known as feature selection 
[13] in the machine learning literature, has clear disadvan-
tages as certain features may only be useful for a certain 
task. It could even negatively affect model performance if 
utilised in a task for which they are not well suited. Argu-
ably, many of the recent exciting advances seen in the field 
of deep learning have been driven by the removal of this 
feature selection process [5], instead of allowing models to 
learn the best data representations themselves [14]. For a 
selection of recent review papers covering the complete fam-
ily of graph embedding techniques, readers are referred to 
[15–18]. The work presented in this paper focuses on neural 
network-based approaches for graph embedding (as these 
have demonstrated superior performance compared with 
traditional approaches [2]).

The study of neural networks (NNs) is a field within 
machine learning inspired by the brain [14]. NNs model 
problems via the use of connected layers of artificial neu-
rons, where each network has an input layer, at least one hid-
den layer and an output layer. The activation of each neuron 
in a layer is given by a pre-specified function, with each neu-
ron taking a weighted sum of all the outputs of those neu-
rons which feed into it. These weights are learned through 
training examples which are fed through the network, with 
modifications made to the weights via back-propagation to 
increase the probability of the NN producing the desired 
result [14].

2.1.1  Supervised Approaches

Within the field of machine learning, approaches which are 
supervised are perhaps the most studied and understood 

[14]. In supervised learning, the datasets contain labels 
which help guide the model in the learning process. In the 
field of graph analysis, these labels are often present at the 
vertex level and contain, for example, the metadata of a user 
in a social network.

Perhaps the largest area of supervised graph embeddings 
is that of graph convolutional neural networks (GCNs) [19], 
both spectral [20, 21] and spatial [22] approaches. Such 
approaches pass a sliding window filter over a graph, in a 
manner analogous with convolutional neural networks from 
the computer vision field [14], but with the neighbourhood 
of a vertex replacing the sliding window. Current GCN 
approaches are supervised and thus require labels upon the 
vertices. This requirement has two significant disadvantages: 
Firstly, it limits the available graph data which can be used 
due to the requirement for labelled vertices. Secondly, it 
means that the resulting embeddings are specialised for one 
specific task and cannot be generalised for a different prob-
lem without costly retraining of the model for the new task.

2.1.2  Factorisation Approaches

Before the recent interest in learning graph embeddings via 
the use of neural networks, a variety of other approaches 
were explored. Often these approaches took the form of 
matrix factorisation, in a similar vein to classical dimen-
sionality reduction techniques such as principal competent 
analysis (PCA) [15, 23]. Such approaches first calculate the 
pairwise similarity between the vertices of a graph and then 
find a mapping to a lower-dimensional space such that the 
relationships observed in the higher dimensions are pre-
served. An early example of such an approach is that of 
the Laplacian eigenmaps, which attempts to directly fac-
torise the Laplacian matrix of a given graph [24]. Other 
approaches, often using the adjacency matrix, define the 
relationship in low-dimensional space between two verti-
ces in the graph as being determined by the dot-product of 
their corresponding embeddings. Such approaches include 
graph factorisation [25], GraGrep [26] and HOPE [27]. Such 
dimensionality reduction-based approaches are often quad-
ratic in complexity [17], and the predictive performance of 
the embeddings has largely been superseded by the recent 
neural network-based methods [2].

2.2  Unsupervised Stochastic Embeddings

DeepWalk [4] and Node2Vec [5] are the two main 
approaches for random walk-based embedding. Both of 
these approaches borrow key ideas from a technique enti-
tled Word2Vec [28] designed to embed words, taken from 
a sentence, into vector space. The Word2Vec model is able 
to learn an embedding for a word by using surrounding 
words within a sentence as targets for a single hidden layer 
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neural network model to predict. Due to the nature of this 
technique, words which co-occur together frequently in sen-
tences will have positions which are close within the embed-
ding space. The approach of using a target word to predict 
neighbouring words is entitled Skip-Gram and has been 
shown to be very effective for language modelling tasks [29].

2.2.1  DeepWalk

The key insight of DeepWalk is to use random walks upon 
the graph, starting from each vertex, as the direct replace-
ment for the sentences required by Word2Vec. A random 
walk can be defined as a traversal of the graph rooted at 
a vertex vt ∈ V  , where the next step in the walk is chosen 
uniformly at random from the vertices incident upon vt [30]; 
these walks are recorded as wt

0
,… ,wt

n
 (where t is the walk 

starting from vt of length n, and wt
i
∈ V  ), i.e. a sequence 

of the vertices visited along the random walk starting from 
vt = wt

0
 . DeepWalk is able to learn unsupervised representa-

tions of vertices by maximising the average log probability 
� over the set of vertices V:

where c is the size of the training context of vertex wt
n
.4

The basic form of Skip-Gram used by DeepWalk defines 
the conditional probability �(wt

i+j
|wt

i
) of observing a nearby 

vertex wt
i+j

 , given the vertex wt
i
 from the random walk t, can 

be defined via the softmax function over the dot-product 
between their features [4]:

where �wt
i
 and ��

wt
i+j

 are the hidden layer and output layer 

weights of the Skip-Gram neural network, respectively.

2.2.2  Node2Vec

Whilst DeepWalk uses a uniform random transition prob-
ability to move from a vertex to one of its neighbours, Node-
2Vec biases the random walks. This biasing introduces two 
user-controllable parameters which dictate how far from, or 
close to, the source vertex the walk progresses. This is done 
to capture either the vertex’s role in its local neighbourhood 
(homophily), or alternatively, its role in the global graph 

(1)
1

|V|

|V|∑

t=1

n∑

i=0

∑
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i
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i+j
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i
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exp (�
⊺
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i

�
�

wt
i+j

)

∑�V�
t=1

exp (�
⊺

wt
i

��
vt
)
,

structure (structural equivalence) [5]. Changing the random 
walk means that Node2Vec has a higher accuracy over Deep-
Walk for a selection of vertex classification problems [5].

2.3  Unsupervised Hyperbolic Embeddings

Recently, a new family of graph embedding approaches has 
been introduced, which embed vertices into hyperbolic, 
rather than Euclidean space [31, 32]. Hyperbolic space has 
long been used to analyse graphs which exhibit high levels of 
hierarchical or community structure [33], but it also has prop-
erties which could make it an interesting space for embed-
dings [32]. Hyperbolic space can be considered ‘larger’ than 
Euclidean with the same number of dimensions; as the space 
is curved, its total area grows exponentially with the radius 
[32]. For graph embeddings, this key property means that one 
effectively has a much larger range of possible points into 
which the vertices can be embedded. This property allows 
for closely correlated vertices to be embedded close together, 
whilst also maintaining more distance between disparate ver-
tices, resulting in an embedding which has the potential to 
capture more of the latent community structure of a graph.

The hyperbolic approach we focus on was introduced by 
Chamberlain [32] and uses the Poincaré disc model of 2D 
hyperbolic space [34]. In their model, the authors use polar 
coordinates x = (r, �) , where r ∈ [0, 1] and � ∈ [0, 2�] to 
describe a point in space for each vertex v in the Poincaré 
disc, which allows for the technique to be significantly sim-
plified [32]. Similar to DeepWalk, an inner-product is used 
to define the similarity between two points within the space. 
The inner-product of two vectors in a Poincaré disc can be 
defined as follows [32]:

where x = (rx, �x) and y = (ry, �y) are the two input vectors 
representing two vertices and arctanh is the inverse hyper-
bolic tangent function [32].

To create their hyperbolic graph embedding, the authors 
use the softmax function of Eq. 2, common with DeepWalk 
and others, but importantly replacing the Euclidean inner-
products with the hyperbolic inner-products of Eq. 3. Aside 
from this, hyperbolic approaches share many similarities with 
the stochastic approaches with regard to their input data and 
training procedure. For example, the hyperbolic approaches 
are still trained upon pairs of vertex IDs, taken from sequences 
of vertices generated via random walks on graphs.

2.4  Unsupervised Auto‑encoder‑Based Approaches

There is an alternative set of approaches for graph embed-
dings which do not rely upon random walks. Instead of 

(3)< x, y >= ||x||||y|| cos(𝜃x − 𝜃y),

(4)= 4 arctanh rx arctanh ry cos(�x − �y),

4 Note if i + j < 0 then we skip these from the sum as we are past the 
start of the current walk.
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adapting a technique based upon capturing the meaning of 
language, such models are designed specifically for cre-
ating graph embeddings using deep learning [14]—deep 
auto-encoders [35]. Auto-encoders are an unsupervised 
neural network, where the goal is to accurately reconstruct 
the input data through explicit encoder and decoder stages 
[36]. Two such approaches are structural deep network 
embedding (SDNE) [37] and deep neural networks for 
learning graph representations (DNGR) [38].

The authors of these approaches argue that a deep neu-
ral network, versus the shallow Skip-Gram model used 
by both DeepWalk and Node2Vec, is much more capable 
of capturing the complex structure of graphs. In addition, 
the authors argue that for a successful embedding, it must 
capture both the first- and second-order proximity of ver-
tices. Here the first-order proximity measures the similar-
ity of the vertices which are directly incident upon one 
another, whereas the second-order proximity measures the 
similarity of vertices neighbourhoods. To capture both of 
these elements SDNE has a dual-objective loss function 
for the model to optimise. The input data to SDNE are 
the adjacency matrix � , where each row a represents the 
neighbourhood of a vertex.

The objective function for SDNE comprises two distinct 
terms: The first term captures the second-order proximity 
of the vertices neighbourhood, whilst the second captures 
the first-order proximity of the vertices by iterating over 
the set of edges E:

where qi and q′
i
 are the input and reconstructed representa-

tion of the input, ⊙ is the element-wise Hadamard product, 
and bi is a scaling factor to penalise the technique if it pre-
dicts zero too frequently, w(k) is the weight of the kth layer 
in the auto-encoder technique, and � is a user-controllable 
parameter defining the importance of the second term in the 
final loss score [37].

To initialise the weights of the deep auto-encoder used 
for this approach, an additional neural network must be 
trained to find a good starting region for the parameters. 
This pre-training neural network is called a deep belief 
network and is widely used within the literature to form 
the initialisation step of deeper models [39]. However, this 
pre-training step is not required by either the stochastic or 
hyperbolic approaches as random initialisation is used for 
the weights and adds significant complexity.

In comparison with SDNE, instead of relying solely 
upon the raw adjacency matrix as input, DNGR creates a 
new denser representation to be passed to an auto-encoder 
[38]. The authors have the model reconstruct the pointwise 
mutual information matrix (PPMI) of the input graph, which 

(5)

LSDNE =

|V|∑

i=1

||(q�
i
− qi)⊙ bi||22 + 𝛼

|E|∑

u,v=1

au,v||(w(k)
u

− w(k)
v
)||2

2
,

captures vertex co-occurrence information in a sequence 
created via a random surfer model. Additionally, instead 
of passing this to a traditional auto-encoder, a stacked de-
noising auto-encoder is used with the goal of creating a more 
robust vertex representation. This stacked de-noising auto-
encoder adds a small quantity of noise to the input data, 
which the model must learn to disregard during the training 
process.

2.5  Observing Features Preserved in Embeddings

2.5.1  Graph Embeddings Features

To date, there has been little research performed exploring 
a theoretical basis as to why graph embeddings are able to 
demonstrate such good performance in graph analytic tasks, 
or if something approximating traditional graph features 
are being captured during the embeddings process. Goyal 
and Ferrar [2] presented an experimental review paper on a 
selection of graph embedding techniques. The authors use a 
range of tasks including vertex classification, link prediction 
and visualisation to measure the quality of the embeddings. 
However, the authors do not provide any theoretical basis 
as to why the embedding approaches they test are success-
ful, or if known features are present in the embeddings. In 
addition, the authors do not consider embeddings taken from 
promising unsupervised techniques, such as the family of 
hyperbolic approaches, nor do they explore performance 
across imbalanced classes during the classification.

Recent work has speculated on the use of a graph’s topo-
logical features as a way to improve the quality of vertex 
embeddings by incorporating them into a supervised GCN-
based model [40]. They show how aggregating a vertex fea-
ture—even one as simple as its degree—can improve the 
performance of their model. Further, they present theoreti-
cal analysis to validate that their approach is able to learn 
the number of triangles a vertex is part of, arguing that this 
demonstrates the model is able to learn topological structure. 
We take inspiration from this work, but consider unsuper-
vised approaches as well as exploring if richer and more 
complicated topological features are being captured in the 
embedding process. In a similar vein, an approach for gener-
ating supervised graph embeddings using heat-kernel-based 
methods is validated by visualizing if a selection of topologi-
cal features is present in a two-dimensional projection of the 
embedding space [41].

Research has investigated the use of a graph’s topologi-
cal features as a way of validating the accuracy of a neu-
ral network-based graph generative model [42]. With the 
presented model, the authors aim to generate entirely new 
graph datasets which mimic the topological structure of a 
set of target graphs—a common task within the graph min-
ing community [43]. To validate the quality of their model, 
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they investigate if a new graph created from their generative 
procedure has a similar set of topological features to the 
original graph.

Perhaps most closely related to our present research is 
work exploring the use of random walk-based graph embed-
dings as an approximation for more complex vertex-level 
centrality measures on social network graphs [44]. The 
authors argue that graph embeddings could be used as a 
replacement for centrality measures as they potentially have 
a lower computational complexity. The work explores the 
use of linear regression to try to directly predict four cen-
trality measures from the vertices of three graph datasets, 
with limited success [44]. Our own work differs significantly 
as we attempt to provide insight into what exactly graph 
embeddings are learning with a view to allow for greater 
interpretability, explore a wider range of embeddings 
approaches, use datasets from a wider range of domains, 
explore more topological features, use classification rather 
than regression as the basis for the analysis and address the 
inherent unbalanced nature of most graph datasets.

2.5.2  Feature Learning in Other Domains

A large quantity of the successful unsupervised graph 
embedding approaches have adapted models originally 
designed for language modelling [4, 5]. Some recent 
research investigated how best to evaluate a variety of unsu-
pervised approaches for embedding words into vectors [45]. 
They choose a variety of natural language processing (NLP) 
tasks, which capture some known and understood aspects 
of the structure of language, and investigate how well the 
chosen embedding models perform for these tasks. They 
conclude that no single word embedding model performs the 
best across all the tasks they investigated, suggesting there is 
not a single optimal vector representation for a word. What 
features are used to help word embeddings achieve compo-
sitionality, constructing the meaning of an entire sentence 
from the component words, has also been explored [46]. 
Further research has investigated the use of word embed-
dings to create representations for the entire sentence using 
word features [47]. The work suggests that word features 
learned by the embeddings for natural language inference 
can be transferred to other tasks in NLP.

Outside of NLP, there has been work in the field of com-
puter vision (CV) investigating what known features, already 
commonly used for image representation, are captured by 
deep convolutional neural network—potentially being used 
to explain how they work. For example, it has been shown 
that convolutional networks, when trained for image clas-
sification, often detect the presence of edges in the images 
[48]. The same work also shows how the complexity of 
the detected edges increases as the depth of the network 
increases.

In this present work, we take inspiration from these 
approaches and attempt to provide insight and a potential 
theoretical basis for the use of graph embeddings by explor-
ing which known graph features can be reconstructed from 
the embedding space.

3  Semantic Content of Graph Embeddings

Despite extensive prior work in unsupervised graph embed-
ding highlighting how they perform well for the tasks for 
which they were proposed (such as vertex classification and 
link prediction [2]), there has been little work in exploring 
why these approaches are successful. This could allow for 
an increased level of interpretability to graph embeddings. 
Inspired by recent work in computer vision and natural lan-
guage processing which examine if traditional features (the 
edges detected in images for example) are captured by deep 
models, we explore the following research question:

Problem Statement Do unsupervised graph embedding 
techniques capture something similar to traditional topologi-
cal features as part of the embedding process?

Topological features are one known and mathematically 
understood way to accurately identify graphs and vertices [9, 
10]. We hypothesise that if graph embeddings are shown to 
be learning approximations of existing features, this could 
begin to provide a theoretical basis for the interpretability of 
graph embeddings. This would suggest that graph embed-
dings are automatically learning detailed and known graph 
structures in order to create the representations. This could 
explain how they have been so successful in a variety of 
graph mining tasks. Effectively, the graph embedding tech-
niques would be acting as an automated way of learning 
the most representative topological feature(s) for a given 
objective function.

If graph embeddings are shown to be learning topological 
features, then other interesting research questions arise. For 
example, do competing embedding approaches learn differ-
ent topological structures, do different graph datasets each 
require different features to be approximated in order to cre-
ate a good representation, what is the structural complexity 
of the features approximated by the embeddings, or even are 
the embeddings capable of approximating multiple features 
simultaneously?

In order to explore these questions, we attempt to pre-
dict a selection of topological features directly from graph 
embeddings computed from a range of state-of-the-art 
approaches across a series of empirical datasets. We sug-
gest that if a second mapping function f ∶ ℝ

d
→ � can 

be found which accurately maps the embedding space to 
a given topological feature � , then this is strong evidence 
that something approximating the structural information 
represented by � is indeed present in the embedding space. 
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Here the mapping function could take the form of a linear 
regression, but for this work, we investigate a range of clas-
sification algorithms—this is explored more in Sect. 3.3. We 
assess a range of known topological features, from simple 
to complex, to gain a better understanding of the expressive 
capabilities of the embedding techniques.

3.1  Predicting Topological Features

Numerous topological features have been identified in the 
literature, measuring various aspects of a graph’s topology, 
at the vertex, edge and graph levels [9]. As we are focus-
ing our work here upon methods for creating vertex embed-
ding, we will focus on features which are measured at the 
vertex level of a given graph. We have selected a range of 
vertex-level features from the graph mining literature, which 
capture information about a vertex’s local and global role 
within a graph [5]. This selection of features ranges from 
ones which are simple to compute from vertices directly 
adjacent to each other, to more complex features which can 
require information from many hops5 further along with the 
graph. This will allow us to explore if embedding models 
learn complex topological features, or are they able to learn 
good representations of only simple features. The topo-
logical vertex-level features we are predicting are detailed 
below, listed approximately by their complexity:

These features are defined in terms of a graph G = (V ,E) 
with its corresponding adjacency matrix � , where |V| is the 
total number of vertices in the graph and |E| the total num-
ber of edges. For each vertex v ∈ V  , we also define d(v) 
to be the total number of neighbours for v, d+(v) to be the 
number of connections v has to other vertices, � −(v) to be 
the subset of vertices in V with edges to v, and �st(v) is the 
total number of shortest paths from vertices s and t which 
also pass through v.

Total degree DG(v) = d(v) : the total number of edges 
from v to other vertices.

Degree centrality DC(v) = 1

|V|d(v) : the degree for the ver-
tex v over the total number of vertices in the graph, provid-
ing a normalised centrality score [10].

Number of triangles TC(v) = � : the number of triangles 
containing the vertex v, where � is the number of vertices in 
� −(v) which are also connected via an edge [10].

Local clustering score CLU(v) = 2�

d(v)(d(v)−1)
 : represents the 

probability of two neighbours of v also being neighbours of 
each other [49].

Eigenvector centrality EC(v) = �� = �� : used to calcu-
late the importance of each vertex within a graph, where � 

is the largest eigenvalue and � is the eigenvector centrality 
[50].

PageRank centrality PR(v) = 1−�

�V� +�
∑

u∈�−(v)
PR(u)

d+(u)
 : 

PageRank centrality is commonly used to measure the local 
influence of a vertex within a graph [8, 51], where � is a 
constant damping factor (0.85 for this work).

Betweenness centrality BC(v) =
∑

s≠v≠t∈V
s≠t

�st(v)

�st
 : The 

betweenness centrality of a vertex depends upon the fre-
quency which acts as a bridge between two additional verti-
ces [51], where �st is the total number of shortest paths from 
s to t.

3.2  Power‑Law Feature Distribution

Many empirical graphs, especially those representing social, 
hyperlink and citation networks, have been shown to have 
approximately a power-law distribution of degree values 
[52]. This power-law distribution poses a challenge for 
machine learning models, as it means the features we are 
trying to predict are extremely unbalanced, with a heavy 
skew towards the lower range of features. Imbalanced class 
distribution creates difficulties for machine learning models, 
as there are fewer examples of the minority classes for the 
model to learn, which can often lead to poor predictive per-
formance on these classes [14]. It has been shown that the 
distribution of other topological features can also follow a 
power-law distribution in many graphs [43]. To demonstrate 
this phenomenon, Fig. 1 shows the distribution of a range 
of topological feature values for the cit-HepTh dataset. The 
figure shows that indeed, all the topological feature values 
tested largely follow an approximately power-law distribu-
tion. This fact has the potential to make predicting the value 
of a certain topological feature challenging, as the datasets 
will not be balanced and any model attempted to find the 
mapping f ∶ ℝ

d
→ � will be prone to over-fitting to the 

majority classes. Our approach for tackling this issue is out-
lined in the following section.

3.3  Methodology

Unlike previous studies [44] we employ classification and 
visualisation, instead of regression, as ways to explore the 
embedding space. We chose these approaches as predicting 
topological features directly via the use of regression has 
proven challenging in prior work [44], owing largely to the 
imbalance problem explored in the previous section. With 
such an imbalanced dataset, using a classification-based 
approach is often advantageous [53] as techniques exist to 
over-sample minority examples. However, the features we 
are attempting to predict are continuous, so must go through 
some transformation stage before classification can be per-
formed. For our transformation stage, we follow a procedure 

5 Hops represent the length of the sequences of vertices that must tra-
versed to get from vertices i to j.
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similar to that introduced by Oord et al. [53]. We bin the 
real-valued features into a series of classes via the use of 
a histogram, where the bin in which a particular feature is 
placed becomes its class label. One can consider each of 
these newly created classes as representing a range of pos-
sible values for a given feature. As an example, we could 
transform a vertex’s continuous PageRank score [8] into a 
series of discrete classes via the use of a histogram with a 
bin size of three, where each of the newly created classes 
represented a low, medium or high PageRank score.

Although this binning process helps with the feature 
imbalance, it still produces a skew in number of features 
assigned to each class. To further address this issue, we take 
the logarithm of each feature value before it is passed to the 
binning function. Essentially, this will mean that features 
within the same order of magnitude will be assigned the 
same class; for example, vertices with degrees in the range 
of 0–101 would be assigned into one class, whilst degree val-
ues between 102 and 103 would be assigned to another class. 
This was performed as it dramatically improved the balance 
of the datasets, and as we are only attempting to discover if 
something approximating the topological features is present 
in the embedding space, we found that predicting the order 
of magnitude to be sufficient.

In order to allow for a good distribution of feature values 
in the datasets we are using, in our experiments we utilise a 
bin size of six for the histogram function, meaning that six 
discrete classes were created for each of the features. This 
value was chosen empirically from our datasets as it fully 
covered the numerical range of the topological features we 
measured. For example, we found that the centrality values 
in our datasets fall within a range of six orders of magnitude, 
which is what we used to set the number of bins. It should 
be noted that this value would need to be tuned depending 
upon the datasets and features being used.

In addition to the use of classification, we explore an addi-
tional method to bring interpretability to graph embeddings, 
that being a visualisation technique entitled t-SNE [54]. This 
technique allows relatively high-dimensional data, such as 
graph embeddings, to be projected into a low-dimensional 

space in such a way as to preserve the inter-spatial relation-
ship between points that were present in the original space. 
Thus, we utilise t-SNE to project the embeddings down to 
two dimensions, so they can be easily visualised. This pro-
cess is performed without the need for any classification 
to be trained upon the embeddings, removing the issues 
associated with classifying unbalanced datasets. Once the 
projection has been performed, we can colour each point in 
accordance with its feature value, be that one that has been 
transformed via the binning process, or even the raw value 
itself.

3.4  Embedding Approaches Compared

In this paper, we evaluate five state-of-the-art unsupervised 
graph embedding approaches as a way of exploring what 
semantic content is extracted from a graph to create the embed-
dings. The approaches are as follows: DeepWalk, Poincaré 
disc, structural deep network embedding and Node2Vec,6 

which are detailed in Table 1. These approaches were chosen 
as they represent a good cross section of the current compet-
ing methodologies and all either exploit a different method of 
sampling the graph, use different geometries for the embed-
ding space or use competing methods of comparing vertices. 
This selection of approaches will allow exploration of interest-
ing research questions. Such questions include if any differ-
ences between the approaches can be explained by what graph 
structures they learn and do methods which promote local 

Table 1  Graph embedding approaches being compared

Approach Year Type Published Complexity

DeepWalk 2014 Stochastic KDD [4] O(|V|)
Node2Vec 2016 Stochastic KDD [5] O(|V|)
SDNE 2016 Auto-encoder KDD [37] O(|V||E|)
Poincaré disc 2017 Hyperbolic MLG [32] O(|V|)

6 Please note that we explore two variations of Node2Vec, bringing 
the total number of approaches to five.

(a) Degree (b) Triangle Count (c) Eigenvector Cent (d) Betweenness Cent

Fig. 1  Distribution of topological feature values from the cit-HepTh dataset in log scale: a total vertex degree distribution, b distribution of com-
plete triangles for each vertex, c eigenvector centrality distribution and d betweenness centrality score distribution
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exploration around the target vertex only learn local structural 
information, degree for example. To explore this second ques-
tion in more detail, we created two versions of Node2Vec: 
Node2Vec-Structural, which biases the random walks used to 
create training pairs for the model to explore vertices further 
away from the target vertex, and Node2Vec-Homophily, which 
biases the random walks to stay closer to the target vertex.

4  Experimental Set‑up and Classification 
Algorithm Selection

In the following section we detail the set-up of the experi-
ments and evaluate potential classification algorithms.

4.1  Metrics

4.1.1  Presented Results

All the reported results are the mean of five replicated exper-
iment runs along with confidence intervals. For the run-time 
analysis, the presented results are the mean run-time for 
job completion, presented in minutes. For the classifica-
tion results, all the accuracy scores presented are the mean 
accuracy after k-fold cross-validation—considered the gold 
standard for model testing [55]. For k-fold cross-validation, 
the original dataset is partitioned into k equally sized parti-
tions. k − 1 partitions are used to train the model, with the 
remaining partition being used for testing. The process is 
repeated k times using a unique partition for each repetition 
and a mean taken to produce the final result.

4.1.2  Precision Metrics

For reporting the results of the vertex feature classification 
tasks, we report the macro-f1 and micro-f1 scores with vary-
ing percentages of labelled data available at training time. 
This is a similar set-up to previous works [2, 5].

The micro-f1 score calculates the f1-score for the data-
set globally by counting the total number of true positives 
(TP), false positives (FP) and false negatives (FN) across a 
labelled dataset |L|. Using the notation from [2], micro-f1 
is defined as:

where

(6)microf1 =
2 ⋅ P ⋅ R

P + R
,

Precision(P) =

∑�L�
l=1

TP(l)
∑�L�

l=1
TP(l) + FP(l)

,

Recall(R) =

∑�L�
l=1

TP(l)
∑�L�

l=1
TP(l) + FN(l)

,

and TP(l) denotes the number of true positives the model 
predicts for a given label l, FP(l) denotes the number of false 
positives, and FN(l) denotes the number of false negatives.

The macro-f1 score, when performing multi-label clas-
sification, is defined as the average micro-f1 score over the 
whole set of labels L:

where microf1(l) is the micro-f1 score for the given label l.

4.2  Experimental Set‑up

4.2.1  Implementation Details

The approaches used for experimentation were re-imple-
mented in TensorFlow [56], as the author-provided versions 
were not all available using the same framework. We also 
ensure the same TensorFlow-based optimisations were used 
across all the approaches wherever possible [57]. Neural 
Networks contain many hyper-parameters a user can control 
to improve the performance, both of the predictive accuracy 
and the run-time, of a given dataset. This process can be 
extremely time consuming and often requires users to per-
form a grid search over a range of possible hyper-parameter 
values to find a combination which performs best [14]. For 
setting the required hyper-parameters for the approaches, we 
used the default hyper-parameters as proposed by the authors 
in their original papers, keeping them constant across all 
datasets. The key hyper-parameters used for each approach 
are detailed in Table 2. We have open-sourced our imple-
mentations of these approaches and made them available 
online.7

4.2.2  Experimental Environment

Experimentation was performed on a compute system with 
2 NVIDIA Tesla K40c’s, 2.3 GHz Intel Xeon E5-2650 v3, 
64 GB RAM and the following software stack: Ubuntu 
Server 16.04 LTS, CUDA 9.0, CuDNN v7, TensorFlow 1.5, 
scikit-learn 0.19.0, Python 3.5 and NetworkX 2.0.

4.2.3  Experimental Datasets

The empirical datasets used for evaluation were taken from 
the Stanford Network Analysis Project (SNAP) data reposi-
tory [58] and the Network Repository [59] and are detailed 
in Table 3. The domain label provided is taken from the 

(7)macrof1 =
1

|L|
∑

l∈L

micro-f1(l),

7 https ://githu b.com/sbonn er0/unsup ervis ed-graph -embed ding/.

https://github.com/sbonner0/unsupervised-graph-embedding/
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listings of the graphs domain provided by SNAP [58] and 
Network Repository [59].

4.3  Classification Algorithm Selection

As highlighted throughout the paper, we are focusing our 
research on unsupervised graph embedding approaches. In 
order to be able to use the embeddings for further analy-
sis, they must be classified using a supervised classification 
model. Traditionally in the embedding literature, a simple 
logistic regression is used in any classification task [4, 28], 
with seemingly little work exploring the use of more sophis-
ticated models to perform the classification.

In this section we explore the effectiveness of five differ-
ent models at performing the classification of the different 
embedding approaches—logistic regression (LR), support 
vector machine (SVM) (linear kernel), SVM (RBF kernel), 
a single hidden layer neural network and finally a second 
more complex neural network with two hidden layers and 
a larger number of hidden units. All the classifiers utilised 
in this section were taken from the Scikit-Learn Python 
package [60]. Additionally, given that our datasets do not 
have a equal distribution among the classes, we also explore 
the effectiveness of weighting the loss function used by the 
model inversely proportional to the frequency of the class 
[61]. This use of a weighted loss function, although common 
in other areas of machine learning, has not been explored in 
regard to graph embeddings.

For the results in this section, we present the mean macro- 
and micro-f1 scores, introduced in Sect. 4.1.2, after fivefold 
cross-validation. To assess the performance of the classifiers 
against the imbalance present in the datasets, we also display 

the percentage lift in mean test set accuracy over three rule-
based prediction methods to act as baselines. These methods 
are uniform prediction (where the classification of each item 
in the test is chosen uniformly at random from the possible 
classes), stratified prediction (where the classification fol-
lows the distribution of classes in the training set) and fre-
quent class prediction (where the classification is determined 
by the most frequency class in the training set). A positive 
lift across all metrics strongly suggests that a mapping from 
the embedding space to the topological features is being 
learned, as the classification algorithm is overcoming the 
biased distributions of classes in the dataset.

We performed this experiment for all combinations of 
datasets, embedding approaches and features, but due to the 
large quantity of results, we present only a subset here. Spe-
cifically, we present the results for ego-Facebook dataset, 
using embeddings generated by DeepWalk and SDNE and 
classifying degree, triangle count and eigenvector central-
ity. It should be noted that the patterns displayed here are 
representative of ones seen across all datasets.

Table 4 highlights the performance of the potential clas-
sifiers, when using the DeepWalk embeddings taken from 
the ego-Facebook dataset. Results show that the choice of 
supervised classifier can have a large impact on the over-
all classification score. It can also be seen that the tradi-
tional choice of logistic regression does not produce the 
best results. Indeed, the neural network and SVM classifier 
often gave the best scores, but no single classifier is best 
overall, suggesting that one needs to be chosen carefully for 
a given task.

Table 5 highlights the results for the potential classifi-
ers, when using the SDNE embeddings taken from the ego-
Facebook dataset. Again, the variation in classification score 
across the set of tested classification metrics is quite sub-
stantial, with the linear SVM and neural network approaches 
having perhaps a small margin of improvement over the 
others. It is interesting to note that the logistic regression 
frequently used in the literature never has the highest score 
in any metric. It can also be seen that, when compared to 
the DeepWalk results in Table 4, SDNE does less well at 
predicting all topological features which, although not the 
explicit purpose of this section, is interesting to note.

Using the results from this section, particularly the 
generally higher macro-f1 scores which indicate a better 

Table 3  Empirical graph datasets

Dataset |V| |E| Domain Source

Fly-drosophila-medulla 1800 33,500 Biological [59]
Cit-HepTh 27,770 352,807 Citation [58]
Email-Eu-core 1005 25,571 Communication [58]
Inf-openflights 2900 30,500 Infrastructure [59]
Soc-sign-bitcoinotc 5881 35,592 Blockchain [58]
Ego-Facebook 4039 88,234 Social [58]

Table 2  Key hyper-parameter 
settings

Approach Optimiser Learning rate Specific parameters

SDNE RMSProp 0.01 � = 500 , b = 10 , epochs = 500

Node2Vec-S SGD 0.1 p = 0.5 , q = 2 , epochs = 15

Node2Vec-H SGD 0.1 p = 1.0 , q = 0.5 , epochs = 15

DeepWalk SGD 0.1 epochs = 15

Poincaré disc (PD) SGD 0.1 p = 0.5 , q = 2 , epochs = 15
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prediction across all classes, all the classification results 
in Sect. 5 are presented using a single hidden layer neural 
network.

5  Results

This section presents both the supervised and unsuper-
vised results for predicting topological features from graph 
embeddings.

5.1  Topological Feature Prediction

In this section, we present the experimental evaluation of the 
classification of topological features using the embeddings 
generated from the five approaches (DeepWalk, Node2Vec-
H, Node2Vec-S, SDNE and PD) on the datasets detailed in 
Table 3. We present both the macro-f1 and micro-f1 scores 
plotted against a varying amount of labelled data available 
during the training process, where a higher score equates to 

Table 4  Degree (DG), triangle 
count (TC) and eigenvector 
centrality (EC) classification 
results for DeepWalk 
embeddings on the ego-
Facebook dataset

Results for micro- and macro-f1 scores are the mean after fivefold cross-validation, with standard devia-
tions. Lifts over uniform, stratified and frequency predictors are presented as percentages
Bold values indicate the best for that metric

Feature Classifier Micro-f1 Macro-f1 Uniform Strat Freq

DG LR 0.336 (± 0.015) 0.190 (± 0.012) + 65.09% + 33.85% + 12.07%

SVM (Lin) �.��� (± �.���) 0.164 (± 0.013) + ��.��% + ��.��% + ��.��%

SVM (RBF) 0.336 (± 0.021) 0.158 (± 0.013) + 65.09% + 33.84% + 12.07%

NN 0.329 (± 0.013) �.��� (± �.���) + 61.65% + 31.05% + 9.73%

NN-2 0.326 (± 0.016) 0.192 (± 0.019) + 60.18% + 29.85% + 8.73%

TC LR 0.340 (± 0.011) 0.154 (± 0.014) + 109.34% + 37.19% + 12.38%

SVM (Lin) �.��� (± �.���) 0.139 (± 0.006) + ���.�% + ��.�% + ��.�%

SVM (RBF) 0.335 (± 0.018) 0.130 (± 0.010) + 106.26% + 35.17% + 10.73%

NN 0.331 (± 0.019) 0.157 (± 0.013) + 103.8% + 33.56% + 9.4%

NN-2 0.326 (± 0.017) �.��� (± �.���) + 100.72% + 31.54% + 7.75%

EC LR 0.590 (± 0.013) 0.474 (± 0.010) + 195.66% + 144.16% + 92.18%

SVM (Lin) 0.591 (± 0.012) 0.480 (± 0.011) + 196.16% + 144.58% + 92.51%

SVM (RBF) 0.552 (± 0.012) 0.446 (± 0.011) + 176.62% + 128.44% + 79.8%

NN 0.629 (± 0.012) 0.512 (± 0.017) + 215.2% + 160.3% + 104.89%

NN-2 �.��� (± �.���) �.��� (± �.���) + ���.�% + ���.��% + ���.��%

Table 5  Degree (DG), triangle 
count (TC) and eigenvector 
centrality (EC) classification 
results for SDNE embeddings 
on the ego-Facebook dataset

Results for micro- and macro-f1 scores are the mean after fivefold cross-validation, with standard devia-
tions. Lifts over uniform, stratified and frequency predictors are presented as percentages
Bold values indicate the best for that metric

Feature Classifier Micro-f1 Macro-f1 Uniform Strat Freq

DG LR 0.284 (± 0.013) 0.177 (± 0.008) + 53.15% + 21.0% −5.28%

SVM (Lin) �.��� (± �.���) 0.167 (± 0.012) + 59.08% + 25.69% −1.61%

SVM (RBF) 0.289 (± 0.017) 0.142 (± 0.006) + 55.85% + 23.13% −3.61%

NN 0.253 (± 0.012) 0.187 (± 0.012) + 36.43% + 7.79% −15.62%

NN-2 0.247 (± 0.018) �.��� (± �.���) + 33.2% + 5.24% −17.62%

TC LR 0.284 (± 0.015) 0.138 (± 0.011) + 99.15% + 18.87% −6.13%

SVM (Lin) 0.296 (± 0.016) 0.125 (± 0.008) + 107.56% + 23.89% −2.16%

SVM (RBF) �.��� (± �.���) 0.124 (± 0.006) + ���.��% + 25.57% −0.84%

NN 0.264 (± 0.020) 0.161 (± 0.018) + 85.12% + 10.5% −12.74%

NN-2 0.247 (± 0.018) �.��� (± �.���) + 73.2% + 3.38% −18.36%

EC LR 0.297 (± 0.008) 0.166 (± 0.004) + 70.4% + 12.85% −3.26%

SVM (Lin) �.��� (± �.���) 0.156 (± 0.006) + ��.�% + ��.��% + �.��%

SVM (RBF) 0.309 (± 0.017) 0.149 (± 0.008) + 77.28% + 17.41% + 0.65%

NN 0.286 (± 0.013) 0.198 (± 0.018) + 64.08% + 8.67% −6.84%

NN-2 0.272 (± 0.018) �.��� (± �.���) + 56.05% + 3.35% −11.4%
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a better classification result—with a score of one meaning a 
perfect classification of every example in the data.

Figure 2 displays the classification of f1 scores for pre-
dicting the simplest feature we are measuring: the degree of 
the vertices. Interestingly, we see a large spread of results 
across the datasets and between approaches, with no clear 
pattern emerging in this figure. On certain datasets, it is 
possible to see a high micro-f1 score, for example in the 
Bitcoinotc dataset, suggesting that an approximation of the 
degree value is present in the embedding. The figure also 
shows that SDNE and PD often have a lower score when 
compared to the stochastic approaches.

Figure 3 highlights the macro-f1 and micro-f1 scores 
for the classification of the degree centrality value. As the 
degree centrality of a given vertex is strongly influenced 
by its degree, it is perhaps unsurprising to observe largely 
similar patterns to those in Fig. 2, which again shows the 
dataset Bitcoinotc to be the dataset with the highest accu-
racies. As seen in the previous figure, generally the three 

stochastic approaches have a similar score for both macro-f1 
and micro-f1.

The results for the classification of triangle count for the 
vertices are presented in Fig. 4. This is a more complex fea-
ture than the previous two, as it requires more information 
than is available from just the immediate neighbours of a 
given vertex. The figure shows again that, to some degree 
of accuracy, the feature is able to be reconstructed from the 
embedding space, with Bitcoinotc having the highest micro-
f1 accuracy of all the datasets. SDNE and PD continue to 
have, on average, the lowest accuracies.

Classifying a vertex’s local clustering score across the 
datasets is explored in Fig. 5. The figure shows that this 
feature, although more complicated to compute than a ver-
tex’s triangle count, appears to be easier for a classifier to 
reconstruct from the embedding space. With this more com-
plicated feature, some interesting results regrading SDNE 
can be seen in the Email-EU and HepTh datasets, where the 
approach has the highest macro-f1 score—perhaps indicating 

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 2  Micro- and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s degree (DG) value across 
all datasets
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that the more complex model is better able to learn a good 
representation for this more complicated feature.

Figure 6 displays the result for the classification of a ver-
tex’s eigenvector centrality. This figure is perhaps the most 
interesting one so far as it shows high classification accura-
cies across many of the empirical datasets, even though this 
feature is of greater complexity than previous ones. This fig-
ure further supports the results presented in Table 4, which 
shows eigenvector centrality having not only the highest 
accuracies, but also the highest lifts in accuracy over the 
rule-based predictors. Interestingly, SDNE does not demon-
strate higher macro-f1 scores in this experiment.

In Fig. 7, the approach’s ability to correctly classify the 
PageRank score of the vertices is considered. Here we see 
generally lower classification accuracies than the last figure, 
perhaps owing to the more complicated nature of the PageR-
ank algorithm. However, high classification accuracies can 
still be seen, particularly on the Bitcoinotc and Drosophila 
datasets.

Finally, Fig. 8 highlights the ability of the graph embed-
dings to predict betweenness centrality. Here, the figure 
shows that this feature is, on average, harder to predict from 
the embeddings than the previous two centrality measures 
as evidenced by the lower accuracy scores. Again, SDNE 
shows the highest macro-f1 scores on the Drosophila and 
HepTh datasets, indicating its embedding captures some-
thing akin to this structural information better than the other 
approaches.

5.2  Confusion Matrices

One consideration that must be made is that the binning 
process, used to transform the features into targets for classi-
fication, removes the inherent ordering present in continuous 
values. As an example, a vertex with a degree of 8 would 
still be classified incorrectly if the prediction was 10 or 100, 
but clearly one is more incorrect than the other. To address 
this, we present a selection of error matrices, to explore how 

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 3  Micro- and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s degree centrality (DG) 
value across all datasets
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‘wrong’ an incorrect prediction is. This is made possible as 
the labels used for classification have consecutive ordering, 
as a result of a histogram binning function, meaning that a 
prediction of 2 for a true label of 1 is more correct than a 
prediction of 5.

For brevity, Fig. 9 displays the error matrices for a selec-
tion of the tested embedding approaches when classifying 
eigenvector centrality in the ego-Facebook dataset, although 
similar patterns were found across all datasets. With error 
matrices, the diagonal values represent correctly classified 
label; thus, a good prediction will produce an error matrix 
with a higher concentration of diagonal values. Figure 9 
shows that, for the stochastic walk approaches DeepWalk 
and Node2Vec, the error matrices have a higher clustering 
of values around the diagonals. Interestingly, when the clas-
sification is incorrect for these approaches, the incorrect pre-
diction tends to be close to the true label. This phenomenon 
can clearly be seen in these approaches for labels 1 and 2, 
meaning that embeddings for vertices with these particularly 

eigenvector centrality are similar. The figure also shows that, 
for this particular vertex feature, the embeddings produced 
via SDNE seemingly do not contain the same topological 
information. This is highlighted by the lack of structure on 
the diagonals of its error matrix.

5.3  Unsupervised Low‑Dimensional Projections

Figure 10 displays a selection of t-SNE plots taken from the 
ego-Facebook data, where the points are coloured according 
to the eigenvector centrality value after being passed through 
the binning process. The figure shows that the SDNE embed-
dings seemingly have no clear structure in the low-dimen-
sional space which correlates strongly with the eigenvec-
tor centrality, as points in the same class are not clustered 
together. However, with the other embedding approaches, it 
is possible to see a clear clustering of points belonging to the 
same class. For example, in both the Node2Vec approaches, 
there is very clear clustering of classes one, four and five. 

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 4  Micro- and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s triangle count (TR) value 
across all datasets
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This result provides further evidence for our observation 
that, even when exploring the embeddings using an unsu-
pervised method, it is possible to find correlations between 
known topological features and the embedding space.

5.4  Auto‑encoder Comparison

The results presented thus far have shown that it can be 
comparatively challenging to recover evidence of topologi-
cal features from the auto-encoder-based SDNE approach. 
To investigate this further, we compare SDNE with another 
auto-encoder-based approach entitled DNGR. Unlike the 
other approaches tested thus far, DNGR mandates the use of 
weighted graphs. However, from the empirical datasets we 
are using for this study, only the soc-sign-bitcoinotc dataset 
contains weighted edges, which represent the level of trust 
which users place in each other.

To investigate if DNGR captures more recognisable topo-
logical structure in its embedding space, we will again use 

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 5  Micro-f1 and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s local clustering coef-
ficient (CLU) value across all datasets

t-SNE. However, the soc-sign-bitcoinotc dataset has the low-
est edge density of any of the graphs we are testing, resulting 
in a very unbalanced dataset. (For example, the majority 
of the vertices have a very low degree value.) To allow for 
greater insight, here we chose not to use the binning process 
to label each vertex embedding. Instead, we normalise the 
raw topological feature values to be between zero and one; 
we then use this value to directly colour the points on the 
t-SNE plots. Here we would expect to see points of a simi-
lar colour, and thus feature value, to be clustered together 
if vertices with similar topological features are close in the 
underlying embedding space. Due to soc-sign-bitcoinotc 
having a larger number of vertices than the dataset used for 
the previous t-SNE visualisation, we plot only a randomly 
selected half of the vertices to allow for clearer figures.

Figure 11 displays the t-SNE plots of the vertex embed-
dings for both SDNE and DNGR across four different top-
ological features. The figure shows that despite it being 
more challenging to recover topological features from 
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SDNE in other experiments, there is still structure pre-
sent in the embedding space correlating to several top-
ological features. One can see SDNE embeddings with 
similar feature values being clustered together in these 
plots; for example, there are clear clusters of vertices with 
a high and low degree, PageRank and betweenness cen-
trality value visible, whereas it is much harder to inter-
pret any structure in the embedding space produced via 
DNGR. This could well be due to the fact that DNGR 
does not take as input the raw adjacency matrix; instead, 
it is reconstructing the PPMI matrix, capturing vertex co-
occurrence. Due to this transformed input, it is perhaps not 
surprising that normal topological features are present in 
the resulting representations.

5.5  Discussion

This section has provided extensive experimentation evalu-
ation to explore the questions raised in Sect. 3. Specifically, 

we investigated if a broad range of topological features 
can be predicted from the embedding created from a range 
of unsupervised graph embedding techniques. Across all 
the features and datasets tested, it can be seen that many 
topological features can be approximated by the different 
embedding approaches, with varying degrees of accuracy. 
The results which show the increase in accuracy over the 
rule-based predictions (Sect. 4.3) give strong indication that 
the approaches are able to overcome the inherent unbalanced 
nature of graph datasets and a mapping from the embedding 
space to features is present. It is also interesting to observe 
that numerous features can be approximated from the graph 
embeddings, suggesting that several structural properties are 
being captured to create the best representation for a vertex 
automatically. Of all the topological features measured in 
the experimentation section, the one which consistently gave 
the best results was eigenvector centrality. Particularly for 
the stochastic approaches, eigenvector centrality was pre-
dicted with a high degree of accuracy, suggesting that the 

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 6  Micro-f1 and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s eigenvector centrality 
(EC) value across all datasets
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topological structure represented by this feature is captured 
extremely well in the embedding space and indicates this is 
a useful feature for minimising the objective functions of the 
approaches. This is further reinforced by the unsupervised 
projections (Fig. 10), which shows clear and distinct cluster-
ing between classes, even without the use of a classification 
algorithm.

Another interesting observation from this study is that no 
one approach strongly outperforms the others when classifying 
a particular feature—seemingly all the approaches are approxi-
mating similar topological structures. The figures show that 
the stochastic approaches (DeepWalk and Node2Vec) are the 
most consistent across all features and datasets, often having 
the highest macro-f1 and micro-f1 scores. SDNE demonstrates 
a more inconsistent performance profile for feature classifica-
tion; this is in contrast to other studies which have found it to 
have the best performance in vertex labelling problems [2]. 
The performance of SDNE demonstrated in this work could 
be explained by it being the only deep model tested, meaning 

that it contains many more parameters. This increase in com-
plexity means that SDNE could be very sensitive to the correct 
selection of hyper-parameters or possibly that more complex 
topological features are being approximated by the embed-
dings—or even that entirely novel features are being learned. 
Finally, it is interesting to note the performance of hyperbolic 
(PD) approach, which has far fewer latent dimensions in which 
to capture topological information due to its limitation in mod-
elling the space as a 2D disc. Empirically, PD shows largely 
similar performance to the other approaches on most data-
sets, providing strong evidence that the hyperbolic space is an 
appropriate space in which to represent graphs.

6  Conclusion

Graph embeddings are increasingly becoming a key tool to 
solve numerous tasks within the field of graph mining. They 
have demonstrated state-of-the-art results by reporting to 

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 7  Micro-f1 and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s PageRank (PR) value 
across all datasets
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automatically learn a low-dimensional, but highly expres-
sive, representation of vertices, which captures the topologi-
cal structure of the graph. However, to date, there has been 

little work providing a theoretical grounding which would 
allow for greater interpretability. In this paper, we explore 
making a step in this direction by investigating which 

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 8  Micro-f1 and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s betweenness centrality 
(BC) value across all datasets

(a) SDNE (b) DW (c) N2V-H (d) N2V-S

Fig. 9  Error matrices for neural network classification of eigenvector centrality (EC) for the ego-Facebook dataset
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traditional topological graph features can be reconstructed 
from the embedding space, the hypothesis being that if a 
mapping from the embedding space to a particular topo-
logical feature can be found, then the topological structure 
encapsulated by this feature is also captured by the embed-
ding. We present an extensive set of experiments explor-
ing this issue across five unsupervised graph embedding 
techniques (detailed in Sect. 3.4), classifying seven graph 

features (detailed in Sect. 3.1), across a range of empirical 
datasets (detailed in Table 3). We find that a mapping from 
many topological features to the embedding space of the 
tested approaches is indeed possible, using both supervised 
and unsupervised techniques. This discovery suggests that 
graph embeddings are indeed learning approximations of 
known topological features, with our experiments showing 
that eigenvector centrality is best reconstructed by many of 

(a) SDNE (b) DW (c) N2V-H (d) N2V-S

Fig. 10  t-SNE plots of the embeddings taken from the ego-Facebook dataset, where the points are coloured according to their eigenvector cen-
trality (EC)

(a) SDNE DG (b) SDNE PR (c) SDNE EC (d) SDNE BC

(e) DNGR DG (f) DNGR PR (g) DNGR EC (h) DNGR BC

Fig. 11  t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinotc dataset, where points are coloured according to the 
normalised topological feature
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the approaches. This could allow key insight into how graph 
embedding learn to create high-quality representations.

For future research, we plan to see if other eigenvector-
based topological features, known to be representative of a 
graph’s topology [9], are also captured as well by the embed-
ding approaches. We plan to perform more experimentation 
with synthetically created graphs with artificially balanced 
degree distributions. This will remove the unbalanced nature 
of empirical datasets and allow us to explore the structure 
of the embeddings in more detail. Furthermore, we plan to 
investigate if directly predicting topological features during 
the embedding training process, perhaps in the form of a 
regularisation term, can produce embeddings which gener-
alise better across other tasks.
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