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ABSTRACT
We present a general method to compute the non-linear matter power spectrum for dark
energy (DE) and modified gravity scenarios with per cent-level accuracy. By adopting the
halo model and non-linear perturbation theory, we predict the reaction of a lambda cold dark
matter (�CDM) matter power spectrum to the physics of an extended cosmological parameter
space. By comparing our predictions to N-body simulations we demonstrate that with no-free
parameters we can recover the non-linear matter power spectrum for a wide range of different
w0–wa DE models to better than 1 per cent accuracy out to k ≈ 1 h Mpc−1. We obtain a
similar performance for both DGP and f(R) gravity, with the non-linear matter power spectrum
predicted to better than 3 per cent accuracy over the same range of scales. When including
direct measurements of the halo mass function from the simulations, this accuracy improves
to 1 per cent. With a single suite of standard �CDM N-body simulations, our methodology
provides a direct route to constrain a wide range of non-standard extensions to the concordance
cosmology in the high signal-to-noise non-linear regime.

Key words: methods: analytical – large-scale structure of Universe – cosmology: theory.

1 IN T RO D U C T I O N

General relativity (GR) has been put under intense scrutiny in
the Solar system, where it has successfully passed all tests (Will
2014). Its application to cosmology, however, involves vastly
different length-scales and is comparable in orders of magnitude
to an extrapolation from an atomic nucleus to the scale of human
experience. It is therefore important to perform independent tests of
our theory of gravity in the cosmological regime. Further motivation
for a thorough inspection of cosmological gravity can be drawn
from the necessity of a large dark sector in the energy budget of our
Universe to explain large-scale observations with GR (Riess et al.
1998; Perlmutter et al. 1999; Hildebrandt et al. 2017; Abbott et al.
2018; Aghanim et al. 2018). In particular the late-time accelerated
expansion of the cosmos has traditionally been an important driver
for the development of alternative theories of gravity, a concept that
has, however, become strongly challenged with the confirmation of
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the luminal speed of gravity (Lombriser & Taylor 2016; Abbott et al.
2017b; Baker et al. 2017; Creminelli & Vernizzi 2017; Lombriser &
Lima 2017; Marı́a Ezquiaga & Zumalacárregui 2017; Sakstein &
Jain 2017; Battye, Pace & Trinh 2018; Creminelli et al. 2018; de
Rham & Melville 2018). Nevertheless, cosmic acceleration could
be the result of a dark energy (DE) field permeating the Universe
that may well be coupled to matter with an observable impact on
cosmological scales. Importantly, should that coupling be universal,
i.e. affecting baryons and dark matter equally, the corresponding
models must then rely on the employment of screening mechanisms
to comply with the stringent Solar system bounds (Vainshtein
1972; Khoury & Weltman 2004; Babichev, Deffayet & Ziour 2009;
Hinterbichler & Khoury 2010). Signatures of screening are naturally
to be expected in the non-linear cosmological small-scale structure,
where modified gravity transitions to GR, and for some models are
even exclusively confined to these scales (Wang, Hui & Khoury
2012; Heymans & Zhao 2018). The increasing wealth of high-
quality data at these scales (Laureijs et al. 2011; LSST Dark Energy
Science Collaboration 2012; Hildebrandt et al. 2017; Abbott et al.
2018) renders cosmological tests of gravity a very timely enterprize.
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At the same time, cosmological structure formation proves notori-
ously difficult to model to sufficient accuracy in this regime, where
high-signal-to-noise measurements have the potential to distinguish
a few per cent deviation from GR (Heymans & Zhao 2018).

For any given theory of gravity or DE model, our current best
predictions for the statistical properties of the resulting matter
distribution come from large-volume high-resolution N-body sim-
ulations (Oyaizu 2008; Schmidt 2009b; Zhao, Li & Koyama 2011;
Baldi 2012; Brax et al. 2012; Li et al. 2012; Barreira et al. 2013;
Puchwein, Baldi & Springel 2013; Wyman, Jennings & Lima 2013;
Li et al. 2013b; Llinares, Mota & Winther 2014; Winther et al. 2015).
Running these, however, can take up to thousands of node-hours
on dedicated cluster facilities, and although methods to partially
alleviate this drawback exist (see e.g. Barreira, Bose & Li 2015;
Mead et al. 2015a; Bose et al. 2017; Llinares 2017; Valogiannis &
Bean 2017; Winther et al. 2017) exploring vast swathes of the
theory space remains currently unfeasible. Alternatively, analytical
and semi-analytical methods can be used to swiftly predict specific
large-scale structure observables, such as the matter power spectrum
(Koyama, Taruya & Hiramatsu 2009; Schmidt et al. 2009; Schmidt,
Hu & Lima 2010; Li & Hu 2011; Fedeli, Dolag & Moscardini
2012; Brax & Valageas 2013; Lombriser, Koyama & Li 2014; Zhao
2014; Barreira et al. 2014a, b; Achitouv et al. 2016; Mead et al.
2016; Aviles & Cervantes-Cota 2017; Bose et al. 2018; Cusin,
Lewandowski & Vernizzi 2018; Hu, Liu & Cai 2018), with the
important caveat that they have limited accuracy in the non-linear
regime of structure formation, and often involve some level of fitting
to the same quantity measured in simulations. These approaches
are therefore inadequate for future applications to high-quality
data from Stage IV surveys (Laureijs et al. 2011; LSST Dark
Energy Science Collaboration 2012; Levi et al. 2013; Koopmans
et al. 2015), where per cent level accuracy over a wide range of
scales will be necessary to obtain tight and unbiased constraints on
departures from GR (Alonso et al. 2017; Casas et al. 2017; Reischke
et al. 2018; Spurio Mancini et al. 2018; Taylor, Bernardeau &
Kitching 2018b) and the nature of DE (Albrecht et al. 2006). Matter
power spectrum emulators can provide a solution to this problem
for particular modified gravity or DE models (Heitmann et al.
2014; Lawrence et al. 2017; Euclid Collaboration 2018; Winther
et al. 2019), but still rely on the availability of large quantities of
computational resources to determine the properties of the matter
power spectrum at the location of the emulator nodes. The absence
of a clear attractive alternative to the �CDM paradigm calls for
a more general framework, one easily adaptable to non-standard
cosmologies beyond the handful of well-studied cases.

Here we take an important step in this direction by extending
the method proposed in Mead (2017), where the halo model is
used to compute matter power spectrum ratios with respect to
a convenient baseline cosmology. Mead (2017) showed that by
determining these ratios, rather than the absolute value of the
matter power spectrum, the shortcomings of the halo model are
mitigated. The initial conditions of the baseline cosmology are
designed so that under GR + �CDM evolution the linear clustering
of matter at some given redshift exactly reproduces that of the target
cosmology of interest, whose evolution is instead governed by non-
standard laws of gravity and/or background expansion. Assuming
one can generate an accurate non-linear matter power spectrum for
the reference cosmology (e.g. with a suitable emulator), recovery
of the target power spectrum then hinges on the computation
of a ‘correction’ factor that incorporates the non-linear effects
of fifth forces, screening mechanisms, and deviations from the
cosmological constant. We use the halo model and non-linear

perturbation theory to obtain such corrections, and refer to this
quantity as the reaction.

The paper is organized as follows. In Section 2 we briefly describe
popular modified gravity and DE models used here as test beds for
our methodology. Section 3 reviews the halo model formalism and
introduces the matter power spectrum reactions. The cosmological
simulations used to validate our approach are described in Section 4,
and Section 5 presents the capability of the halo model reactions
to predict the non-linear matter power spectrum. We summarize
our conclusions in Section 6. We provide details of the spherical
collapse and perturbation theory calculations employed in this work
in Appendices A and B, respectively. Additional tests to gauge the
importance of the halo mass function and halo concentration in our
predictions are presented in Appendix C.

2 DA R K E N E R G Y A N D MO D I F I E D G R AV I T Y
T H E O RY

The most general four dimensional scalar–tensor theory with
second-order equations of motion is described by the action
(Horndeski 1974; Deffayet et al. 2011; Kobayashi, Yamaguchi &
Yokoyama 2011)

S =
∫

d4x
√−g

{
5∑

i=2

Li[φ, gμν] + Lm[ψ, gμν]

}
, (1)

where g is the determinant of the metric gμν minimally coupled to a
generic matter field ψ (Jordan frame), Lm is the matter Lagrangian,
φ is the scalar degree of freedom, and the terms entering the
Einstein–Hilbert Lagrangian are

L2 = K(φ,X),

L3 = −G3(φ,X)�φ,

L4 = G4(φ, X)R + G4X(φ,X)
{

(�φ)2 − ∇μ∇νφ∇μ∇νφ
}

,

L5 = G5(φ, X)Gμν∇μ∇νφ − 1

6
G5X(φ,X)

{
(∇φ)3

−3∇μ∇νφ∇μ∇νφ�φ + 2∇ν∇μφ∇α∇νφ∇μ∇αφ
}
. (2)

Here, K and Gi are arbitrary functions of φ and X ≡ −∇νφ∇νφ/2,
and the subscripts X and φ denote derivatives.

The nearly simultaneous detection of gravitational waves and
electromagnetic signals emitted from two colliding neutron stars
(Abbott et al. 2017a) imposes tight constraints on the present-day
speed of gravitational waves cT, i.e. |cT/c − 1| � 10−15, where c
is the speed of light (Abbott et al. 2017b). Restricting ourselves
to theories of gravity with non-evolving cT, and requiring this not
to be achieved by extreme fine tuning of the G4 and G5 functions
(Lombriser & Taylor 2016; Baker et al. 2017; Creminelli & Vernizzi
2017; Lombriser & Lima 2017; Marı́a Ezquiaga & Zumalacárregui
2017; Sakstein & Jain 2017; Battye et al. 2018; de Rham & Melville
2018), implies that the remaining Horndeski Lagrangian takes the
form (McManus, Lombriser & Peñarrubia 2016)

LH = K(φ,X) + G4(φ)R − G3(φ, X)�φ. (3)

In this paper we focus on well-studied models of modified gravity
and DE, each exploring the effects introduced by the individual
terms in equation (3). Quintessence and k-essence DE models
are described by a contribution of K only (Section 2.3). G4

introduces a coupling of this field to the metric that modifies
gravity. The class of models described by this term encompasses the
chameleon (Khoury & Weltman 2004), symmetron (Hinterbichler &
Khoury 2010), and k-mouflage (Babichev et al. 2009) screening
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mechanisms, and we will study a particular example of this action
with chameleon screening in Section 2.1 when considering a
realization in f(R) gravity. The G3 term appears, for instance, in the
four-dimensional effective scalar–tensor theory of DGP braneworld
gravity (Section 2.2) and gives rise to the Vainshtein screening
mechanism (Vainshtein 1972). Either G3 or non-canonical kinetic
contributions in K produce a non-luminal sound speed of the
scalar field fluctuations that can yield observable scale-dependent
effects beyond the sound horizon. The mass scale associated with
a scalar field potential in K can furthermore introduce a scale-
dependent growth of structure below the sound horizon. With cT =
1, a genuine self-acceleration of the cosmological background
that is directly attributed to modified gravity must arise from
G4 (Lombriser & Taylor 2016), which is however in tension with
observations (Lombriser & Lima 2017). A self-acceleration from K
or G3 that dispenses with the need of a cosmological constant is, in
contrast, still observationally feasible.

Throughout, we assume a flat Friedmann–Robertson–Walker
(FRW) background, and the perturbed metric in the Newtonian
gauge reads1

ds2 = gμνdxμdxν = −(1 + 2�)dt2 + a2(1 + 2	)dx2, (4)

where � and 	 denote the two gravitational potentials, and a is the
scale factor. The evolution of non-relativistic matter perturbations
is determined by �, whereas photons follow the null geodesics
defined by the lensing potential 	− = (� − 	)/2 (see e.g. Carroll
2004). For all models considered here 	− = �N, where �N is the
standard Newtonian potential.

2.1 f(R) gravity

In f(R) gravity the Einstein–Hilbert action is modified to contain an
additional non-linear function of the Ricci scalar R, that is

SEH =
∫

d4x
√−g

1

16πG
[R + f (R)] . (5)

The f(R) Lagrangian is a particular case of equation (3) with the
Horndeski functions (see e.g. de Felice, Kobayashi & Tsujikawa
2011)

K = − 1

16πG
[RfR − f ], (6)

G3 = 0, (7)

G4 = 1

16πG
(1 + fR), (8)

where we defined the scalaron field fR ≡ df/dR, and used φ =
(1 + fR)/

√
8πG. In the quasi-static regime,2 structure formation is

governed by the following coupled equations (e.g. Oyaizu 2008):

∇2� = 16πG

3
δρm − 1

6
δR(fR), (9)

∇2δfR = 1

3
[δR(fR) − 8πGδρm] , (10)

1Here and throughout we work in natural units, and set c = 1.
2See e.g. Noller et al. (2014), Bose, Hellwing & Li (2015), and Lagos
et al. (2018) for a detailed discussion on the validity of the quasi-static
approximation in modified gravity.

where δρm = ρm − ρ̄m, δR = R − R̄, and δfR = fR − f̄R are the
matter density, curvature, and scalaron perturbations with respect
to their background averaged values, respectively. Equations (9)
and (10) can be combined to give

∇� = ∇�N − 1

2
∇δfR, (11)

which explicitly shows that the scalar field fluctuations source an
additional fifth force.

Since GR accurately describes gravity in our Solar system, viable
modifications must also be compatible with local constraints. In
f(R) gravity this is achieved by means of the chameleon screening
mechanism (Khoury & Weltman 2004), which suppresses depar-
tures from standard gravity for large enough potential wells �N. In
practice, structures are screened if the thin shell condition,

|δfR| � 2

3
|�N|, (12)

is satisfied. Stable theories require fR < 0 (Hu & Sawicki 2007), thus
the chameleon screening activates throughout an isolated object if
|δfR| ≤ |f̄R| � |�N|. Assuming that the Milky Way is placed in
the cosmological background, and knowing that |�MW| ∼ 10−6,
this in turn imposes |f̄R0| < 10−6 for the present-day value of the
background scalaron field.

Hereafter, we adopt the following f(R) functional form (Hu &
Sawicki 2007)

f (R) = −2� − f̄R0
R̄2

0

R
, (13)

where � is an effective cosmological constant driving the back-
ground cosmic acceleration, and R̄0 corresponds to the background
Ricci scalar today. We will work with values |f̄R0| = 10−5 (F5)
and |f̄R0| = 10−6 (F6), for which cosmological structures are,
respectively, partially unscreened or largely screened throughout
the cosmic history. Note that deviations from the �CDM expansion
history are of order f̄R0 (Hu & Sawicki 2007). Hence, for the
f(R) models considered here the background evolution is in effect
equivalent to that of the concordance cosmology, with the Hubble
parameter given by

H 2 = 8πG

3
(ρ̄m + ρ̄�), (14)

where ρ̄� is the energy density of the cosmological constant. The
large-scale structure data currently available allows amplitudes
|f̄R0| � 10−5 (Lombriser 2014; Terukina et al. 2014; Cataneo et al.
2015; Alam, Ho & Silvestri 2016; Liu et al. 2016), thus placing the
F5 model on the edge of the region of parameter space still relevant
for cosmological applications3 if other effects degenerate with the
enhanced growth of structure are ignored. Accounting for massive
neutrinos (Baldi et al. 2014) and baryonic feedback (Puchwein
et al. 2013; Hammami et al. 2015; Arnold et al. 2019) will loosen
the existing constraints (see e.g. Hagstotz et al. 2019; Giocoli,
Baldi & Moscardini 2018). In addition, alternative functional forms
to equation (13) can lead to different upper bounds on |f̄R0| (see
e.g. Cataneo et al. 2015).

3See, however, the recent work by He et al. (2018) where it was showed that
deviations as small as |f̄R0| = 10−6 could already be in strong tension with
redshift space distortions data. At this time, the tightest constraints on f(R)
gravity come from the analysis of kinematic data for the gaseous and stellar
components in nearby galaxies, which only allows |f̄R0| � 10−8 (Desmond
et al. 2018).
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2.2 DGP

In the DGP braneworld model the matter fields live on a four-
dimensional brane embedded in a five-dimensional Minkowski
space (Dvali, Gabadadze & Porrati 2000). In this model the
dimensionality of the gravitational interaction is controlled by the
crossover scale parameter rc, such that on scales smaller than rc

DGP becomes a four-dimensional scalar–tensor theory described
by an effective Lagrangian with terms (Nicolis & Rattazzi 2004;
Park et al. 2010)

K ∼ r2
c X2, (15)

G3 ∼ r2
c X, (16)

G4 = 1

16πG
e−

√
16πG

3 ϕ, (17)

where the brane-bending mode ϕ represents the scalar field. Here-
after we will be working with the normal branch DGP model
(nDGP), which despite being a stable solution of the theory is also
incompatible with the observed late-time cosmic acceleration. To
obviate this problem the Lagrangian given by equations (15)–(17) is
extended to include a smooth, quintessence-type DE with a potential
conveniently designed to match the expansion history of a flat
�CDM cosmology (Schmidt 2009b).4 Therefore, the Friedmann
equation (14) applies here as well.

The scalar field ϕ couples to non-relativistic matter by sourcing
the dynamical potential �, which in turn produces a gravitational
force given by

∇� = ∇�N + 1

2
∇ϕ, (18)

where the second term on the right-hand side is the attractive
fifth force contribution. On length-scales λ � H−1, rc, and in the
quasi-static regime (Schmidt 2009a; Brito et al. 2014; Winther &
Ferreira 2015), the evolution of the brane-bending mode is described
by (Koyama & Silva 2007)

∇2ϕ + r2
c

3β

[
(∇2ϕ)2 − (∇i∇j ϕ)(∇ i∇j ϕ)

] = 8πG

3β
δρm, (19)

with the function β(a) defined as

β(a) ≡ 1 + 2Hrc

[
1 + Ḣ

3H 2

]
, (20)

where overdots denote derivatives with respect to cosmic time. The
derivative self-interactions in equation (19) suppress the field in
high-density regions, where the matter density field is non-linear,
effectively restoring GR. This is the so-called Vainshtein screening.
To explicitly illustrate how this mechanism works we shall consider
a spherically symmetric overdensity with mass

δM(r) = 4π

∫ r

0
dr ′r ′2δρm(r ′). (21)

Then, for this system the gradient of ϕ reads (Koyama & Silva 2007;
Schmidt et al. 2010)

dϕ

dr
= 4

3β

(
r

rV

)3
[√

1 +
( rV

r

)3
− 1

]
GδM(r)

r2
, (22)

4This is an assumption made to ease comparisons to �CDM simulations,
and is not a strict observational requirement (cf. Lombriser et al. 2009).

where we defined the Vainshtein radius

rV(r) ≡
[

16r2
c GδM(r)

9β2

]1/3

. (23)

The scale introduced in equation (23) sets the distance from the
centre of the spherical mass distribution above which fifth force
effects are observable. For instance, for a top-hat overdensity of
radius RTH one has the two limiting cases⎧⎪⎪⎨
⎪⎪⎩

dϕ

dr
= 2

3β

d�N

dr
r � rV > RTH,

dϕ

dr
≈ 0 RTH < r � rV.

In the following we will consider the medium and weak nDGP
variants used in Barreira, Sánchez & Schmidt (2016), with crossover
scales rcH0 = 0.5 (nDGPm) and rcH0 = 2 (nDGPw) in units of
the present-day Hubble horizon H−1

0 . Note that, at present, of
these two cases nDGPw is the only one compatible with growth
rate data (Barreira et al. 2016). Hence, similarly to F5, the use of
nDGPm will serve as a test bed for our methodology in conditions
of relatively strong departures from GR.

2.3 Dark energy

The simplest models described by the Lagrangian in equation (3)
are those in which the scalar field is minimally coupled to gravity,
that is

K = K(φ,X), (24)

G3 = 0, (25)

G4 = 1

16πG
. (26)

In this scenario, the field φ is associated with a fluid called DE
with energy density and pressure (see e.g. Amendola & Tsujikawa
2010)

ρDE = 2XKX − K, (27)

PDE = K, (28)

respectively. Its background evolution is controlled by the equation
of state parameter w ≡ P̄DE/ρ̄DE, and the solution to the continuity
equation

dρ̄DE

dt
+ 3Hρ̄DE(1 + w) = 0 (29)

is given by

ρ̄DE(a) = ρ̄DE,0 exp

[
3
∫ 1

a

da′

a′ (1 + w)

]
, (30)

where ρ̄DE,0 is the present-day DE density.
Popular models of DE, such as quintessence (Ratra & Peebles

1988; Wetterich 1988), k-essence (Armendariz-Picon, Mukhanov &
Steinhardt 2000), and clustering quintessence (Creminelli et al.
2009), belong to this subclass of theories. In this paper we restrict
our discussion to a quintessence-like dark fluid with rest-frame
sound speed c2

s = 1 and equation of state (Chevallier & Polarski
2001; Linder 2003)

w(a) = w0 + (1 − a)wa, (31)
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Table 1. Equation-of-state parameters defining the DE models used in this
work.

Model w0 wa

DE1 − 0.7 0
DE2 − 1.3 0
DE3 − 1 0.5
DE4 − 1 − 0.5
DE5 − 0.7 − 1.5
DE6 − 1.3 0.5

where {w0, wa} are free phenomenological parameters. The rela-
tivistic sound speed washes out the DE perturbations on sub-horizon
scales, resulting in modifications to the growth of structure tied
solely to the different expansion history compared to �CDM. Our
methodology can, in principle, also be applied to forms of DE
clustering on small scales.

Table 1 summarizes the DE models selected for this work, which
have been chosen to roughly enclose the 2σ region of parameter
space allowed by the Planck 2015 temperature and polarization
data in combination with baryon acoustic oscillations, supernova
Ia, and H0 measurements (Planck Collaboration XIV 2016).

3 MATTER POWER SPECTRU M R EACTION

In Sections 3.1 and 3.2 we briefly review the spherical collapse
model and the halo model formalism, which we use to predict the
non-linear matter power spectrum for the range of cosmological
models listed in Section 2. The halo model assumes that all matter
in the Universe is localized in virialized structures, called haloes.
In this approach, the spatial distribution of these objects and their
density profiles determine the statistics of the matter density field on
all scales. It is typically assumed that each mass element belongs to
one halo only, i.e. haloes are spatially exclusive. Below we introduce
the ingredients entering the halo model prescription, and refer the
interested reader to the Cooray & Sheth (2002) review on the topic
for more details. In Section 3.3 we then detail our new approach to
reach per cent level accuracy on these power spectra over a range
of scales where the halo model alone is known to fail.

3.1 Spherical collapse model

The Press–Schechter formalism (Press & Schechter 1974) approxi-
mates halo formation following the evolution of a spherical top-hat
overdensity of radius RTH and mass M = 4πR3

THρ̄m(1 + δ)/3 in
an otherwise homogenous background. Mass conservation and the
Euler equations imply (see e.g. Schmidt et al. 2009)

R̈TH

RTH

= −4πG

3
[ρ̄m + (1 + 3w)ρ̄eff ] − 1

3
∇2�. (32)

Here, ρ̄eff and w are, respectively, the background energy density
and equation of state of an effective DE component causing the
late-time cosmic acceleration. Hence, in f(R) gravity and nDGP,
ρ̄eff = ρ̄�, and w = −1. For the smooth DE models in Section 2.3
we have ρ̄eff = ρ̄DE and w given by equation (31). Modifications of
gravity enter through the potential term in equation (32), which we
parametrize as

∇2� = 4πG(1 + F )ρ̄mδ, (33)

whereF can depend on time, mass, and environment. Equation (33)
reduces to the standard Poisson equation forF = 0, and expressions
for F in f(R) and nDGP cosmologies are given in Appendix A.

The mass fluctuation δi at the initial time ai within RTH evolves
as

δ =
(

Ri

RTH

)3

(1 + δi) − 1, (34)

where Ri is the initial top-hat radius. Using equations (32)–(34) we
then find δi such that collapse (i.e. RTH = 0) occurs at a chosen time
a = acoll. The Press–Schechter approach assumes that all regions
in the initial density field with overdensities larger than δi have
collapsed into haloes by acoll. Equivalently, one can compare the
linearly evolved initial fluctuations to the linearly extrapolated col-
lapse overdensity δc(acoll) ≡ D�(acoll)δi/ai , with (see e.g. Dodelson
2003)

D�(a) = 5�m

2

H

H0

∫ a

0

da′

(a′H/H0)3
(35)

being the linear growth factor in �CDM,5 and �m ≡
8πGρ̄m,0/3H 2

0 .
In the idealized top-hat scenario, the spherical mass collapses to

a point of infinite density. However, processes in the real Universe
act so that, after turnaround, the overdensity eventually reaches
virial equilibrium (see e.g. Mo, van den Bosch & White 2010).
Following Schmidt et al. (2010) (for an earlier work see also
Maor & Lahav 2005), we do not assume energy conservation during
collapse, and compute the time of virialization, avir, from the virial
theorem alone (see Appendix A for details). This approach differs
from previous works where changes induced by DE (Mead 2017)
or modified gravity (Lombriser et al. 2014) were neglected. The
virial comoving radius Rvir of the formed halo can be derived from
its virial mass

Mvir = 4π

3
R3

virρ̄m,0�vir, (36)

knowing that the virial overdensity is given by

�vir = [1 + δ(avir)]

(
acoll

avir

)3

, (37)

with the mass fluctuation δ obtained from equation (34).

3.2 Halo model

The simplest statistics describing the clustering properties of the
matter density field ρm(x) is the 2-point correlation function or, its
Fourier transform, the power spectrum P(k) defined as

〈δ̃(k)δ̃(k′)〉 ≡ (2π )3δD(k + k′)P (k), (38)

where δD denotes the Dirac delta function, and δ̃(k) represents
the Fourier transform of the matter density fluctuations relative
to the background mean density, δ(x) = ρm(x)/ρ̄m − 1. Note that
equation (38) assumes statistical homogeneity and isotropy.

In the halo model the matter power spectrum results from the
contribution of correlations between haloes (P2h) and those within
haloes (P1h), and can be written as6

P (k) = P2h(k) + P1h(k). (39)

5For cosmologies with a scale-independent linear growth, such as nDGP
and wCDM, using the �CDM growth is simply a matter of convenience. In
f(R) gravity this approach has the advantage of preserving the statistics of
the initial mass fluctuations. For more details see Cataneo et al. (2016).
6In this instance, and whenever the context is clear, we omit the time-
dependence from our notation. However, we reintroduce it any time this can
become a source of ambiguity.
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2126 M. Cataneo et al.

To properly account for these correlations we need to know the
abundance of such haloes. For any redshift z, the halo mass function
provides the comoving number density of haloes of mass Mvir, and
it is defined as

nvir ≡ dn

d ln Mvir
= ρ̄m,0

Mvir
νf (ν)

d ln ν

d ln Mvir
, (40)

where the peak height ν ≡ δc/σ , and we adopt the Sheth–Tormen
(ST) multiplicity function (Sheth & Tormen 1999, 2002)

νf (ν) = A

√
2

π
qν2[1 + (qν2)−p] exp[−qν2/2]. (41)

Here, the normalization constant A is found imposing that all mass
in the Universe is confined into haloes, i.e.

∫
dνf(ν) = 1, and the

remaining parameters take the �CDM standard values q = 0.75 and
p = 0.3, unless stated otherwise. The variance of the linear density
field smoothed with a top-hat filter of comoving radius R enclosing
a mass M = 4πR3ρ̄m,0/3 is given by

σ 2(R, z) =
∫

d3k

(2π )3
|W̃ (kR)|2PL(k, z), (42)

where W̃ is the Fourier transform of the top-hat filter, and PL(k, z)
is the �CDM linear power spectrum. At this point it is worth
emphasizing that in some GR extensions, besides its usual depen-
dence on background cosmology and redshift, the spherical collapse
threshold δc can also vary with halo mass and environment (Li &
Efstathiou 2012; Li & Lam 2012; Lam & Li 2012; Lombriser et al.
2013, 2014). When appropriate we include both these dependencies
in our modelling by following the approach of Cataneo et al. (2016),
where the initial value of the environmental overdensity is derived
from the peak of the environment probability distribution.

Haloes are biased tracers of the underlying dark matter density
field, and at the linear level the halo and matter density fields
are connected by the relation δh = bLδ. Adopting the ST mass
function, the peak-background split formalism predicts the linear
halo bias7 (Sheth & Tormen 1999)

bL(Mvir) = 1 + qν2 − 1

δc
+ 2p

δc[1 + (qν2)p]
. (43)

The last piece of information required by the halo model is a
description of the matter distribution within haloes. We adopt
Navarro–Frenk–White (NFW) halo profiles (Navarro et al. 1996)

ρh(r) = ρs

r/rs(1 + r/rs)2
, (44)

where the scale radius rs is parametrized through the virial con-
centration cvir ≡ Rvir/rs, and the normalization ρs follows from the
virial mass as

ρs = Mvir

4πr3
s

[
ln(1 + cvir) − cvir

1 + cvir

]−1

. (45)

Inside the virial radius, and for all cosmological models studied
here, the NFW profiles are a good representation of the averaged
halo profiles measured in simulations (Schmidt et al. 2009; Schmidt
2009b; Zhao et al. 2011; Lombriser et al. 2012; Kwan et al. 2013;
Shi et al. 2015; Achitouv et al. 2016).

7Valogiannis & Bean (2019) recently found that in f(R) gravity the linear
halo bias contains an additional term accounting for the environmental de-
pendence, which we omit in equation (43). Given the relative unimportance
of the bias for our halo model reactions (see Sections 3.3 and 5), this choice
is, in effect, inconsequential for the accuracy of our predictions.

In �CDM, f(R) gravity and nDGP we model the c–M relation as
the power law

cvir(Mvir, z) = c0

1 + z

(
Mvir

M∗

)−α

, (46)

fixing c0 = 9 and α = 0.13 (Bullock et al. 2001), and M∗ is defined
by ν(M∗) = 1. In particular, for f(R) gravity M∗ depends itself on the
halo mass (Lombriser et al. 2014), which means the c–M relation
for these models is no longer described by a simple power law (Shi
et al. 2015). For the smooth DE models in Section 2.3 we correct
for the different expansion histories following Dolag et al. (2004),
that is

cvir → c0

1 + z

(
Mvir

M∗

)−α
gDE(z → ∞)

g�(z → ∞)
, (47)

where gX is the linear growth factor normalized to z = 0 (see Ap-
pendix B). This correction reflects that haloes collapse at different
times in cosmological models with different growth histories. In
cosmological models where haloes collapse earlier these haloes
will be more concentrated compared to the same mass haloes if
they form later. In Appendix C we demonstrate that our results are
insensitive to the correct shape of the c–M relation on scales k �
0.5 hMpc−1.

We can now predict the non-linear matter power spectrum, and
rewrite equation (39) as

P (k) = I 2(k)PL(k) + P1h(k), (48)

where, more explicitly,

P1h(k) =
∫

d ln Mvirnvir

(
Mvir

ρ̄m,0

)2

|u(k, Mvir)|2, (49)

I (k) =
∫

d ln Mvirnvir
Mvir

ρ̄m,0
u(k, Mvir)bL(Mvir). (50)

In the equations above, u(k, M) corresponds to the Fourier transform
of an NFW profile truncated at Rvir, normalized such that u(k →
0, M) → 1. Note that from equations (41) and (43) it follows that
limk → 0I(k) = 1.

3.3 Halo model reactions

The apparent simplicity and versatility of the halo model has con-
tributed to its widespread use as a method to predict the non-linear
matter power spectrum in diverse scenarios. Examples include the
�CDM cosmology (Peacock & Smith 2000; Seljak 2000; Giocoli
et al. 2010; Valageas & Nishimichi 2011; Valageas, Nishimichi &
Taruya 2013; Mohammed & Seljak 2014; Seljak & Vlah 2015; van
Daalen & Schaye 2015; Mead et al. 2015b; Schmidt 2016), DE and
modified gravity models (Schmidt et al. 2009, 2010; Li & Hu 2011;
Fedeli et al. 2012; Brax & Valageas 2013; Lombriser et al. 2014;
Barreira et al. 2014a, b; Achitouv et al. 2016; Mead et al. 2016; Hu
et al. 2018), massive neutrinos (Abazajian et al. 2005; Massara,
Villaescusa-Navarro & Viel 2014; Mead et al. 2016), baryonic
physics (Fedeli 2014; Fedeli et al. 2014; Mohammed & Seljak
2014; Mead et al. 2015b), alternatives to cold dark matter (Dunstan
et al. 2011; Schneider et al. 2012; Marsh 2016), and primordial
non-Gaussianity (Smith, Desjacques & Marian 2011). Its imperfect
underlying assumptions are however responsible for inaccuracies
that limit its applicability to future high-quality data (see e.g. fig. 1
in Massara et al. 2014), where per cent level accuracy is required
in order to obtain unbiased cosmological constraints (Huterer &
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Reaction to dark energy and modified gravity 2127

Takada 2005; Eifler 2011; Hearin, Zentner & Ma 2012; Taylor,
Kitching & McEwen 2018a).

To mitigate these downsides one can add complexity to the model
at the expense of introducing new free parameters (see e.g. Seljak &
Vlah 2015), fitting the existing ones to the matter power spectrum
measured in simulations (see e.g. Mead et al. 2015b), or sensibly
increasing the computational costs by going beyond linear order in
perturbation theory (see e.g. Valageas & Nishimichi 2011). Here,
instead, we follow and extend the approach presented in Mead
(2017), which we shall refer to as halo model reactions.8

Our goal is to model the non-linear power spectrum of fairly
general extensions to the standard cosmology, a flat �CDM Uni-
verse with massless neutrinos. These cosmologies equipped with
beyond-�CDM physics are what we will call real cosmologies.
We use the halo model to determine the change (i.e. the reaction)
that this new physics induces in a reference �CDM cosmology,
for which simulations are considerably cheaper. Key to the success
of our method is how this reference cosmology is defined, which
is what we will call the pseudo cosmology. Essentially, this is
a �CDM cosmology evolved with standard gravity up to a final
redshift zf, with the additional property that its linear clustering of
matter exactly matches that of the target real cosmology of interest
at zf. In other words, the cold dark matter and the cosmological
constant determine the expansion history and growth of structure of
the pseudo cosmology, but the initial conditions (see Section 4) are
adjusted so that

P
pseudo

L (k, zf ) = P real
L (k, zf ). (51)

The reaction function is then defined as the ratio of the non-linear
matter power spectrum in the real cosmology to that in the pseudo
cosmology,

R(k, z) ≡ P real(k, z)

P pseudo(k, z)
, (52)

and our corresponding halo model prediction takes the heuristic
form9

R(k, z) = [(1 − E)e−k/k� + E]P real
L (k, z) + P real

1h (k, z)

P real
L (k, z) + P

pseudo
1h (k, z)

. (53)

Here, E ∼ 1 and k� > 0 are parameters introduced to improve the
accuracy of the halo model reactions in modified gravity theories.
These are not free parameters, and we shall derive them using the
halo model and standard perturbation theory (SPT) below. However,
let us first examine the general behaviour of equation (53):

(i) On large linear scales R → 1 by definition;10

8Note that in Mead (2017) this is referred to as response. We use the term
reaction to distinguish it from the quantities studied in Neyrinck & Yang
(2013), Nishimichi, Bernardeau & Taruya (2016), or Barreira & Schmidt
(2017). Our and these other definitions are all conceptually analogous, in
the sense that they describe how the non-linear power spectrum responds
to changes in some feature, which in our case is physics beyond the
vanilla �CDM cosmology, e.g. fifth forces, evolving DE, massive neutrinos,
baryons etc.
9Note that we neglect the integral factor equation (50) in our two-halo terms.
We checked that setting I2(k) = 1 for all scales has no measurable impact
on our halo model reactions.
10This is not strictly true in the traditional halo model implementation we
adopt in this work. In fact, the one-halo terms have a constant tail in the
low-k limit (see equation 54) that dominates the two-halo contributions on
very large scales. In a consistent formulation of the halo model, however,
where mass and momentum conservation are enforced, this tail disappears

(ii) On small non-linear scales R ≈ P real
1h /P

pseudo
1h ;

(iii) Quasi-linear scales 0.01 � k Mpc h−1 � 0.1 are well de-
scribed by perturbation theory, while intermediate scales 0.1 �
k Mpc h−1 � 1 are primarily controlled by the halo mass function
ratio nreal

vir /npseudo
vir .

Fixing the real and pseudo linear power spectra to be identical
(as in equation 51) forces the corresponding mass functions to be
somewhat similar. Therefore, owing to (iii), reaction functions can
overcome the typical inaccuracies that plague the halo model in the
transition region between large and small scales.

To assign a value to the boost/suppression term E , it is important
to realize that we would like to preserve the smoothness in the
transition from the linear to the non-linear regime. In turn, this is
tied to the shape of the one-halo terms on scales 0.5 � k Mpc h−1 �
1, where the two-halo contribution becomes subdominant. In this
regime the one-halo terms are well approximated by their large-
scale limit P1h(k → 0), thus suggesting that

E(z) = P real
1h (k → 0, z)

P
pseudo
1h (k → 0, z)

(54)

is a good choice, one that only depends on the ratio nreal
vir /npseudo

vir .
In equation (53), the transition rate from linear to non-linear

scales is governed by the parameter k�:11 for k� → 0 the halo model
reaction collapses to the ratio of one-halo terms; in the opposite
case, k� → ∞, the parameter E loses any role, and the reaction
reduces to its definition in Mead (2017). We determine this scale
using SPT (Koyama et al. 2009; Brax & Valageas 2013; Bose &
Koyama 2016) by solving the equation

R(k0, z|k�) = P real
SPT(k0, z) + P real

1h (k0, z)

P
pseudo
SPT (k0, z) + P

pseudo
1h (k0, z)

, (55)

where

PSPT(k, z) = PL(k, z) + P22(k, z) + P13(k, z) + P �
13(k, z), (56)

and we set k0 = 0.06 h Mpc−1, which we found to be the largest
wavenumber that can both ensure reliable perturbative predictions
and keep the inaccuracies induced by the exponential sensitivity
to k� under control (see Appendix B and Carlson, White &
Padmanabhan 2009). Expressions for the second order corrections
P22, P13, and P �

13 to the linear power spectrum are given in
Appendix B. Note that alternative perturbation schemes can also be
used in equation (55), such as the Lagrangian perturbation theory
for modified gravity recently developed in Aviles & Cervantes-Cota
(2017).

The role of the two-halo correction factor in equation (53)
becomes clear in the limiting case k� → ∞, where it goes to
unity. Mead (2017) showed that this form of the reactions matches
smooth DE simulations at per cent level or better on scales k �
1 h Mpc−1for z = 0 (see also Section 5 below). On quasi-linear
scales this remarkable agreement can be understood in terms of
SPT. Schematically, the non-linear matter power spectrum is a non-
trivial function of the linear power spectrum obtained through some

leaving only the theoretically motivated two-halo term (Schmidt 2016). For
our purposes we can simply ignore this inconsistency, and restrict the use of
the reaction function to scales k > 0.01 h Mpc−1.
11As we shall see below, k� is derived from perturbation theory and is
largely independent of the one-halo contribution. However, its specific value
should be interpreted with caution, in that equally good alternatives to the
exponential function in equation (53) can provide different solutions to
equation (55).
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Table 2. Main technical details of the simulations employed in this work. The Nyquist frequency kNy = πNp/Lbox, ε is the force resolution, and mp the particle
mass. The standard cosmological parameters for the real f(R) and nDGP simulations, as well as for their standard �CDM counterparts, are ωb ≡ �bh2 =
0.02225, ωc ≡ �ch2 = 0.1198, H0 = 100 h = 68 km s−1 Mpc−1, As = 2.085 × 10−9, and ns = 0.9645. For the evolving DE models we have instead ωb =
0.0245, ωc = 0.1225, H0 = 70 km s−1 Mpc−1, σ 8 = 0.8, and ns = 0.96.

Model Lbox N3
p kNy ε mp Realizations Code

f(R) 512 Mpc h−1 10243 6.3 h Mpc−1 15.6 kpc h−1 1.1 × 1010 M�h−1 1 ECOSMOG

nDGP 512 Mpc h−1 10243 6.3 h Mpc−1 15.6 kpc h−1 1.1 × 1010 M�h−1 1 ECOSMOG

DE 200 Mpc h−1 5123 8 h Mpc−1 7.8 kpc h−1 5 × 109 M�h−1 3 GADGET-2

operatorK, i.e. P (k) = K[PL(k)] (Bernardeau et al. 2002). Provided
that gravitational forces remain unchanged, then equation (51)
enforces Preal ≈ Ppseudo on linear and quasi-linear scales. This is
no longer true for modifications of gravity, since the structure of the
KMG operator is altered by different mode-couplings and screening
mechanisms. We correct for this fact by including the two-halo pre-
factor in equation (53), so that finite k� roughly encapsulates the
extent of the mismatch between KMG and KGR. For comparison,
in F5 at z = 0 we have k� = 0.3 h Mpc−1, whereas in nDGPm it
becomes k� = 0.95 h Mpc−1, which reflects the different screening
efficiency on large scales between the chameleon and Vainshtein
mechanisms.

Although our choice of k0 is commonly regarded as well
within the quasi-linear regime, screening mechanisms in modified
gravity induce non-linearities on large scales that can be more
important than in GR. For this, the determination of k� can be
complicated by inaccuracies specific to the perturbation theory
employed, and to reduce their impact on the halo model reactions
we take advantage of the following two facts: (i) on large scales
we expect P real

NoScr ≈ P pseudo, where P real
NoScr denotes the non-linear

matter power spectrum of the real cosmology assuming there is no
screening mechanism; (ii) the kernel operators KScr

MG and KNoScr
MG for

the screened and unscreened real cosmology, respectively, have a
similar structure (see Appendix B). Therefore, at least in principle,
the ratio P real

Scr,SPT/P real
NoScr,SPT could give a better description of the

reaction on large scales than the obvious candidate P real
Scr,SPT/P

pseudo
SPT .

Hereafter we will use P real
NoScr,SPT instead of P

pseudo
SPT in equation (55),

which in spite of being a sub-optimal strategy in some cases
(see right-hand panel of Fig. B1) produces the most consistent
behaviour across the cosmological models we have tested, as shown
in Section 5.

In summary, halo model reactions provide a fast (we only need
one-loop SPT for a single wavenumber) and general framework to
map accurate non-linear matter power spectra in �CDM to other
non-standard cosmologies. We apply this method to f(R) gravity,
nDGP, and evolving DE, and test its performance in Section 5
against the cosmological simulations described in the next section.

4 SI M U L AT I O N S

The simulations of f(R) gravity and DGP models used in this work
were run using ECOSMOG (Li et al. 2012; Li, Zhao & Koyama 2013a;
Li et al. 2013b), which has been developed to simulate the structure
formation in various subclasses of models within the Horndeski
family of theories. ECOSMOG is an extension of the simulation code
RAMSES (Teyssier 2002), which is a particle-mesh code employing
adaptive mesh refinement to achieve high force resolution. The
simulations are dark matter only and run in boxes with comoving
size 512 h−1Mpc using 10243 simulation particles. Other basic
information can be found in Table 2. The initial conditions of the
simulations are generated using 2LPTIC (Crocce, Pueblas & Scocci-

marro 2006), which calculates the particle initial displacements and
peculiar velocities up to second order in Lagrangian perturbations,
allowing us to start from a relative low initial redshift zini = 49.
To isolate the effect of non-linearities we use identical phases for
the initial density field in all cases. The linear power spectra used
to generate the initial conditions are computed using CAMB (Lewis,
Challinor & Lasenby 2000), with �m = 0.3072, �� = 0.6928,
h = 0.68, �b = 0.0481 for all simulations. Importantly, following
equation (51) the normalization – and shape in f(R) gravity – of
the initial linear power spectra are different in the real and pseudo
simulations. Since at early times deviations from GR are negligible,
simulations in �CDM and modified gravity share the same initial
conditions set by the �CDM power spectrum,

P real
L (k, zini) =

[
D�(zini)

D�(z = 0)

]2

P �
L (k, z = 0), (57)

with σ 8(z = 0) = 0.8205. The pseudo runs (to which we will apply
the halo model reactions) have different initial conditions, generated
using modified gravity linear power spectra at the final redshift, zf,
and then rescaled with the �CDM linear growth to the starting
redshift as

P
pseudo

L (k, zini) =
[

D�(zini)

D�(zf )

]2

P MG
L (k, zf ), (58)

where in this work zf = 0 or 1. By evolving the initial real and
pseudo power spectra, equations (57) and (58), with the modified
and standard laws of gravity, respectively, equation (51) will be
automatically satisfied at zf. We extract the non-linear matter
power spectrum from our particle snapshots using the public code
POWMES (Colombi et al. 2009).

Simulations of DE models were run using a modified version of
GADGET-2 that allows for the {w0, wa} parametrization under the
assumption that the DE is homogeneous. Initial conditions were
generated at zini = 199 using N-GENIC (Springel 2015), a code
that calculates initial particle displacements and peculiar velocities
based on the Zeldovich approximation. Our simulations take place
in 200 Mpc h−1 boxes and use 5123 particles. Note that since
we are concerned only with ratios of power spectra the overall
resolution requirements on the simulations are less stringent than if
we were interested in the absolute power spectra. We checked that
our simulated reactions were insensitive to the realization, box size,
particle number, and softening up to the wavenumbers we show.

Differently from the modified gravity runs, we fix σ 8 = 0.8 for
all the evolving DE models. Then, for the real cosmologies the
amplitudes of the initial density field are determined by

P real
L (k, zini) =

[
DDE(zini)

DDE(z = 0)

]2

P DE
L (k, z = 0), (59)

where DDE(z) is the linear growth of a specific DE model, while
for the pseudo counterparts one simply replaces P MG

L with P DE
L in

equation (58).
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Reaction to dark energy and modified gravity 2129

Figure 1. Matter power spectrum reactions in f(R) gravity for |f̄R0| = 10−5. In each panel the data points represent the reactions measured from simulations;
lines denote the corresponding halo model predictions identified by the halo mass function used for the one-halo contributions in f(R) gravity, that is either
Lombriser et al. (2013) (dashed) or Cataneo et al. (2016) fits (dotted). Lower panels present the fractional deviation of the halo model relative to the simulations,
with grey bands marking the 1 per cent and 2 per cent uncertainty regions. Left: reaction at z = 0 with both halo mass functions providing predictions within
1 per cent from the simulations for k � 1 h Mpc−1, as shown in the lower panel. Right: z = 1 reaction. The lower panel shows that thanks to the improved
semi-analytical prescription for the halo abundances in Cataneo et al. (2016) the agreement between halo model and simulations reaches per cent-level on
scales k � 1 h Mpc−1.

5 R ESULTS

Here we test our halo model reactions (see Section 3.3) against the
same quantities constructed from the real and pseudo cosmological
simulations described in Section 4. To help get a better sense of
the performance of our method, for each real cosmology C we
also compute the standard ratios P real

C (k)/P�CDM(k), where our
theoretical prediction for the real non-linear power spectrum is
obtained as

P real
C (k) = R(k) × P

pseudo
C (k), (60)

where R(k) is given by equation (53). To test our modified gravity
predictions we calculate P

pseudo
C (k) from HMCODE (Mead et al.

2015b, 2016) or using the measurement from the simulations
directly. For evolving DE, instead, we use the pseudo non-linear
power spectrum given by the Coyote Universe emulator (Heitmann
et al. 2014), and in so doing we illustrate how one could predict
the real power spectrum for cosmologies beyond the concordance
model with the aid of a carefully designed �CDM-like emulator
(Giblin et al. 2019).

5.1 f(R) gravity

Fig. 1 shows the matter power spectrum reactions calculated using
equation (53) for the F5 cosmology at z = 0 (left-hand panel)
and z = 1 (right-hand panel) in comparison to the measured
reactions in the N-body simulations. For the virial halo mass
function entering P1h (see equation 49) we first adopt the approach
developed in Lombriser et al. (2013), which incorporates both
self- and environmental-screening in the spherical collapse (see
Appendix A). At z = 0 the halo concentrations, virial radii, and
mass functions are good enough to give per cent level predictions
on scales k � 1 h Mpc−1. A deviation of a few per cent is however
visible at z = 1 starting on scales as large as k ≈ 0.2 h Mpc−1. In

Appendix C we show that changes in the halo profiles only affect
scales k � 0.5 h Mpc−1, suggesting that the observed inaccuracies
could be caused by a mismatch between the predicted virial mass
function ratio nreal

vir /npseudo
vir and the same quantity measured in

simulations. Indeed, Cataneo et al. (2016) found that, for halo
masses defined by spherical regions with an average matter density
300 times the mean matter density of the Universe, the halo mass
function of Lombriser et al. (2013) can deviate up to 10 per cent
from the simulations.

Given the complexity of measuring the virial halo mass function
in f(R) simulations,12 we investigate changes in the reactions
induced by a more accurate description of the halo abundances
with the fits provided in Cataneo et al. (2016). There, however,
the calibration of the n

f (R)
� /n�CDM

� ratios was performed for � =
300, whereas for our purposes we need � = �vir. We go from
one mass definition to the other with the scaling relations outlined
in Hu & Kravtsov (2003) (for a first application to f(R) gravity
see Schmidt et al. 2009). Inevitably, this transformation suffers
from inaccuracies in cvir and �vir, which we attempt to compensate
for by adjusting the M300(Mvir) relation so that the new rescaled
mass function provides a present-day halo model reaction that is
at least as good as the reaction obtained when using the Lombriser
et al. (2013) virial mass function (dotted line in the left-hand panel
of Fig. 1).13 We then take the ratio of the Cataneo et al. (2016)

12Due to the nature of the chameleon screening, in f(R) gravity the virial
overdensity depends on both the mass of the halo and the gravitational
potential in its environment. Things are much simpler in DGP, where by
virtue of the Vainshtein screening both dependencies disappear.
13In practice, we start with the Hu & Kravtsov (2003) relation
M300 = Q(Mvir)Mvir, and make the replacement Q(Mvir) → Q′(Mvir) =
min[ãQf (R)(b̃Mvir),QGR(Mvir)], where ã and b̃ are O(1) free parameters
fine-tuned to reach the required accuracy in the halo model reaction at
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2130 M. Cataneo et al.

Figure 2. Same as Fig. 1 with the amplitude of the background scalaron field now fixed to |f̄R0| = 10−6. For this cosmology both halo mass functions perform
very well regardless of redshift, which can be explained by their similarity as shown in Cataneo et al. (2016).

rescaled mass function to that of Lombriser et al. (2013), and treat
this quantity as a correction factor for the latter. To find the required
adjustment at high redshifts we shift the z = 0 correction by an
amount �log10Mvir inferred from the redshift evolution of the ratio
of the two halo mass functions over the range z ∈ [0, 0.5] (see central
panel of fig. 4 in Cataneo et al. 2016). A simple extrapolation to
z = 1 gives �log10Mvir = 1. Although far from being a rigorous
transformation, the resulting halo model reaction now agrees to
better than 1 per cent down to k ≈ 3 h Mpc−1, as shown in the right-
hand panel of Fig. 1. Fig. 2 illustrates that similar considerations
are also valid for the F6 cosmology, where we use the same mass
shift �log10Mvir = 1 to go from the z = 0 to the z = 1 mass function
correction. In all cases, deviations in the highly non-linear regime
are most likely caused by inaccurate c–M relations. We leave the
study of f(R) gravity reactions on small scales derived from proper
virial quantities for future work.

Figs 3 and 4 show the relative change of the matter power
spectrum in f(R) gravity with respect to GR for the F5 and F6 models,
respectively. The left-hand panels present the best-case scenario,
that is, when ‘perfect’ knowledge of the pseudo power spectrum is
available. In this case, since the uncertainties come entirely from
our halo model predictions, we can obviously reproduce the power
spectrum ratios at the same level of accuracy of our reactions. For
now the pseudo information comes directly from our simulations,
but it is not hard to imagine a specifically designed emulator capable
of generating the non-linear matter power spectrum of �CDM
cosmologies with non-standard initial conditions. We will analyse
the requirements for such emulator in a future work (Giblin et al.
in preparation). In the right-hand panels we compute Ppseudo with
HMCODE to demonstrate that currently, together with publicly
available codes, our method can achieve 2 per cent accuracy on
scales k � 1 h Mpc−1in modified gravity theories characterized by
scale-dependent linear growth.

z = 0. The use of the minimum operator ensures that the f(R) conversion
factor matches the corresponding GR value for masses large enough to fully
activate the chameleon screening.

For a comparison to a range of other methods for modelling
the non-linear matter power spectrum in f(R) and other chameleon
gravity models, we refer to fig. 4 and 5 in Lombriser (2014), noting
that the majority of these methods rely on fitting parameters in
contrast to the approach discussed here.

5.2 DGP

Spherical collapse dynamics is much simpler in nDGP (Schmidt
et al. 2010), with both the linear overdensity threshold for collapse,
δc, and the corresponding average virial halo overdensity, �vir,
being only functions of redshift. For instance, in GR one has
�vir(z = 0) = 335 and �vir(z = 1) = 200 for �m = 0.3072,
whereas these values become �vir(z = 0) = 283 and �vir(z =
1) = 178 in our nDGPm cosmology. This fact allows us to extract
the virial halo mass function directly from our simulations, and
test that accurate nreal

vir /npseudo
vir ratios do indeed produce accurate

halo model reactions. Figs 5 and 6 show that, after refitting the
virial ST mass function to the same quantity from simulations,
halo model predictions reach per cent level accuracy on scales
k � 1 h Mpc−1(see Appendix C for details on the halo mass
function calibration to simulations). Moreover, since the Vainshtein
radius (equation 23) for the most massive haloes is of order a few
megaparsecs, we expect small changes caused by the screening
mechanism on large scales, i.e. k � 0.1 h Mpc−1. In other words,
although in our calculations we keep the two-halo correction factor
in equation (53), it contributes only marginally to improving the
performance of our reaction functions. This is evident from the
perturbation theory predictions shown in Fig. B2. Once again,
deviations on scales k � 1 h Mpc−1could be primarily sourced by
inaccurate real and pseudo halo concentrations, and is the subject
of future investigation.

We study the ability of the halo model reactions to reproduce the
relative difference of the nDGP power spectrum from that of stan-
dard gravity when combined with the pseudo matter power spectrum
from either HMCODE or the simulations. Figs 7 and 8 confirm that
with current codes also scale-independent modifications of gravity

MNRAS 488, 2121–2142 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/2/2121/5528333 by U
niversity of D

urham
 user on 24 July 2019



Reaction to dark energy and modified gravity 2131

Figure 3. Matter power spectrum fractional enhancements relative to GR for f(R) gravity with |f̄R0| = 10−5. As in the previous figures, the data points
correspond to the results from simulations at z = 0 (blue squares) and z = 1 (red triangles). Coloured lines denote predictions based on the halo model reactions
at z = 0 (dashed blue) and z = 1 (dot–dashed red). To emphasize the impact of non-linearities we include the linear theory predictions as dashed grey lines.

Lower panels show the fractional deviation of the non-linear predictions from the simulations, � ≡
(
R × P

Sim/HMcode
Pseudo /P

Sim/HMcode
GR

)
/
(
P Sim

Real/P
Sim
GR

) − 1,

with grey bands marking 1 per cent and 2 per cent uncertainty regions. Left: for our theoretical estimates we use pseudo cosmology matter power spectra
measured from simulations as the baseline, which we then rescale with the halo model reactions employing the Cataneo et al. (2016) halo mass functions. The
lower panel illustrates that with future codes, eventually capable of reaching per cent-level accuracy on the matter power spectra for the �CDM-evolved pseudo
cosmologies, high-accuracy non-linear matter power spectra in modified gravity will also be accessible. Right: same as left-hand panel with the difference
that the pseudo cosmology matter power spectra computed with HMCODE are now adopted as the baseline. This implies that applying our halo model reaction
methodology to baseline �CDM predictions from existing codes we can achieve �2 per cent precision on scales k � 1 h Mpc−1.

Figure 4. Same as Fig. 3 with the background field amplitude set to |f̄R0| = 10−6.

can be predicted within 2 per cent over the range of scales relevant
for this work.

5.3 Dark energy

Fig. 9 shows the reaction functions for the evolving DE cosmologies
listed in Table 1. The left-hand panel contains essentially the

same z = 0 information of Fig. 2 in Mead (2017), with the
notable difference that here we compute the spherical collapse virial
overdensities including the DE contribution to the potential energy,
and do not assume energy conservation during collapse (Schmidt
et al. 2010) (expressions for the individual terms entering the
virial theorem can be found in Appendix A). The right-hand panel
shows the same quantity at z = 1. At both redshifts the halo
model reactions based on the standard ST mass function fits can
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2132 M. Cataneo et al.

Figure 5. Matter power spectrum reactions in an nDGP cosmology with crossover scale rcH0 = 0.5. In each panel the data points represent the reactions
measured from simulations; lines denote the corresponding halo model predictions defined by the halo mass function used for the one-halo contributions in
nDGP gravity, that is based on either the standard ST fits (dashed) or on fits to our simulations presented in Appendix C (dotted). Lower panels present the
fractional deviation of the halo model relative to the simulations, with grey bands marking the 1 per cent and 2 per cent uncertainty regions. Left: reaction at
z = 0 with the refitted halo mass function significantly improving the predictions for k � 1 h Mpc−1, as shown in the lower panel. Right: z = 1 reaction. The
lower panel shows similar performance for the two halo mass function fits, with our refitted version matching the simulations within 1 per cent over a wider
range of scales.

Figure 6. Same as Fig. 5 with the crossover scale set to rcH0 = 2. Here both halo mass function fits exhibit excellent performance independent of redshift,
which can be explained by the similarity of their nDGP

vir /nPseudo
vir ratios shown in Fig. C2.

capture very well the measurements from simulations down to
the transition scale between the two- and one-halo terms. Also
in this case, we attribute inaccuracies on small scales mainly to the
inadequacy of the Dolag et al. (2004) and Bullock et al. (2001) halo
concentration prescriptions for the real and pseudo cosmologies,
respectively.

In Fig. 10 we consider two representative DE models, DE2 and
DE3, and compare their matter power spectra to that of �CDM
with the same initial conditions. Their particular equations of state

enhance the growth of structure in one case and suppress it in the
other. Here, we employ the Coyote Universe Emulator (Heitmann
et al. 2014) not only for our baseline pseudo power spectra, but also
as a substitute for the real and �CDM cosmology simulations. This
serves as an example to illustrate a straightforward application of
the reaction functions: extend the cosmological parameter space of
matter power spectrum emulators designed for the concordance
cosmology only, without the need to run model-dependent and
expensive cosmological simulations. For the evolving equation of
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Reaction to dark energy and modified gravity 2133

Figure 7. Matter power spectrum fractional enhancements relative to GR for nDGP with rcH0 = 0.5. The data points correspond to the results from simulations
at z = 0 (blue squares) and z = 1 (red triangles). Coloured lines represent predictions based on the halo model responses at z = 0 (dashed blue) and z = 1
(dot–dashed red). To emphasize the impact of non-linearities we include the linear theory predictions as dashed grey lines. Lower panels show the fractional

deviation of the non-linear predictions from the simulations, � ≡
(
R × P

Sim/HMcode
Pseudo /P

Sim/HMcode
GR

)
/
(
P Sim

Real/P
Sim
GR

) − 1, with grey bands marking 1 per cent

and 2 per cent uncertainty regions. Left: for our theoretical estimates we use pseudo cosmology matter power spectra measured from simulations as the
baseline, which we then rescale with the halo model reactions employing our refitted halo mass functions in Appendix C. As for f(R) gravity, the lower panel
illustrates that with future codes eventually capable of reaching per cent-level accuracy on the matter power spectra for the �CDM-evolved pseudo cosmologies,
high-accuracy non-linear matter power spectra for scale-independent modifications of gravity will also be within reach. Right: same as the left-hand panel with
the difference that the pseudo cosmology matter power spectra computed with HMCODE are now adopted as the baseline. Current available codes can achieve
�2 per cent precision on scales k � 1 h Mpc−1when used in combination with accurate halo model reactions.

Figure 8. Same as Fig. 7 with the crossover scale set to rcH0 = 2.

state of DE3 we use the emulator extension code PKequal built
upon the work presented in Casarini et al. (2016). Knowing that the
output from the emulator is 1–2 per cent accurate on scales k � 1
h Mpc−1, from the previous results in Fig. 9 we can expect similar

agreement between our reaction-based power spectra and those
obtained from the emulator itself. This is indeed the case except in
the range 0.02 � k Mpc h−1 � 0.5, where the interpolation process
within the emulator fails to capture the correct dependence on ωb
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2134 M. Cataneo et al.

Figure 9. Matter power spectrum reactions for the six DE cosmologies with {w0, wa} pairs listed in Table 1. In each panel, the data points represent the
mean reactions measured from simulations as the average from three realizations; lines denote the corresponding halo model predictions. Lower panels show
the fractional deviation of the halo model relative to the simulations, with grey bands marking the 1 per cent and 2 per cent uncertainty regions. Left: reactions
at z = 0. These are similar to those presented in Mead (2017) and only differ in the derivation of the virial overdensity �vir, in that here we account for all
relevant contributions to the potential energy and do not assume energy conservation (see equations A6–A11). On small scales agreement with the simulations
is somewhat better than in modified gravity, which can be ascribed to a more accurate c–M relation at z = 0. Right: z = 1 reactions. Although per cent level
accuracy is reached on scales k � 1 h Mpc−1, performance on highly non-linear scales deteriorates beyond the 2 per cent level for some models. We think part
of the reason for that is to be found in high-z inaccuracies of the Dolag et al. (2004) prescription for the halo concentrations in DE cosmologies.

Figure 10. Matter power spectrum fractional differences relative to �CDM for DE3 (left) and DE2 (right) models, where the numbers in curly brackets
specify the equation-of-state pair {w0, wa}. Data points correspond to the output from the Coyote Universe emulator (Heitmann et al. 2014) at z = 0 (blue
squares) and z = 1 (red triangles). For DE3, which has a non-constant w, we used the emulator extension of Casarini et al. (2016). Coloured lines represent
predictions based on the halo model reactions at z = 0 (dashed blue) and z = 1 (dot–dashed red). For reference, the linear theory predictions are shown as
dashed grey lines. Lower panels show the fractional deviation of the non-linear predictions from the emulator, with grey bands marking 1 per cent and 2 per cent
uncertainty regions. For our theoretical estimates we use pseudo cosmology matter power spectra computed with the emulator itself as baseline, which we
then rescale with the halo model reactions. Lower panels illustrate that our halo model predictions can be employed to map accurately �CDM cosmologies
to evolving DE models. Deviations of order 2–4 per cent on scales 0.02 � k Mpc h−1 � 0.5 are entirely due to the emulator being pushed to the edges of its
domain of applicability in the plane {ωb, w}.
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Reaction to dark energy and modified gravity 2135

and w because the specific values we use sit on the edge of its
domain of applicability.14

6 C O N C L U S I O N S

The spatial distribution of matter in the Universe and its evolution
with time emerge from the interplay of gravitational and astro-
physical processes, and are inextricably linked to the nature of
the cosmic matter-energy constituents. The power spectrum is an
essential statistic describing the clustering of matter in the Universe,
and lies at the heart of probes of the growth of structure such
as cosmic shear and galaxy clustering. Measurements of these
quantities from the next generation of large-volume surveys are
expected to reach per cent level uncertainty – upon careful control of
systematics – on scales where non-linearities and baryonic physics
become important. It is notoriously difficult to predict the matter
power spectrum in this regime to such a degree of accuracy, yet these
scales contain a wealth of information on currently unanswered
questions, e.g. the nature of DE, the sum of neutrino masses, and
the extent of baryonic feedback mechanisms.

In this work we focused on modelling the non-linear matter
power spectrum in modified theories of gravity and evolving DE
cosmologies. We extended the reaction method of Mead (2017)
using the halo model to predict the non-linear effects induced by
new physics on the matter power spectrum of specifically designed
reference cosmologies. These fiducial – pseudo – cosmologies
mimic the linear clustering of the target – real – cosmologies,
yet their evolution is governed by standard gravity with �CDM
expansion histories (which are either quick to simulate with current
resources, if not already available with emulators). We showed that
by applying the halo model reactions to the non-linear matter power
spectrum of the pseudo cosmologies we are able to recover the real
counterpart to within 1 per cent on scales k � 1 h Mpc−1for all cases
under study. Remarkably, our methodology does not involve fitting
the power spectra measured in simulations at any stage. Instead,
having access to accurate ratios of the halo mass function in the
real cosmology to that in the pseudo cosmology is crucial to achieve
the observed performance. Not including this information from the
simulation degrades the accuracy to �3 per cent. The halo model
reactions can also be used to predict the matter power spectrum
in the highly non-linear regime. However, this requires additional
knowledge of the average structural properties of the dark matter
haloes as well as the inclusion of baryonic effects (see e.g. Schneider
et al. 2019). We leave these improvements for future work (Cataneo
et al. in preparation).

In the case of the DE models we adopted the Coyote Universe
emulator for the pseudo matter power spectrum (i.e. for w =
−1), which we then combined with our halo model reaction to
obtain the real expected quantity. By comparing this prediction
to the real output of the emulator (i.e. for w �= −1) we showed
that emulators trained on pure �CDM models can be accurately
extended to non-standard cosmologies in an analytical way, thus
substantially increasing their flexibility while simultaneously reduc-
ing the computational cost for their design. However, applications

14The Coyote Universe emulator accepts values 0.0215 < ωb < 0.0235 and
−1.3 < w < −0.7, while for our two evolving DE models we have ωb =
0.0245, w(DE2) = −1.3, and w

(DE3)
eff = −0.84. Since our background baryon

density resides outside the domain of the emulator, we set it to the maximum
value allowed. This has virtually no impact on our halo model responses, in
that they depend only weakly on ωb.

of this strategy to scale-dependent modifications of gravity [such as
f(R) models] necessitate of a more elaborate �CDM emulator that
takes as input also information on the linearly modified shape of the
matter power spectrum (Giblin et al. in preparation). Together with
suitable halo model reactions, this emulator can also be employed
to predict the non-linear total matter power spectrum in massive
neutrino cosmologies (Cataneo et al. in preparation), where the
presence of a free streaming scale induces a scale-dependent linear
growth (Lesgourgues & Pastor 2006).

Given that our method builds on the halo model, the halo mass
function and the spherical collapse model are absolutely central for
our predictions. Contrary to the standard halo model calculations,
however, the accuracy of our reactions strongly depends on the
precision of the pseudo and real halo mass functions. This opens
up the possibility of combining in a novel way cosmic shear and
cluster abundance measurements, for example. Moreover, quite
general modifications of gravity – with their screening mechanisms
– can be implemented in the spherical collapse calculations
through the non-linear parametrized post-Friedmannian formalism
of Lombriser (2016).

In summary, halo model reactions provide a fast, accurate, and
versatile method to compute the real-space non-linear matter power
spectrum in non-standard cosmologies. Successful implementations
in redshift-space by Mead (2017) pave the way for applications to
redshift-space distortions data as well. Altogether, these features
make the halo model reactions an attractive alternative in-between
perturbative analytical methods and brute force emulation, and
promise to be an essential tool in future combined-probe analyses
in search of new physics beyond the standard paradigm.
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APPENDI X A : SPHERI CAL COLLAPSE IN
MODI FI ED GRAV I TY AND QU I NTESSENCE

We shall briefly review expressions for the force enhancement F
in f(R) and DGP gravity used in the modified spherical collapse
calculation in Section 3.1 as well as its impact and the impact of
DE domination on the virial theorem.

The force enhancement F adopted here for the spherical collapse
calculation in f(R) gravity is given by (Lombriser et al. 2013)

F = 1

3
min

[
3
�R

RTH

− 3

(
�R

RTH

)2

+
(

�R

RTH

)3

, 1

]
, (A1)

which uses the thin-shell approximation (Khoury & Weltman 2004;
Li & Efstathiou 2012) with thickness �R � RTH. The expression
is also adopted for the thick-shell limit and interpolates between
the small-field (F = 0) and large-field (F = 1/3) regimes, which
correspond to the two limiting scenarios studied in the f(R) spherical
collapse calculation of Schmidt et al. (2009). Furthermore, for the
f(R) functional form equation (13) one finds (Lombriser et al. 2013)

�R

RTH

� |fR0|a7

�m(H0RTH)2
yh

×
⎡
⎣( 1 + 4 ��

�m

y−3
env + 4 ��

�m
a3

)2

−
(

1 + 4 ��

�m

y−3
h + 4 ��

�m
a3

)2
⎤
⎦ , (A2)

where the normalized top-hat radius

y ≡ RTH/a

Ri/ai
(A3)

needs to be solved in both the halo (h) and the environment (env)
using equation (32), that now becomes

y ′′ +
(

2 + H ′

H

)
y ′ = −�mH 2

0 a−3

2H 2
(1 + F )yδ, (A4)

where we set F = 0 for the �CDM environment and primes denote
derivatives with respect to ln a. To solve equation (A4) we use
the initial conditions y = 1 and y

′ = −δi/3 obtained from the
linear theory in an Einstein-de Sitter Universe, which at early times
is an accurate description for all models in Section 2 when the
contribution from radiation is ignored. We then iteratively adjust
δi until the condition y(acoll) = 0 (i.e. RTH = 0) is satisfied at the
desired time of collapse, acoll, within some small tolerance. For
the environment, instead, we follow Cataneo et al. (2016). Also
note that equation (A2) can easily be generalized for the family of
chameleon models (Lombriser et al. 2014).
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In DGP gravity, the force modification becomes (Schmidt et al.
2010)

F = 2

3β

√
1 + x−3 − 1

x−3
, (A5)

where x ≡ RTH/RV, with the Vainshtein radius and β function given
in equations (23) and (20), respectively. In smooth quintessence
cosmologies F = 0, and the sole effect on the spherical collapse
dynamics enters through the non-standard background expansion.
In both DGP and quintessence there is no contribution from the
environment, hence yh alone describes the full evolution. Moreover,
F can be generalized and parametrized to cover the range of
different screening mechanisms (Lombriser 2016).

The virial theorem for a general metric theory of gravity remains
unchanged with respect to its formulation in GR, and reads

2T + W = 0, (A6)

where W is the potential energy of the system and T its kinetic
energy. However, energy is not conserved for evolving DE and
modified gravity scenarios, and the virial radius cannot be related
to the turnaround radius in the usual way (Lahav et al. 1991).
Instead, one must find the time of virialization, avir, that satisfies
equation (A6) when all contributions to W are considered. More
specifically, the Newtonian, scalar field and background potential
energies take the form (Schmidt et al. 2010)

WN

E0
= −�m

a−1

a2
i

y2(1 + δ), (A7)

Wφ

E0
= −�m

a−1

a2
i

Fy2δ, (A8)

Weff

E0
= −8πG

3H 2
0

(1 + 3weff )ρ̄eff
a2

a2
i

y2, (A9)

where

E0 ≡ 3

10
M(H0Ri)

2, (A10)

and the kinetic energy can be written as

T

E0
= H 2

H 2
0

[
a

ai
(y ′ + y)

]2

. (A11)

Combining equations (A6)–(A11) together with equations (36)–
(37) allows us to find the virial radius Rvir as a function of halo mass,
and for various theories of gravity as well as expansion histories.

A P P E N D I X B: PE RT U R BAT I O N TH E O RY

The non-linear evolution of matter perturbations in modified gravity
has been extensively studied in Koyama et al. (2009), Brax &
Valageas (2012), Brax & Valageas (2013), and Bose & Koyama
(2016). Here we summarize their results and provide explicit ex-
pressions for the computation of next-to-leading-order corrections
to the linear power spectrum.

The continuity and Euler equations describing the evolution of
the matter density perturbations, δ, and peculiar velocity, v, are

δ̇ + 1

a
∇ · [(1 + δ)v] = 0, (B1)

v̇ + Hv + 1

a
(v · ∇)v = − 1

a
∇�, (B2)

where the gravitational potential � in modified gravity theories with
screening mechanisms depends non-linearly on the matter density
perturbations, as in equations (9) and (18). Assuming vanishing
vorticity, the velocity field can be fully described by its divergence
θ ≡ ∇ · v/(aH). By defining the vector field

� (k, η) ≡
(

δ̃(k, η)
−θ̃ (k, η)

)
, (B3)

and expanding the gravitational potential up to third order in the
perturbations, the fluid equations in Fourier space read

� ′
i (k; η) + Mij (k; η)�j (k; η)

=
∫

dk1dk2

(2π )3
δD(k − k12)γi;jk(k1, k2; η)

×�j (k1; η)�k(k2; η)

+
∫

dk1dk2dk3

(2π )6
δD(k − k123)σi;jkl(k1, k2; η)

×�j (k1; η)�k(k2; η)�l(k3; η), (B4)

where primes denote derivatives with respect to η ≡ ln a, k1···n ≡
k1 + ··· + kn, and repeated indices are summed over. The left-hand
side of equation (B4) controls the evolution of linear perturbations,
with the matrix

M(k; η) =
⎛
⎝ 0 −1

− 3
2 �m(η)[1 + ε(k, η)]

1 − 3weff (η)�eff (η)

2

⎞
⎠.

(B5)

The quantity ε measures the time- and scale-dependent linear
departure from GR, which in f(R) gravity and DGP reads

εf (R)(k, η) = k2

3[e2ηm2(η) + k2]
, (B6)

εDGP(η) = 1

3β(η)
, (B7)

where the mass

m(η) = 1√
3κ1

, (B8)

with

κn = H 2n−2 dnfR

dRn

∣∣∣∣
R̄

, (B9)

and the DGP function β is given in equation (20).
The sources of non-linearities are confined to the right-hand side

of equation (B4), where the second order vertices are

γ1(k1, k2; η) =
(

0 α̂(k2, k1)/2

α̂(k1, k2)/2 0

)
, (B10)

γ2(k1, k2; η) =
(

γ2;11(k1, k2; η) 0

0 β̂(k1, k2)

)
(B11)

with

α̂(k1, k2) = (k1 + k2) · k1

k2
1

, (B12)

β̂(k1, k2) = ‖k1 + k2‖2(k1 · k2)

2k2
1k

2
2

, (B13)
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Figure B1. SPT matter power spectrum reactions in f(R) gravity with background scalaron amplitudes |f̄R0| = 10−5 (left) and |f̄R0| = 10−6 (right). The
different lines illustrate the effect of computing the non-linear power spectrum for the pseudo cosmology using either the exact one-loop corrections (solid)
or the real unscreened one-loop terms instead (dashed). The squares are the measurements from our simulations. In F5 the real screened and unscreened
one-loop contributions err in the same direction, which makes the no-chameleon correction preferable over the theoretically motivated pseudo one-loop term.
The opposite is true for F6, although the difference between the two approaches is small in this case. For consistency, throughout this work we always choose
the ‘no-screening’ one-loop correction for our pseudo SPT predictions, a strategy good enough on large quasi-linear scales for all cosmologies investigated.

Figure B2. Same as Fig. B1 for nDGP gravity with crossover scales rcH0 = 0.5 (left) and rcH0 = 2 (right). Here using the real unscreened one-loop corrections
instead of the equivalent exact pseudo quantity has negligible impact on the SPT responses.
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The one-loop power spectrum corrections require the density and
velocity fields up to third order in the perturbations, that is, we need

� = � (1) + � (2) + � (3). For this, we shall first find the linear
solution to equation (B4), � (1), and then derive recursively the
higher order solutions with the help of the retarded Green function,
which is obtained by setting the right-hand side of equation (B4) to
a Dirac delta function (see Brax & Valageas 2012, 2013, for more
details). We can write the linear ansatz as

� (1)(k, η) = δ̃(k, 0)
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)
, (B18)

where the growing mode, D+(k, η), satisfies the linear second-order
equation
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with Einstein-de Sitter initial conditions D+(ηi) = D′
+(ηi) = eηi

at the initial time ηi. The decaying mode, D−, also satisfies this
equations and can be directly computed as

D−(k, η) = −D+(k, η)
∫ ∞

η

dη′ W (η′)
D+(k, η′)2

, (B20)
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where the Wronskian of D+ and D− is given by

W (η) = −e−(1/2)
∫ η

0 dη′[1−3weff (η′)�eff (η′)]. (B21)

By using the retarded Green function

G(k1, k2; η1, η2) = �(η1 − η2)(2π )3δD(k1 − k2)G̃(k1, k2; η1, η2),

(B22)

where �(η1 − η2) denotes the Heaviside function, we obtain the
second- and third-order density perturbations as the convolutions
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with the operators K(2) and K(3) built from the second- and
third-order vertices, γ m and σ m, respectively (see Brax & Valageas
2013, for more details). In equation (B22) the matrix G̃ takes the
explicit form
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where D+/ − i is shorthand for D+/ −(ki, ηi).
Finally, we can write the equal-time two-point correlation –

equivalent to equation (56) – as

〈δ̃δ̃〉 = 〈δ̃(1)δ̃(1)〉 + 〈δ̃(2)δ̃(2)〉 + 〈δ̃(1)δ̃(3)〉 + 〈δ̃(3)δ̃(1)〉, (B26)

which produces the following expressions for the one-loop integrals
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where all indices run from 1 to 2, the linear power spectra are taken
at η = 0, and we have used the two-point linear correlator
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To deactivate the screening mechanisms we simply set γ 2; 11 =
σ 2; 111 = 0, while keeping the linear deviation ε given in

equations (B6)–(B7). This results in what we call the real
‘no-screening’ power spectrum, P real

NoScr. The pseudo power spectrum
up to one-loop, instead, follows from also imposing ε = 0, such
that the only difference compared to the standard cosmology is
in the initial conditions, i.e. in the shape and/or amplitude of the
linear power spectrum. Figs B1 and B2 show the SPT reaction
functions on quasi-linear scales for f(R) gravity and nDGP, where
the pseudo non-linear power spectrum is computed using either
the pseudo (solid lines) or ‘no-screening’ (dashed lines) one-loop
correction. Although the former approach is theoretically motivated,
accuracy arguments make the latter preferable for all cosmologies
and redshifts investigated in this work.

APPENDI X C : H ALO MASS FUNCTI ON AND
C O N C E N T R AT I O N T E S T S

In Section 3.3 we showed that the real to pseudo halo mass function
ratio, nreal

vir /npseudo
vir , controls the halo model reaction on scales k �

0.1 h Mpc−1. In particular, for the nDGP cosmologies we explicitly
checked that fitting the semi-analytical halo mass functions directly
to our simulations results in better performance of the halo model
reactions for wavenumbers 0.1 � k Mpc h−1 � 1. Below we briefly
explain how these fits to the halo mass functions extracted from our
simulations were carried out.

We measure the mean halo abundances and their uncertainties
from simulations as outlined in Cataneo et al. (2016), with the
important difference that, here, haloes identified with the ROCKSTAR

halo finder (Behroozi, Wechsler & Wu 2013) have masses defined
in spherical volumes with mean density �vir times the background
comoving matter density, as in equation (36). The virial overdensity
depends on redshift, matter content, and theory of gravity through
equation (37). Compared to Cataneo et al. (2016) we also use
a finer mass binning, with a bin size �log10M = 0.1. Figs C1
and C2 present a rescaled version of the halo mass functions (i.e.
the large-scale limit of the one-halo integrand equation (49)) as
well as the nreal

vir /npseudo
vir ratios. The standard halo mass function fits

for the parameters in equation (41) systematically underpredict the
simulation measurements. Refitting these parameters to each real
and pseudo simulation separately can change the halo mass function
ratio nreal

vir /npseudo
vir to an extent relevant for the halo model reactions.

Note that when this ratio remains largely unaffected by the refitting,
the predicted reactions also show very little variation (compare the
right-hand panels of Figs C2 and 6). Table C1 summarizes the
refitted ST halo mass function parameters for the real and pseudo
nDGP cosmologies used in this work.

Given the structure of the one-halo term equation (49), one might
argue that inaccurate halo profiles are partially responsible for
the few per cent mismatch between the predicted and measured
reactions in Figs 1 and 5. If that was the case, then having accurate
halo mass functions would not necessarily correspond to having
accurate halo model reactions. However, Fig. C3 shows otherwise,
in that even extreme variations of the halo concentrations cause
important changes only on scales k � 0.5 h Mpc−1.

From these tests we conclude that accurate virial halo mass
function ratios are central to determining �1 per cent accuracy
for the halo model reactions, and that the mean concentration
of massive haloes is well described by equation (46), at least as
long as this relation is employed in the reaction ratios. In future
works we will investigate the implications of refitting the c–M
relation to that measured in simulations, which has the potential
to ameliorate our halo model predictions in the highly non-linear
regime.
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Figure C1. P1h(k → 0) integrands (equation 49) at z = 0 (left) and z = 1 (right) for the nDGP cosmology with crossover scale rcH0 = 0.5. The data points
with error bars are Jackknife estimates from simulations; lines correspond to semi-analytical predictions using the standard ST halo mass function fits {A, q,
p} = {0.3222, 0.75, 0.3} (dashed), or to direct fits to our simulations (solid). Top panels show the results for the real nDGP cosmology, while middle panels
present the outcome for the pseudo counterpart. The ratios of the real halo mass functions to the pseudo ones are illustrated in the lower panels. Combined
with the information in Fig. 5, these ratios clearly stand out as the relevant quantity to achieve per cent level accuracy for the reaction function over scales k
� 1 h Mpc−1. In fact, the difference between the standard and refitted halo mass functions is more significant at low redshift, which reflects the performance
shown in the lower panels of Fig. 5.

Figure C2. Same as Fig. C1 for the nDGP cosmology with crossover scale rcH0 = 2. For both selected redshifts the bottom panels show small differences
between the standard and refitted halo mass function ratios. Once again, this matches the expectations from Fig. 6.

MNRAS 488, 2121–2142 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/2/2121/5528333 by U
niversity of D

urham
 user on 24 July 2019



2142 M. Cataneo et al.

Table C1. Refitted ST halo mass function parameters obtained from the
simulation data shown in Figs C1 and C2. Fits are consistent with p = 0 in
all cases. The standard values are {A, q, p} = {0.3222, 0.75, 0.3}.

Model A q

nDGPm (z = 0) 0.3427 0.819
nDGPm (z = 1) 0.3067 0.757

nDGPw (z = 0) 0.3347 0.819
nDGPw (z = 1) 0.3023 0.754

pseudo-nDGPm (z = 0) 0.3438 0.829
pseudo-nDGPm (z = 1) 0.3057 0.761

pseudo-nDGPw (z = 0) 0.3332 0.823
pseudo-nDGPw (z = 1) 0.3013 0.753

Figure C3. Impact of the c–M relation on the nDGPm halo model response
at z = 0. Lines correspond to different combinations of normalization and
slope in equation (46), and changes are restricted to the real cosmology
only. Even significant deviations from the standard values (solid blue line)
are not able to match the simulations, with virtually no effect on scales k �
0.5 h Mpc−1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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