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Abstract

An a posteriori error estimator for the error in the (L2(H1)+L∞(L2))-type norm for an interior penalty
discontinuous Galerkin (dG) spatial discretisation and backward Euler temporal discretisation of linear
non-stationary convection-diffusion initial/boundary value problems is derived, allowing for anisotropic
elements. The proposed error estimator is used to drive an hp-space-time adaptive algorithm wherein
directional mesh refinement is employed to give rise to highly anisotropic elements able to accurately
capture layers. The performance of the hp-space-time adaptive algorithm is assessed via a number of
standard test problems characterised by sharp and/or moving layers.

Keywords:
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1. Introduction

Convection-dominated convection-diffusion type problems often admit solutions involving steep
gradients commonly referred to as boundary or interior layers. The accurate and efficient numerical
resolution of such steep layers is a classical challenge in adaptive finite element methods as their
exact location and strength may not, in general, be known a priori. For the special cases where
the location of boundary or interior layers is known, structured grids can be successfully employed
[30]. For non-stationary convection-diffusion equations, the situation is more challenging as the layers’
location and/or strength may change over time, necessitating the use of adaptive algorithms to resolve
the layers with an acceptable computational cost. Adaptive algorithms are usually based on suitable
a posteriori error estimators or indicators, which range from ad hoc quantities to mathematically
rigorous error bounds.

Rigorous a posteriori error estimation for stationary linear equations is now relatively well under-
stood: for pure diffusion problems, we refer to the textbooks [36, 1] and for dG methods in particular
to the papers [23, 8, 20]. For stationary convection-diffusion equations, the quest for robust a pos-
teriori error estimators has seen recent advancements in various contexts [37, 39, 25, 31, 32, 33]. A
posteriori error estimators for non-stationary linear convection-diffusion equations are also available
for various discretisations [21, 9, 38, 14, 5, 6, 35, 17, 27, 11].

A posteriori error estimators for (spatial) dG methods for non-stationary parabolic problems can
be found in [18, 15, 34], while convection-diffusion problems are considered in [12].

This work is concerned with the extension of the L2(H1)+L∞(L2)-type a posteriori error estimators
from [11] norm to include hp-version sensitivity and anisotropic mesh capabilities. We analyse a
fully discrete method based on backward Euler time stepping coupled with the interior penalty dG
discretisation in space. The derivation of the a posteriori bound is based on the elliptic reconstruction
technique [28, 18] which allows the use of the robust elliptic error estimator from [32, 19].
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The a posteriori estimator is used to drive an adaptive algorithm with hp-version and anisotropic
refinement capabilities, thereby generalising the respective adaptive algorithm from [11]. First, the
adaptive algorithm follows the recipe proposed in [11] to drive temporal and spatial refinement and
coarsening. Then, for each element marked for refinement, it decides whether to apply h or p adap-
tivity. To this end, it follows the hp-adaptive strategy developed [22] based on estimating the local
smoothness of the (unknown) analytical solution from truncated local Legendre expansions of the
computed numerical solution. Finally, when h refinement is selected, a choice on whether to perform
isotropic or anisotropic h refinement is made. This is based on exploiting the anisotropic nature of
the novel a posteriori error estimator as detailed in Section 6.

We show numerically that hp-adaptivity results to exponential convergence rates and that anisotropic
adaptivity is able to allow for the onset of exponential convergence under less numerical degrees of
freedom than respective standard (isotropic) refinement procedures.

The following standard notation will be used throughout the reminder of the paper. For T > 0
and X a real Banach space with norm ‖ · ‖X , we define the spaces Lp(0, T ;X), for 1 ≤ p ≤ +∞, that
consist of all measurable functions v : [0, T ]→ X for which:

‖v‖Lp(0,T ;X) :=
(∫ T

0
‖v(t)‖pXdt

)1/p
< +∞, for 1 ≤ p < +∞,

‖v‖L∞(0,T ;X) := ess sup
0≤t≤T

‖v(t)‖X < +∞, for p = +∞.
(1)

We also define H1(0, T,X) := {u ∈ L2(0, T ;X) : ut ∈ L2(0, T ;X)}. Finally, we denote by C(0, T ;X)
and C0,1(0, T ;X), respectively, the spaces of continuous and Lipschitz-continuous functions v : [0, T ]→
X such that:

||v||C(0,T ;X) := max
0≤t≤T

||v(t)||X <∞,

||v||C0,1(0,T ;X) := max
{
||v||C(0,T ;X), ||

∂v

∂t
||C(0,T,X)

}
<∞.

(2)

The symbols . and & will be used to denote inequalities that are true up to a positive constant
that is independent of the data (including the diffusion coefficient ε), cf. below and the continuous
and discrete solutions.

Additionally, as they will be used frequently throughout this work, we will denote the L2-inner
product on the space domain Ω by (·, ·) and the L2-norm on Ω by || · ||.

2. Model problem

Let Ω ⊂ R2 be a bounded Lipschitz polygon with boundary ∂Ω. We consider the model problem
of finding u : Ω× [0, T ]→ R such that

∂u

∂t
− ε∆u+ a · ∇u+ bu = f in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u(·, 0) = u0 in Ω̄,

(3)

under the following assumptions: 0 < ε ≤ 1, f ∈ C(0, T ;L2(Ω)), a ∈ C(0, T ;W 1,∞(Ω))2, b ∈
C(0, T ;L∞(Ω)) and u0 ∈ L2(Ω). We further assume that

b− 1

2
∇ · a ≥ β a.e. in Ω× [0, T ], ||b−∇ · a||C(0,T ;L∞(Ω)) ≤ c∗β, (4)

for some constants β ≥ 0 and c∗ ≥ 0. For simplicity, we also assume that a ≡ a(x, t) and Ω are of
order one, possibly up to rescaling, so that ε−1 can be taken as the Péclet number of the problem.

The weak form of (3) then reads: find u ∈ L2(0, T ;H1
0 (Ω))∩H1(0, T ;L2(Ω)) such that u(·, 0) = u0

and for each t ∈ (0, T ] we have∫
Ω

∂u

∂t
v dx+

∫
Ω
(ε∇u · ∇v + a · ∇uv + buv) dx =

∫
Ω
fv dx ∀v ∈ H1

0 (Ω). (5)

Note that under the regularity assumptions above, we have that u ∈ C(0, T ;L2(Ω)).
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3. Discontinuous Galerkin method

We consider a family of meshes ζ = {K} covering the computational domain Ω with K denoting a
generic element. We assume that each subdivision ζ is constructed via affine mappings FK : K̂ → K
with non-singular Jacobian where K̂ is the reference square, however, we do not assume that the
subdivisions are shape-regular and hence each element K can be characterised by two length scales as
detailed below. For simplicity, we also assume that the mesh is axiparallel. We denote by E(ζ) the set
of all edges in the triangulation ζ and by E int(ζ) ⊂ E(ζ) the subset of all interior edges. Each mesh is
allowed to contain at most one hanging node per edge and so a mesh edge may coincide with either
a part of or all of an edge of some K ∈ ζ. This assumption is necessary because the error estimator
presented in Section 5 is based on the analysis in [19] which exploits such assumption. DG methods
have been extended to allow for arbitrarily small as well as an arbitrary number of edges, see eg. [10]
and the references therein, but the proof of posteriori error bounds allowing for this generality is still
an open problem. We further denote by E(K) the set of edges of K and note that as just discussed
we may have E(K) 6= {E ∈ E(ζ) : E ⊂ ∂K}. We further assume that whenever an edge E ∈ E(K)
has a hanging node that this bisects E.

3.1. Mesh sizes

Each element K ∈ ζ can be characterised by two vectors v1
K and v2

K reflecting the two anisotropic
directions such that v1

K ⊥ v2
K . The lengths of these vectors are denoted by h1

K and h2
K , respectively,

and we set hmin,K := min{h1
K , h

2
K} and hmax,K := max{h1

K , h
2
K}. We then define the matrix

MK = [v1
K , v

2
K ]. (6)

Note that MK is orthogonal and we have

M>
KMK =

[
(h1
K)2 0
0 (h2

K)2

]
.

Given an edge E ∈ E(ζ), if E ∈ E(K) or E is a part of an elemental edge of K, we define a local
function of the edge E, viz.,

h⊥E,K = h3−i
K , if E is parallel to viK , i = 1, 2,

Furthermore, if E ∈ E int(ζ) we assume that

h⊥E,K ∼ h⊥E,K′ , if E = K̄ ∩ K̄ ′, K,K ′ ∈ ζ. (7)

Note that this assumption does not imply any restriction on the aspect ratio of the elements. Indeed,
given any edges E,E′ ∈ E(K) with E ∩ E′ 6= ∅, the ratio hE/hE′ is not constrained by the above
where hE = hiK if E is parallel to viK .

With this notation at hand, we define h⊥E for E ∈ E(ζ) as follows:

h⊥E :=

{
min{h⊥E,K ,h⊥E,K′}, E ∈ E int(ζ), E = ∂K ∩ ∂K ′,
h⊥E,K , E ∈ E(ζ) \ E int(ζ), E = ∂K ∩ ∂Ω.

Next, we define hmin,E for E ∈ E(ζ) by setting

hmin,E :=

{
min{hmin,K , hmin,K′}, E ∈ E int(ζ), E = ∂K ∩ ∂K ′,
hmin,K , E ∈ E(ζ) \ E int(ζ), E = ∂K ∩ ∂Ω,

Note that assumption (7) implies that given any edge E ∈ E(ζ) and any element K ∈ ζ, if E ∈ E(K)
or E is a part of an elemental edge of K, we have

h⊥E ∼ h⊥E,K , hmin,E ∼ hmin,K . (8)

Remark 3.1. In the present setting of proof of context (i.e., that combination of hp-adaptivity with
anisotropic mesh refinement can lead to computational savings), we opted for the simplifying assump-
tion of axiparallel elements. We stress, however, that with minor modifications only the analysis pre-
sented below can be extended to valid distorted elements constructed via element mappings as described
in detail in [16, 17].
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3.2. Polynomial degrees

We associate to each element K ∈ ζ a polynomial degree pK ≥ 1 and we introduce the degree
vector p = { pK : K ∈ ζ } and set |p| = maxK∈ζ pK . We assume that p is of bounded local variation,
that is, that there exists a constant % ≥ 1 independent of the particular mesh in a sequence of meshes
such that given any pair of neighboring elements K,K ′ ∈ ζ we have

%−1 ≤ pK/pK′ ≤ %. (9)

We can then introduce the edge polynomial degree pE for E ∈ E(ζ) given by

pE =

{
max{pK , pK′}, E ∈ E int(ζ), E = ∂K ∩ ∂K ′,
pK , E ∈ E(ζ) \ E int(ζ), E = ∂K ∩ ∂Ω.

(10)

For a given partition ζ of Ω and a given degree vector p on ζ, we define the hp-version discontinuous
Galerkin finite element space by

Vp(ζ) = { v ∈ L2(Ω) : v|K ◦ FK ∈ QpK (K̂), K ∈ ζ }, (11)

with QpK (K̂) denoting the set of all polynomials on the reference square K̂ of degree no more than
pK .

3.3. Bilinear forms

We first introduce some notation. The outward unit normal to the boundary ∂K of an element
K is denoted by nK . Given an edge E ∈ E int(ζ) shared by two elements K and K ′, a vector field
v ∈ [H1/2(Ω)]2 and a scalar field v ∈ H1/2(Ω), we define jumps and averages of v and v across E by:

{v} =
1

2
(v|K̄ + v|K̄′), [v] =v|K̄ · nK + v|K̄′ · nK′ ,

{v} =
1

2
(v|K̄ + v|K̄′), [v] =v|K̄nK + v|K̄′nK′ .

(12)

If E ⊂ ∂Ω, we set {v} = v, [v] = v · n, {v} = v and [v] = vn, with n denoting the outward unit
normal to the boundary ∂Ω.

We define the outflow part of the boundary ∂Ω at the time t by

∂Ωt
out = {x ∈ ∂Ω : a(x, t) · n(x) ≥ 0}, (13)

Similarly, we define the outflow parts of the boundary of an element K at time t by

∂Kt
out = {x ∈ ∂K : a(x, t) · nK(x) ≥ 0}. (14)

We consider a full discretisation of problem (5) based on backward Euler time stepping and a
variable mesh hp-dG discretisation in space. To this end, we introduce a subdivision of [0, T ] into n
time steps of size τ1, τ2, ..., τn such that

∑n
j=1 τj = T for some n ≥ 1 and set t0 = 0 and tk :=

∑k
j=1 τj .

We denote an initial triangulation by ζ0 and associate to each time step k > 0 a triangulation ζk

which is assumed to have been obtained from ζk−1 by locally refining and coarsening of ζk−1. This
assumption allows us to avoid the well known problem of degradation of the finite element solution
related to mesh change, cf. [13, 7]. To each mesh ζk, we associate a polynomial degree vector p and
the finite element space V k

p = Vp(ζk) given by (11). We also set f(., tk) = fk, a(., tk) = ak, and

b(., tk) = bk for brevity.
The fully-discrete dG method then reads as follows. Set u0

h to be a projection of u0 onto V 0
p , e.g.,

the orthogonal L2-projection; then, for k = 0, ..., n− 1, find uk+1
h ∈ V k+1

p , such that

(
uk+1
h − ukh
τk+1

, vk+1
h ) +B(tk+1;uk+1

h , vk+1
h ) +Kh(uk+1

h , vk+1
h ) = (fk+1, vk+1

h ) ∀vk+1
h ∈ V k+1

p , (15)
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with

B(t;w, v) :=
∑
K∈ζ

∫
K

(ε∇w − aw) · ∇v + (b−∇ · a)wv dx+
∑

E∈E(ζ)

γεp2
E

h⊥E

∫
E
[w] · [v] ds

+
∑
K∈ζ

(∫
∂Kt

out∩∂Ωt
out

a · nKwv ds+

∫
∂Kt

out\∂Ω
a · nKw(v|K̄ − v|K̄′) ds

)
,

Kh(w, v) :=−
∑

E∈E(ζ)

∫
E
{ε∇w} · [v] + {ε∇v} · [w] ds,

(16)

where K̄∩K̄ ′ = E ⊂ ∂Kt
out \∂Ω. Here, γ > 0 denotes the discontinuity penalty parameter which must

be chosen large enough so that the operator B + Kh is coercive, cf. Section 4 below. For simplicity,
we assume γ > 1 so that subsequent constants are independent of it.

Note that the bilinear form B is well-defined for u, v ∈ H1
0 (Ω) and t ∈ (0, T ]. In particular, we

have

B(t;u, v) =

∫
Ω
(ε∇u · ∇v + a · ∇uv + buv) dx. (17)

Hence, the weak problem (5) may be rewritten as: find u ∈ L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;L2(Ω)) such

that u(·, 0) = u0 and for each t ∈ (0, T ] we have

(
∂u

∂t
, v) +B(t;u, v) = (f, v) ∀v ∈ H1

0 (Ω). (18)

4. Error bounds for the stationary problem

We introduce the following mesh-dependent quantities:

ejumpp,ζ(u) :=

( ∑
E∈E(ζ)

γεp2
E

h⊥E
||[u]||2L2(E)

)1/2

,

|||u|||ζ :=

(∑
K∈ζ

(ε||∇u||2L2(K) + β||u||2L2(K) + ejumpp,ζ(u)2

)1/2

,

ojumpp,ζ(u) :=

( ∑
E∈E(ζ)

(εp2
Eh
⊥
E

h2
min,E

+
βh⊥E
p2
E

+
h⊥E
εpE

)
||[u]||2L2(E)

)1/2

|u|A,ζ :=

((
sup

v∈H1
0 (Ω)\{0}

∫
Ωau · ∇v dx
|||v|||ζ

)2

+ ojumpp,ζ(u)2

)1/2

,

. (19)

noting that ||| · |||ζ and | · |A,ζ define norms on H1
0 (Ω) + Vp(ζ).

For any t ∈ (0, T ], the following properties holds in standard fashion; their proof is omitted for
brevity. The bilinear form B(t; ·, ·) is coercive on H1

0 (Ω), that is,

B(t; v, v) ≥ |||v|||2ζ (20)

for all v ∈ H1
0 (Ω). It is also continuous in the following sense

B(t;w, v) . (|||w|||ζ + |w|A,ζ)|||v|||ζ (21)

for all w ∈ H1
0 (Ω) + Vp(ζ) and v ∈ H1

0 (Ω). Finally, for γ large enough, the discrete bilinear form
B +Kh is coercive in Vp(ζ) with respect to the ||| · |||ζ norm, viz.,

B(t; vh, vh) +Kh(vh, vh) & |||vh|||2ζ (22)

for all vh ∈ Vp(ζ).
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Next, given K ∈ ζ and E ⊂ ∂K, we introduce the following notation

αK := min(hmin,Kε
− 1

2 p−1
K , β−

1
2 ),

αE := min(h2
min,Kε

− 1
2 p−1
E (h⊥E)−1, β−

1
2 ),

αT := min(ε−
1
2 , β−

1
2 ).

We then have the following result whose proof is completely analogous to that of [19, Theorem 3] and
is therefore omitted for brevity, cf. also [32].

Theorem 4.1. For a given t ∈ (0, T ], let us ∈ H1
0 (Ω) be such that

B(t;us, v) = (f, v) ∀v ∈ H1
0 (Ω),

and consider ush ∈ Vp(ζ) such that

B(t;ush, vh) +Kh(ush, vh) = (f, vh) ∀vh ∈ Vp(ζ).

Then, the following a posteriori bound holds:

(|||us − ush|||ζ + |us − ush|A,ζ)2

.
∑
K∈ζ

α2
K ||f + ε∆ush − a · ∇ush − bush||2L2(K)

+
1

2

∑
K∈ζ

∑
E∈Eint(K)

ε
3
2αE ||[∇ush]||2L2(E)

+
1

2

∑
K∈ζ

∑
E∈E(K)

(γ2εp3
E

h⊥E,K
+
εh⊥E,Kp

2
E

h2
min,K

+
βh⊥E,K
p2
E

+
h⊥E,K
εpE

)
||[ush]||2L2(E\∂Ω)

+
∑
K∈ζ

∑
E∈E(K)

(γ2εp3
E

h⊥E,K
+
εh⊥E,Kp

2
E

h2
min,K

+
βh⊥E,K
p2
E

+
h⊥E,K
εpE

)
||[ush]||2L2(E∩∂Ω).

5. An a posteriori error bound

For the proof of a posteriori error bounds we shall make use of the elliptic reconstruction framework
[28, 26, 18].

Definition 5.1. We define the elliptic reconstruction wk ∈ H1
0 (Ω) to be the unique solution of the

elliptic problem
B(tk;wk, v) = (Ak, v) ∀v ∈ H1

0 (Ω),

where Ak ∈ V k
p is the Riesz representer satisfying

B(tk;ukh, v
k
h) +Kh(ukh, v

k
h) = (Ak, vkh) ∀vkh ∈ V k

p .

Remark 5.2. For k ≥ 1, we obtain from the numerical method that

Ak+1 = Ik+1
h fk+1 −

uk+1
h − Ik+1

h ukh
τk+1

,

where Ik+1
h is the L2-projection operator onto V k+1

p .
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For each time index k, we decompose the dG solution ukh into a conforming part ukh,c ∈ H1
0 (Ω)∩V k

p

and a non-conforming part ukh,d ∈ V k
p such that ukh = ukh,c + ukh,d. Given t ∈ (tk, tk+1], we define uh(t)

to be the linear interpolant with respect to t of the values ukh and uk+1
h , viz.,

uh(t) := lk(t)u
k
h + lk+1(t)uk+1

h , (23)

with {lk, lk+1} denoting the standard linear Lagrange interpolation basis defined on the interval
[tk, tk+1]. We define uh,c(t) and uh,d(t) analogously. We can then decompose the error e = u − uh =
ec − uh,d where ec = u− uh,c. It will also be useful to define θk = wk − ukh.

Lemma 5.3. Given t ∈ (tk, tk+1] we have

(
∂e

∂t
, v) +B(t; e, v) = (f − fk+1, v) + (fk+1 − ∂uh

∂t
, v)−B(t;uh, v) ∀v ∈ H1

0 (Ω).

Proof. This follows from (18) by adding and subtracting various terms.

We now introduce the error estimators. We begin by defining the spatial estimator

η2
S :=||e(0)||2 +

1

3

n−1∑
j=0

τj+1(η2
S1,j + η2

S1,j+1) +

n−1∑
j=0

τj+1η
2
S2,j+1 + max

0≤j≤n
η2
S3,j

+ min

{( n−1∑
j=0

τj+1ηS4,j+1

)2

, α2
T

n−1∑
j=0

τj+1η
2
S4,j+1

}
,

(24)

where

η2
S1,j =

∑
K∈ζj

α2
K ||Aj + ε∆ujh − aj · ∇ujh − b

jujh||
2
L2(K) +

∑
K∈ζj

∑
E∈Eint(K)

ε
3
2αE ||[∇ujh]||2L2(E)

+
∑
K∈ζj

∑
E∈E(K)

(γ2εp3
E

h⊥E,K
+
εh⊥E,Kp

2
E

h2
min,K

+
βh⊥E,K
p2
E

+
h⊥E,K
εpE

)
||[ujh]||2L2(E),

η2
S2,j+1 =

∑
K∈ζj∪ζj+1

α2
K ||f j+1 − Ij+1

h f j+1 +
ujh − I

j+1
h ujh

τj+1
||2L2(K),

η2
S3,j =

∑
K∈ζj

∑
E∈E(K)

h⊥E,K
p2
E

||[ujh]||2L2(E),

η2
S4,j+1 =

∑
K∈ζj∪ζj+1

∑
E∈E(K)

h⊥E,K
p2
E

||[
uj+1
h − ujh
τj+1

]||2L2(E).

(25)

The time (or temporal) estimator, is given by

η2
T :=

n−1∑
j=0

∫ tj+1

tj
η2
T1,j+1 dt+ min

{( n−1∑
j=0

∫ tj+1

tj
ηT2,j+1 dt

)2

, α2
T

n−1∑
j=0

∫ tj+1

tj
η2
T2,j+1 dt

}
, (26)

where

η2
T1,j+1 =

∑
K∈ζj∪ζj+1

1

ε
||lj+1(aj+1 − a)uj+1

h + lj(a
j − a)ujh||

2
L2(K),

η2
T2,j+1 =

∑
K∈ζj∪ζj+1

||f − f j+1 + lj(A
j+1 −Aj) + lj+1(bj+1 − b−∇ · aj+1 +∇ · a)uj+1

h

+ lj(b
j − b−∇ · aj +∇ · a)ujh||

2
L2(K).

(27)
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We are now ready to state our error bound for the (L2(H1) + L∞(L2))-type norm

||e||? :=

(
||e||2L∞(0,T ;L2(Ω)) +

∫ T

0
|||e|||2dt

)1/2

, (28)

where the norm ||| · ||| is taken over the mesh ζk ∪ ζk+1 for t ∈ (tk, tk+1).

Theorem 5.4. The error e of the fully-discrete method satisfies the bound

||e||? .
√
η2
S + η2

T . (29)

Proof. From Lemma 5.3 and Definition 5.1 we have

(
∂e

∂t
, v) +B(t; e, v) =(f − fk+1, v) + (fk+1 − ∂uh

∂t
−Ak+1, v) +B(tk+1; θk+1, v)

+B(tk+1;uk+1
h , v)−B(t;uh, v),

(30)

which upon straightforward manipulation and using Remark 5.2 gives

(
∂e

∂t
, v) +B(t; e, v)

= lk+1B(tk+1; θk+1, v) + lkB(tk; θk, v) + (f − fk+1 + lk(A
k+1 −Ak), v)

+ lk+1B(tk+1;uk+1
h , v) + lkB(tk;ukh, v)−B(t;uh, v) + (fk+1 − ∂uh

∂t
−Ak+1, v).

(31)

The final term can be rewritten using Remark 5.2, properties and bounds of the L2-projection and
the Cauchy-Schwarz inequality yielding

(fk+1 − ∂uh
∂t
−Ak+1, v) = (fk+1 − ∂uh

∂t
−Ak+1, v − Ik+1

h v) . ηS2,k+1|||v|||. (32)

Using the definition of the bilinear form B, the Cauchy-Schwarz inequality, integration by parts and
a standard hp-version inverse estimate [16, 17], viz.,

‖v‖2L2(E) .
p2
E

h⊥E
‖v‖2L2(K) , (33)

the remaining four terms give rise to the time estimator:

(f − fk+1 + lk(A
k+1 −Ak), v) + lk+1B(tk+1;uk+1

h , v) + lkB(tk;ukh, v)

−B(t;uh, v) . ηT1,k+1|||v|||+ ηT2,k+1||v||.
(34)

Setting v = ec and using (20), (21), the Cauchy-Schwarz inequality and Young’s inequality yields

d

dt
(||ec||2) + |||ec|||2 . ||

∂uh,d
∂t
|| ||ec||+ l2k+1(|||θk+1|||+ |θk+1|A)2 + l2k(|||θk|||+ |θk|A)2

+ |||uh,d|||2 + |uh,d|2A + ηT2,k+1||ec||+ η2
T1,k+1 + η2

S2,k+1.
(35)

The θ terms on the right-hand side of the last inequality give rise to the space estimator via elliptic
reconstruction and Theorem 4.1, viz.,

(|||θk|||+ |θk|A)2 . η2
S1,k, (|||θk+1|||+ |θk+1|A)2 . η2

S1,k+1 (36)

Finally, we recall the conforming-nonconforming stability bounds from [19] which are extensions to
anisotropic elements of the respective bounds by Karakashian and Pascal [23, 24]:

|||uh,d|||2 + |uh,d|2A .
∑

K∈ζk∪ζk+1

∑
E∈E(K)

(γ2εp3
E

h⊥E,K
+
εh⊥E,Kp

2
E

h2
min,K

+
βh⊥E,K
p2
E

+
h⊥E,K
εpE

)
||[uh]||2L2(E),

||
∂uh,d
∂t
||2 .

∑
K∈ζk∪ζk+1

∑
E∈E(K)

h⊥E,K
p2
E

||[∂uh
∂t

]||2L2(E),

||uh,d||2 .
∑

K∈ζk∪ζk+1

∑
E∈E(K)

h⊥E,K
p2
E

||[uh]||2L2(E).

(37)
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The proof then follows from (35), (36), (37) along with standard arguments [11].

6. An adaptive algorithm

The a posteriori error bounds presented above will be used to drive an hp-space-time adaptive
algorithm. The algorithm we propose is an extension to the one presented in [11] allowing also for
hp-adaptivity. In the algorithm in [11], the space-time adaptivity is regulated by four parameters:
ttol+, ttol−, stol+, stol−. The quantities ttol+ and ttol− are the thresholds for applying
refinement and derefinement in time, respectively. Similarly, stol+ and stol− are the thresholds for
applying refinement and derefinement in space. The hp-space-time adaptive algorithm is based on
using different parts of the a posteriori estimator from Theorem 5.4 to drive space-time adaptivity.

Algorithm 1 Algorithm to apply anisotropic adaptivity.

1: Input: ζj , η2
S1,j

, uh, stol
+, stol−.

2: Output: ζj+1.
3: for ∀K ∈ ζj do
4: if η2

S1,j
|K > stol+ then

5: if uh|K is smooth enough then
6: Mark element K for refinement in p
7: else
8: η2

S1,E1
K

:= η2
S1,j
|E1

K

9: η2
S1,E2

K
:= η2

S1,j
|E2

K

10: if ηS1,E1
K
> 10ηS1,E2

K
then

11: Mark K for anisotropic h-refinement in the direction v1
K

12: else if ηS1,E2
K
> 10ηS1,E1

K
then

13: Mark K for anisotropic h-refinement in the direction v2
K

14: else
15: Mark K for isotropic refinement in h
16: end if
17: end if
18: else if η2

S1,j
|K < stol− then

19: if uh|K is smooth enough then
20: Mark K for derefinement in p lowering the order by 1
21: else
22: Mark K for derefinement in h undoing the last h-refinement done to the element
23: end if
24: end if
25: end for
26: Apply h-smoothing to guarantee at most one hanging node per edge
27: Apply p-smoothing to guarantee (9)
28: Adapt the mesh ζj to create ζj+1

For simplicity, we use in the hp-space-time adaptive algorithm the quantity η̂T,j+1 given by

η̂2
T,j+1 =

∫ tj+1

tj
η2
T1,j+1 dt+ min{αT , T}

∫ tj+1

tj
η2
T2,j+1 dt, (38)

to drive the time refinement. The sum of all terms η̂2
T,j+1 can bound η2

T from above and, hence, this

can be used to drive temporal refinement and coarsening subject to two temporal thresholds ttol+

and ttol− on each time interval. We refer the reader to [29, 11] for a discussion on the delicate matter
of the relative choice of the various thresholds. Both mesh refinement and coarsening are driven by the
term ηS1,j . The size of the elemental contributions to ηS1,j determines whether the elements are to be
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refined, coarsened or neither depending on two spatial thresholds stol+ and stol−, i.e. all elements
with η2

S1,j
|K > stol+ are marked for refinement and all elements with η̂2

S1,j
< stol− are marked for

coarsening. When hp-adaptivity is used, the algorithm needs to decide for each element marked for
refinement whether to apply either h or p adaptivity. The choice is based on estimating the local
smoothness of the analytical solution. To this end, we employ the hp-adaptive strategy developed in
[22] where the local regularity of the analytical solution is estimated from truncated local Legendre
expansions of the computed numerical solution. In the case that anisotropic hp-adaptivity is used,
the method also has to decide whether to perform isotropic or anisotropic h refinement. To make this
decision, we denote by E1

K and E2
K the two sets containing the edges of K parallel to either v1

K or v2
K

and we define

η2
S1,Ei

K
=
∑
E∈Ei

K

ε
3
2αE ||[∇ujh]||2L2(E) +

∑
E∈Ei

K

(γ2εp3
E

h⊥E,K
+
εh⊥E,Kp

2
E

h2
min,K

+
βh⊥E,K
p2
E

+
h⊥E,K
εpE

)
||[ujh]||2L2(E),

i = 1, 2. The choice between isotropic or anisotropic h refinement is then made by comparing ηS1,E1
K

and ηS1,E2
K

: if ηS1,E1
K
> 10ηS1,E2

K
, then the element K is refined anisotropically along the direction

v1
K ; on the other hand, if ηS1,E2

K
> 10ηS1,E1

K
, then the element K is refined along the direction v2

K . If
neither of these conditions is met then the element K is refined isotropically. The pseudocode of the
full anisotropic adaptivity procedure is reported in Algorithm 1.

7. Numerical experiments

We shall investigate numerically the presented a posteriori bounds and the performance of the
adaptive algorithm through an implementation based on the AptoFEM software package. The resulting
discrete systems of linear equations are solved by exploiting the Multifrontal Massively Parallel Solver
(MUMPS) [2, 3, 4]. All the numerical experiments have been performed using an Intel R© Core i7 PC
with 16 GB of RAM and 3.60 GHz. The codes only take the default optimization of the machine, i.e.,
they are not parallel. Since the basic adaptive algorithm that we use is already analysed in [11], this
section focuses solely on the advantages of the hp-error estimator in space for non-stationary problems.

If we let λk denote the total number of degrees of freedom on the union mesh ζk ∪ ζk+1 then the
weighted degrees of freedom of the problem is given by

Weighted Average DoFs :=
1

T

n−1∑
j=0

τj+1λj . (39)

7.1. Anisotropic adaptivity

In the section we present numerical results highlighting the advantages of hp-adaptivity in terms of
average DoFS for a model problem. In the sequel, we shall use the terminology isoh, isohp, anisoh and
anisohisop to refer to the dG method with isotropic h-adaptivity, isotropic hp-adaptivity, anisotropic
h-adaptivity and anisotropic h-adaptivity/isotropic p-adaptivity, respectively.

Let Ω = (0, 1)2, a = (1, 1)T , b = 0, u0 = 0, T = 10 and select the function f so that the exact
solution to problem (5) is given by

u(x, y, t) = (1− e−t)
(
e(x−1)/ε − 1

e−1/ε − 1
+ x− 1

)(
e(y−1)/ε − 1

e−1/ε − 1
+ y − 1

)
. (40)

The solution exhibits boundary layers at the outflow boundary of the domain of width O(ε) as well
as a temporal boundary layer.

We begin by fixing the temporal threshold to ttol+ = 0.001. This value is small enough to ensure
that the temporal contribution to the error is very small in comparison to the spatial contribution.
The spatial threshold is then gradually reduced in order to observe the spatial effectivity indices for
this problem. The same test is run several times for different values of ε and using different adaptive
techniques. The results are reported in Figure 1.
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Figure 1: Average DoFS as function of stol+ for ε = 0.1 (top left), ε = 0.01 (top right) and ε = 0.001 (bottom).

As can be seen from the figure, for all values of ε and for all adaptive techniques, the reduction
in stol+ leads to the Average DoFS increasing – this is obvious since more degrees of freedom are
necessary when a smaller value of the threshold for the error estimator is required. However, the curves
representing the different adaptive techniques are further apart for smaller values of ε suggesting that
the efficiency in resolving the boundary layers is different for different adaptive strategies. Perhaps
unsurprisingly, the one that seems to perform well in all situations is the anisohisop adaptive technique
which combines anisotropic adaptivity in h with isotropic adaptivity in p. The former is used to resolve
the boundary layer while the latter efficiently controls the error in the regions were the solution is
smoother.

7.2. Faces only error estimator

In this section we explore the effectiveness of a variant of the error estimator ηS1,j . In particular,
we consider the error estimator ηS1,j with the interior elemental residual term removed:

η̄2
S1,j :=

∑
K∈ζj

∑
E∈Eint(K)

ε
3
2αE ||[∇ujh]||2L2(E)

+
∑
K∈ζj

∑
E∈E(K)

(γ2εp3
E

h⊥E,K
+
εh⊥E,Kp

2
E

h2
min,K

+
βh⊥E,K
p2
E

+
h⊥E,K
εpE

)
||[ujh]||2L2(E).

(41)

We compare the two error estimators by using them to drive the adaptivity applied to a series of
test problems. Firstly, we consider the problem of the previous subsection with ε = 0.01, T = 2 and
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τ = 0.01. Figure 2 shows the values of the two error estimators for stol+ = 0.01 is used to advance
the solution in time. In both cases, the anisohisop adaptive technique is used and the results obtained
with the reduced estimator η̄S1,j are marked ‘anisohisop faces only’. We observe that the two curves
are very similar except for a shift, however, considering the efficiency of the two error estimators, cf.
Figure 2, it is clear that η̄S1,j is superior since it has efficiency values closer to 1. The reason for the shift
can be found in the construction of the face only error estimator that makes it lower in value than the
standard one on the same mesh. Hence, more iterations are needed before the estimated error reaches
the tolerance and the mesh is refined. When the mesh is refined, the error estimator drops. Comparing
the final adapted meshes, reported in Figure 3, we can clearly see that both error estimators detect
and resolve the boundary layers. Moreover, a similar distribution of polynomial orders is selected.
The highest orders are sitting in the boundary layers region. Away from such region, the mesh is kept
coarse and the polynomial order is low. Such distribution is the results of two mechanisms: the error
estimator targeting for refinement the regions where the error is most concentrated and the estimation
of the local smoothness of the computed solutions used to decide between h- or p-refinement. Clearly,
for this example, the error is concentrated along the boundary layers. Therefore, the regions far enough
form the boundary layers are never marked by the error estimator and never considered for refinement.
Consequently, the reason for the low polynomial orders far away from the boundary layers is not the
lack of regularity in such region, rather the presence of a relatively smaller error. The variation of the
polynomial degrees is higher near the boundary layers since those regions have been heavily refined.
Locally, the solution may be smooth even next to a boundary layer, hence a combination of both h-
and p-refinement is to be expected.

Figure 2: Comparison between the error estimators ηS1,j (anisohisop) and η̄S1,j (anisohisop faces only): values of the
estimators (left) and efficiency of the estimators (right).
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Figure 3: Final ansitropically adapted mesh using ηS1,j (left) and η̄S1,j (right). The order of the polynomials on each
element is expressed using different colours.

We also compare the results of using the error estimator η̄S1,j with anisohisop adaptivity and isohp
adaptivity. To this end, we consider a test problem with an internal layer that is not aligned with the
mesh (see Figure 4). In particular, we set Ω = (−0.5, 0.5)2, a = (1, 1)T , b = 0, u0 = 0, T = 1, ε = 0.01
and we select the function f so that the exact solution to problem (5) is given by

u(x, y, t) = (1− e−t) arctan
(y − x
ε
√

2

)(
1− x+ y√

2

2)
.

To drive the refinement in space we set stol+ = 0.01. Since the focus of this numerical experiment is
the space error estimator η̄S1,j , to limit the temporal contribution to the error τ is set to 0.01. Also,
to make the comparison more fair, we switch off the refinement in time setting ttol+ = 10000 and
ttol− = 0. In this way the time steps are the same for both simulations.
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Figure 4: Numerical solution at t = 1.

In Figure 5, we report the value of the error estimator using either anisohisop adaptivity or isohp
adaptivity. As the layer is not aligned with the mesh, anisotropic adaptivity is never chosen by the
algorithm leading to no difference in the error estimator values. Additionally, the meshes at final time
look identical as can be seen in Figure 6.

Figure 5: Comparison between anisohisop adaptivity and isohp adaptivity.
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Figure 6: Anisotropically (left) and isotropically (right) adapted meshes at final time. The order of the polynomials on
each element is expressed using different colours.

Finally, we again use the error estimator η̄S1,j to drive the adaptivity but this time we apply
the algorithm to a problem for which the analytical solution is not known. To that end, we let
Ω = (0, 2)×(0, 1), a = (1, 0)T , b = 0, T = 1, ε = 0.0001 and the initial value be given by u0(x, y) =
exp(−200(x − 0.2)2 + (y − 0.5)2). Setting stol+ = 0.01 and using anisohisop adaptivity, we obtain
the three meshes reported in Figure 7. As for the previous set of simulations, in this test problem
the focus is on the capability of the space error estimator. In particular we test its ability to follow a
non-stationary solution, therefore τ is set to 0.01 and the refinement in time is switched off by setting
ttol+ = 10000 and ttol− = 0.

We observe that the estimator successfully tracks the location of the solution and removes irrelevant
elements. Furthermore, contrary to the previous example, we notice that the algorithm does select
anisotropic adaptivity aligning the elements shapes with the solution’s layers, hence achieving the
required resolution with fewer degrees of freedom.
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Figure 7: Anisotropic meshes and solution. Top to bottom: t = 0.02, t = 0.53 and t = 0.83.

8. Conclusions

We presented, for the first time, an anisotropic hp a posteriori error estimator for a discontinuous
Galerkin method applied to non-stationary convection-diffusion problems with space-time adaptivity.
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Through a set of numerical experiments we have shown that, using our error estimator to drive hp-
adaptivity, the error can be controlled with fewer degrees of freedom for any given tolerance, hence
reducing computational cost. To further improve efficiency, a computationally cheaper variation of the
error estimator containing only face terms has been tested. The error estimator is capable to detect
layers aligned with the mesh and refine accordingly to reduce the error more efficiently. In particular,
this is true for non-stationary solution with moving layers, whereby the error estimator is able, also in
the anisotropic setting, to follow the solution and align the elements shapes with the solution’s layers.

We have shown that more sophisticated error estimators for non-stationary convection-diffusion
problems lead to automatic adaptive algorithms able to produce truly layer-adapted meshes, thus
opening the door to more highly-accurate but efficient simulations.
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