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aInstitute for Theoretical Physics, ETH Zurich,

8093 Zurich, Switzerland
bInstitute for Particle Physics Phenomenology, University of Durham,

Durham, DH1 3LE, U.K.

E-mail: babis@phys.ethz.ch, cancinoj@itp.phys.ethz.ch,

fchavez@itp.phys.ethz.ch, claude.duhr@durham.ac.uk,

lazopoulos@itp.phys.ethz.ch, bmistlbe@itp.phys.ethz.ch,

muellrom@itp.phys.ethz.ch

Abstract: We compute the NNLO QCD corrections for the hadroproduction of a pair of

off-shell photons in the limit of a large number of quark flavors. We perform a reduction

of the two-loop amplitude to master integrals and calculate the latter analytically as a

Laurent series in the dimensional regulator using modern integration methods. Real ra-

diation corrections are evaluated numerically with a direct subtraction of infrared limits

which we cast in a simple factorized form. The results presented here constitute a gauge

invariant part of the full NNLO corrections but are not necessarily dominant. We view this

calculation as a step towards a complete computation. Our partial corrections to the total

cross-section are about 1%–3% and vary with the virtuality of the two off-shell photons.

Keywords: Monte Carlo Simulations, Hadronic Colliders

ArXiv ePrint: 1408.4546

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2015)182

mailto:babis@phys.ethz.ch
mailto:cancinoj@itp.phys.ethz.ch
mailto:fchavez@itp.phys.ethz.ch
mailto:claude.duhr@durham.ac.uk
mailto:lazopoulos@itp.phys.ethz.ch
mailto:bmistlbe@itp.phys.ethz.ch
mailto:muellrom@itp.phys.ethz.ch
http://arxiv.org/abs/1408.4546
http://dx.doi.org/10.1007/JHEP02(2015)182


J
H
E
P
0
2
(
2
0
1
5
)
1
8
2

Contents

1 Introduction 1

2 Setup and notation 2

3 Virtual corrections 5

4 Master integrals 7

4.1 Analytic results in the Euclidean region 7

4.2 Analytic continuation into the physical region 15

5 Single-real contributions 18

5.1 Quark-antiquark channels 19

5.2 (Anti-)quark gluon channels 22

6 Double-real contributions 23

6.1 Semi differential subtraction 23

6.2 Fully differential subtraction 27

7 Numerical results 30

8 Conclusions 34

A Construction of the set of basis functions 35

A.1 A lighting review of the Hopf algebra of multiple polylogarithms 35

A.2 Construction of the basis 36

B Computation of the master integrals 39

B.1 A representative example: the integral B2a 40

1 Introduction

The Tevatron and the LHC have performed studies on a wide spectrum of processes which

probe the electroweak sector of the Standard Model. In particular, the production processes

of a pair of electroweak gauge bosons [1–12] are of great interest as they allow to test the

electroweak theory, constrain physics beyond the Standard Model and are background to

signals of the Higgs boson decaying into H → WW,H → ZZ. While the bulk of the

cross-sections is due to on-shell production of the W or Z bosons, off-shell production is

interesting especially for the background estimation in Higgs searches.

Diboson production has been studied theoretically in detail within perturbation the-

ory, including next-to-leading-order (NLO) perturbative QCD effects [13–28], electroweak
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corrections [29–36] and resummation [37–40]. The gluon initiated partonic cross-section

which emerges for the first time at next-to-next-to-leading-order (NNLO) from the square

of one-loop amplitudes has been singled out due to its numerical importance and it was

computed in refs. [41–45]. Recently, a NNLO computation for pp → γγ [46, 47] was com-

pleted and a calculation for pp→ ZZ in the double pole approximation was performed for

the first time in ref. [48].

In this publication we make a first step towards the computation of NNLO corrections

for diboson production in the case of two off-shell electroweak gauge bosons. We restrict

ourselves to computing the NNLO cross-section for an idealized process pp→ γ∗γ∗ in the

limit of a large number of massless quark flavors NF .

While the large-NF limit is not necessarily dominant it provides the opportunity of

obtaining a gauge invariant part of the cross section and serves as an excellent means to

treat and develop analytic and numeric methods. We generate and reduce the required

amplitudes to master integrals using established methods [49–52]. We evaluate the latter

by directly performing the integrations over the Feynman parameter following methods

similar to the ones introduced in refs. [53–61]. As a by-product, we construct a set of

basis functions up to transcendental weight four with the correct branch cut structures

which are sufficient to write down the answer for the class of integrals studied in this

paper. Moreover, the master integrals presented here have been computed independently

and agree numerically with the results of refs. [62–64]. For the calculation of real radiation

corrections we apply a subtraction scheme based on a hierarchical parameterization of the

phase-space and the universal collinear and infrared limits of the squared matrix-elements.

All singularities cancel after adding the partonic cross-sections together and performing

UV renormalization.

This article is organized as follows. In section 2 we present our notation and setup of the

calculation. In section 3 we present the calculation of the two-loop amplitude in the large

NF limit and we outline the computations of the relevant master integrals in section 4. The

computation of corrections due to real radiation and our subtraction scheme are presented

in sections 5 and 6. We demonstrate the numerical impact of the contributions that we

have computed here in section 7. We conclude in section 8.

2 Setup and notation

In this article, we compute the fully differential cross-section at the LHC for the process

of producing two idealized off-shell photons,

P (P1) + P (P2)→ γ∗(p3) + γ∗(p4) +X,

where P denotes a proton and X is a shorthand notation for the associated QCD final-state

radiation. In parentheses we indicate the momenta of the external particles.

We compute cross sections which are fully differential in the momenta p3 and p4 of

the photons, as well as in the momenta of the associated QCD jet radiation. The hadronic
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cross section for a generic observable J is given by

σP1P2→γ∗γ∗X [J ] =
∑
i,j

∫ 1

0
dx1dx2 f

b
i (x1)f bj (x2) σij→γ∗γ∗X [J ], (2.1)

with σij→γ∗γ∗X [J ] denoting the differential cross section for the process

i(p1) + j(p2)→ γ∗(p3) + γ∗(p4) +X,

where i and j run over the parton flavors g, u, ū, d, d̄, . . . relevant to this process, p1 = x1P1

and p2 = x2P2 are the momenta of the initial-state partons and f bi (x) the bare parton

distribution functions (PDFs). The function J depends on the final-state momenta and

restricts the phase-space to the desired infrared-safe observable.

The partonic cross sections are computed as a perturbative expansion in the bare

strong coupling constant αbs,

σij→γ∗γ∗X [J ] = σ
(0)
ij→γ∗γ∗ [J ]

(
∝ (αbs)

0
)

+ σ
(1)
ij→γ∗γ∗ [J ] +

∑
k

σ
(0)
ij→γ∗γ∗k[J ]

(
∝ (αbs)

1
)

+ σ
(2)
ij→γ∗γ∗ [J ] +

∑
k

σ
(1)
ij→γ∗γ∗k[J ] +

∑
k,l

σ
(0)
ij→γ∗γ∗kl[J ]

(
∝ (αbs)

2
)

+O((αbs)
3), (2.2)

where k and l run over the final-state parton flavors. The partonic cross sections with

definite final state γ∗γ∗, γ∗γ∗q, γ∗γ∗q′q̄′, etc, are given by:

σ
(m)
ij→γ∗γ∗...[J ] =

1

2s

∫
dΦ12→γ∗γ∗... J (p3, p4, . . .) |Mqq̄→γ∗γ∗...|2(m), (2.3)

where s = 2p1 · p2 is the partonic center-of-mass energy squared and |Mij→γ∗γ∗...|2(m) is the

m−loop contribution to the ij → γ∗γ∗ . . . amplitude squared, summed over spin and colour

and averaged over initial state quantum numbers. We compute the matrix elements using

conventional dimensional regularization in d = 4 − 2ε space-time dimensions. We assume

that the photons do not decay and use the polarization sum:∑
λ

εµλ(p)∗ενλ(p) =− gµν +
pµpν

p2
, (2.4)

where p denotes the photon-momentum. We consider NF = 5 light quark flavours and

we ignore the effects of the top-quark both in the loops and the evolution of the strong

coupling.

In the present article, we compute the complete O(αs) corrections, while at O(α2
s)

we retain only the gauge-invariant terms which contribute in the NF → ∞ limit. Some

tree and two-loop diagrams that contribute to the NNLO large-NF correction are shown

in figure 1. The two-loop diagrams contributing to the large NF limit are in one-to-one
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Figure 1. Sample tree and two-loop diagrams contributing to the NNLO corrections for qq̄ → γ∗γ∗

in the large-NF limit.

correspondence with the one-loop diagrams appearing at NLO, by replacing the gluon

propagator by its one-loop self energy graph. At NNLO, the partonic processes which

contribute to the correction are qq̄ → γ∗γ∗q′q̄′ and qq̄ → γ∗γ∗qq̄. In the latter process, we

retain only the interference terms with two spin lines.

The Lorentz invariant phase space is given by

dΦ12→γ∗γ∗... =
ddp3

(2π)d−1
δ+(p2

3 −m2
3)

ddp4

(2π)d−1
δ+(p2

4 −m2
4) . . . (2π)dδ(p1+ p2− p3− p4 − . . .),

(2.5)

where ‘. . .’ indicates the phase-space measure of the massless final state partons. The

virtualities of the external particles are

p2
1 = 0, p2

2 = 0, p2
3 = m2

3, p2
4 = m2

4, (2.6)

and we define the following Mandelstam variables and their ratios:

s = (p1 + p2)2, t = (p1 − p3)2, Q2 = (p3 + p4)2,

u =
m2

3

s
, v =

m2
4

s
, w =

t

s
, z =

Q2

s
. (2.7)

Ultraviolet renormalization is performed in the MS scheme. The bare strong coupling

constant αbs is given in terms of the renormalized coupling αs(µ) as

αbs Sε = αs(µ)

[
1− αs(µ)

π

β0

ε
+

(
αs(µ)

π

)2(β2
0

ε2
− β1

2ε

)]
+O

(
α4
s(µ)

)
, (2.8)

where β0 and β1 are the first and second coefficients of the QCD beta function

β0 =
11NC − 4TRNF

12
, β1 =

17N2
C − 10NCTRNF − 6CFTRNF

24
,

with CF = N2
c−1

2Nc
, NC = 3, TR = 1

2 ; and Sε = eε(log 4π−γE). Since the Born cross section is

independent of αbs, only the α2
s(µ) term of eq. (2.8) is required for renormalization.

We absorb the initial-state collinear singularities into the parton densities in the MS-

factorization scheme. The bare PDFs f bi (x) are written in terms of the renormalized PDFs

fj(x, µ) as

f bi (x) = fi(x, µ)+

(
αs(µ)

π

)
[ ∆

(1)
ij ⊗fj ](x, µ)+

(
αs(µ)

π

)2

[ ∆
(2)
ij ⊗fj ](x, µ)+O(α3

s), (2.9)
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where implicit summation over j is understood, and the convolution integral is defined as

[ g ⊗ fj ](x, µ) ≡
∫ 1

0
dydz δ(x− yz)g(y)fj(z, µ). (2.10)

The kernels ∆
(1,2)
ij can be written in terms of the Altarelli-Parisi splitting kernels as

∆
(1)
ij (z) =

P
(0)
ij (z)

ε
, (2.11)

∆
(2)
ij (z) =

P
(1)
ij (z)

2ε
+

1

2ε2

(
[P

(0)
ik ⊗ P

(0)
kj ](z)− β0P

(0)
ij (z)

)
. (2.12)

The splitting kernels relevant for this computation are

P (0)
qq (z) = CF

(
D0(1− z) +

3

4
δ(1− z)− 1

2
(1 + z)

)
, (2.13)

P (0)
qg (z) =

1

4

(
z2 + (1− z)2

)
, (2.14)

P (1)
qq |NF = −NFCF

18

[
δ(1− z)

(
π2 +

3

4

)
+ 10D0(1− z) + 3 log z

1 + z2

1− z
− 11z + 1

]
. (2.15)

The Dn(1− z) plus-distributions are defined as∫ 1

0
Dn(1− z)φ(z) =

∫ 1

0
logn(1− z)φ(z)− φ(1)

1− z
. (2.16)

For P
(1)
qq we need only the terms proportional to NF . We remark, however, that in the

numerical evaluation of the PDFs and the strong coupling from their values at their ini-

tial scales we use the complete β-function and Altarelli-Parisi kernels and not just their

NF parts.

In the rest of this article we will set the renormalization and factorization scales to be

equal, µf = µr ≡ µ. The generic dependence on both scales can be easily restored by first

setting µ = µf and writing:

αs(µf ) = αs(µr)

[
1 +

αs(µr)

π
β0 log

µ2
r

µ2
f

]
+O

(
α2
s(µr)

)
. (2.17)

3 Virtual corrections

Ingredients of the NLO and NNLO corrections are the one-loop and two-loop amplitudes

for the partonic process qq̄ → γ∗γ∗. We generate the required Feynman diagrams using

QGRAF [49] and then compute the interference of the one-loop amplitude and the tree-

amplitude as well as the interference of the two-loop amplitude and the tree amplitude,

summing over external-state colours and polarizations. We perform the Dirac and colour

algebra with programs implemented in the FORM [50] programming language.
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From the interference of the tree and two-loop amplitudes, we keep only the terms

which contribute to the large NF limit. These are expressed in terms of two-loop integrals

of the form:

T2(n1, . . . , n9, q1, q2, q3) ≡
∫
ddk

iπ
d
2

ddl

iπ
d
2

9∏
i=1

D−nii , (3.1)

with

D1 = k2, D2 = (k + q1)2, D3 = (k + q12)2, D4 = (k + q123)2,

D5 = l2, D6 = (l + q1)2, D7 = (l + q12)2, D8 = (l + q123)2,

D9 = (k − l)2.

where we have used the shorthand notation q1···n ≡ q1 + · · ·+ qn and the external momenta

qi take the values: (q1, q2, q3) ∈ {(p1, p2, p3), (p1, p2, p4)}. The powers ni take integer values

in the range ni ∈ [−4, 2]. These integrals are not independent and they can be reduced

to a basis of six master integrals. We use the program AIR [52] based on the Laporta

algorithm [51], and obtain the following two-loop master integrals:

T2(0, 1, 0, 0, 0, 0, 0, 1, 1, p1, p2, p4) ≡ (3.2)

T2(0, 1, 0, 0, 1, 0, 1, 0, 1, p1, p2, p4) ≡ (3.3)

T2(0, 1, 0, 0, 1, 0, 0, 1, 1, p1, p2, p4) ≡ (3.4)

T2(0, 1, 0, 0, 0, 0, 1, 1, 1, p1, p2, p4) ≡ (3.5)

T2(0, 1, 0, 0, 1, 0, 1, 1, 1, p1, p2, p4) ≡ (3.6)

T2(0, 1, 0, 0, 1, 0, 1, 1, 2, p1, p2, p4) ≡ (3.7)

The same integrals with p3 and p4 exchanged also appear in the two-loop amplitude.

– 6 –
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Similarly, the interference of the tree and one-loop amplitudes can be expressed in

terms of integrals of the form:

T1(n1, . . . , n4, q1, q2, q3) ≡
∫
ddk

iπ
d
2

4∏
i=1

D−nii , (3.8)

where the integer powers ni range in [−4, 1]. The one-loop integrals are reduced to the

following master integrals:

T1(1, 0, 1, 0, p1, p2, p4) ≡ (3.9)

T1(1, 0, 1, 1, p1, p2, p4) ≡ (3.10)

T1(1, 1, 1, 1, p1, p2, p4) ≡ (3.11)

The master integrals T1(1, 0, 1, 1, p1, p2, p3), T1(1, 1, 1, 1, p1, p2, p3) also appear in the one-

loop amplitude.

In the following section, we present a computation of the required master integrals,

as well as of some master integrals which are needed for the full calculation beyond the

large NF limit. The complete set of master integrals contributing to diboson production

at two-loop order was recently computed in ref. [64]. We have performed an independent

computation and confirm these results.

4 Master integrals

In this section we present the analytic results for all master integrals that enter the NF -part

of the amplitude for q q̄ → γ∗ γ∗ up to two-loop order.

4.1 Analytic results in the Euclidean region

We start by giving the analytic results for the master integrals in the Euclidean region where

all consecutive Mandelstam invariants are negative. Note that in this region the variables

u, v and w defined in section 2 are all positive. The results with the two virtualities p2
3

and p2
4 exchanged can easily be obtained from the replacement

(u, v, w)↔ (v, u, u+ v − 1− w) . (4.1)

Before presenting our results, we first discuss some general properties of the integrals.

– 7 –
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In dimensional regularization with d = 4− 2ε, every master integral is computed as a

Laurent series in ε, whose coefficients are expressed in terms of polylogarithmic functions.

The simplest possible representatives of this class of functions are the ordinary logarithm

and classical polylogarithms, defined by

log x =

∫ x

1

dt

t
and Lin(x) =

∫ x

0

dt

t
Lin−1(t) , (4.2)

with Li1(x) = − log(1 − x). However, more general functions can also appear. These are

the multiple polylogarithms [65, 66], defined by

G(~0n; r) ≡ 1

n!
logn r and G(a1, . . . , an; r) =

r∫
0

dt

t− a1
G(a2, . . . , an; t) , (4.3)

with G(r) = 1 and the arguments ai, r ∈ C. The number of elements of the vector

~a = (a1 . . . , an) is called the weight of the multiple polylogarithm. Note that up to weight

three, all multiple polylogarithms can be expressed in terms of classical polylogarithms

and ordinary logarithms. In particular, the two-loop amplitude for q q̄ → γ∗ γ∗ in the large

NF limit only involves polylogarithmic functions up to weight three (up to O(ε0)), and

hence we can always express our two-loop amplitudes in terms of classical polylogarithms

only. This greatly facilitates the numerical evaluation. This point will be discussed in more

detail in section 4.2 when discussing the analytic continuation from the Euclidean region

to the Minkowski region.

The arguments of the polylogarithms are in general algebraic functions of the Man-

delstam invariants, and in particular they involve the square root
√
λ(1, u, v), where

λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc denotes the Källén function. A convenient

parameterization which rationalises this square root is given by

u = rr̄ and v = (1− r)(1− r̄) , (4.4)

or equivalently

r =
1

2

(
1 + u− v +

√
λ(1, u, v)

)
and r̄ =

1

2

(
1 + u− v −

√
λ(1, u, v)

)
. (4.5)

This choice of parameterization is inspired by ref. [53], where it was argued that the vari-

ables (r, r̄) define a natural set of variables for parameterizing the kinematics of a massless

three-point function with all external legs off shell. These integrals naturally appear as

master integrals in our case. Furthermore, it was shown in ref. [53] (see also refs. [67, 68])

that in the region where λ(1, u, v) < 0, such that r and r̄ are complex conjugate to each

other, massless three-point functions are described by single-valued functions in the com-

plex r plane. Indeed, it is well-known that massless loop integrals can only have branch cuts

starting at points where one of the Mandelstam variables vanishes. The single-valuedness

condition is equivalent to the condition that these functions have the correct physical

branch cuts. The advantage of this approach is that for every weight, there is only a very

limited set of single-valued functions. In ref. [53] a method was presented to construct

– 8 –
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these functions explicitly up to weight four in the case of massless three-point functions

(see also refs. [69] for similar ideas). In particular, up to weight three only three functions

can appear besides the ordinary logarithms, log u = log(rr̄) and log v = log(1− r)(1− r̄).
Following ref. [53], we denote these functions by P2(r), P3(r),P3(1 − r) and Q3(r). The

functions Pn(r) are closely related to the so-called Bloch-Wigner function,

Pn(r) ≡

{
2Pn(r) , if n odd ,

2iPn(r) , if n even ,
(4.6)

with

Pn(r) = Rn

{
n−1∑
k=0

2k Bk
k!

logk |r|Lin−k(r)

}
, (4.7)

where Bk denotes the k-th Bernoulli number and Rn denotes the real part for odd n and

the imaginary part otherwise. Note that the function defined by eq. (4.7) is a combination

of classical polylogarithms without branch cuts for r ∈ C, and it is therefor natural to call

the functions (4.7) the single-valued versions of the classical polylogarithms. The function

Q3(r) is defined by

Q3(r) =
1

2

[
G

(
0,

1

r̄
,
1

r
, 1

)
−G

(
0,

1

r
,
1

r̄
, 1

)]
+

1

2

[
Li3(1− r)− Li3(1− r̄)

]
(4.8)

+
1

4
log |r|2

[
G

(
1

r
,
1

r̄
, 1

)
−G

(
1

r̄
,
1

r
, 1

)]
+ Li3(r)− Li3(r̄)

+
1

4

[
Li2(r) + Li2(r̄)

]
log

1− r
1− r̄

+
1

4

[
Li2(r)− Li2(r̄)

]
log |1− r|2

+
1

16
log

r

r̄
log2 1− r

1− r̄
+

1

8
log2 |r|2 log

1− r
1− r̄

+
1

4
log |r|2 log |1− r|2 log

1− r
1− r̄

+
1

16
log2 |1− r|2 log

r

r̄
− π2

12
log

1− r
1− r̄

.

Up to weight three and two loops, all massless three-point functions can be written as

linear combinations of (products of) these functions [53] (with coefficients that are Q-linear

combinations of ζ values).

The previous considerations, however, only apply to massless three-point functions. It

is nevertheless straightforward to generalise these ideas to four-point functions with two

adjacent off-shell legs. In appendix A we present a way to construct a set of basis functions

up to weight four with the correct physical branch cuts contributing to the large NF limit

of the the q q̄ → γ∗ γ∗ amplitude at two loops. In the following we only concentrate on the

set of basis functions up to weight three, which is relevant in the present case. Besides the

functions defined in eq. (4.6)–(4.8), we find six possible classical polylogarithms,

Li2

(
1− u

w

)
, Li3

(
1− u

w

)
, Li3

(
1− w

u

)
,

Li2

(
1− v

w

)
, Li3

(
1− v

w

)
, Li3

(
1− w

v

)
,

(4.9)
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and two new functions R±3 (r, w) ≡ R±3 (r, r̄, w), where the superscript ‘±’ refers to the

parity of the functions under the exchange r ↔ r̄,

R+
3 (r, w) =G(0, v, r̄(−1 + r);w) +G(0, v, (−1 + r̄)r;w)

+G(0, u, (−1 + r̄)r;w)−G
(

0,
1

r̄
,
1

r̄
; 1

)
−G

(
0,

1

r
,
1

r
; 1

)
− [G(u, (−1 + r̄)r;w) +G(u, r̄(−1 + r);w)] log

w

u

− [G(v, (−1 + r̄)r;w) +G(v, r̄(−1 + r);w)] log
w

v

+G(0, u, r̄(−1 + r);w) + Li3

(
w

r̄(−1 + r)

)
+ Li3

(
w

r(−1 + r̄)

)
+ Li3(1− r̄) + Li3(1− r) + 2 [Li3(r) + Li3(r̄)]

+

[
Li2

(
w

r̄(−1 + r)

)
+ Li2

(
w

(−1 + r̄)r

)]
log

uv

w

+
[
Li2

(
1− u

w

)
+ Li2

(
1− v

w

)]
log (w2 + (1− u− v)w + uv)

+ [Li2(r̄)− Li2(r)]

[
log

r

r̄
− log

(
−w − r + rr̄

−w − r̄ + rr̄

)]
+ [Li2(r) + Li2(r̄)]

(
1

2
log v − log u

)
+

3

8
log2 1− r

1− r̄
log u+

1

2
log2w log (w2 + (1− u− v)w + uv)

− 1

2
log u log

r

r̄
log

1− r
1− r̄

+
1

4
log v log

r

r̄
log

1− r
1− r̄

+
1

2
log u log

1− r
1− r̄

log

(
−w − r + rr̄

−w − r̄ + rr̄

)
− 1

2
log u log v log (w2 + (1− u− v)w + uv) ,

(4.10)

R−3 (r, w) =G(0, v, r̄(−1 + r);w)−G(0, v, (−1 + r̄)r;w) +G(0, u, r̄(−1 + r);w)

−G(0, u, (−1 + r̄)r;w) +G

(
0,

1

r̄
,
1

r̄
; 1

)
−G

(
0,

1

r
,
1

r
; 1

)
+ [G(u, (−1 + r̄)r;w)−G(u, r̄(−1 + r);w)] log

w

u

+ [G(v, (−1 + r̄)r;w)−G(v, r̄(−1 + r);w)] log
w

v

+ Li3

(
w

r̄(−1 + r)

)
− Li3

(
w

r(−1 + r̄)

)
+ Li3(1− r̄)− Li3(1− r) (4.11)

+

[
Li2

(
w

r̄(−1 + r)

)
− Li2

(
w

(−1 + r̄)r

)]
log

uv

w

+
[
Li2

(
1− u

w

)
+ Li2

(
1− v

w

)] [
log

r

r̄
− log

1− r
1− r̄

− log

(
−w − r + rr̄

−w − r̄ + rr̄

)]
+ [Li2(r)− Li2(r̄)] log (w2 + (1− u− v)w + uv) + Li2(r̄) log (1− r̄)

− Li2(r) log (1− r)− 1

8
log2 1− r

1− r̄
log

r

r̄
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+

(
1

2
log u log v − 1

2
log2w

)
log

(
−w − r + rr̄

−w − r̄ + rr̄

)
+

[
1

4
log u log v − 1

2
log2w − 1

2
log u log (w2 + (1− u− v)w + uv)

]
log

1− r
1− r̄

+
1

8
log

r

r̄

(
4 log2w − log2 v − 4 log u log v

)
+ ζ2 log

1− r
1− r̄

.

First, we emphasise that each of these functions has the correct branch-cut structure cor-

responding to a massless four-point function with two adjacent off-shell legs, i.e., they have

branch cuts at most starting at points where one of the external Mandelstam invariants

vanishes. Second, this set of functions is linearly independent, i.e., it is not possible to

express any of these functions as a linear combination of (products of) all the others. It

is therefore justified to call these functions a set of basis functions. As a consequence, all

master integrals contributing to the large NF part of the q q̄ → γ∗ γ∗ two-loop amplitude

can be expressed as a unique linear combination of (products of) basis functions. The

construction of these functions, as well as the proof that they form a basis, is given in

appendix A.

In the rest of this section we collect our results for the master integrals contributing to

the large NF part of the q q̄ → γ∗ γ∗ two-loop amplitude. Details about the computation

can be found in appendix B. All the expressions are valid in the Euclidean region, and the

results are given in terms of the basis functions we have just defined. We explicitly show

the results up to weight three. Analytic results up to weight four are provided as ancillary

files with the arXiv submission.

We checked that our results satisfy the differential equations for the master integrals.

Moreover the results were checked numerically with FIESTA [70], which is based on the

method of sector decomposition [71] (the multiple polylogarithms were evaluated using

GiNaC [72, 73]. In addition, we have compared our results with existing results in the

literature whenever available [53, 62–64, 74–77].

One-loop integrals. We start by summarising the one-loop integrals. The relevant

one-loop two, three and four-point functions are given by

=
cΓ

ε(1− 2ε)
(−s)−ε, (4.12)

= −2cΓ
Γ(1− 2ε)

Γ(1− ε)2
(−s)−1−εu

−εv−ε

r − r̄

{
P2(r) + 2 εQ3(r) +O(ε3)

}
,

(4.13)
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= cΓ
(−s)−2−ε

w

{
1

ε2
+

1

ε
log

uv

w2
−
[
2Li2

(
1− u

w

)
+ 2 Li2

(
1− v

w

)
+

1

2
log2 u

v

]
+ ε
[
− 2R+

3 (r, w) + 4P3(r)

+ 4P3(1− r)− 6
(

Li3

(
1− u

w

)
+ Li3

(
1− v

w

)
+ Li3

(
1− w

u

)
+Li3

(
1− w

v

))
+ 2 Li2

(
1− u

w

)
log

u3v

w
+

7

6
log3 u

+ 2 Li2

(
1− v

w

)
log

v3u

w
− 4

3
log3w +

7

6
log3 v + 8 ζ3

− 1

6
log2 u (log v + 18 logw)− 1

12
log2 v (11 log u+ 36 logw)

+ 4 log2w (log u+ log v)− 2 log u log v logw + 2 ζ2 log u

+ 4 ζ2 log v
]

+O(ε2)

}
, (4.14)

where γE = −Γ′(1) denotes the Euler-Mascheroni constant and we introduced the usual

normalization factor

cΓ =
Γ(1− ε)2 Γ(1 + ε)

Γ(1− 2ε)
. (4.15)

Note that all results are entirely expressed in terms of the basis functions defined at the

beginning of this section, as expected.

The one-loop box has been previously computed up to the finite part in the ε-expansion

in ref. [13].

Two-loop integrals. In this subsection we give the analytic expression for the two-loop

integrals. Besides the loop integrals necessary for the amplitudes presented in this work,

we also display all the boxes with bubble insertions with two adjacent off-shell legs. The

master integrals are presented up to the order in ε that corresponds to coefficients of weight

up to three. The full results including coefficients of weight four can be found in the file

attached as ancillary files to the arXiv submission of the paper.

= −c2
Γ

Γ(2ε− 1)Γ(1− 2ε)2

Γ(1− ε)Γ(3− 3ε)Γ(1 + ε)
(−s)1−2ε, (4.16)

= c2
Γ(−s)−2ε

{
1

ε2
1

2
+

1

ε

5

2
+

19

2
+ ζ2 + ε

[
65

2
+ 5 ζ2 − 2 ζ3

]
+ε2

[
211

2
+ 19 ζ2 − 10 ζ3

]
+O(ε3)

}
, (4.17)
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= −c2
Γ(−su)−2ε

{
− 1

ε2
1

2
− 1

ε

5

2
+ Li2

(
1− u

w

)
+

1

2
log2 u

w
− 19

2

+ ε
[
−2Li3

(
1− u

w

)
− Li3

(
1− w

u

)
+ 2Li2

(
1− u

w

)
log

u

w

+5Li2

(
1− u

w

)
+

2

3
log3 u

w
+

5

2
log2 u

w
+ 3 ζ3 −

65

2

]
+O(ε2)

}
, (4.18)

= c2
Γw
−ε(1 + 2ε)(−s)−1−2ε

{
− 1

ε3
+

1

ε

[
Li2

(
1− u

w

)
+ Li2

(
1− v

w

)
− 4
]

+R+
3 (r) + 4

[
Li3

(
1− u

w

)
+ Li3

(
1− v

w

)
+ Li3

(
1− w

u

)
+ Li3

(
1− w

v

)]
+

+Li2

(
1− u

w

)
log

(
w2

u4v

)
+ Li2

(
1− v

w

)
log

(
w2

uv4

)
− 2

3
log3 u+ 2 log2 u logw

+
3

8
log u log2 v + log u log v logw − 5

2
log u log2w − 2

3
log3 v + 2 log2 v logw

−5

2
log v log2w + log3w − 1

6
π2 log u− 1

3
π2 log v − 4ζ3 +O(ε)

}
, (4.19)

= c2
Γ(uv)−

3
2
ε(1 + 2ε)(−s)−1−2ε 1

r − r̄

×
{
− 1

ε
2P2(r)− 8Q3(r)−R−3 (r) +O(ε)

}
, (4.20)

= c2
Γ(vw)−

1
2
ε(1 + 2ε)(−s)−1−2ε 1

v − w

{
1

ε2
log
( v
w

)
− 1

ε
Li2

(
1− v

w

)

−R+
3 (r) + 2P3(1− r)− 2Li3

(
1− u

w

)
− 4Li3

(
1− v

w

)
− 2Li3

(
1− w

u

)
−3Li3

(
1− w

v

)
+ (2 log u+ log v − logw)Li2

(
1− u

w

)
(4.21)

+

(
5

2
log v + log u− 3

2
logw

)
Li2

(
1− v

w

)
+ (2 log v + log u)ζ2

+
1

3
log3 u− 17

24
log3w +

13

24
log3 v − 13

8
log2 v logw +

17

8
log v log2w + 4 log v + 4 ζ3

− 5

24
log u log2 v − log2 u logw +

3

2
log u log2w − log u log v logw − 4 logw +O(ε)

}
,
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= c2
Γ(−s)−2−2ε 1

w

{
− 1

ε3
+

1

ε2
[3 logw − log u− log v]

+
1

ε

[
3Li2

(
1− u

w

)
+ 3Li2

(
1− v

w

)
− 3

2
log2w + log2 u− log u log v + log2 v

]
+ 3R+

3 (r)− 6P3(r)− 6P3(1− r) + (3 logw − 12 log u− 3 log v)Li2

(
1− u

w

)
+ (−3 log u− 12 log v + 3 logw)Li2

(
1− v

w

)
+ 12Li3

(
1− u

w

)
+ 12Li3

(
1− v

w

)
+ 12Li3

(
1− w

u

)
+ 12Li3

(
1− w

v

)
− (6 log v + 3 log u)ζ2 +

7

2
log3w (4.22)

− 15

2
log u log2w − 15

2
log v log2w + 6 log2 u logw + 3 log u log v logw + 6 log2 v logw

− 8

3
log3 u+

1

2
log2 u log v +

13

8
log u log2 v − 8

3
log3 v − 12 ζ3 +O(ε)

}
,

= c2
Γ(−s)−2−2ε 1

w

{
− 1

ε3
1

4
+

1

ε2
[logw − 1

2
log u− 1

2
log v]

+
1

ε

[
3

2
Li2

(
1− v

w

)
+

3

2
Li2

(
1− u

w

)
+

1

2
log2 u

v
− 1

4
log2 u

w
− 1

4
log2 v

w
− 1

2
ζ2

]
+3R+

3 − 6P3(r)− 6P3(1− r) + 9Li3

(
1− u

w

)
+ 9Li3

(
1− v

w

)
(4.23)

+
21

2
Li3

(
1− w

u

)
+

21

2
Li3

(
1− w

v

)
+ (−3 log v + 3 logw − 9 log u)Li2

(
1− u

w

)
+(3 logw − 3 log u− 9 log v)Li2

(
1− v

w

)
+ (−7 log v + 2 logw − 4 log u)ζ2

+
8

3
log3w − 7 log u log2w − 7 log v log2w + 5 log2 u logw + 4 log u log v logw

+5 log2 v logw − 11

6
log3 u+

9

8
log u log2 v − 11

6
log3 v − 11ζ3 +O(ε)

}
,

= c2
Γ(−s)−2−2ε 1

w

{
− 1

ε3
1

2
+

1

ε2

[
−1

2
log u− log v +

3

2
logw

]

+
1

ε

[
3Li2

(
1− v

w

)
+

3

2
Li2

(
1− u

w

)
+

1

2
log2 u

v

]
(4.24)

+3R+
3 − 6P3(r)− 6P3(1− r) +

15

2
Li3

(
1− u

w

)
+ 12Li3

(
1− v

w

)
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+9Li3

(
1− w

u

)
+ 9Li3

(
1− w

v

)
+ (−3 log v + 3 logw − 9 log u)Li2

(
1− u

w

)
+(3 logw − 3 log u− 9 log v)Li2

(
1− v

w

)
+ (−6 log v − 3 log u)ζ2 − 9 ζ3

+2 log3w − 6 log u log2w − 6 log v log2w +
9

2
log2 u logw + 3 log u log v logw

+
9

2
log2 v logw − 11

6
log3 u+

9

8
log u log2 v − 5

3
log3 v +

1

2
log2 u log v +O(ε)

}
.

After we completed the computation of these integrals, a complete basis of planar master

integrals for the production of off-shell vector bosons was presented in ref. [64]. We have

checked numerically that our results agree with the results of ref. [64]. An analytic ex-

pression for the integral (4.21) was also published in ref. [63]. In addition, we compared

eqs. (4.19), (4.20), (4.21) and (4.23) numerically against the equal-mass results of ref. [62].

4.2 Analytic continuation into the physical region

The results of the previous section are only valid in the Euclidean region, where s, t, p2
3, p

2
4 <

0, such that u, v, w > 0. In this section we perform the analytic continuation into the region

defined by

s, p2
3, p

2
4 > 0 and t < 0 . (4.25)

The analytic continuation can be performed via the usual replacements

− (s+ iε)→ s e−iπ and − (p2
k + iε)→ e−iπ p2

k , k = 3, 4 . (4.26)

This implies that the ratios u, v and w are analytically continued according to the pre-

scription

u→ u and v → v and w → e+iπ w̄ , (4.27)

where we defined

w̄ = − t
s
> 0 . (4.28)

In ref. [64] it was shown how to analytically continue the multiple polylogarithmic functions

to the physical region using this prescription. In the following, we present an alternative

way of performing the analytic continuation, which will allow us in the end to express the

large NF part of the amplitude entirely in terms of classical polylogarithms of weight three

at most and with arguments in the interval [0, 1] everywhere in the physical phase space.

Consequently, the classical polylogarithms are real and admit a convergent power series

representation. The advantage of this representation is very fast and stable numerical

evaluation.

It turns out, however, that in order to obtain such a representation, we need to split

the phase space into three different regions, such that a representation of the desired type

exists in each region. We first discuss these different regions, and present our procedure to

perform the analytic continuation in each region at the end of this section.

– 15 –



J
H
E
P
0
2
(
2
0
1
5
)
1
8
2

Definition of the regions. In the following we describe how to identify the parts of the

physical region in which the results can be expressed in terms of classical polylogarithms

with arguments inside the range [0, 1], where all the functions are convergent. The results

of the previous section were valid in the Euclidean region where λ(1, u, v) < 0, and thus r

and r̄ complex conjugate to each other. Without loss of generality we may assume that in

that region we have

Im r > 0 and Im r̄ < 0. (4.29)

It is easy to check that the physical phase space, however, corresponds to λ(1, u, v) > 0,

i.e. r and r̄ real. In ref. [53] it was shown that the correct prescription for the analytic

continuation from λ(1, u, v) < 0 to λ(1, u, v) > 0 while keeping u and v real is

r → r + iε and r̄ → r̄ − iε. (4.30)

It is sufficient to work out the analytic continuation for the basis functions. Moreover,

since in the physical region
√
s > m3 + m4, we must have 0 < u, v < 1, which implies

0 < r̄ < r < 1 [53]. In the following we show that we must furthermore have r̄ < w̄+rr̄ < r

in the physical region.

In order to show this inequality, we parameterize the external momenta as

p1 =

√
s

2

(
1

~e3

)
, p2 =

√
s

2

(
1

−~e3

)
, p3 =

(
E3

~p3

)
, p4 =

(
E4

~p4

)
, (4.31)

where ~e3 = (0, 0, 1)T and

E3 =

√
s

2
(1 + u− v) =

√
s

2
(r + r̄),

E4 =

√
s

2
(1− u+ v) =

√
s

2
(2− r − r̄).

(4.32)

We thus obtain for ~p3

|~p3|2 = E2
3 −m2

3 =
s

4
λ(1, u, v) =

s

4
(r − r̄)2 > 0, (4.33)

and so

~p3 = |~p3|

sin θ

0

cos θ

 =

√
s

2
(r − r̄)

sin θ

0

cos θ

 , (4.34)

for some θ ∈ [0, π], and where we used rotational invariance to remove the dependence on

the azimuthal angle. At this point we can already conclude that λ(1, u, v) > 0, i.e. r and

r̄ are indeed real and moreover we see from eq. (4.32) that 0 < r̄ < r < 1. Using this

parameterization, we find

w̄ =
1

2
(r + r̄ − 2rr̄ − (r − r̄) cos θ)) > 0 , (4.35)

and so r̄ < w̄ + rr̄ < r.
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In the end we assert that the only non-trivial part in switching to the physical region

is the analytic continuation of the basis functions depending on w. Besides the analytic

continuation in w, some of the functions appearing in the basis functions are not defined

for arbitrary values of r, r̄ and w. Consider for example

Lin

(
− w

r̄(1− r)

)
, (4.36)

which develops an imaginary part if −w > r̄(1− r). We find that we have to split some of

the basis functions for physical values into three different regions

τ > 1 , τ = 1 , τ < 1 , (4.37)

where τ is defined through

w̄ + rr̄ = r̄ + τ(r − r̄) . (4.38)

In deriving the analytic continuation of functions depending on w we have to keep in mind

these different regions. Note that the physical phase space corresponds to 0 ≤ τ ≤ 1.

Analytic continuation of the functions. In this section we demonstrate how to per-

form the analytic continuation (4.27). Our main goal is to obtain a representation of the

amplitude in the physical region in terms of classical polylogarithms up to weight three

with arguments lying in the range [0, 1], such that the polylogarithms admit a convergent

power series representation. Technically speaking, we are looking for a functional equation

which allows us to express the amplitude in terms of functions that are real in the physical

region, and where all the imaginary parts are explicit. Functional equations among multi-

ple polylogarithms are most conveniently described in terms the Hopf algebra of multiple

polylogarithms (see appendix A). In a nutshell, multiple polylogarithms admit a coproduct

structure which allows to decompose a polylogarithm of weight n into a sum of pairs of

polylogarithms of weight (k, n− k). It is then possible to find functional equations among

multiple polylogarithms of weight n recursively by first decomposing them into functions

of lower weight, for which all relations are assumed to be known.

Let us illustrate this on some simple examples. First, we know that there are only

three basis functions of weight one, and their analytic continuation follows immediately

from eq. (4.27),

log u→ log u , log v → log v , logw → log w̄ + iπ . (4.39)

Next, consider one of the basis functions of weight two, and let us consider Li2
(
1− u

w

)
as

a representative example. In the physical region where w = −w̄ < 0, the argument of the

dilogarithm becomes greater than 1, and so the dilogarithm develops an imaginary part.

Acting with the coproduct, we obtain,

∆1,1

[
Li2

(
1− u

w

)]
= − log

u

w
⊗ log

(
1− u

w

)
= − log

u

w̄
⊗ log

(
1 +

u

w̄

)
+ iπ ⊗ log

(
1 +

u

w̄

)
,

(4.40)
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where in the second line we used eq. (4.27). Note that by construction every basis function

of weight n will only contain log u, log v or logw in the first factor of its (1, n−1) component

of the coproduct (see appendix A for details). The imaginary part of this dilogarithm can

immediately be read off from the second term,

iπ ⊗ log
(

1 +
u

w̄

)
= ∆1,1

[
iπ log

(
1 +

u

w̄

)]
. (4.41)

At this point we need to find a real function whose coproduct matches the real part of

eq. (4.40). It is easy to check that

− log
u

w̄
⊗ log

(
1 +

u

w̄

)
= ∆1,1

[
−Li2

(
w

w + u

)
− 1

2
log
(

1 +
u

w

)]
. (4.42)

Hence, we can conclude that

∆1,1

[
Li2

(
1− u

w

)]
= ∆1,1

[
−Li2

(
w

w + u

)
− 1

2
log
(

1 +
u

w

)
+ iπ log

(
1 +

u

w

)]
. (4.43)

We can thus conclude that the arguments of ∆1,1 are equal, up to (constant) terms that

vanish when acting with ∆1,1. In order to determine this constant, we expand both side

close to the branch point at w = 0,

Li2

(
1− u

w

)
= −1

2
log2 u

w
− ζ2 +O(w)

= −1

2
log2 u

w̄
+ iπ log

u

w̄
+ 2ζ2 +O(w̄) ,

−Li2

(
w̄

w̄ + u

)
− 1

2
log
(

1 +
u

w̄

)
+ iπ log

(
1 +

u

w̄

)
= −1

2
log2 u

w̄
+ iπ log

u

w̄
+O(w̄) .

(4.44)

where in the first line we have used the fact that logw = log w̄ + iπ. Equating the two

expressions, we see that

Li2

(
1− u

w

)
= −Li2

(
w

w + u

)
− 1

2
log
(

1 +
u

w

)
+ iπ log

(
1 +

u

w

)
+ 2ζ2 . (4.45)

Analogously we obtain the analytic continuation of all the basis function depending on w.

5 Single-real contributions

We now turn our attention to the phase-space integrations over tree-level matrix elements

for partonic processes, where the photon pair is produced in association with an additional

parton in the final state:

q(p1) + q̄(p2)→ γ∗(p3) + γ∗(p4) + g(pg),

q̄(p1) + q(p2)→ γ∗(p3) + γ∗(p4) + g(pg),

q(p1) + g(p2)→ γ∗(p3) + γ∗(p4) + q(pq),

q̄(p1) + g(p2)→ γ∗(p3) + γ∗(p4) + q̄(pq̄),

g(p1) + q(p2)→ γ∗(p3) + γ∗(p4) + q(pq),

g(p1) + q̄(p2)→ γ∗(p3) + γ∗(p4) + q̄(pq̄).
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As before, we denote in brackets the momenta of the partons. These processes con-

tribute at NLO to the hadronic process, and via renormalization and mass-factorization

also at NNLO.

5.1 Quark-antiquark channels

We first consider the channels with a qq̄-pair in the initial state. The corresponding tree-

level cross section is given by

σ
(0)
qq̄→γ∗γ∗g[J ] =

1

2s

∫
dΦ12→γ∗γ∗g J (p1, p2, p3, p4, pg) |Mqq̄→γ∗γ∗g|2(0), (5.1)

where |Mqq̄→γ∗γ∗g|2(0) is the qq̄ → γ∗γ∗g tree matrix element squared, summed over spin and

colour and averaged over initial-state quantum numbers. The case where the quark and the

anti-quark are exchanged is identical. The phase-space measure can be decomposed into a

phase space producing a gluon and an intermediate off-shell particle in the final state with

momentum Q of virtuality Q2 = zs, and a phase space for the decay of the intermediate

particle into two photons as

dΦ12→γ∗γ∗g =
s dz

2π
dΦ12→QgdΦQ→γ∗γ∗ , (5.2)

where

Q ≡ p1 + p2 − pg = p3 + p4. (5.3)

We parameterize the momentum of the gluon as

pg = z̄λ̄ p1 + z̄λ p2 + z̄
√
sλλ̄ eT , (5.4)

such that

Q = (1− z̄λ̄)p1 + (1− z̄λ)p2 − z̄
√
sλλ̄ eT , (5.5)

where z, λ ∈ [0, 1] and eT is a unit vector transverse to p1 and p2 in d = 4− 2ε dimensions.

In this section and the following ones we use the shorthand notation

x̄ ≡ 1− x, (5.6)

for integration variables. In the parameterization of eq. (5.4), the phase space measure

becomes

dΦ12→Qg = z̄
(
sz̄2λλ̄

)−ε dλdΩd−2

4(2π)d−2
, (5.7)

where we use dΩd−2 to denote the differential solid angle generating eT .

The matrix element squared in the integrand of eq. (5.1) is singular in the collinear

limits pg ‖ p1 and pg ‖ p2 (corresponding to λ→ 0 and λ→ 1 respectively) and in the soft

limit pg → 0 (corresponding to z → 1). The singular behaviour of matrix elements squared

is universal [78], in the sense that it is independent of the process under consideration. In
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particular, the formulae presented here are valid for any colourless final state in place of

the two off-shell photons γ∗γ∗. Explicitly, we have

|Mqq̄→γ∗γ∗g|2(0) = 2g2
sµ

2εSqq(z)

z̄2λ

B1(z)

zs
+O

(
λ0
)
, as λ→ 0, (5.8)

|Mqq̄→γ∗γ∗g|2(0) = 2g2
sµ

2εSqq(z)

z̄2λ̄

B2(z)

zs
+O

(
λ̄0
)
, as λ→ 1, (5.9)

where g2
s = 4παbs, and the splitting kernel is given by

Sqq(z) = CF
(
2z + (1− ε)z̄2

)
, (5.10)

and

B1(z) ≡ |Mqq̄→γ∗γ∗ |2(0)(zp1, p2, p3, p4), (5.11)

B2(z) ≡ |Mqq̄→γ∗γ∗ |2(0)(p1, zp2, p3, p4). (5.12)

In the above, the squared matrix elements for the Born process qq̄ → γ∗γ∗ are evaluated

with the momentum in the collinear direction rescaled by a factor of z.

Since we consider a colourless final state, the soft limit does not involve any colour

correlations and can be simply written as

|Mqq̄→γ∗γ∗g|2(0) = 2g2
sµ

2ε 2CF
sz̄2λλ̄

|Mqq̄→γ∗γ∗ |2(0) +O
(
z̄−1
)
, as z → 1. (5.13)

Note that the sum of the collinear limits, given by equations (5.8) and (5.9), reproduces

eq. (5.13) exactly in the limit where z → 1. This means that although the matrix element

squared is singular in the soft limit, no explicit subtraction of this singularity will be needed.

We now recast the partonic cross-section as:

σ
(0)
qq̄→γ∗γ∗g[J ] = σHqq̄[J ] + σC1

qq̄ [J ] + σC2
qq̄ [J ], (5.14)

where σHqq̄ has an integrand which is finite in all singular limits (λ, λ̄, z̄ → 0) as we take ε

to zero and it is therefore allowed to perform a Taylor expansion in ε, while σC1
qq̄ and σC2

qq̄

are divergent as ε→ 0.

The contributions read

σHqq̄[J ] =
1

2s

∫
dzdλdΩd−2

4(2π)d−1
sz̄
(
sz̄2λλ̄

)−ε
×
[
|Mqq̄→γ∗γ∗g|2(0)J (p1, p2, p3, p4, pg)dΦQ(z,λ)→γ∗γ∗

− 2g2
sµ

2εSqq(z)

z̄2λ

B1(z)

zs
J (zp1, p2, p3, p4)dΦQ(z,0)→γ∗γ∗

− 2g2
sµ

2εSqq(z)

z̄2λ̄

B2(z)

zs
J (p1, zp2, p3, p4)dΦQ(z,1)→γ∗γ∗

]
, (5.15)
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and

σC1
qq̄ [J ] = 2g2

sµ
2ε

∫
dzdλdΩd−2

4(2π)d−1

(
sz̄2λλ̄

)−ε Sqq(z)
z̄λ

B1(z)

2zs
J (zp1, p2, p3, p4)dΦQ(z,0)→γ∗γ∗ ,

(5.16)

σC2
qq̄ [J ] = 2g2

sµ
2ε

∫
dzdλdΩd−2

4(2π)d−1

(
sz̄2λλ̄

)−ε Sqq(z)
z̄λ̄

B2(z)

2zs
J (p1, zp2, p3, p4)dΦQ(z,1)→γ∗γ∗ .

(5.17)

We extract the pole in ε of σC1
qq̄ and σC2

qq̄ by integrating over the variables λ and eT .

Since J , Bi, and Q do not depend on these variables anymore, this step is straightforward.

The result is still singular in the z → 1 limit and we use an expansion in plus-distributions

to extract this last singularity. We obtain

σC1
qq̄ [J ] =

αbs Sε
π

(
µ2

s

)ε ∫
dz G(0)

qq (z)σ
(0)
qq̄→γ∗γ∗ [J ](zp1, p2), (5.18)

and

σC2
qq̄ [J ] =

αbs Sε
π

(
µ2

s

)ε ∫
dz G(0)

qq (z)σ
(0)
qq̄→γ∗γ∗ [J ](p1, zp2), (5.19)

where the Born cross section σ
(0)
qq̄→γ∗γ∗ [J ] is evaluated with rescaled momenta in the

collinear direction, and the integrated splitting kernel is

G(0)
qq (z) =

CF
2

[
δ(z̄)

(
1

ε2
+

3

2ε
− 3

2
ζ2

)
+ 4D1(z̄) + z̄ − 2(1 + z) log z̄

]
− P

(0)
qq (z)

ε
+O (ε) ,

with P
(0)
qq (z) being the Altarelli-Parisi splitting kernel (2.13).

The partonic cross section can then be subtracted using eq. (5.14). Recalling that

p1 = x1P1 and p2 = x2P2, and using eqs. (5.18) and (5.19), we obtain∫ 1

0
dx1dx2 f

b
q (x1)f bq̄ (x2)σ

(0)
qq̄→γ∗γ∗g[J ] =

∫ 1

0
dx1dx2 f

b
q (x1)f bq̄ (x2)σHqq̄[J ]

+
αbsSε
π

(
µ2

s

)ε ∫ 1

0
dx1dx2 [ f bq ⊗G(0)

qq ](x1)f bq̄ (x2)σ
(0)
qq̄→γ∗γ∗ [J ]

+
αbsSε
π

(
µ2

s

)ε ∫ 1

0
dx1dx2 f

b
q (x1)[ f bq̄ ⊗G(0)

qq ](x2)σ
(0)
qq̄→γ∗γ∗ [J ], (5.20)

where we used the trivial identity∫ 1

0
dxdz f(x)g(z)h(xz) =

∫ 1

0
dy [ f ⊗ g ](y)h(y), (5.21)

with y = xz. The first term of eq. (5.20) is finite, while the second and third terms contain

all the poles in ε.
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5.2 (Anti-)quark gluon channels

The remaining channels qg → γ∗γ∗q, gq → γ∗γ∗q, q̄g → γ∗γ∗q̄, and gq̄ → γ∗γ∗q̄ are treated

similarly, and it is only necessary to consider the channel qg → γ∗γ∗q.

We parameterize, as before,

pq = z̄λ̄ p1 + z̄λ p2 + z̄
√
sλλ̄ eT . (5.22)

The matrix element squared is finite in in the limit where pq ‖ p1 but is singular when

pq ‖ p2, with the asymptotic behaviour

|Mqg→γ∗γ∗q|2(0) = 2g2
sµ

2εSqg(z)

z̄λ̄

B2(z)

zs
+O

(
λ̄0
)
, as λ→ 1, (5.23)

where

Sqg(z) =
1

2(1− ε)
(z2 + z̄2 − ε). (5.24)

Note that since we consider averaged matrix elements squared (with d−2 polarizations for

the gluons), we needed to compensate for averaging factors.

The matrix element squared has a simple pole at z = 1, but since the phase-space

measure (5.7) vanishes linearly in this limit, the cross section is free of soft singularities.

We subtract as before, writing

σ
(0)
qg→γ∗γ∗ [J ] = σHqg[J ] + σCqg[J ], (5.25)

where

σHqg[J ] =
1

2s

∫
dzdλdΩd−2

4(2π)d−1
sz̄
(
sz̄2λλ̄

)−ε
×
[
|Mqg→γ∗γ∗q|2(0)J (p1, p2, p3, p4, pg)dΦQ(z,λ)→γ∗γ∗ (5.26)

− 2g2
sµ

2εSqg(z)

z̄λ̄

B2(z)

zs
J (p1, zp2, p3, p4)dΦQ(z,1)→γ∗γ∗

]
,

and

σCqg[J ] = 2g2
sµ

2ε

∫
dzdλdΩd−2

4(2π)d−1

(
sz̄2λλ̄

)−ε Sqg(z)
λ̄

B2(z)

2zs
J (p1, zp2, p3, p4)dΦQ(z,1)→γ∗γ∗

=
αbsSε
π

(
µ2

s

)ε ∫
dz G(0)

qg (z)σ
(0)
qq̄→γ∗γ∗ [J ](p1, zp2), (5.27)

with

G(0)
qg (z) = −P

(0)
qg (z)

ε
+

1

2

(
zz̄ + (z2 + z̄2) log z̄

)
+O (ε) , (5.28)

where the Altarelli-Parisi splitting kernel is given by eq. (2.14).

As before, the corresponding partonic cross-section can be written as∫ 1

0
dx1dx2 f

b
q (x1)f bg(x2)σ

(0)
qg→γ∗γ∗q[J ] =

∫ 1

0
dx1dx2 f

b
q (x1)f bg(x2)σHqg[J ]

+
αbsSε
π

(
µ2

s

)ε ∫ 1

0
dx1dx2 f

b
q (x1)[ f bg ⊗G(0)

qg ](x2)σ
(0)
qq̄→γ∗γ∗ [J ], (5.29)

where the second term contains all the poles in ε.
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6 Double-real contributions

We now consider the double-real contributions to the partonic cross sections. As explained

in section 2, only the channels qq̄ → γ∗γ∗q′q̄′ and q̄q → γ∗γ∗q′q̄′ contribute to the large NF

limit. We will first consider observables that do not involve differential information about

the final-state quarks separately. In the second part of this section we then present a fully

differential subtraction scheme.

6.1 Semi differential subtraction

Restricting ourselves to observables that do not resolve any of the differential properties of

the final state quarks allow us to write

J (p1, p2, p3, p4, pq′ , pq̄′) = J (p1, p2, p3, p4, pg∗), (6.1)

where pg∗ is the momentum of the parent off-shell gluon, pg∗ = pq′ + pq̄′ . The phase space

of the final-state quarks can then be integrated out, simplifying the extraction of limits.

Hence we first consider

σ
(0),int.
qq̄→γ∗γ∗q′q̄′ [J ] =

1

2s

∫
dΦ12→γ∗γ∗q′q̄′ J (p1, p2, p3, p4, pg∗)|Mqq̄→γ∗γ∗q′q̄′ |2(0), (6.2)

where int. indicates that we restrict ourselves to the aforementioned observables. The

phase space can be factorized as

dΦ12→γ∗γ∗q′q̄′ =
s dz

2π

dsg∗

2π
dΦ12→Qg∗dΦg∗→q′q̄′dΦQ→γ∗γ∗ , (6.3)

with sg∗ = p2
g∗ , and since the function J does not depend on pq′ and pq̄′ , we can perform

the integration over the decay phase space of the off-shell gluon explicitly. We obtain∫
dΦg∗→q′q̄′ |Mqq̄→γ∗γ∗q′q̄′ |2(0) =

A(ε)

s1+ε
g∗
|Mqq̄→γ∗γ∗g∗ |2(0), (6.4)

where |Mqq̄→γ∗γ∗g∗ |2(0) is the averaged tree-level matrix element squared for the production

of two off-shell photons and an off-shell gluon,1 and A(ε) is given by

A(ε) = 2g2
sµ

2ε 1

4

d− 2

d− 1

Ωd−1

(4π)d−2
, (6.5)

such that eq. (6.2) becomes

σ
(0),int.
qq̄→γ∗γ∗q′q̄′ [J ] =

A(ε)

2s

∫
s dz

2π

dsg∗

2π
dΦ12→Qg∗dΦQ→γ∗γ∗J (p1, p2, p3, p4, pg∗)

|Mqq̄→γ∗γ∗g∗ |2(0)

s1+ε
g∗

. (6.6)

1The choice of gauge for the off-shell gluon is irrelevant because of the Ward identities. We choose the

Feynman gauge.

– 23 –



J
H
E
P
0
2
(
2
0
1
5
)
1
8
2

To perform the subtraction for σ
(0),int.
qq̄→γ∗γ∗q′q̄′ we parameterize the momentum of the off-shell

gluon as

pg∗ = z̄λ̄p1 + z̄λ
1− ρz̄λ̄
1− z̄λ̄

p2 + z̄

√
sρλλ̄ eT , (6.7)

where z, λ, ρ ∈ [0, 1] and eT is again a unit vector transverse to p1 and p2 in d = 4 − 2ε

dimensions. We obtain the invariants

s1g∗ = (p1 − pg∗)2 = −sz̄λ, s2g∗ = (p2 − pg∗)2 = −sz̄λ̄
(

1− z̄λρ̄

1− λ̄z̄

)
(6.8)

sg∗ = p2
g∗ = (pq′ + pq̄′)

2 = s
z̄2λλ̄ρ̄

1− z̄λ̄
. (6.9)

Using this parameterization, the phase-space measure reads

dΦ12→Qg∗ = z̄
(
sz̄2λλ̄ρ

)−ε dλdΩd−2

4(2π)d−2
, (6.10)

where dΩd−2 denotes the differential solid angle parameterizing eT , and eq. (6.6) becomes

σ
(0),int.
qq̄→γ∗γ∗q′q̄′ [J ] =

A(ε)

2s

∫
dzdλdsg∗dΩd−2

4(2π)d
sz̄(sz̄2λλ̄ρ)−ε

s1+ε
g∗

× |Mqq̄→γ∗γ∗g∗ |2(0)J (p1, p2, p3, p4, pg)dΦQ(z,λ,ρ)→γ∗γ∗ . (6.11)

The singular limits of the matrix element squared are once again universal but are

asymmetric as a consequence of the asymmetry of the parameterization (6.7) under the

exchange p1 ↔ p2. We have to consider the following singular limits:

• pg∗ ‖ p1: this corresponds to λ → 0, such that pg∗ → z̄p1, and the matrix element

squared has the asymptotic behaviour

|Mqq̄→γ∗γ∗g∗ |2(0) = 2g2
sµ

2εSqq;1(z, ρ)

z̄2λ

B1(z)

zs
+O(λ0), (6.12)

with

Sqq;1(z, ρ) = CF
(
2z + (1− ε)z̄2ρ

)
. (6.13)

• pg∗ ‖ p2: this corresponds to λ → 1, such that pg∗ → z̄p2, and the matrix element

squared has the asymptotic behaviour

|Mqq̄→γ∗γ∗g∗ |2(0) = 2g2
sµ

2ε Sqq;2(z, ρ)

z̄2λ̄(1− z̄ρ̄)

B2(z)

zs
+O(λ̄0), (6.14)

with

Sqq;2(z, ρ) = CF

(
2z + (1− ε)z̄2(1− zρ̄

1− z̄ρ̄
)

)
. (6.15)

• sg∗ = 0: this is the final state collinear singularity, when the gluon becomes on-shell,

but remains in the hard region. It corresponds to ρ → 1, and the matrix element

squared has the smooth limit

|Mqq̄→γ∗γ∗g∗ |2(0) = |Mqq̄→γ∗γ∗g|2(0) +O (ρ̄) . (6.16)

The corresponding singularity comes from the factor s−1−ε
g∗ in (6.11).
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Note that in the limit where ρ→ 1, both splitting kernels (6.13) and (6.15) tend smoothly

to the splitting kernel we obtained in the previous section, eq. (5.10).

We proceed to the subtraction by writing

σ
(0),int.
qq̄→γ∗γ∗q′q̄′ [J ] = σHHqq̄ [J ] + σR;C

qq̄ [J ] + σCC1
qq̄ [J ] + σCC2

qq̄ [J ], (6.17)

where σHHqq̄ has a Taylor expansion around ε = 0 and the other terms contain all the poles

in ε. The different contributions are:

σHHqq̄ [J ] =
A(ε)

2s

∫
dzdλdsg∗dΩd−2

4(2π)d
sz̄(sz̄2λλ̄ρ)−ε

s1+ε
g∗

×
[
|Mqq̄→γ∗γ∗g∗ |2(0)J (p1, p2, p3, p4, pgg

∗)dΦQ(z,λ,ρ)→γ∗γ∗

− 2g2
sµ

2εSqq;1(z, ρ)

z̄2λ

B1(z)

zs
J (zp1, p2, p3, p4)dΦQ(z,0,ρ)→γ∗γ∗

− 2g2
sµ

2ε Sqq;2(z, ρ)

z̄2λ̄(1− ρ̄z̄)
B2(z)

zs
J (p1, zp2, p3, p4)dΦQ(z,1,ρ)→γ∗γ∗

− |Mqq̄→γ∗γ∗g|2(0)J (p1, p2, p3, p4, pg)dΦQ(z,λ,1)→γ∗γ∗

+ 2g2
sµ

2εSqq(z)

z̄2λ

B1(z)

zs
J (zp1, p2, p3, p4)dΦQ(z,0,1)→γ∗γ∗

+ 2g2
sµ

2εSqq(z)

z̄2λ̄

B2(z)

zs
J (p1, zp2, p3, p4)dΦQ(z,1,1)→γ∗γ∗

]
, (6.18)

and

σCC1
qq̄ [J ] = 2g2

sµ
2εA(ε)

∫
dzdλdsg∗dΩd−2

4(2π)d
(sz̄2λλ̄ρ)−ε

s1+ε
g∗

× Sqq;1(z, ρ)

z̄λ

B1(z)

2zs
J (zp1, p2, p3, p4)dΦQ(z,0,ρ)→γ∗γ∗ , (6.19)

σCC2
qq̄ [J ] = 2g2

sµ
2εA(ε)

∫
dzdλdsg∗dΩd−2

4(2π)d
(sz̄2λλ̄ρ)−ε

s1+ε
g∗

× Sqq;2(z, ρ)

z̄λ̄(1− ρ̄z̄)
B2(z)

2zs
J (p1, zp2, p3, p4)dΦQ(z,1,ρ)→γ∗γ∗ , (6.20)

σR;C
qq̄ [J ] =

A(ε)

2s

∫
dzdλdsg∗dΩd−2

4(2π)d
sz̄(sz̄2λλ̄ρ)−ε

s1+ε
g∗

×
[
|Mqq̄→γ∗γ∗g|2(0)J (p1, p2, p3, p4, pg)dΦQ(z,λ,1)→γ∗γ∗

− 2g2
sµ

2εSqq(z)

z̄2λ

B1(z)

zs
J (zp1, p2, p3, p4)dΦQ(z,0,1)→γ∗γ∗

− 2g2
sµ

2εSqq(z)

z̄2λ̄

B2(z)

zs
J (p1, zp2, p3, p4)dΦQ(z,1,1)→γ∗γ∗

]
, (6.21)

where we have pg = limρ→1 pg∗ such that the parameterization (6.7) tends to eq. (5.4) in the

limit where ρ→ 1. As for the real radiation, the soft limit does not need to be subtracted

explicitly. This can be checked by expanding the integrand of eq. (6.18) around z = 1.
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We can extract the poles in ε of σCC1
qq̄ and σCC2

qq̄ by integrating over the variables λ,

ρ and eT . The integration is slightly more complicated than for the real contributions,

but the result can be written in terms of hypergeometric functions 2F1(a, b, c; z̄), where a

and b depend on ε. We have used the HypExp [79] package to expand them in ε and then

performed a plus-distribution expansion over z̄ to extract the double soft singularity. We

note here that the residue of the soft pole at z = 1 is the same for both counterterms

σCC1
qq̄ and σCC2

qq̄ , such that the asymmetry due to the parameterization is limited to the

regular coefficients and does not affect the delta- and plus-distribution terms. As for the

real corrections, we can write the counterterms as

σCC1
qq̄ [J ] =

(
αbsSε
π

)2(
µ2

s

)2ε ∫
dz G

(1)
qq;1(z)σ

(0)
qq̄→γ∗γ∗ [J ](zp1, p2), (6.22)

σCC2
qq̄ [J ] =

(
αbsSε
π

)2(
µ2

s

)2ε ∫
dz G

(1)
qq;2(z)σ

(0)
qq̄→γ∗γ∗ [J ](p1, zp2), (6.23)

where we have

G
(1)
qq;1(z) =

CF
48

{
−δ(z̄)

ε3
+

1

ε2

[
4D0(z̄)− 5

3
δ(z̄)− 2(1 + z)

]
+

1

ε

[
−16D1(z̄) +

20

3
D0(z̄)− 1

18
(56− 21π2)δ(z̄)

−10

3
(1 + z) + 8(1 + z) log z̄ + 2(1 + z2)

log z

z̄

]
+32D2(z̄)− 80

3
D1(z̄) +

2

9
(56− 21π2)D0(z̄)

− 1

54
(328− 105π2 − 1116ζ3)δ(z̄)

−4(1 + z2)
Li2(z̄)

z̄
− 16(1 + z) log2 z̄ − (1 + z2)

log2 z

z̄
− 8(1 + z2)

log z log z̄

z̄

+
40

3
(1 + z) log z̄ +

10

3
(1 + z2)

log z

z̄

−1

9
(38 + 74z − 21π2(1 + z))

}
+O(ε), (6.24)

G
(1)
qq;2(z) = G

(1)
qq;1(z)− CF

48

(
4(1 + z2)

Li2(z̄)

z̄
− 4 log z − 4z̄

)
+O(ε). (6.25)

The pole in ε of σR;C
qq̄ is extracted by integrating over ρ only, since the variables z and

λ still parameterize the on-shell gluon in ρ→ 1 limit. Using

A(ε)

2π

∫
dsg∗

s1+ε
g∗

ρ−ε = − 1

6ε

(
αbsSε
π

)[
1 +

5

3
ε− ε log

(
s

µ2

z̄2λλ̄

(1− z̄λ̄)

)
+O(ε2)

]
, (6.26)

we can expand as

σR;C
qq̄ [J ] = − 1

6ε

(
αbsSε
π

)
σHqq̄[J ] + σH̃qq̄[J ] +O (ε) , (6.27)
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where σHqq̄ is our NLO expression (5.15), and we defined

σH̃qq̄[J ] = −1

6

(
αbsSε
π

)
1

2s

∫
dzdλdΩd−2

4(2π)d−1
sz̄
(
sz̄2λλ̄

)−ε
×
(

5

3
− log

(
s

µ2

z̄2λλ̄

(1− z̄λ̄)

))
×
[
|Mqq̄→γ∗γ∗g|2(0)J (p1, p2, p3, p4, pg)dΦQ(z,λ)→γ∗γ∗

− 2g2
sµ

2εSqq(z)

z̄2λ

B1(z)

zs
J (zp1, p2, p3, p4)dΦQ(z,0)→γ∗γ∗

− 2g2
sµ

2εSqq(z)

z̄2λ̄

B2(z)

zs
J (p1, zp2, p3, p4)dΦQ(z,1)→γ∗γ∗

]
. (6.28)

After summing over the final-state quark flavours q′, the first term of eq. (6.27) will cancel

the β0 term coming from the renormalization of αbs in the large NF limit, given by eq. (2.8),

applied to the NLO contribution σHqq̄, given by eq. (5.15). Also note that σH̃qq̄ has the exact

the same structure as σHqq̄, except for the prefactor and the term on the second line.

At the partonic level, we finally obtain∫ 1

0
dx1dx2 f

b
q (x1)f bq̄ (x2)σ

(0),int.
qq̄→γ∗γ∗q′q̄′ [J ] =∫ 1

0
dx1dx2 f

b
q (x1)f bq̄ (x2)

(
σHHqq̄ [J ] + σH̃qq̄[J ]

)
− 1

6ε

(
αbsSε
π

)∫ 1

0
dx1dx2 f

b
q (x1)f bq̄ (x2)σHqq̄[J ]

+

(
αbsSε
π

)2(
µ2

s

)2ε ∫ 1

0
dx1dx2 [ f bq ⊗G

(1)
qq;1 ](x1)f bq̄ (x2)σ

(0)
qq̄→γ∗γ∗ [J ]

+

(
αbsSε
π

)2(
µ2

s

)2ε ∫ 1

0
dx1dx2 f

b
q (x1)[ f bq̄ ⊗G

(1)
qq;2 ](x2)σ

(0)
qq̄→γ∗γ∗ [J ], (6.29)

where the first term is finite and the others contain all the poles in ε.

6.2 Fully differential subtraction

In this section, we show how to perform a similar subtraction in the case where the phase

space of the two final state quarks cannot be integrated out. Hence we consider

σ
(0)
qq̄→γ∗γ∗q′q̄′ [J ] =

1

2s

∫
dΦ12→γ∗γ∗q′q̄′ J (p1, p2, p3, p4, pq′ , pq̄′)|Mqq̄→γ∗γ∗q′q̄′ |2(0), (6.30)

where the function J depends now on all external momenta.

We extend our parameterization in a way similar to ref. [80]. In order to construct

the momenta of the q′q̄′ pair, we introduce another transverse unit vector e′T , with the

conditions e′T · p1 = e′T · p2 = e′T · eT = 0 and e′T
2 = −1.2 The full phase space measure

2In d=4, these conditions actually fix e′T completely up to a reflection about the beam axis, in accordance

with Ω1 = 2.
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then reads

dΦ12→γ∗γ∗q′q̄′ =
s2z̄3λλ̄

1− z̄λ̄

(
s2z̄4λ2λ̄2ρρ̄y1ȳ1 sin2 πy2

1− z̄λ̄

)−ε
(6.31)

× dzdλdρdΩd−2

4(2π)d
dy1dy2dΩd−3

8(2π)d−2
dΦQ→γ∗γ∗ (6.32)

where dΩd−2 and dΩd−3 denote the integrals over eT and e′T respectively, and Q = p1 +

p2−pq′−pq̄′ . The new variables y1, y2 ∈ [0, 1] parameterize the phase space of the decay of

the off-shell gluon. The expressions for the invariants s1q′ = (p1 − pq′)2, s1q̄′ = (p1 − pq̄′)2,

s2q′ = (p2 − pq′)2 and s2q̄′ = (p2 − pq̄′)2 can be found in the aforementioned reference.

The momenta of the two final-state quarks can now be fully reconstructed and read

pq′ = z̄

[
λ̄y1 p1 + λ

(
y1ρ+

ρ̄ȳ1

1− z̄λ̄
− 2 cosπy2

√
ρρ̄y1ȳ1

1− z̄λ̄

)
p2

−

√
s
λλ̄

ρ

(
y1ρ− cosπy2

√
ρρ̄y1ȳ1

1− z̄λ̄

)
eT + sinπy2

√
s
λλ̄ρ̄y1ȳ1

1− z̄λ̄
e′T

]
,

pq̄′ = z̄

[
λ̄ȳ1 p1 + λ

(
ȳ1ρ+

ρ̄y1

1− z̄λ̄
+ 2 cosπy2

√
ρρ̄y1ȳ1

1− z̄λ̄

)
p2

−

√
s
λλ̄

ρ

(
ȳ1ρ+ cosπy2

√
ρρ̄y1ȳ1

1− z̄λ̄

)
eT − sinπy2

√
s
λλ̄ρ̄y1ȳ1

1− z̄λ̄
e′T

]
,

such that the momentum of the parent gluon pg∗ = pq′ + pq̄′ is still given by our previous

expression (6.7). Note that pq̄′ can be obtained from pq′ by replacing y1 ↔ ȳ1, y2 ↔ ȳ2

and e′T → −e′T .

There are no new singular limits to consider in this case. The singular limits where

pq′ + pq̄′ ‖ p1 and pq′ + pq̄′ ‖ p2 have the same structure as in eqs. (6.12) and (6.14), and

can be written as

|Mqq̄→γ∗γ∗q′q̄′ |2(0) = 4g4
sµ

4ε S̃qq;1(z, ρ, y1, y2)

z̄4λ2ρ̄

B1(z)

zs2
+O

(
λ−1

)
, (6.33)

|Mqq̄→γ∗γ∗q′q̄′ |2(0) = 4g4
sµ

4ε S̃qq;2(z, ρ, y1, y2)

z̄4λ̄2(1− z̄ρ̄)2ρ̄

B2(z)

zs2
+O

(
λ̄−1

)
, (6.34)

with new, fully differential, splitting kernels S̃qq;1 and S̃qq;2. Note that although the sin-

gularities are now quadratic at the level of the matrix element squared, the cross section

diverges only logarithmically because the phase-space measure (6.31) vanishes linearly in

these limits.

The singular limit where sg∗ = 0, such that pq′ ‖ pq̄′ , is now non-trivial and involves

spin correlations, and reads

|Mqq̄→γ∗γ∗q′q̄′ |2(0) = 2g2
sµ

2ε 1− z̄λ̄
sz̄2λλ̄ρ̄

S̃µν(λ, y1, y2)M̃µν
qq̄→γ∗γ∗g +O(ρ̄0). (6.35)
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In the above we have defined

M̃µν
qq̄→γ∗γ∗g =

(
1

2Nc

)2∑
pol.

Aqq̄→γ∗γ∗gµ(Aqq̄→γ∗γ∗gν )∗,

where
∑

pol. denotes the sum over the polarizations of the photons and the spins of the

quarks and Aqq̄→γ∗γ∗gµ is the tree amplitude for the process qq̄ → γ∗γ∗g where the gluon

is not contracted with the corresponding polarization vector.

All the splitting kernels can be obtained from the universal limits given in ref. [78].

They read

S̃qq;1(z, ρ, y1, y2) =
CF z

2ρ̄

[ (
1 + z2

)
ρ(1− 2y1ȳ1) + 8zρ̄y1ȳ1 − ρz̄2ε− 4zρy1ȳ1 cos(2πy2)

+ 4(1 + z)(1− 2y1)
√
zρ̄ρy1ȳ1 cos(πy2)

]
, (6.36)

S̃qq;2(z, ρ, y1, y2) =
CF
2ρ̄

[
2ρ̄2z̄(2− ρ̄z̄)(1− 6y1ȳ1) + (1 + ρ̄)

(
1 + z2

)
(1− 2y1ȳ1)

− 4ρ̄(1− 2y1)2 − ερz̄2 − 4(1− ρ̄z̄)(z − ρ̄z̄)ρy1ȳ1 cos(2πy2)

+ 4(1 + z − 2ρ̄z̄)(1− 2y1)(1− ρ̄z̄)
√
ρ̄ρy1ȳ1 cos(πy2)

]
, (6.37)

and

S̃µν =
1

2
[−gµν + kµkν ] , (6.38)

where the dimensionless vector k is given by

k = −2
√
y1ȳ1

[√
λλ̄ 2 cosπy2

p1 − p2√
s

+ (1− 2λ) cosπy2 eT + sinπy2 e
′
T

]
, (6.39)

such that k2 = −4y1ȳ1. Double limits commute and can be obtained easily by extracting

the pole at ρ→ 1 of the counterterms (6.36) and (6.37).

Subtraction can be performed as in eq. (6.17), by writing

σ
(0)
qq̄→γ∗γ∗q′q̄′ [J ] = σHHqq̄ [J ] + σR;C

qq̄ [J ] + σCC1
qq̄ [J ] + σCC2

qq̄ [J ]. (6.40)

Only the σHHqq̄ contribution needs to be modified, and now reads

σHHqq̄ [J ] =
1

2s

∫
dzdλdρdy1dy2dΩd−2dΩd−3

32(2π)2d−2

(
s2z̄4λ2λ̄2ρρ̄y1ȳ1 sin2 πy2

1− z̄λ̄

)−ε
s2z̄3

×

[
λλ̄

1− z̄λ̄
|Mqq̄→γ∗γ∗q′q̄′ |2(0)J (p1, p2, p3, p4, pq′ , pq̄′)dΦQ(z,λ,ρ)→γ∗γ∗

− 4g4
sµ

4ε 1

z

S̃qq;1(z, ρ, y1, y2)

z̄4λρ̄

B1(z)

zs2
J (zp1, p2, p3, p4)dΦQ(z,0,ρ)→γ∗γ∗

− 4g4
sµ

4ε S̃qq;2(z, ρ, y1, y2)

z̄4λ̄(1− z̄ρ̄)2ρ̄

B2(z)

zs2
J (p1, zp2, p3, p4)dΦQ(z,1,ρ)→γ∗γ∗

− 2g2
sµ

2ε 1

sz̄2ρ̄
S̃µν(λ, y1, y2)M̃µν

qq̄→γ∗γ∗gJ (p1, p2, p3, p4, pg)dΦQ(z,λ,1)→γ∗γ∗
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+ 4g4
sµ

4ε 1

z

S̃qq;1(z, 1, y1, y2)

z̄4λρ̄

B1(z)

zs2
J (zp1, p2, p3, p4)dΦQ(z,0,1)→γ∗γ∗

+ 4g4
sµ

4ε S̃qq;2(z, 1, y1, y2)

z̄4λ̄ρ̄

B2(z)

zs2
J (p1, zp2, p3, p4)dΦQ(z,1,1)→γ∗γ∗

]
. (6.41)

The contributions σCC1
qq̄ , σCC2

qq̄ , and σR;C
qq̄ are again given by eqs. (6.19), (6.20) and (6.21)

respectively, after integration over the variables y1, y2 and e′T . In particular we have

2g2
sµ

2ε

∫
dy1dy2dΩd−3

8(2π)d−2

(
y1ȳ1 sin2 πy2

)−ε S̃qq;1(z, ρ, y1, y2)

z
=
A(ε)

2π
Sqq;1(z, ρ), (6.42)

2g2
sµ

2ε

∫
dy1dy2dΩd−3

8(2π)d−2

(
y1ȳ1 sin2 πy2

)−ε S̃qq;2(z, ρ, y1, y2)

1− z̄ρ̄
=
A(ε)

2π
Sqq;2(z, ρ). (6.43)

7 Numerical results

We have implemented the various contributions to the differential cross section for the NF

part of the process pp → γ∗γ∗ + X up to the next-to-next-to leading order in the strong

coupling expansion in two different programs. The virtual contributions are written in

terms of master integrals which in turn are evaluated in terms of harmonic polylogarithms.

In order to ensure the correct implementation of master integrals, various analytic and

numerical checks were performed against published results in the literature as detailed in

section 4. We have used the program CHAPLIN [81] for the numerical evaluation of the

necessary harmonic polylogarithms in the physical region. The agreement of the poles

of the one- and two-loop virtual amplitudes, as predicted by ref. [82] was checked both

analytically and numerically, at the implementation level. The NLO contribution was

checked against the MCFM [83] implementation.3

The double-real contributions were implemented as described in sections 6.1 and 6.2,

and double checked against another fully differential parameterization. Because the two

parameterizations have different double-real counterterms, the numerical results for the

double hard, the single hard and the integrated triple collinear counterterm cross sections

are individually different. Only the sum of these contributions is physical, which provides

a strong numerical check of our two implementations.

In the following, we present indicatively some differential distributions of interest, in-

cluding their factorization and renormalization scale dependence. Since we do not include

the decay of the off-shell photons to leptons, or the single-resonant diagrams in this publi-

cation, we defer a more detailed phenomenological analysis to a future publication.

In what follows, we use the central grid of the MSTW08 parton distribution func-

tions [84], ignoring the uncertainties due to PDFs and the strong coupling constant. The

strong coupling constant is run at the appropriate QCD order while the electromagnetic

coupling constant is set to its value at mZ , a(mZ) = 1/132.34.

3The pp→ γ∗γ∗ without photon decays is not an out-of-the-box process in MCFM, but it was possible

to compare our result with m3 = m4 = mz against MCFM’s pp → ZZ with modified couplings of the Z

boson to quarks.
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Figure 2. Scale variation at LO, NLO and NNLO as a function of the photon virtualities, here

taken to be equal.

The total cross section depends on the virtualities of the off-shell photons, m3 =
√
p2

3,

m4 =
√
p2

4. First, we set the virtualities of the two photons equal and study the scale

uncertainty of the NLO and NNLO K-factors as a function of the common photon virtuality,

in figure 2. For photons that are widely off-shell, i.e. with m3,4 > 10GeV, the NNLO

corrections are at the per mille level and the NNLO scale uncertainty is reduced, implying

a satisfactory perturbative convergence for the process. As the limit of on-shell photons

is approached the LO cross-section blows up and so does its scale uncertainty. This is

expected, since we do not impose any final-state cuts on the two photons.

Next we turn to differential distributions for unequal photon virtualities. We set

m3 = 15GeV, m4 = 30GeV. (7.1)

In figure 3, we present the rapidity distributions of the two photons at each order in

αs. The transverse momentum distributions for the two photons can be seen in figure 4.

The uncertainty due to the renormalization and factorization scales is shown as shaded

regions in the figures. The scales are kept equal and varied in the interval

µr = µf ∈ [10, 40] GeV. (7.2)

We note that while the NLO contribution changes the shape of the transverse momentum

distributions, an effect that is more pronounced in the high transverse momentum region,

the NNLO contribution does not induce any further changes. The rapidity distributions

at NNLO also follow closely the NLO pattern.

Off-shell diphoton production contributes as a background, along with Z pair produc-

tion, to the Higgs boson measurements in the golden channel pp→ H → ZZ∗ → l+1 l
−
1 l

+
2 l
−
2 .
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Figure 3. Pseudo-rapidity distribution of the two off-shell photons with virtualities m3 = 30GeV

(left) and m4 = 15GeV (right).

Figure 4. Transverse momentum distribution of the two off-shell photons with virtualities m3 =

30GeV (left) and m4 = 15GeV (right).

In that case the invariant mass of the two photons must be in a window of several GeV

around the Higgs mass of 125GeV. We therefore set the virtualities of the photons to

m3 = 91.188GeV and m4 = 27GeV, to simulate one on-shell and one off-shell Z boson.
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Figure 5. The invariant mass distribution of the diphoton pair, with m3 = 91.188GeV and

m4 = 27GeV.

Figure 6. N-jets cross-section as a function of the perturbative order for pmin
T = 20GeV (left) and

as a function of pmin
T (right), for m3 = 91.188GeV, m4 = 27GeV.

The invariant mass distribution of the photon pair, shown at figure 5, has its peak in the

126GeV region. The NNLO contributions are overall very small, but induce a slightly more

pronounced correction at the region around the peak, and further stabilise the perturbative

prediction there.
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Figure 7. Transverse momentum (left) and rapidity (right) of the leading jet for m3 = 91.188GeV,

m4 = 27GeV, and pmin
T = 20GeV.

The N-jet cross section is shown in figure 6. We have implemented the anti-kT algo-

rithm with cone size R = 0.7 and a pmin
T that defines how soft the jet is allowed to be. The

0-,1- and 2-jet cross sections for pmin
T = 20GeV are shown in the left panel of figure 6. We

observe that there is a migration of events away from the 1-jet bin at NNLO. On the right

panel we show the dependence of the size of the 0-, 1- and 2-jet bins as a function of pmin
T .

In general the contribution of the NNLO cross section is at the percent level or lower.

Finally the transverse momentum and rapidity distributions of the leading jet when

the jet algorithm is defined with pmin
T = 20GeV is shown in figure 7. This observable starts

at NLO and the NNLO corrections are seen to be small and negative.

8 Conclusions

We have computed the NNLO corrections to off-shell diphoton production at the large NF

limit, as a first step towards a complete, fully differential NNLO computation of off-shell

diboson production that is necessary for improving the simulation of backgrounds for Higgs

production in the four-lepton channel at the LHC.

We have provided explicit analytic expressions for the necessary two-loop master inte-

grals in terms of classical polylogarithms, using direct integration methods along the lines

of ref. [53].

We have treated the double-real radiation with a direct subtraction method where all

subtraction counterterms are analytically integrated, thanks to the factorized structure of

the singular limits in this process. The approach described is currently restricted to NF -

type contributions, but is independent of the specific, colourless Born-level final state. For
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a complete NNLO result, further counterterms will be required to subtract the divergences

of the double-real radiation partonic cross-sections. These are simpler to deal with in

comparison with the NF -type double-real radiation which we solved here, since they do

not exhibit any apparent quadratic singularities. A complete method which can be used

for the treatment of the remaining double-real radiation topologies has been presented in

ref. [80] and ref. [96].

We have implemented the NNLO corrections in a fully differential partonic Monte

Carlo code and provided selected differential distributions, demonstrating the numerical

stability of both the double virtual and the double real contributions, in anticipation of a

complete diboson computation.
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A Construction of the set of basis functions

In this appendix we discuss the construction of the set of basis functions introduced in

section 4. More precisely, we construct a linearly independent set of polylogarithmic func-

tions (up to weight four) with prescribed branch cuts reflecting the branch cut structure

of Feynman integrals through which all the integrals considered in this paper can be ex-

pressed. The construction of this basis of functions follows closely the discussion in ref. [53],

where this procedure was already carried out for the subset of three-point functions (see

also ref. [69] for a similar discussion in the context of so-called hexagon functions). In

order to rigorously define the notion of ‘basis’ and ‘linearly independence’ in the context of

polylogarithmic functions, we first give a very brief review of the mathematical properties

of polylogarithmic functions in general before discussing the construction of the basis.

A.1 A lighting review of the Hopf algebra of multiple polylogarithms

In this section we provide a lightning review of the Hopf algebra of multiple polylogarithms,

as it plays a central role in the construction of the basis. First, multiple polylogarithms

form a shuffle algebra,

G(~a; r)G(~b; r) =
∑
~c∈~a�~b

G(~c; r) , (A.1)

where ~a�~b denotes the set of all shuffles of ~a and ~b, i.e., the set of all mergers of ~a and ~b

that preserve the relative orderings inside ~a and ~b. In the following we denote this algebra

by H. The algebra H is obviously graded by the weight,

H =
∞⊕
n=0

Hn , with Hm · Hn ⊂ Hm+n , (A.2)
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where Hn denotes the Q-vector space spanned by all multiple polylogarithms of weight n,

and we set H0 = Q.

Moreover, H can be equipped with a coproduct, turning it into a Hopf algebra. In the

following we refrain from giving a detailed discussion of the Hopf algebra structure and

only concentrate on the essentials that we will need in the following. In a nutshell (and

very loosely speaking), a coproduct is a linear map ∆ : H → H ⊗ H that preserves the

weight and the algebra structure.4 For example, for the classical polylogarithms and the

ordinary logarithms we have

∆(log r) = 1⊗ log r + log r ⊗ 1 ,

∆(Lin(r)) = 1⊗ Lin(r) +

n−1∑
k=0

Lin−k(r)⊗
logk r

k!
.

(A.3)

The advantage of the coproduct lies in the fact that it allows one to decompose a multiple

polylogarithm of a specific weight into pairs of lower weight objects, for which properties

like functional equations are already known. In addition, this decomposition can be iterated

H → H⊗H → H⊗H⊗H → . . ., allowing one to decompose the functions into more and

more combinations of functions of lower weight (which we will consider ‘simpler’ in the

following). In the following we denote the by ∆n1,...,nk the component of the the coproduct

in Hn1 ⊗ . . .⊗Hnk . For a multiple polylogarithm of weight n this decomposition naturally

stops when the function has been decomposed into an n-fold tensor product of functions

of weight one, i.e., ordinary logarithms for which all identities are known. This maximal

iteration of the coproduct is known as the symbol map in the literature [87–91].

The coproduct also encodes information on the discontinuities and the derivatives of

a function. More precisely, discontinuities are encoded in the first factor of the coproduct,

while derivatives only act on the second factor [86],

∆(DiscF ) = (Disc⊗ id) ∆(F ) and ∆

(
∂

∂r
F

)
=

(
id⊗ ∂

∂r

)
∆(F ) . (A.4)

A.2 Construction of the basis

We now exploit the concepts reviewed in the previous section to construct a basis of func-

tions through which all the integrals presented in this paper can be expressed. The discus-

sion follows very closely the discussion in ref. [53], so we will be brief and online outline

the main steps. Either by analysing explicit results for the integrals or by analysing the

singularities of the differential equations satisfied by the master integrals, we see that the

symbols of the master integrals have all their entries drawn from the set

A4 = {r, r̄, w, 1− r, 1− r̄, r − r̄, u− w, v − w, w + r − rr̄, w + r̄ − rr̄} , (A.5)

where u = rr̄, v = (1 − r)(1 − r̄) and w were defined in section 4. Note that A4 contains

a subset A3 = {r, r̄, 1− r, 1− r̄, r − r̄}, which corresponds to the case of the three-point

4In practise, H is only defined modulo iπ, and we are working with the H-comodule A = Q[iπ] ⊗Q H,

and ∆ is a comodule map ∆ : A → A ⊗ H with ∆(iπ) = iπ ⊗ 1 [85, 86]. Since this distinction does not

change the discussion in the following, we prefer not to make this technical distinction at this point in order

not to clutter the discussion.
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functions considered in ref. [53]. Moreover, Cutkosky’s rules imply that the Feynman inte-

grals considered in this paper can only have branch cuts starting at point where u, v, w = 0.

Let from now on H denote the Hopf algebra of all polylogarithmic functions whose sym-

bols have all their entries drawn from the set A4, and H′ its subalgebra consisting of all

functions having at most the branch cuts prescribed by Cutkosky’s rule. Note that H′ is

manifestly graded by the weight. Our goal is to find for every weight n (up to weight four)

a basis for H′n. In addition, we require this basis to be as ‘simple as possible’, i.e., we

require that the product of two basis functions of weight m and n be an element of the

basis of weight m+ n.

A basis for H′ can now be constructed recursively in the weight. Indeed, since we

know from eq. (A.4) that discontinuities are encoded in the first entry of the coproduct,

we conclude that5

∆(H′) ⊂ H′ ⊗H . (A.6)

Equation (A.6) is known as the first entry condition [88]. In the rest of this section we

discuss how the first entry condition can be used to construct a basis for H′ recursively in

the weight, following the procedure of ref. [53] (see also ref. [92]).

Let us start with weight one. It is easy to see that a basis for H1 is given by

B1 = { log r, log r̄, logw, log(1− r), log(1− r̄), log(r − r̄),
log(u− w), log(v − w), log(w + r − rr̄), log(w + r̄ − rr̄)} ,

(A.7)

and a basis for the subspace H′1 is

B′1 = {log u, log v, logw}. (A.8)

Next, we want to construct a basis for H′2. From eq. (A.6) we know that

∆1,1(H′2) ⊂ H′1 ⊗H1 , (A.9)

and it is clear that a basis for H′1 ⊗H1 is given by

B1,1 = {b′ ⊗ b | b′ ∈ B′1 and b ∈ B1} . (A.10)

However, not every element of H′1 ⊗H1 corresponds to a function in H′2. Let us illustrate

this with an example. Consider the element log(rr̄) ⊗ log r ∈ H′1 ⊗H1, and suppose that

there is a function f ∈ H′2 such that ∆1,1(f) = log(rr̄) ⊗ log r. Using eq. (A.4) and the

fact that for the total differential d2 = 0, we obtain a contradiction, because

0 = ∆1,1(d2f) = d log(rr̄) ∧ d log r = d log r̄ ∧ d log r 6= 0 . (A.11)

It can however be shown that

∆1,1(H′2) = {ξ ∈ H′1 ⊗H1 | (d ∧ d)ξ = 0} . (A.12)

5Technically speaking, H′ is an H-comodule.
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This is known as the integrability condition. We can thus write down the most general

linear combination of elements in B1,1 and then solve the integrability condition. The a

basis for the solution space of this problem is at the same time a basis for ∆1,1(H′2). Every

basis element of corresponds to a basis element in H′2, and it is straightforward to find

the corresponding function. Note that we also need to add all those elements ξ such that

∆1,1(ξ) = 0. In our case there is just one such element, namely ζ2. Carrying out this

procedure at weight two, we find that, besides all possible products of elements of B′1,

there are 4 new basis elements of weight two, which we choose as

ζ2 , P2(r) , Li2

(
1− u

w

)
, Li2

(
1− u

w

)
, (A.13)

in agreement with the result quoted in section 4.

This procedure immediately carries over to higher weight. Indeed, assume that we

have constructed a basis B′n−1 of H′n−1. The first entry condition and the integrability

conditions imply that

∆n−1,1(H′n) = {ξ ∈ H′n−1 ⊗H1 | (d ∧ d)ξ = 0} ⊂ H′n−1 ⊗H1 , (A.14)

and a basis for H′n−1 ⊗H1 is given by

Bn−1,1 = {b′ ⊗ b | b′ ∈ B′n−1 and b ∈ B1} . (A.15)

Starting from the most general linear combination of elements in Bn−1,1, we can solve

the integrability condition and obtain a basis for ∆n−1,1(H′n). To every basis element

corresponds a function in H′n that can easily be constructed. We find that (up to weight

four) the basis elements can be expressed in terms of multiple polylogarithms G(~a;x) with

1. ai ∈ {0, u, v, r(−1 + r̄), r̄(−1 + r)} and x = w,

2. ai ∈
{

0, 1
r ,

1
r̄

}
and x = 1,

3. ai ∈
{

0, 1
1−r ,

1
1−r̄

}
and x = 1.

Up to weight four, and omitting products of lower weight functions, we find the following

basis functions,

B3 =

{
R+

3 (r, w),R−3 (r, w),Q3(r),P3(r),P3(1− r), ζ3

Li3

(
1− u

w

)
,Li3

(
1− v

w

)
,Li3

(
1− w

u

)
,Li3

(
1− w

v

)}
,

B4 =

{
Li4(u,w),Li4(v, w),

R+;1...,5
4 (r, w),R−;1...,4

4 (r, w),R+;1,2
4 (1− r, w),R−;1

4 (1− r, w),

Q+
4 (r),Q+

4 (1− r),Q−4 (r),P4(r),P4(1− r),P4(1− 1/r),

Li4

(
1− u

w

)
,Li4

(
1− v

w

)
,Li4

(
1− w

u

)
,Li4

(
1− w

v

)}
.

(A.16)

– 38 –



J
H
E
P
0
2
(
2
0
1
5
)
1
8
2

The basis functions of weight three were already defined in section 4. The new basis

functions of weight four are rather lengthy, and are given as ancillary files attached to the

arXiv submission.

Let us conclude this section by making some comments about our choice of basis

functions.

1. All basis functions are chosen such that they are manifestly real in the Euclidean

region where λ(1, u, v) < 0, and thus r and r̄ complex conjugate to each other.

Note that, similar to the case of the three-point functions considered in ref. [53],

this implies for fixed values of w all basis functions are single-valued in the complex

r plane. The analytic continuation to other regions can be performed using the

techniques described in section 4.2.

2. We already discussed that our basis is ‘as simple as possible’, in the sense that at

every weight we have to add all possible products of lower weight basis function

the new indecomposable functions defined in eqs. (A.13) and (A.16). One could ask

whether the inverse is also true, i.e., whether it is possible to find a linear combination

of indecomposable functions which can be expressed in terms of products of lower

weights (not necessarily basis functions of lower weight). It can be checked that this

is not so. Indeed, in ref. [91, 93, 94] a set of projectors (acting on symbols) was

defined whose kernels are precisely generated by products of lower weights. It is

then easy to check that there is no non-trivial decomposable linear combination of

indecomposable basis functions.

3. The parameterization (4.4) induces a Z2 symmetry on the space of functions which

acts by interchanging r and r̄, or, equivalently, changes the sign of the square root√
λ(1, u, v). All our basis functions are eigenfunctions under this symmetry.

4. We already noted that we have the inclusion A3 ⊂ A4, corresponding to the fact

that the massless three point functions are subtopologies of the four-point functions

considered here. In ref. [53] a basis up to weight four for these three-point functions

was constructed. Our basis has been chosen such that all basis functions of ref. [53]

appear explicitly as basis elements in our basis.

B Computation of the master integrals

In this appendix we illustrate how we computed the four-point master integrals defined in

section 4. The method used to compute the integrals follows the algorithm introduced in

ref. [54] (see also ref. [55–61]), which, under certain conditions which are always satisfied

in the following, allows to perform the integrations one at the time.

In a nutshell, the general procedure is the following. If the integral is finite as ε→ 0,

we can expand the Feynman parameterized integral in ε under the integration sign. At

each order in ε we then obtain integrands composed of (logarithms of) rational functions of

the Feynman parameters and the external scales. If in addition we find an ordering of the

Feynman parameters such that, after integrating over the first k Feynman parameters, all

– 39 –



J
H
E
P
0
2
(
2
0
1
5
)
1
8
2

the polynomials appearing in the integrand are linear in the next Feynman parameter, then

we can perform the next integration trivially using the definition of multiple polylogarithms,

eq. (4.3). Several explicit algorithms to perform the integrations exist [54–61], and we refer

to literature for the details. In the following we content ourselves to discuss the example

of the four-point function B2a defined in section 4.

B.1 A representative example: the integral B2a

Let us illustrate the algorithm on the representative example of the integrals B2a, corre-

sponding to the integral

B2a = e2γε

∫
ddk ddl

(iπd/2)2

1

(k + l)4(k + p1)2(k + p1 + p3)2(k + p1 + p3 + p4)2l2
(B.1)

The integral over l is a massless bubble integral and can be done in closed form∫
ddl

iπd/2
1

[l2]νa [(k + l)2]νb
= (−1)

d
2 (k2)

d
2
−νa−νb Γ

(
νa + νb − d

2

)
Γ
(
d
2 − νa

)
Γ
(
d
2 − νb

)
Γ(νa)Γ(νb)Γ(d− νa − νb)

, (B.2)

After integration over the bubble, we obtain effectively a one-loop box integral where one

of the propagators is raised to an ε-dependent power. Note that this applies to all the two-

loop four-point integrals considered in section 4 and is not specific to B2a. After Feynman

parameterization of the remaining one-loop integral, we are left with the following integrals

to compute
1∫

0

(
4∏
i=1

dxi

)
fp(ν1, ν2, ν3, ν4, d) , (B.3)

fp(ν1, ν2, ν3, ν4, d) is the usual Feynman parameterization of the 1-loop box integral for

arbitrary powers νi of propagators in d dimension

fp(ν1, ν2, ν3, ν4, d) =
(−1)

d
2 Γ(ν − d

2)∏
i Γ(νi)

δ(1−
∑
i

xi)x
ν1−1
1 xν2−1

2 xν3−1
3 xν4−1

4 (B.4)

× (x1 + x2 + x3 + x4)ν−d(sx2x4 + tx1x3 +m2
3x2x3 +m2

4x3x4)
d
2
−ν .

In the case of B2a, the propagator between the legs p1 and p2 is raised to the power 1 + ε,

fp(1 + ε, 1, 1, 1, 4− 2ε) =
(−1)2−εΓ(2 + 2ε)

Γ(1 + ε)
δ
(

1−
∑

xi

)(∑
xi

)3ε

× xε1(m2
4x3x4 +m2

3x2x3 + x1x3t+ x2x4s)
−2−2ε.

(B.5)

Next, we would like to compute this remaining integral using the algorithm outlined at the

beginning of this section. The integral is, however, divergent in d = 4 dimensions, and so

are cannot naively expand in ε under the integration sign, but we first need to extract all

the singularities. We first describe our method to extract the singularities, and then we

illustrate the aforementioned algorithm on the resulting finite integrals.
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Extraction of the singularities. The integral contains overlapping singularities that

need to be factorized. After all singularities are factored, we can expand the singular terms

in the integrand in terms of plus-distributions, obtaining a set of finite integrals that can be

expanded in ε under the integration sign. In order to extract the singularities, we use the

method of non-linear mappings introduced in ref. [80], which we review in the following.

We start by considering the mapping,

xi →
xi∑
j xjAj

, (B.6)

where the Aj are constants. We then obtain for the integrand in eq. (B.5),

(−1)2−εΓ(2 + 2ε)

Γ(1 + ε)

δ (1−
∑
xi)A

1+ε
1 A2A3A4 (

∑
xiAi)

3ε xε1(
sA2A4x2x4 + tA1A3x1x3 +m2

3A2A3x2x3 +m2
4A3A4x3x4

)2+ε . (B.7)

It is possible to remove all the kinematical dependencies from the denominator by solving

the system of equations [95]

A2A4 = 1/s, A1A3 = 1/t, A2A3 = 1/m2
3, A3A4 = 1/m2

4. (B.8)

We obtain the solution for s > 0

A1 =

√
m2

3m
2
4

st2
, A2 =

√
m2

4

sm2
3

, A3 =

√
s

m2
3m

2
4

, A4 =

√
m2

3

sm2
4

, (B.9)

and we get
(−1)2−εΓ(2 + 2ε)

Γ(1 + ε)

δ (1−
∑
xi)A

1+ε
1 A2A3A4 (

∑
xiAi)

3ε xε1
(x2x4 + x3(x1 + x2 + x4))2+2ε . (B.10)

The δ distribution can for example be solved by change of variables

x3 = y1, x2 = (1−y1)y2, x4 = (1−y1)(1−y2)y3, x1 = (1−y1)(1−y2)(1−y3), (B.11)

where the Jacobian of the transformation is (1 − y1)2(1 − y2). Writing ȳi = 1 − yi we

arrive at
(−1)2−εΓ(2 + 2ε)

Γ(1 + ε)

A1+ε
1 A2A3A4 (

∑
xiAi)

3ε ȳ−ε1 ȳ1+ε
2 ȳε3

(ȳ1y2ȳ2y3 + y1)2+2ε , (B.12)

where for the moment we did not apply the change of variables in the sum (
∑
xiAi)

3ε for

better readability. We obtain overlapping singularities that can be factorized completely

by the following non-linear mapping

y1 7→
y1y2(1− y2)y3

y1y2(1− y2)y3 + (1− y1)
. (B.13)

The Jacobian is cancelled entirely and we end up with a integral free of overlapping singu-

larities. Putting everything together, we obtain,

B2a =− (−1)4−2ε c
2
Γ

ε

Γ(1− 2ε)Γ(2 + 2ε)

Γ(1− ε)2Γ(1 + ε)2

1∫
0

(
3∏

n=1

dyi

)
y−1−2ε

2 y−1−2ε
3

×A1+ε
1 A2A3A4 ȳ

−ε
1 ȳ−ε2 ȳε3 (ȳ1y2A2 + y1y2ȳ2y3A3 + ȳ1ȳ2y3A4 + ȳ1ȳ2ȳ3A1)3ε ,

(B.14)
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where the Ai’s are given in eq. (B.9). Substituting the functions for the A’s (B.9) and

trading the invariants t,m2
3,m

2
4 for the variables u, v, w we finally obtain the following

representation for B2a (writing the yi again as xi),

B2a =−
c2

Γ

ε

Γ(1− 2ε)Γ(2 + 2ε)

Γ(1− ε)2Γ(1 + ε)2
(−s)−2−2εu−εv−εw−1−4ε

×
1∫

0

(
3∏
i=1

dxi

)
b2a(x1, x2, x3)x−1−2ε

2 x−1−2ε
3 ,

(B.15)

where the function b2a(x1, x2, x3) is non-singular inside the integration region and given by

b2a(x1, x2, x3) = x̄−ε1 x̄−ε2 x̄ε3(w(ux̄1x̄2x3 + vx̄1x2 + x1x2x̄2x3) + uvx̄1x̄2x̄3)3ε. (B.16)

The two singularities are located in the variables x2 and x3 in a factorized form as in-

tended. We then perform the expansion in ε with the help of the plus-distribution, i.e. by

substituting

x−1+aiε
i =

δ(xi)

aiε
+

[
1

xi

]
+

+O(ε), (B.17)

and we obtain four finite integrals

I2a[1] =

1∫
0

dx1
b2a(x1, 0, 0)

4ε2
,

I2a[2] = −
1∫

0

dx1dx3
b2a(x1, 0, x3)− b2a(x1, 0, 0)

2εx1+2ε
3

, (B.18)

I2a[3] = −
1∫

0

dx1dx2
b2a(x1, x2, 0)− b2a(x1, 0, 0)

2εx1+2ε
2

,

I2a[4] =

1∫
0

dx1dx2dx3
b2a(x1, x2, x3)− b2a(x1, 0, x3)− b2a(x1, x2, 0) + b2a(x1, 0, 0)

x1+2ε
2 x1+2ε

3

.

The sum of the four integrals represents the integral in eq. (B.15) up to order O(ε). As

each of these integrals is finite, they can be computed using the algorithm outlined at the

beginning of this section. This will be illustrated in the rest of this section.

Doing the integrals. Let us do some of the integration explicitly to give a taste of

the integration using multiple polylogarithms. The integral I2a[1] is trivial and can be

integrated directly without having to expand the integrand in ε. Also the integration over

x1 in I2a[2] can be performed without any trouble, but let us not do this for the sake of

illustration. The coefficient of ε0 of I2a[2] is given by

I2a[2]
(
O(ε0)

)
= −1

2

1∫
0

dx3
3 log (−vx3 + wx3 + v) + log (1− x3)− 3 log (v)

x3
, (B.19)
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where the dependence on x1 dropped out and we are left with the integration over x3. The

integrand can be written in terms of multiple polylogarithms

I2a[2]
(
O(ε0)

)
= −1

2

1∫
0

dx3

3G
(

v
v−w ;x3

)
+G(1;x3)

x3
, (B.20)

and we can readily integrate over x3 using the definition of multiple polylogarithms,

eq. (4.3). We obtain

I2a[2]
(
O(ε0)

)
= −3

2
G

(
0,

v

v − w
; 1

)
− 1

2
G(0, 1; 1). (B.21)

All the other integrals can be done in this manner.
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[32] J.H. Kühn, F. Metzler, A.A. Penin and S. Uccirati, Next-to-Next-to-Leading Electroweak

Logarithms for W-Pair Production at LHC, JHEP 06 (2011) 143 [arXiv:1101.2563]

[INSPIRE].
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