
Vol.:(0123456789)1 3

Data Science and Engineering (2019) 4:269–289
https://doi.org/10.1007/s41019-019-0097-5

Exploring the Semantic Content of Unsupervised Graph Embeddings:
An Empirical Study

Stephen Bonner1 · Ibad Kureshi2 · John Brennan1 · Georgios Theodoropoulos3 · Andrew Stephen McGough4 ·
Boguslaw Obara1

Received: 12 March 2018 / Revised: 23 May 2019 / Accepted: 22 June 2019 / Published online: 29 June 2019
© The Author(s) 2019

Abstract
Graph embeddings have become a key and widely used technique within the field of graph mining, proving to be successful
across a broad range of domains including social, citation, transportation and biological. Unsupervised graph embedding
techniques aim to automatically create a low-dimensional representation of a given graph, which captures key structural
elements in the resulting embedding space. However, to date, there has been little work exploring exactly which topological
structures are being learned in the embeddings, which could be a possible way to bring interpretability to the process. In this
paper, we investigate if graph embeddings are approximating something analogous to traditional vertex-level graph features.
If such a relationship can be found, it could be used to provide a theoretical insight into how graph embedding approaches
function. We perform this investigation by predicting known topological features, using supervised and unsupervised meth-
ods, directly from the embedding space. If a mapping between the embeddings and topological features can be found, then
we argue that the structural information encapsulated by the features is represented in the embedding space. To explore this,
we present extensive experimental evaluation with five state-of-the-art unsupervised graph embedding techniques, across
a range of empirical graph datasets, measuring a selection of topological features. We demonstrate that several topological
features are indeed being approximated in the embedding space, allowing key insight into how graph embeddings create
good representations.

Keywords Graph embeddings · Neural networks · Representation learning

1 Introduction

Representing the complex and inherent links and relation-
ships between and within datasets in the form of a graph is a
widely performed practice across many scientific disciplines
[1]. One reason for the popularity is that the structure or
topology of the resulting graph can reveal important and

unique insights into the data it represents. Recently, ana-
lysing and making predictions about graph using machine
learning has shown significant advances in a range of com-
monly performed tasks over traditional approaches [2]. Such
tasks include predicting the formation of new edges within
the graph and the classification of vertices [3]. However,
graphs are inherently complex structures and do not natu-
rally lend themselves as input into existing machine learning
methods, most of which operate on vectors of real numbers.

Graph embeddings1 are a family of machine learning
models which learn latent representations for the vertices
within a graph. The goal of all graph embedding techniques
is broadly the same: to transform a complex graph, with no
inherent representation in vector space, into a low-dimen-
sional vector (often in the range of 50–300) representation
of the graph or its elements. More concretely, the objective
of a graph embedding technique is to learn some function

 * Stephen Bonner
 s.a.r.bonner@durham.ac.uk

 Boguslaw Obara
 boguslaw.obara@durham.ac.uk

1 Department of Computer Science, Durham University,
Durham, UK

2 InlecomSystems, Brussels, Belgium
3 School of Computer Science and Engineering, SUSTech,

Shenzhen, China
4 School of Computing, Newcastle University, Newcastle, UK

1 In this work, we focus on vertex representation learning
approaches.

http://orcid.org/0000-0001-6008-358X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41019-019-0097-5&domain=pdf

270 S. Bonner et al.

1 3

f ∶ V → ℝ
d which is a mapping from the set of vertices V to

a set of embeddings for the vertices, where d is the required
dimensionality of the resulting embedding. This results in
the mapping function f producing a matrix of dimensions
|V| by d, i.e. an embedding of size d for each vertex in the
graph. It should be noted that this mapping is intended to
capture the latent structure from a graph by mapping similar
vertices together in the embedding space. Many of the recent
approaches are able to produce low-dimensional graph rep-
resentations without the need for labelled datasets. These
representations can then be utilised as input to secondary
supervised models for downstream prediction tasks, includ-
ing classification [4] or link prediction [5]. Thus, unsuper-
vised graph embeddings are becoming a key area of research
as they act as a translation layer between the raw graph and
some desired machine learning model.

However, to date, there has been little research performed
into why graph embedding approaches have been so success-
ful. They all aim to capture as much topological information
as possible during the embedding process, but how this is
achieved, or even exactly what structure is being captured,
is currently not known. In this work, we focus solely upon
unsupervised graph embedding techniques as we want to
explore what features the techniques learn from the topol-
ogy alone, without the requirement for labels. In previous
work [6], we provided a framework which could be used to
directly measure the ability of graph embeddings to capture
a good representation of a graph’s topology. In this paper, we
expand upon this work by attempting to provide insight into
the graph embedding process itself. We attempt to explore
if the known and mathematically understood range of topo-
logical features [1] is being approximated in the embedding
space. To achieve this, we investigate if a mapping from the
embedding space to a range of topological features is pos-
sible. We hypothesise that if such a mapping can be found,
then the topological structure represented by that feature is
thus approximately captured in the embedding space. Such a
discovery could start to provide a theoretical framework for
the use of graph embeddings, by experimentally demonstrat-
ing which topological structures are approximated to create
the representations.

Our methodology employs a combination of supervised
and unsupervised models to predict topological features
directly from the embeddings. The features we are inves-
tigating first go through a pre-processing step to transform
them into discrete classes to enable classification. We make
the following contributions whilst exploring this area:

– We investigate if unsupervised graph embeddings are
learning something analogous with traditional vertex-
level graph features. If this is the case, is there a par-
ticular type of feature which is being approximated most
frequently?

– We empirically show, to the best of our knowledge for
the first time, that several known topological features are
present in graph embeddings. This can be used to help
bring interpretability to the graph embedding process by
detailing which graph features are key in creating high-
quality representations.

– We provide detailed experimental evidence, with
five state-of-the-art unsupervised graph embedding
approaches, across seven topological features and six
empirical graph datasets to support our claims.

Reproducibility—we make all experiments performed in this
paper reproducible by open-sourcing our code,2 reporting
key model hyper-parameters and presenting results on public
benchmark graph datasets.

In Sect. 2 we explore prior work. In Sect. 3 we detail
our approach for providing an experimental methodology
for assessing known topological features approximated by
graph embeddings; Sect. 4 details the experiment set-up. In
Sect. 5 we present our results, and in Sect. 6 we conclude
this paper along with suggestions for further expansions of
this work.

1.1 Notation

We adopt here the commonly used notation for represent-
ing a graph or network3 G = (V ,E) as an undirected graph
which comprises a finite set of vertices (sometimes referred
to as nodes) V and a finite set of edges E. The elements of
E are an unordered tuple {u, v} of vertices u, v ∈ V . Here G
could be a graph-based representation of a social, citation
or biological network [7]. The adjacency matrix � = (ai,j)
for a graph is symmetric matrix of size |V| by |V|, where
(ai,j) is 1 if an edge is present between vertices i and j or
0 otherwise.

2 Previous Work

This section explores the prior research regarding graph
embedding techniques and previous approaches measur-
ing known features in embeddings. We first introduce the
notation of graph embeddings, detail supervised and factor-
isation-based approaches, explore in detail state-of-the-art
unsupervised approaches which will be used throughout the
rest of the paper and finally review past attempts to provide
interpretability to embedding approaches.

2 https ://githu b.com/sbonn er0/unsup ervis ed-graph -embed ding/.
3 To avoid confusion with neural networks we will use the term
graph throughout the remainder of the paper without loss of general-
ity.

https://github.com/sbonner0/unsupervised-graph-embedding/

271Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

2.1 Introduction to Graph Embeddings

The ability to automatically learn some descriptive numer-
ical-based representation for a given graph is an attractive
goal and could provide a timely solution to some com-
mon problem within the field of graph mining. Traditional
approaches have relied upon extracting features—such as
various measures of a vertex’s centrality [8]—capturing the
required information about a graph’s topology, which could
then be used in some downstream prediction task [9–12].
However, such a feature extraction-based approach relies
solely upon the handcrafted features being a good represen-
tation of the target graph. Often a user must use extensive
domain knowledge to select the correct features for a given
task, with a change in task often requiring the selection of
new features [9].

Graph embedding models are a collection of machine
learning techniques which attempt to learn key features
from a graph’s topology automatically, in either a super-
vised or unsupervised manner, removing the often cumber-
some task of end-users manually selecting representative
graph features [4]. This process, known as feature selection
[13] in the machine learning literature, has clear disadvan-
tages as certain features may only be useful for a certain
task. It could even negatively affect model performance if
utilised in a task for which they are not well suited. Argu-
ably, many of the recent exciting advances seen in the field
of deep learning have been driven by the removal of this
feature selection process [5], instead of allowing models to
learn the best data representations themselves [14]. For a
selection of recent review papers covering the complete fam-
ily of graph embedding techniques, readers are referred to
[15–18]. The work presented in this paper focuses on neural
network-based approaches for graph embedding (as these
have demonstrated superior performance compared with
traditional approaches [2]).

The study of neural networks (NNs) is a field within
machine learning inspired by the brain [14]. NNs model
problems via the use of connected layers of artificial neu-
rons, where each network has an input layer, at least one hid-
den layer and an output layer. The activation of each neuron
in a layer is given by a pre-specified function, with each neu-
ron taking a weighted sum of all the outputs of those neu-
rons which feed into it. These weights are learned through
training examples which are fed through the network, with
modifications made to the weights via back-propagation to
increase the probability of the NN producing the desired
result [14].

2.1.1 Supervised Approaches

Within the field of machine learning, approaches which are
supervised are perhaps the most studied and understood

[14]. In supervised learning, the datasets contain labels
which help guide the model in the learning process. In the
field of graph analysis, these labels are often present at the
vertex level and contain, for example, the metadata of a user
in a social network.

Perhaps the largest area of supervised graph embeddings
is that of graph convolutional neural networks (GCNs) [19],
both spectral [20, 21] and spatial [22] approaches. Such
approaches pass a sliding window filter over a graph, in a
manner analogous with convolutional neural networks from
the computer vision field [14], but with the neighbourhood
of a vertex replacing the sliding window. Current GCN
approaches are supervised and thus require labels upon the
vertices. This requirement has two significant disadvantages:
Firstly, it limits the available graph data which can be used
due to the requirement for labelled vertices. Secondly, it
means that the resulting embeddings are specialised for one
specific task and cannot be generalised for a different prob-
lem without costly retraining of the model for the new task.

2.1.2 Factorisation Approaches

Before the recent interest in learning graph embeddings via
the use of neural networks, a variety of other approaches
were explored. Often these approaches took the form of
matrix factorisation, in a similar vein to classical dimen-
sionality reduction techniques such as principal competent
analysis (PCA) [15, 23]. Such approaches first calculate the
pairwise similarity between the vertices of a graph and then
find a mapping to a lower-dimensional space such that the
relationships observed in the higher dimensions are pre-
served. An early example of such an approach is that of
the Laplacian eigenmaps, which attempts to directly fac-
torise the Laplacian matrix of a given graph [24]. Other
approaches, often using the adjacency matrix, define the
relationship in low-dimensional space between two verti-
ces in the graph as being determined by the dot-product of
their corresponding embeddings. Such approaches include
graph factorisation [25], GraGrep [26] and HOPE [27]. Such
dimensionality reduction-based approaches are often quad-
ratic in complexity [17], and the predictive performance of
the embeddings has largely been superseded by the recent
neural network-based methods [2].

2.2 Unsupervised Stochastic Embeddings

DeepWalk [4] and Node2Vec [5] are the two main
approaches for random walk-based embedding. Both of
these approaches borrow key ideas from a technique enti-
tled Word2Vec [28] designed to embed words, taken from
a sentence, into vector space. The Word2Vec model is able
to learn an embedding for a word by using surrounding
words within a sentence as targets for a single hidden layer

272 S. Bonner et al.

1 3

neural network model to predict. Due to the nature of this
technique, words which co-occur together frequently in sen-
tences will have positions which are close within the embed-
ding space. The approach of using a target word to predict
neighbouring words is entitled Skip-Gram and has been
shown to be very effective for language modelling tasks [29].

2.2.1 DeepWalk

The key insight of DeepWalk is to use random walks upon
the graph, starting from each vertex, as the direct replace-
ment for the sentences required by Word2Vec. A random
walk can be defined as a traversal of the graph rooted at
a vertex vt ∈ V , where the next step in the walk is chosen
uniformly at random from the vertices incident upon vt [30];
these walks are recorded as wt

0
,… ,wt

n
 (where t is the walk

starting from vt of length n, and wt
i
∈ V), i.e. a sequence

of the vertices visited along the random walk starting from
vt = wt

0
 . DeepWalk is able to learn unsupervised representa-

tions of vertices by maximising the average log probability
� over the set of vertices V:

where c is the size of the training context of vertex wt
n
.4

The basic form of Skip-Gram used by DeepWalk defines
the conditional probability �(wt

i+j
|wt

i
) of observing a nearby

vertex wt
i+j

 , given the vertex wt
i
 from the random walk t, can

be defined via the softmax function over the dot-product
between their features [4]:

where �wt
i
 and ��

wt
i+j

 are the hidden layer and output layer

weights of the Skip-Gram neural network, respectively.

2.2.2 Node2Vec

Whilst DeepWalk uses a uniform random transition prob-
ability to move from a vertex to one of its neighbours, Node-
2Vec biases the random walks. This biasing introduces two
user-controllable parameters which dictate how far from, or
close to, the source vertex the walk progresses. This is done
to capture either the vertex’s role in its local neighbourhood
(homophily), or alternatively, its role in the global graph

(1)
1

|V|

|V|∑

t=1

n∑

i=0

∑

−c≤j≤c,j≠0

log�(wt
i+j
|wt

i
),

(2)�(wt
i+j
�wt

i
) =

exp (�
⊺

wt
i

�
�

wt
i+j

)

∑�V�
t=1

exp (�
⊺

wt
i

��
vt
)
,

structure (structural equivalence) [5]. Changing the random
walk means that Node2Vec has a higher accuracy over Deep-
Walk for a selection of vertex classification problems [5].

2.3 Unsupervised Hyperbolic Embeddings

Recently, a new family of graph embedding approaches has
been introduced, which embed vertices into hyperbolic,
rather than Euclidean space [31, 32]. Hyperbolic space has
long been used to analyse graphs which exhibit high levels of
hierarchical or community structure [33], but it also has prop-
erties which could make it an interesting space for embed-
dings [32]. Hyperbolic space can be considered ‘larger’ than
Euclidean with the same number of dimensions; as the space
is curved, its total area grows exponentially with the radius
[32]. For graph embeddings, this key property means that one
effectively has a much larger range of possible points into
which the vertices can be embedded. This property allows
for closely correlated vertices to be embedded close together,
whilst also maintaining more distance between disparate ver-
tices, resulting in an embedding which has the potential to
capture more of the latent community structure of a graph.

The hyperbolic approach we focus on was introduced by
Chamberlain [32] and uses the Poincaré disc model of 2D
hyperbolic space [34]. In their model, the authors use polar
coordinates x = (r, �) , where r ∈ [0, 1] and � ∈ [0, 2�] to
describe a point in space for each vertex v in the Poincaré
disc, which allows for the technique to be significantly sim-
plified [32]. Similar to DeepWalk, an inner-product is used
to define the similarity between two points within the space.
The inner-product of two vectors in a Poincaré disc can be
defined as follows [32]:

where x = (rx, �x) and y = (ry, �y) are the two input vectors
representing two vertices and arctanh is the inverse hyper-
bolic tangent function [32].

To create their hyperbolic graph embedding, the authors
use the softmax function of Eq. 2, common with DeepWalk
and others, but importantly replacing the Euclidean inner-
products with the hyperbolic inner-products of Eq. 3. Aside
from this, hyperbolic approaches share many similarities with
the stochastic approaches with regard to their input data and
training procedure. For example, the hyperbolic approaches
are still trained upon pairs of vertex IDs, taken from sequences
of vertices generated via random walks on graphs.

2.4 Unsupervised Auto‑encoder‑Based Approaches

There is an alternative set of approaches for graph embed-
dings which do not rely upon random walks. Instead of

(3)< x, y >= ||x||||y|| cos(𝜃x − 𝜃y),

(4)= 4 arctanh rx arctanh ry cos(�x − �y),

4 Note if i + j < 0 then we skip these from the sum as we are past the
start of the current walk.

273Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

adapting a technique based upon capturing the meaning of
language, such models are designed specifically for cre-
ating graph embeddings using deep learning [14]—deep
auto-encoders [35]. Auto-encoders are an unsupervised
neural network, where the goal is to accurately reconstruct
the input data through explicit encoder and decoder stages
[36]. Two such approaches are structural deep network
embedding (SDNE) [37] and deep neural networks for
learning graph representations (DNGR) [38].

The authors of these approaches argue that a deep neu-
ral network, versus the shallow Skip-Gram model used
by both DeepWalk and Node2Vec, is much more capable
of capturing the complex structure of graphs. In addition,
the authors argue that for a successful embedding, it must
capture both the first- and second-order proximity of ver-
tices. Here the first-order proximity measures the similar-
ity of the vertices which are directly incident upon one
another, whereas the second-order proximity measures the
similarity of vertices neighbourhoods. To capture both of
these elements SDNE has a dual-objective loss function
for the model to optimise. The input data to SDNE are
the adjacency matrix � , where each row a represents the
neighbourhood of a vertex.

The objective function for SDNE comprises two distinct
terms: The first term captures the second-order proximity
of the vertices neighbourhood, whilst the second captures
the first-order proximity of the vertices by iterating over
the set of edges E:

where qi and q′
i
 are the input and reconstructed representa-

tion of the input, ⊙ is the element-wise Hadamard product,
and bi is a scaling factor to penalise the technique if it pre-
dicts zero too frequently, w(k) is the weight of the kth layer
in the auto-encoder technique, and � is a user-controllable
parameter defining the importance of the second term in the
final loss score [37].

To initialise the weights of the deep auto-encoder used
for this approach, an additional neural network must be
trained to find a good starting region for the parameters.
This pre-training neural network is called a deep belief
network and is widely used within the literature to form
the initialisation step of deeper models [39]. However, this
pre-training step is not required by either the stochastic or
hyperbolic approaches as random initialisation is used for
the weights and adds significant complexity.

In comparison with SDNE, instead of relying solely
upon the raw adjacency matrix as input, DNGR creates a
new denser representation to be passed to an auto-encoder
[38]. The authors have the model reconstruct the pointwise
mutual information matrix (PPMI) of the input graph, which

(5)

LSDNE =

|V|∑

i=1

||(q�
i
− qi)⊙ bi||22 + 𝛼

|E|∑

u,v=1

au,v||(w(k)
u

− w(k)
v
)||2

2
,

captures vertex co-occurrence information in a sequence
created via a random surfer model. Additionally, instead
of passing this to a traditional auto-encoder, a stacked de-
noising auto-encoder is used with the goal of creating a more
robust vertex representation. This stacked de-noising auto-
encoder adds a small quantity of noise to the input data,
which the model must learn to disregard during the training
process.

2.5 Observing Features Preserved in Embeddings

2.5.1 Graph Embeddings Features

To date, there has been little research performed exploring
a theoretical basis as to why graph embeddings are able to
demonstrate such good performance in graph analytic tasks,
or if something approximating traditional graph features
are being captured during the embeddings process. Goyal
and Ferrar [2] presented an experimental review paper on a
selection of graph embedding techniques. The authors use a
range of tasks including vertex classification, link prediction
and visualisation to measure the quality of the embeddings.
However, the authors do not provide any theoretical basis
as to why the embedding approaches they test are success-
ful, or if known features are present in the embeddings. In
addition, the authors do not consider embeddings taken from
promising unsupervised techniques, such as the family of
hyperbolic approaches, nor do they explore performance
across imbalanced classes during the classification.

Recent work has speculated on the use of a graph’s topo-
logical features as a way to improve the quality of vertex
embeddings by incorporating them into a supervised GCN-
based model [40]. They show how aggregating a vertex fea-
ture—even one as simple as its degree—can improve the
performance of their model. Further, they present theoreti-
cal analysis to validate that their approach is able to learn
the number of triangles a vertex is part of, arguing that this
demonstrates the model is able to learn topological structure.
We take inspiration from this work, but consider unsuper-
vised approaches as well as exploring if richer and more
complicated topological features are being captured in the
embedding process. In a similar vein, an approach for gener-
ating supervised graph embeddings using heat-kernel-based
methods is validated by visualizing if a selection of topologi-
cal features is present in a two-dimensional projection of the
embedding space [41].

Research has investigated the use of a graph’s topologi-
cal features as a way of validating the accuracy of a neu-
ral network-based graph generative model [42]. With the
presented model, the authors aim to generate entirely new
graph datasets which mimic the topological structure of a
set of target graphs—a common task within the graph min-
ing community [43]. To validate the quality of their model,

274 S. Bonner et al.

1 3

they investigate if a new graph created from their generative
procedure has a similar set of topological features to the
original graph.

Perhaps most closely related to our present research is
work exploring the use of random walk-based graph embed-
dings as an approximation for more complex vertex-level
centrality measures on social network graphs [44]. The
authors argue that graph embeddings could be used as a
replacement for centrality measures as they potentially have
a lower computational complexity. The work explores the
use of linear regression to try to directly predict four cen-
trality measures from the vertices of three graph datasets,
with limited success [44]. Our own work differs significantly
as we attempt to provide insight into what exactly graph
embeddings are learning with a view to allow for greater
interpretability, explore a wider range of embeddings
approaches, use datasets from a wider range of domains,
explore more topological features, use classification rather
than regression as the basis for the analysis and address the
inherent unbalanced nature of most graph datasets.

2.5.2 Feature Learning in Other Domains

A large quantity of the successful unsupervised graph
embedding approaches have adapted models originally
designed for language modelling [4, 5]. Some recent
research investigated how best to evaluate a variety of unsu-
pervised approaches for embedding words into vectors [45].
They choose a variety of natural language processing (NLP)
tasks, which capture some known and understood aspects
of the structure of language, and investigate how well the
chosen embedding models perform for these tasks. They
conclude that no single word embedding model performs the
best across all the tasks they investigated, suggesting there is
not a single optimal vector representation for a word. What
features are used to help word embeddings achieve compo-
sitionality, constructing the meaning of an entire sentence
from the component words, has also been explored [46].
Further research has investigated the use of word embed-
dings to create representations for the entire sentence using
word features [47]. The work suggests that word features
learned by the embeddings for natural language inference
can be transferred to other tasks in NLP.

Outside of NLP, there has been work in the field of com-
puter vision (CV) investigating what known features, already
commonly used for image representation, are captured by
deep convolutional neural network—potentially being used
to explain how they work. For example, it has been shown
that convolutional networks, when trained for image clas-
sification, often detect the presence of edges in the images
[48]. The same work also shows how the complexity of
the detected edges increases as the depth of the network
increases.

In this present work, we take inspiration from these
approaches and attempt to provide insight and a potential
theoretical basis for the use of graph embeddings by explor-
ing which known graph features can be reconstructed from
the embedding space.

3 Semantic Content of Graph Embeddings

Despite extensive prior work in unsupervised graph embed-
ding highlighting how they perform well for the tasks for
which they were proposed (such as vertex classification and
link prediction [2]), there has been little work in exploring
why these approaches are successful. This could allow for
an increased level of interpretability to graph embeddings.
Inspired by recent work in computer vision and natural lan-
guage processing which examine if traditional features (the
edges detected in images for example) are captured by deep
models, we explore the following research question:

Problem Statement Do unsupervised graph embedding
techniques capture something similar to traditional topologi-
cal features as part of the embedding process?

Topological features are one known and mathematically
understood way to accurately identify graphs and vertices [9,
10]. We hypothesise that if graph embeddings are shown to
be learning approximations of existing features, this could
begin to provide a theoretical basis for the interpretability of
graph embeddings. This would suggest that graph embed-
dings are automatically learning detailed and known graph
structures in order to create the representations. This could
explain how they have been so successful in a variety of
graph mining tasks. Effectively, the graph embedding tech-
niques would be acting as an automated way of learning
the most representative topological feature(s) for a given
objective function.

If graph embeddings are shown to be learning topological
features, then other interesting research questions arise. For
example, do competing embedding approaches learn differ-
ent topological structures, do different graph datasets each
require different features to be approximated in order to cre-
ate a good representation, what is the structural complexity
of the features approximated by the embeddings, or even are
the embeddings capable of approximating multiple features
simultaneously?

In order to explore these questions, we attempt to pre-
dict a selection of topological features directly from graph
embeddings computed from a range of state-of-the-art
approaches across a series of empirical datasets. We sug-
gest that if a second mapping function f ∶ ℝ

d
→ � can

be found which accurately maps the embedding space to
a given topological feature � , then this is strong evidence
that something approximating the structural information
represented by � is indeed present in the embedding space.

275Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

Here the mapping function could take the form of a linear
regression, but for this work, we investigate a range of clas-
sification algorithms—this is explored more in Sect. 3.3. We
assess a range of known topological features, from simple
to complex, to gain a better understanding of the expressive
capabilities of the embedding techniques.

3.1 Predicting Topological Features

Numerous topological features have been identified in the
literature, measuring various aspects of a graph’s topology,
at the vertex, edge and graph levels [9]. As we are focus-
ing our work here upon methods for creating vertex embed-
ding, we will focus on features which are measured at the
vertex level of a given graph. We have selected a range of
vertex-level features from the graph mining literature, which
capture information about a vertex’s local and global role
within a graph [5]. This selection of features ranges from
ones which are simple to compute from vertices directly
adjacent to each other, to more complex features which can
require information from many hops5 further along with the
graph. This will allow us to explore if embedding models
learn complex topological features, or are they able to learn
good representations of only simple features. The topo-
logical vertex-level features we are predicting are detailed
below, listed approximately by their complexity:

These features are defined in terms of a graph G = (V ,E)
with its corresponding adjacency matrix � , where |V| is the
total number of vertices in the graph and |E| the total num-
ber of edges. For each vertex v ∈ V , we also define d(v)
to be the total number of neighbours for v, d+(v) to be the
number of connections v has to other vertices, � −(v) to be
the subset of vertices in V with edges to v, and �st(v) is the
total number of shortest paths from vertices s and t which
also pass through v.

Total degree DG(v) = d(v) : the total number of edges
from v to other vertices.

Degree centrality DC(v) = 1

|V|d(v) : the degree for the ver-
tex v over the total number of vertices in the graph, provid-
ing a normalised centrality score [10].

Number of triangles TC(v) = � : the number of triangles
containing the vertex v, where � is the number of vertices in
� −(v) which are also connected via an edge [10].

Local clustering score CLU(v) = 2�

d(v)(d(v)−1)
 : represents the

probability of two neighbours of v also being neighbours of
each other [49].

Eigenvector centrality EC(v) = �� = �� : used to calcu-
late the importance of each vertex within a graph, where �

is the largest eigenvalue and � is the eigenvector centrality
[50].

PageRank centrality PR(v) = 1−�

�V� +�
∑

u∈�−(v)
PR(u)

d+(u)
 :

PageRank centrality is commonly used to measure the local
influence of a vertex within a graph [8, 51], where � is a
constant damping factor (0.85 for this work).

Betweenness centrality BC(v) =
∑

s≠v≠t∈V
s≠t

�st(v)

�st
 : The

betweenness centrality of a vertex depends upon the fre-
quency which acts as a bridge between two additional verti-
ces [51], where �st is the total number of shortest paths from
s to t.

3.2 Power‑Law Feature Distribution

Many empirical graphs, especially those representing social,
hyperlink and citation networks, have been shown to have
approximately a power-law distribution of degree values
[52]. This power-law distribution poses a challenge for
machine learning models, as it means the features we are
trying to predict are extremely unbalanced, with a heavy
skew towards the lower range of features. Imbalanced class
distribution creates difficulties for machine learning models,
as there are fewer examples of the minority classes for the
model to learn, which can often lead to poor predictive per-
formance on these classes [14]. It has been shown that the
distribution of other topological features can also follow a
power-law distribution in many graphs [43]. To demonstrate
this phenomenon, Fig. 1 shows the distribution of a range
of topological feature values for the cit-HepTh dataset. The
figure shows that indeed, all the topological feature values
tested largely follow an approximately power-law distribu-
tion. This fact has the potential to make predicting the value
of a certain topological feature challenging, as the datasets
will not be balanced and any model attempted to find the
mapping f ∶ ℝ

d
→ � will be prone to over-fitting to the

majority classes. Our approach for tackling this issue is out-
lined in the following section.

3.3 Methodology

Unlike previous studies [44] we employ classification and
visualisation, instead of regression, as ways to explore the
embedding space. We chose these approaches as predicting
topological features directly via the use of regression has
proven challenging in prior work [44], owing largely to the
imbalance problem explored in the previous section. With
such an imbalanced dataset, using a classification-based
approach is often advantageous [53] as techniques exist to
over-sample minority examples. However, the features we
are attempting to predict are continuous, so must go through
some transformation stage before classification can be per-
formed. For our transformation stage, we follow a procedure

5 Hops represent the length of the sequences of vertices that must tra-
versed to get from vertices i to j.

276 S. Bonner et al.

1 3

similar to that introduced by Oord et al. [53]. We bin the
real-valued features into a series of classes via the use of
a histogram, where the bin in which a particular feature is
placed becomes its class label. One can consider each of
these newly created classes as representing a range of pos-
sible values for a given feature. As an example, we could
transform a vertex’s continuous PageRank score [8] into a
series of discrete classes via the use of a histogram with a
bin size of three, where each of the newly created classes
represented a low, medium or high PageRank score.

Although this binning process helps with the feature
imbalance, it still produces a skew in number of features
assigned to each class. To further address this issue, we take
the logarithm of each feature value before it is passed to the
binning function. Essentially, this will mean that features
within the same order of magnitude will be assigned the
same class; for example, vertices with degrees in the range
of 0–101 would be assigned into one class, whilst degree val-
ues between 102 and 103 would be assigned to another class.
This was performed as it dramatically improved the balance
of the datasets, and as we are only attempting to discover if
something approximating the topological features is present
in the embedding space, we found that predicting the order
of magnitude to be sufficient.

In order to allow for a good distribution of feature values
in the datasets we are using, in our experiments we utilise a
bin size of six for the histogram function, meaning that six
discrete classes were created for each of the features. This
value was chosen empirically from our datasets as it fully
covered the numerical range of the topological features we
measured. For example, we found that the centrality values
in our datasets fall within a range of six orders of magnitude,
which is what we used to set the number of bins. It should
be noted that this value would need to be tuned depending
upon the datasets and features being used.

In addition to the use of classification, we explore an addi-
tional method to bring interpretability to graph embeddings,
that being a visualisation technique entitled t-SNE [54]. This
technique allows relatively high-dimensional data, such as
graph embeddings, to be projected into a low-dimensional

space in such a way as to preserve the inter-spatial relation-
ship between points that were present in the original space.
Thus, we utilise t-SNE to project the embeddings down to
two dimensions, so they can be easily visualised. This pro-
cess is performed without the need for any classification
to be trained upon the embeddings, removing the issues
associated with classifying unbalanced datasets. Once the
projection has been performed, we can colour each point in
accordance with its feature value, be that one that has been
transformed via the binning process, or even the raw value
itself.

3.4 Embedding Approaches Compared

In this paper, we evaluate five state-of-the-art unsupervised
graph embedding approaches as a way of exploring what
semantic content is extracted from a graph to create the embed-
dings. The approaches are as follows: DeepWalk, Poincaré
disc, structural deep network embedding and Node2Vec,6

which are detailed in Table 1. These approaches were chosen
as they represent a good cross section of the current compet-
ing methodologies and all either exploit a different method of
sampling the graph, use different geometries for the embed-
ding space or use competing methods of comparing vertices.
This selection of approaches will allow exploration of interest-
ing research questions. Such questions include if any differ-
ences between the approaches can be explained by what graph
structures they learn and do methods which promote local

Table 1 Graph embedding approaches being compared

Approach Year Type Published Complexity

DeepWalk 2014 Stochastic KDD [4] O(|V|)
Node2Vec 2016 Stochastic KDD [5] O(|V|)
SDNE 2016 Auto-encoder KDD [37] O(|V||E|)
Poincaré disc 2017 Hyperbolic MLG [32] O(|V|)

6 Please note that we explore two variations of Node2Vec, bringing
the total number of approaches to five.

(a) Degree (b) Triangle Count (c) Eigenvector Cent (d) Betweenness Cent

Fig. 1 Distribution of topological feature values from the cit-HepTh dataset in log scale: a total vertex degree distribution, b distribution of com-
plete triangles for each vertex, c eigenvector centrality distribution and d betweenness centrality score distribution

277Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

exploration around the target vertex only learn local structural
information, degree for example. To explore this second ques-
tion in more detail, we created two versions of Node2Vec:
Node2Vec-Structural, which biases the random walks used to
create training pairs for the model to explore vertices further
away from the target vertex, and Node2Vec-Homophily, which
biases the random walks to stay closer to the target vertex.

4 Experimental Set‑up and Classification
Algorithm Selection

In the following section we detail the set-up of the experi-
ments and evaluate potential classification algorithms.

4.1 Metrics

4.1.1 Presented Results

All the reported results are the mean of five replicated exper-
iment runs along with confidence intervals. For the run-time
analysis, the presented results are the mean run-time for
job completion, presented in minutes. For the classifica-
tion results, all the accuracy scores presented are the mean
accuracy after k-fold cross-validation—considered the gold
standard for model testing [55]. For k-fold cross-validation,
the original dataset is partitioned into k equally sized parti-
tions. k − 1 partitions are used to train the model, with the
remaining partition being used for testing. The process is
repeated k times using a unique partition for each repetition
and a mean taken to produce the final result.

4.1.2 Precision Metrics

For reporting the results of the vertex feature classification
tasks, we report the macro-f1 and micro-f1 scores with vary-
ing percentages of labelled data available at training time.
This is a similar set-up to previous works [2, 5].

The micro-f1 score calculates the f1-score for the data-
set globally by counting the total number of true positives
(TP), false positives (FP) and false negatives (FN) across a
labelled dataset |L|. Using the notation from [2], micro-f1
is defined as:

where

(6)microf1 =
2 ⋅ P ⋅ R

P + R
,

Precision(P) =

∑�L�
l=1

TP(l)
∑�L�

l=1
TP(l) + FP(l)

,

Recall(R) =

∑�L�
l=1

TP(l)
∑�L�

l=1
TP(l) + FN(l)

,

and TP(l) denotes the number of true positives the model
predicts for a given label l, FP(l) denotes the number of false
positives, and FN(l) denotes the number of false negatives.

The macro-f1 score, when performing multi-label clas-
sification, is defined as the average micro-f1 score over the
whole set of labels L:

where microf1(l) is the micro-f1 score for the given label l.

4.2 Experimental Set‑up

4.2.1 Implementation Details

The approaches used for experimentation were re-imple-
mented in TensorFlow [56], as the author-provided versions
were not all available using the same framework. We also
ensure the same TensorFlow-based optimisations were used
across all the approaches wherever possible [57]. Neural
Networks contain many hyper-parameters a user can control
to improve the performance, both of the predictive accuracy
and the run-time, of a given dataset. This process can be
extremely time consuming and often requires users to per-
form a grid search over a range of possible hyper-parameter
values to find a combination which performs best [14]. For
setting the required hyper-parameters for the approaches, we
used the default hyper-parameters as proposed by the authors
in their original papers, keeping them constant across all
datasets. The key hyper-parameters used for each approach
are detailed in Table 2. We have open-sourced our imple-
mentations of these approaches and made them available
online.7

4.2.2 Experimental Environment

Experimentation was performed on a compute system with
2 NVIDIA Tesla K40c’s, 2.3 GHz Intel Xeon E5-2650 v3,
64 GB RAM and the following software stack: Ubuntu
Server 16.04 LTS, CUDA 9.0, CuDNN v7, TensorFlow 1.5,
scikit-learn 0.19.0, Python 3.5 and NetworkX 2.0.

4.2.3 Experimental Datasets

The empirical datasets used for evaluation were taken from
the Stanford Network Analysis Project (SNAP) data reposi-
tory [58] and the Network Repository [59] and are detailed
in Table 3. The domain label provided is taken from the

(7)macrof1 =
1

|L|
∑

l∈L

micro-f1(l),

7 https ://githu b.com/sbonn er0/unsup ervis ed-graph -embed ding/.

https://github.com/sbonner0/unsupervised-graph-embedding/

278 S. Bonner et al.

1 3

listings of the graphs domain provided by SNAP [58] and
Network Repository [59].

4.3 Classification Algorithm Selection

As highlighted throughout the paper, we are focusing our
research on unsupervised graph embedding approaches. In
order to be able to use the embeddings for further analy-
sis, they must be classified using a supervised classification
model. Traditionally in the embedding literature, a simple
logistic regression is used in any classification task [4, 28],
with seemingly little work exploring the use of more sophis-
ticated models to perform the classification.

In this section we explore the effectiveness of five differ-
ent models at performing the classification of the different
embedding approaches—logistic regression (LR), support
vector machine (SVM) (linear kernel), SVM (RBF kernel),
a single hidden layer neural network and finally a second
more complex neural network with two hidden layers and
a larger number of hidden units. All the classifiers utilised
in this section were taken from the Scikit-Learn Python
package [60]. Additionally, given that our datasets do not
have a equal distribution among the classes, we also explore
the effectiveness of weighting the loss function used by the
model inversely proportional to the frequency of the class
[61]. This use of a weighted loss function, although common
in other areas of machine learning, has not been explored in
regard to graph embeddings.

For the results in this section, we present the mean macro-
and micro-f1 scores, introduced in Sect. 4.1.2, after fivefold
cross-validation. To assess the performance of the classifiers
against the imbalance present in the datasets, we also display

the percentage lift in mean test set accuracy over three rule-
based prediction methods to act as baselines. These methods
are uniform prediction (where the classification of each item
in the test is chosen uniformly at random from the possible
classes), stratified prediction (where the classification fol-
lows the distribution of classes in the training set) and fre-
quent class prediction (where the classification is determined
by the most frequency class in the training set). A positive
lift across all metrics strongly suggests that a mapping from
the embedding space to the topological features is being
learned, as the classification algorithm is overcoming the
biased distributions of classes in the dataset.

We performed this experiment for all combinations of
datasets, embedding approaches and features, but due to the
large quantity of results, we present only a subset here. Spe-
cifically, we present the results for ego-Facebook dataset,
using embeddings generated by DeepWalk and SDNE and
classifying degree, triangle count and eigenvector central-
ity. It should be noted that the patterns displayed here are
representative of ones seen across all datasets.

Table 4 highlights the performance of the potential clas-
sifiers, when using the DeepWalk embeddings taken from
the ego-Facebook dataset. Results show that the choice of
supervised classifier can have a large impact on the over-
all classification score. It can also be seen that the tradi-
tional choice of logistic regression does not produce the
best results. Indeed, the neural network and SVM classifier
often gave the best scores, but no single classifier is best
overall, suggesting that one needs to be chosen carefully for
a given task.

Table 5 highlights the results for the potential classifi-
ers, when using the SDNE embeddings taken from the ego-
Facebook dataset. Again, the variation in classification score
across the set of tested classification metrics is quite sub-
stantial, with the linear SVM and neural network approaches
having perhaps a small margin of improvement over the
others. It is interesting to note that the logistic regression
frequently used in the literature never has the highest score
in any metric. It can also be seen that, when compared to
the DeepWalk results in Table 4, SDNE does less well at
predicting all topological features which, although not the
explicit purpose of this section, is interesting to note.

Using the results from this section, particularly the
generally higher macro-f1 scores which indicate a better

Table 3 Empirical graph datasets

Dataset |V| |E| Domain Source

Fly-drosophila-medulla 1800 33,500 Biological [59]
Cit-HepTh 27,770 352,807 Citation [58]
Email-Eu-core 1005 25,571 Communication [58]
Inf-openflights 2900 30,500 Infrastructure [59]
Soc-sign-bitcoinotc 5881 35,592 Blockchain [58]
Ego-Facebook 4039 88,234 Social [58]

Table 2 Key hyper-parameter
settings

Approach Optimiser Learning rate Specific parameters

SDNE RMSProp 0.01 � = 500 , b = 10 , epochs = 500

Node2Vec-S SGD 0.1 p = 0.5 , q = 2 , epochs = 15

Node2Vec-H SGD 0.1 p = 1.0 , q = 0.5 , epochs = 15

DeepWalk SGD 0.1 epochs = 15

Poincaré disc (PD) SGD 0.1 p = 0.5 , q = 2 , epochs = 15

279Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

prediction across all classes, all the classification results
in Sect. 5 are presented using a single hidden layer neural
network.

5 Results

This section presents both the supervised and unsuper-
vised results for predicting topological features from graph
embeddings.

5.1 Topological Feature Prediction

In this section, we present the experimental evaluation of the
classification of topological features using the embeddings
generated from the five approaches (DeepWalk, Node2Vec-
H, Node2Vec-S, SDNE and PD) on the datasets detailed in
Table 3. We present both the macro-f1 and micro-f1 scores
plotted against a varying amount of labelled data available
during the training process, where a higher score equates to

Table 4 Degree (DG), triangle
count (TC) and eigenvector
centrality (EC) classification
results for DeepWalk
embeddings on the ego-
Facebook dataset

Results for micro- and macro-f1 scores are the mean after fivefold cross-validation, with standard devia-
tions. Lifts over uniform, stratified and frequency predictors are presented as percentages
Bold values indicate the best for that metric

Feature Classifier Micro-f1 Macro-f1 Uniform Strat Freq

DG LR 0.336 (± 0.015) 0.190 (± 0.012) + 65.09% + 33.85% + 12.07%

SVM (Lin) �.��� (± �.���) 0.164 (± 0.013) + ��.��% + ��.��% + ��.��%

SVM (RBF) 0.336 (± 0.021) 0.158 (± 0.013) + 65.09% + 33.84% + 12.07%

NN 0.329 (± 0.013) �.��� (± �.���) + 61.65% + 31.05% + 9.73%

NN-2 0.326 (± 0.016) 0.192 (± 0.019) + 60.18% + 29.85% + 8.73%

TC LR 0.340 (± 0.011) 0.154 (± 0.014) + 109.34% + 37.19% + 12.38%

SVM (Lin) �.��� (± �.���) 0.139 (± 0.006) + ���.�% + ��.�% + ��.�%

SVM (RBF) 0.335 (± 0.018) 0.130 (± 0.010) + 106.26% + 35.17% + 10.73%

NN 0.331 (± 0.019) 0.157 (± 0.013) + 103.8% + 33.56% + 9.4%

NN-2 0.326 (± 0.017) �.��� (± �.���) + 100.72% + 31.54% + 7.75%

EC LR 0.590 (± 0.013) 0.474 (± 0.010) + 195.66% + 144.16% + 92.18%

SVM (Lin) 0.591 (± 0.012) 0.480 (± 0.011) + 196.16% + 144.58% + 92.51%

SVM (RBF) 0.552 (± 0.012) 0.446 (± 0.011) + 176.62% + 128.44% + 79.8%

NN 0.629 (± 0.012) 0.512 (± 0.017) + 215.2% + 160.3% + 104.89%

NN-2 �.��� (± �.���) �.��� (± �.���) + ���.�% + ���.��% + ���.��%

Table 5 Degree (DG), triangle
count (TC) and eigenvector
centrality (EC) classification
results for SDNE embeddings
on the ego-Facebook dataset

Results for micro- and macro-f1 scores are the mean after fivefold cross-validation, with standard devia-
tions. Lifts over uniform, stratified and frequency predictors are presented as percentages
Bold values indicate the best for that metric

Feature Classifier Micro-f1 Macro-f1 Uniform Strat Freq

DG LR 0.284 (± 0.013) 0.177 (± 0.008) + 53.15% + 21.0% −5.28%

SVM (Lin) �.��� (± �.���) 0.167 (± 0.012) + 59.08% + 25.69% −1.61%

SVM (RBF) 0.289 (± 0.017) 0.142 (± 0.006) + 55.85% + 23.13% −3.61%

NN 0.253 (± 0.012) 0.187 (± 0.012) + 36.43% + 7.79% −15.62%

NN-2 0.247 (± 0.018) �.��� (± �.���) + 33.2% + 5.24% −17.62%

TC LR 0.284 (± 0.015) 0.138 (± 0.011) + 99.15% + 18.87% −6.13%

SVM (Lin) 0.296 (± 0.016) 0.125 (± 0.008) + 107.56% + 23.89% −2.16%

SVM (RBF) �.��� (± �.���) 0.124 (± 0.006) + ���.��% + 25.57% −0.84%

NN 0.264 (± 0.020) 0.161 (± 0.018) + 85.12% + 10.5% −12.74%

NN-2 0.247 (± 0.018) �.��� (± �.���) + 73.2% + 3.38% −18.36%

EC LR 0.297 (± 0.008) 0.166 (± 0.004) + 70.4% + 12.85% −3.26%

SVM (Lin) �.��� (± �.���) 0.156 (± 0.006) + ��.�% + ��.��% + �.��%

SVM (RBF) 0.309 (± 0.017) 0.149 (± 0.008) + 77.28% + 17.41% + 0.65%

NN 0.286 (± 0.013) 0.198 (± 0.018) + 64.08% + 8.67% −6.84%

NN-2 0.272 (± 0.018) �.��� (± �.���) + 56.05% + 3.35% −11.4%

280 S. Bonner et al.

1 3

a better classification result—with a score of one meaning a
perfect classification of every example in the data.

Figure 2 displays the classification of f1 scores for pre-
dicting the simplest feature we are measuring: the degree of
the vertices. Interestingly, we see a large spread of results
across the datasets and between approaches, with no clear
pattern emerging in this figure. On certain datasets, it is
possible to see a high micro-f1 score, for example in the
Bitcoinotc dataset, suggesting that an approximation of the
degree value is present in the embedding. The figure also
shows that SDNE and PD often have a lower score when
compared to the stochastic approaches.

Figure 3 highlights the macro-f1 and micro-f1 scores
for the classification of the degree centrality value. As the
degree centrality of a given vertex is strongly influenced
by its degree, it is perhaps unsurprising to observe largely
similar patterns to those in Fig. 2, which again shows the
dataset Bitcoinotc to be the dataset with the highest accu-
racies. As seen in the previous figure, generally the three

stochastic approaches have a similar score for both macro-f1
and micro-f1.

The results for the classification of triangle count for the
vertices are presented in Fig. 4. This is a more complex fea-
ture than the previous two, as it requires more information
than is available from just the immediate neighbours of a
given vertex. The figure shows again that, to some degree
of accuracy, the feature is able to be reconstructed from the
embedding space, with Bitcoinotc having the highest micro-
f1 accuracy of all the datasets. SDNE and PD continue to
have, on average, the lowest accuracies.

Classifying a vertex’s local clustering score across the
datasets is explored in Fig. 5. The figure shows that this
feature, although more complicated to compute than a ver-
tex’s triangle count, appears to be easier for a classifier to
reconstruct from the embedding space. With this more com-
plicated feature, some interesting results regrading SDNE
can be seen in the Email-EU and HepTh datasets, where the
approach has the highest macro-f1 score—perhaps indicating

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 2 Micro- and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s degree (DG) value across
all datasets

281Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

that the more complex model is better able to learn a good
representation for this more complicated feature.

Figure 6 displays the result for the classification of a ver-
tex’s eigenvector centrality. This figure is perhaps the most
interesting one so far as it shows high classification accura-
cies across many of the empirical datasets, even though this
feature is of greater complexity than previous ones. This fig-
ure further supports the results presented in Table 4, which
shows eigenvector centrality having not only the highest
accuracies, but also the highest lifts in accuracy over the
rule-based predictors. Interestingly, SDNE does not demon-
strate higher macro-f1 scores in this experiment.

In Fig. 7, the approach’s ability to correctly classify the
PageRank score of the vertices is considered. Here we see
generally lower classification accuracies than the last figure,
perhaps owing to the more complicated nature of the PageR-
ank algorithm. However, high classification accuracies can
still be seen, particularly on the Bitcoinotc and Drosophila
datasets.

Finally, Fig. 8 highlights the ability of the graph embed-
dings to predict betweenness centrality. Here, the figure
shows that this feature is, on average, harder to predict from
the embeddings than the previous two centrality measures
as evidenced by the lower accuracy scores. Again, SDNE
shows the highest macro-f1 scores on the Drosophila and
HepTh datasets, indicating its embedding captures some-
thing akin to this structural information better than the other
approaches.

5.2 Confusion Matrices

One consideration that must be made is that the binning
process, used to transform the features into targets for classi-
fication, removes the inherent ordering present in continuous
values. As an example, a vertex with a degree of 8 would
still be classified incorrectly if the prediction was 10 or 100,
but clearly one is more incorrect than the other. To address
this, we present a selection of error matrices, to explore how

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 3 Micro- and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s degree centrality (DG)
value across all datasets

282 S. Bonner et al.

1 3

‘wrong’ an incorrect prediction is. This is made possible as
the labels used for classification have consecutive ordering,
as a result of a histogram binning function, meaning that a
prediction of 2 for a true label of 1 is more correct than a
prediction of 5.

For brevity, Fig. 9 displays the error matrices for a selec-
tion of the tested embedding approaches when classifying
eigenvector centrality in the ego-Facebook dataset, although
similar patterns were found across all datasets. With error
matrices, the diagonal values represent correctly classified
label; thus, a good prediction will produce an error matrix
with a higher concentration of diagonal values. Figure 9
shows that, for the stochastic walk approaches DeepWalk
and Node2Vec, the error matrices have a higher clustering
of values around the diagonals. Interestingly, when the clas-
sification is incorrect for these approaches, the incorrect pre-
diction tends to be close to the true label. This phenomenon
can clearly be seen in these approaches for labels 1 and 2,
meaning that embeddings for vertices with these particularly

eigenvector centrality are similar. The figure also shows that,
for this particular vertex feature, the embeddings produced
via SDNE seemingly do not contain the same topological
information. This is highlighted by the lack of structure on
the diagonals of its error matrix.

5.3 Unsupervised Low‑Dimensional Projections

Figure 10 displays a selection of t-SNE plots taken from the
ego-Facebook data, where the points are coloured according
to the eigenvector centrality value after being passed through
the binning process. The figure shows that the SDNE embed-
dings seemingly have no clear structure in the low-dimen-
sional space which correlates strongly with the eigenvec-
tor centrality, as points in the same class are not clustered
together. However, with the other embedding approaches, it
is possible to see a clear clustering of points belonging to the
same class. For example, in both the Node2Vec approaches,
there is very clear clustering of classes one, four and five.

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 4 Micro- and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s triangle count (TR) value
across all datasets

283Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

This result provides further evidence for our observation
that, even when exploring the embeddings using an unsu-
pervised method, it is possible to find correlations between
known topological features and the embedding space.

5.4 Auto‑encoder Comparison

The results presented thus far have shown that it can be
comparatively challenging to recover evidence of topologi-
cal features from the auto-encoder-based SDNE approach.
To investigate this further, we compare SDNE with another
auto-encoder-based approach entitled DNGR. Unlike the
other approaches tested thus far, DNGR mandates the use of
weighted graphs. However, from the empirical datasets we
are using for this study, only the soc-sign-bitcoinotc dataset
contains weighted edges, which represent the level of trust
which users place in each other.

To investigate if DNGR captures more recognisable topo-
logical structure in its embedding space, we will again use

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 5 Micro-f1 and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s local clustering coef-
ficient (CLU) value across all datasets

t-SNE. However, the soc-sign-bitcoinotc dataset has the low-
est edge density of any of the graphs we are testing, resulting
in a very unbalanced dataset. (For example, the majority
of the vertices have a very low degree value.) To allow for
greater insight, here we chose not to use the binning process
to label each vertex embedding. Instead, we normalise the
raw topological feature values to be between zero and one;
we then use this value to directly colour the points on the
t-SNE plots. Here we would expect to see points of a simi-
lar colour, and thus feature value, to be clustered together
if vertices with similar topological features are close in the
underlying embedding space. Due to soc-sign-bitcoinotc
having a larger number of vertices than the dataset used for
the previous t-SNE visualisation, we plot only a randomly
selected half of the vertices to allow for clearer figures.

Figure 11 displays the t-SNE plots of the vertex embed-
dings for both SDNE and DNGR across four different top-
ological features. The figure shows that despite it being
more challenging to recover topological features from

284 S. Bonner et al.

1 3

SDNE in other experiments, there is still structure pre-
sent in the embedding space correlating to several top-
ological features. One can see SDNE embeddings with
similar feature values being clustered together in these
plots; for example, there are clear clusters of vertices with
a high and low degree, PageRank and betweenness cen-
trality value visible, whereas it is much harder to inter-
pret any structure in the embedding space produced via
DNGR. This could well be due to the fact that DNGR
does not take as input the raw adjacency matrix; instead,
it is reconstructing the PPMI matrix, capturing vertex co-
occurrence. Due to this transformed input, it is perhaps not
surprising that normal topological features are present in
the resulting representations.

5.5 Discussion

This section has provided extensive experimentation evalu-
ation to explore the questions raised in Sect. 3. Specifically,

we investigated if a broad range of topological features
can be predicted from the embedding created from a range
of unsupervised graph embedding techniques. Across all
the features and datasets tested, it can be seen that many
topological features can be approximated by the different
embedding approaches, with varying degrees of accuracy.
The results which show the increase in accuracy over the
rule-based predictions (Sect. 4.3) give strong indication that
the approaches are able to overcome the inherent unbalanced
nature of graph datasets and a mapping from the embedding
space to features is present. It is also interesting to observe
that numerous features can be approximated from the graph
embeddings, suggesting that several structural properties are
being captured to create the best representation for a vertex
automatically. Of all the topological features measured in
the experimentation section, the one which consistently gave
the best results was eigenvector centrality. Particularly for
the stochastic approaches, eigenvector centrality was pre-
dicted with a high degree of accuracy, suggesting that the

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 6 Micro-f1 and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s eigenvector centrality
(EC) value across all datasets

285Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

topological structure represented by this feature is captured
extremely well in the embedding space and indicates this is
a useful feature for minimising the objective functions of the
approaches. This is further reinforced by the unsupervised
projections (Fig. 10), which shows clear and distinct cluster-
ing between classes, even without the use of a classification
algorithm.

Another interesting observation from this study is that no
one approach strongly outperforms the others when classifying
a particular feature—seemingly all the approaches are approxi-
mating similar topological structures. The figures show that
the stochastic approaches (DeepWalk and Node2Vec) are the
most consistent across all features and datasets, often having
the highest macro-f1 and micro-f1 scores. SDNE demonstrates
a more inconsistent performance profile for feature classifica-
tion; this is in contrast to other studies which have found it to
have the best performance in vertex labelling problems [2].
The performance of SDNE demonstrated in this work could
be explained by it being the only deep model tested, meaning

that it contains many more parameters. This increase in com-
plexity means that SDNE could be very sensitive to the correct
selection of hyper-parameters or possibly that more complex
topological features are being approximated by the embed-
dings—or even that entirely novel features are being learned.
Finally, it is interesting to note the performance of hyperbolic
(PD) approach, which has far fewer latent dimensions in which
to capture topological information due to its limitation in mod-
elling the space as a 2D disc. Empirically, PD shows largely
similar performance to the other approaches on most data-
sets, providing strong evidence that the hyperbolic space is an
appropriate space in which to represent graphs.

6 Conclusion

Graph embeddings are increasingly becoming a key tool to
solve numerous tasks within the field of graph mining. They
have demonstrated state-of-the-art results by reporting to

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 7 Micro-f1 and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s PageRank (PR) value
across all datasets

286 S. Bonner et al.

1 3

automatically learn a low-dimensional, but highly expres-
sive, representation of vertices, which captures the topologi-
cal structure of the graph. However, to date, there has been

little work providing a theoretical grounding which would
allow for greater interpretability. In this paper, we explore
making a step in this direction by investigating which

(a) Macro Drosophila (b) Micro Drosophila (c) Macro HepTh (d) Micro HepTh

(e) Macro Email-EU (f) Micro Email-EU (g) Macro Facebook (h) Micro Facebook

(i) Macro Openflights (j) Micro Openflights (k) Macro Bitcoinotc (l) Micro Bitcoinotc

Fig. 8 Micro-f1 and macro-f1 scores, across a range of labelling fractions, for all approaches when predicting a vertex’s betweenness centrality
(BC) value across all datasets

(a) SDNE (b) DW (c) N2V-H (d) N2V-S

Fig. 9 Error matrices for neural network classification of eigenvector centrality (EC) for the ego-Facebook dataset

287Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

traditional topological graph features can be reconstructed
from the embedding space, the hypothesis being that if a
mapping from the embedding space to a particular topo-
logical feature can be found, then the topological structure
encapsulated by this feature is also captured by the embed-
ding. We present an extensive set of experiments explor-
ing this issue across five unsupervised graph embedding
techniques (detailed in Sect. 3.4), classifying seven graph

features (detailed in Sect. 3.1), across a range of empirical
datasets (detailed in Table 3). We find that a mapping from
many topological features to the embedding space of the
tested approaches is indeed possible, using both supervised
and unsupervised techniques. This discovery suggests that
graph embeddings are indeed learning approximations of
known topological features, with our experiments showing
that eigenvector centrality is best reconstructed by many of

(a) SDNE (b) DW (c) N2V-H (d) N2V-S

Fig. 10 t-SNE plots of the embeddings taken from the ego-Facebook dataset, where the points are coloured according to their eigenvector cen-
trality (EC)

(a) SDNE DG (b) SDNE PR (c) SDNE EC (d) SDNE BC

(e) DNGR DG (f) DNGR PR (g) DNGR EC (h) DNGR BC

Fig. 11 t-SNE plots of SDNE and DNGR embeddings taken from the soc-sign-bitcoinotc dataset, where points are coloured according to the
normalised topological feature

288 S. Bonner et al.

1 3

the approaches. This could allow key insight into how graph
embedding learn to create high-quality representations.

For future research, we plan to see if other eigenvector-
based topological features, known to be representative of a
graph’s topology [9], are also captured as well by the embed-
ding approaches. We plan to perform more experimentation
with synthetically created graphs with artificially balanced
degree distributions. This will remove the unbalanced nature
of empirical datasets and allow us to explore the structure
of the embeddings in more detail. Furthermore, we plan to
investigate if directly predicting topological features during
the embedding training process, perhaps in the form of a
regularisation term, can produce embeddings which gener-
alise better across other tasks.

Acknowledgements We gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Tesla K40 GPU used
for this research. Additionally, we thank the Engineering and Physical
Sciences Research Council UK (EPSRC) for funding. For invaluable
feedback and comments during this research, we also thank Nik Khadi-
jah Nik Aznan, Philip Jackson and Amir Atapour-Abarghouei. We also
thank the authors of papers [5, 32, 37] for making implementations of
their code publicly available.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Newman M (2010) Networks: an introduction. Oxford University
Press, Oxford

 2. Goyal P, Ferrara E (2017) Graph embedding techniques, appli-
cations, and performance: a survey. arXiv preprint arXiv
:1705.02801

 3. Moyano LG (2017) Learning network representations. Eur Phys
J Spec Top 226(3):499–518

 4. Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: online learning
of social representations. In: ACM SIGKDD international confer-
ence on knowledge discovery and data mining

 5. Grover A, Leskovec J (2016) node2vec : scalable feature learn-
ing for networks. In: ACM SIGKDD international conference on
knowledge discovery and data mining

 6. Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough
AS, Obara B (2017) Evaluating the quality of graph embeddings
via topological feature reconstruction. In: IEEE international con-
ference on big data

 7. Obara B, Grau V, Fricker MD (2012) A bioimage informatics
approach to automatically extract complex fungal networks. Bio-
informatics 28(18):2374

 8. Page L, Brin S, Motwani R, Winograd T (1999) The PageRank
citation ranking: bringing order to the web. Stanford InfoLab

 9. Li G, Semerci M, Yener B, Zaki MJ (2012) Effective graph clas-
sification based on topological and label attributes. Stat Anal Data
Min ASA Data Sci J 5(4):265

 10. Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS
(2016) Deep topology classification: a new approach for massive
graph classification. In: IEEE international conference on big data

 11. Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C (2012) Net-
Simile: a scalable approach to size-independent network similar-
ity. arXiv preprint arXiv :1209.2684

 12. Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS
(2016) Gfp-x: a parallel approach to massive graph comparison
using spark. In: IEEE international conference on big data, pp
3298–3307

 13. Guyon I, Elisseeff A (2003) An introduction to variable and fea-
ture selection. J Mach Learn Res 3(Mar):1157

 14. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT
Press, Cambridge

 15. Hamilton WL, Ying R, Leskovec J (2017) Representation learn-
ing on graphs: methods and applications. arXiv preprint arXiv
:1709.05584

 16. Cai H, Zheng VW, Chang KCC (2017) A comprehensive survey
of graph embedding: problems, techniques and applications. arXiv
preprint arXiv :1709.07604

 17. Zhang D, Yin J, Zhu X, Zhang C (2017) Network representation
learning: a survey. arXiv preprint arXiv :1801.05852

 18. Cui P, Wang X, Pei J, Zhu W (2017) A survey on network embed-
ding. arXiv preprint arXiv :1711.08752

 19. Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks
and locally connected networks on graphs. In: International con-
ference on learning representations (ICLR)

 20. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional
neural networks on graphs with fast localized spectral filtering. In:
Advances in neural information processing systems (NIPS)

 21. Kipf TN, Welling M (2017) Semi-supervised classification with
graph convolutional networks. In: International conference on
learning representations (ICLR)

 22. Niepert M, Ahmed M, Kutzkov K (2016) Learning convolu-
tional neural networks for graphs. In: International conference on
machine learning

 23. Wold S, Esbensen K, Geladi P (1987) Principal component analy-
sis. Chemometr Intell Lab Syst 2(1–3):37

 24. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral
techniques for embedding and clustering. In: Advances in neural
information processing systems, pp 585–591

 25. Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V,
Smola AJ (2013) Distributed large-scale natural graph factoriza-
tion. In: International conference on World Wide Web, pp 37–48

 26. Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations
with global structural information. In: ACM international on con-
ference on information and knowledge management, pp 891–900

 27. Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transi-
tivity preserving graph embedding. In: ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, pp
1105–1114

 28. Mikolov T, Chen K, Corrado G, Dean J (2013) Distributed rep-
resentations of words and phrases and their compositionality. In:
Conference on neural information processing systems (NIPS)

 29. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation
of word representations in vector space. In: International confer-
ence on learning representations (ICLR)

 30. Backstrom L, Leskovec J (2011) Supervised random walks:
predicting and recommending links in social networks. In: Web
search and data mining (WSDM)

 31. Nickel M, Kiela D (2017) Poincaré embeddings for learning hier-
archical representations. arXiv preprint arXiv :1705.08039

 32. Chamberlain B, Clough J, Deisenroth MP (2017) Neural embed-
dings of graphs in hyperbolic space. In: KDD workshop on mining
and learning with graphs (MLG)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1705.02801
http://arxiv.org/abs/1705.02801
http://arxiv.org/abs/1209.2684
http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1709.07604
http://arxiv.org/abs/1801.05852
http://arxiv.org/abs/1711.08752
http://arxiv.org/abs/1705.08039

289Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

1 3

 33. Munzner T (1998) Exploring large graphs in 3D hyperbolic space.
In: IEEE computer graphics and applications

 34. Epstein DB, Penner RC et al (1988) Euclidean decompositions of
noncompact hyperbolic manifolds. J Differ Geomet 27(1):67–80

 35. Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-
encoders. In: International conference on artificial neural networks

 36. Salakhutdinov R, Hinton G (2009) Semantic hashing. Int J
Approx. Reason 50(7):969–978

 37. Wang D, Cui P, Zhu W (2016) Structural deep network embed-
ding. In: ACM SIGKDD international conference on knowledge
discovery and data mining

 38. Cao S, Lu W, Xu Q (2016) In: 30th AAAI conference on artificial
intelligence

 39. Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio
S (2010) Why does unsupervised pre-training help deep learning?
J Mach Learn Res 11:625–660

 40. Hamilton WL, Ying R, Leskovec J (2017) Inductive representation
learning on large graphs. arXiv preprint arXiv :1706.02216

 41. Li C, Guo X, Mei Q (2016) Deepgraph: graph structure predicts
network growth. arXiv preprint arXiv :1610.06251

 42. Liu W, Cooper H, Oh MH, Yeung S, Chen Py, Suzumura T, Chen
L (2017) Learning graph topological features via GAN. arXiv
preprint arXiv :1709.03545

 43. Albert R, Barabási A (2002) Statistical mechanics of complex
networks. Rev Modern Phys 74(1):47–97

 44. Salehi Rizi F, Granitzer M, Ziegler K (2017) Properties of vector
embeddings in social networks. Algorithms 10(4):109

 45. Schnabel T, Labutov I, Mimno D, Joachims T (2015) Evaluation
methods for unsupervised word embeddings. In: Conference on
empirical methods in natural language processing, pp 298–307

 46. Li J, Chen X, Hovy E, Jurafsky D (2015) Visualizing and under-
standing neural models in NLP. arXiv preprint arXiv :1506.01066

 47. Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A (2017)
Supervised learning of universal sentence representations from
natural language inference data. arXiv preprint arXiv :1705.02364

 48. Zeiler MD, Fergus R (2014) Visualizing and understanding con-
volutional networks. In: European conference on computer vision,
pp 818–833

 49. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-
world’ networks. Nature 393:440–442

 50. Bonacich P (2007) Some unique properties of eigenvector central-
ity. Soc Netw 29(4):555

 51. Han M, Daudjee K, Ammar K, Ozsu MT, Wang X, Jin T (2014)
An experimental comparison of pregel-like graph processing sys-
tems. VLDB Endowment 7(12):1047

 52. Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law rela-
tionships of the internet topology. In: ACM SIGCOMM computer
communication review

 53. Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves
A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A
generative model for raw audio. arXiv preprint arXiv :1609.03499

 54. Lvd Maaten, Hinton G (2008) Visualizing data using t-sne. J Mach
Learn Res 9(Nov):2579

 55. Arlot S, Celisse A (2010) A survey of cross-validation procedures
for model selection. Stat Surv 4:40–79

 56. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin
M, Ghemawat S, Irving G, Isard M, et al (2016) Tensorflow: a
system for large-scale machine learning. In: USENIX symposium
on operating systems design and implementation, vol 16, p 265

 57. Shi S, Wang Q, Xu P, Chu X (2016) Benchmarking state-of-the-art
deep learning software tools. arXiv preprint arXiv :1608.07249

 58. Leskovec J, Krevl A (2014) SNAP datasets: Stanford large net-
work dataset collection. http://snap.stanf ord.edu/data. Accessed
Feb 2018

 59. Rossi RA, Ahmed NK (2015) The network data repository with
interactive graph analytics and visualization. In: AAAI conference
on artificial intelligence. http://netwo rkrep osito ry.com. Accessed
Feb 2018

 60. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) Scikit-learn: machine learning in Python. J Mach Learn
Res 12:2825–2830

 61. Karakoulas GI, Shawe-Taylor J (1999) Optimizing classifers for
imbalanced training sets. In: Advances in neural information pro-
cessing systems, pp 253–259

http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1610.06251
http://arxiv.org/abs/1709.03545
http://arxiv.org/abs/1506.01066
http://arxiv.org/abs/1705.02364
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1608.07249
http://snap.stanford.edu/data
http://networkrepository.com

	Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study
	Abstract
	1 Introduction
	1.1 Notation

	2 Previous Work
	2.1 Introduction to Graph Embeddings
	2.1.1 Supervised Approaches
	2.1.2 Factorisation Approaches

	2.2 Unsupervised Stochastic Embeddings
	2.2.1 DeepWalk
	2.2.2 Node2Vec

	2.3 Unsupervised Hyperbolic Embeddings
	2.4 Unsupervised Auto-encoder-Based Approaches
	2.5 Observing Features Preserved in Embeddings
	2.5.1 Graph Embeddings Features
	2.5.2 Feature Learning in Other Domains

	3 Semantic Content of Graph Embeddings
	3.1 Predicting Topological Features
	3.2 Power-Law Feature Distribution
	3.3 Methodology
	3.4 Embedding Approaches Compared

	4 Experimental Set-up and Classification Algorithm Selection
	4.1 Metrics
	4.1.1 Presented Results
	4.1.2 Precision Metrics

	4.2 Experimental Set-up
	4.2.1 Implementation Details
	4.2.2 Experimental Environment
	4.2.3 Experimental Datasets

	4.3 Classification Algorithm Selection

	5 Results
	5.1 Topological Feature Prediction
	5.2 Confusion Matrices
	5.3 Unsupervised Low-Dimensional Projections
	5.4 Auto-encoder Comparison
	5.5 Discussion

	6 Conclusion
	Acknowledgements
	References

