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Abstract
Finding maximum-cardinality matchings in undirected graphs is arguably one of the 
most central graph primitives. For m-edge and n-vertex graphs, it is well-known to 
be solvable in O(m

√

n) time; however, for several applications this running time is 
still too slow. We investigate how linear-time (and almost linear-time) data reduc-
tion (used as preprocessing) can alleviate the situation. More specifically, we focus 
on linear-time kernelization. We start a deeper and systematic study both for gen-
eral graphs and for bipartite graphs. Our data reduction algorithms easily comply (in 
form of preprocessing) with every solution strategy (exact, approximate, heuristic), 
thus making them attractive in various settings.
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1 Introduction

“Matching is a powerful piece of algorithmic magic” [24]. In the Maximum Match-
ing problem, given an undirected graph, one has to compute a maximum-cardinality 
set of nonoverlapping edges. Maximum matching is arguably among the most fun-
damental graph-algorithmic primitives allowing for a polynomial-time algorithm. 
More specifically, on an n-vertex and m-edge graph a maximum matching can be 
found in O(m

√

n) time [21]. Improving this upper time bound resisted decades of 
research. Recently, however, Duan and Pettie [8] presented a linear-time algorithm 
that computes a (1 − �)-approximate maximum-weight matching, where the running 
time dependency on � is �−1 log(�−1) . For the unweighted case, the O(m

√

n) algo-
rithm of Micali and Vazirani [21] implies a linear-time (1 − �)-approximation, where 
in this case the running time dependency on � is �−1 [8]. We take a different route: 
First, we do not give up the quest for optimal solutions. Second, we focus on effi-
cient—more specifically, linear-time executable—data reduction rules, that is, not 
solving an instance but significantly shrinking its size before actually solving the 
problem.1 In the context of decision problems and parameterized algorithmics this 
approach is known as kernelization; this is a particularly active area of algorithmic 
research on NP-hard problems.

The spirit behind our approach is thus closer to the identification of efficiently 
solvable special cases of Maximum Matching. There is quite some body of work 
in this direction. For instance, since an augmenting path can be found in linear 
time [10], the standard augmenting path-based algorithm runs in O(s(n + m)) time, 
where s is the number of edges in the maximum matching. Yuster [26] developed 
an O(rn2 log n)-time algorithm, where r is the difference between maximum and 
minimum degree of the input graph. Moreover, there are linear-time algorithms for 
computing maximum matchings in special graph classes, including convex bipartite 
[25], strongly chordal [7], chordal bipartite graphs [6], and cocomparability graphs 
[20].

All this and the more general spirit of “parameterization for polynomial-time 
solvable problems” (also referred to as “FPT in P” or “FPTP” for short) [12] forms 
the starting point of our research. Remarkably, Fomin et al. [9] recently developed an 
algorithm to compute a maximum matching in graphs of treewidth k in O(k4n log2 n) 
randomized time. Afterwards, Iwata, Ogasawara, and Ohsaka [16] provided an ele-
gant algorithm computing a maximum matching in graphs of treedepth � in O(𝓁 ⋅ m) 
time. This implies an O(k2n log n)-time algorithm where  k is the treewidth, since 
m ∈ O(kn) and � ≤ (k + 1) log n [23]. Recently, Kratsch and Nelles [19] presented a 
O(r2 log(r)n + m)-time algorithm where r is the modular-width.

Following the paradigm of kernelization, that is, provably effective and efficient 
data reduction, we provide a systematic exploration of the power of not only poly-
nomial-time but actually linear-time data reduction for Maximum Matching. Thus, 
our aim (fitting within FPTP) is to devise problem kernels that are computable in 

1 Doing so, however, we focus on the unweighted case.
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linear time. In other words, the fundamental question we pose is whether there is 
a very efficient preprocessing that provably shrinks the input instance, where the 
effectiveness is measured by employing some parameters. The philosophy behind 
is that if we can design linear-time data reduction algorithms, then we may employ 
them for free before afterwards employing any super-linear-time solving algorithm. 
We believe that this sort of question deserves deeper investigation and we initiate it 
based on the Maximum Matching problem. In fact, in follow-up work we demon-
strated that such linear-time data reduction rules can significantly speed-up state-of-
the-art solvers for Matching [18].

As kernelization is usually defined for decision problems, we use in the remain-
der of the paper the decision version of Maximum Matching. In the rest of the paper 
we call this decision version Matching. In a nutshell, a kernelization of a decision 
problem instance is an algorithm that produces an equivalent instance whose size 
can solely be upper-bounded by a function in the parameter (preferably a polynomial 
function). The focus on decision problems is justified by the fact that all our results, 
although formulated for the decision version, in a straightforward way extend to the 
corresponding optimization version (as also done in our follow-up work [18]).

(Maximum-Cardinality) Matching

Input:    An undirected graph G = (V ,E) and a nonnegative integer s.
Question:    Is there a size-s subset MG ⊆ E of nonoverlapping (i.e. disjoint) 
edges?

Note that, for any polynomial-time solvable problem, solving the given instance 
and returning a trivial yes- or no-instance always produces a constant-size kernel in 
polynomial time. Hence, we are looking for kernelization algorithms that are faster 
than the algorithms solving the problem. The best we can hope for is linear time. 
For NP-hard problems, each polynomial-time kernelization algorithm is faster than 
any solution algorithm, unless P=NP. While the focus of classical kernelization for 
NP-hard problems is mostly on improving the size of the kernel, we particularly 
emphasize that for polynomially solvable problems it is mandatory to also focus on 
the running time of the kernelization algorithm. Indeed, we can consider linear-time 
kernelization as the holy grail and this drives our research when studying kerneliza-
tion for Matching.

Our contributions. We present three kernels for Matching (see Table  1 for an 
overview). All our parameterizations can be categorized as “distance to triviality” 

Table 1  Our kernelization results

Parameter k Running time Kernel size

Results for  Matching

 Feedback edge number O(n + m) time O(k) vertices and edges (Theorem 1)
 Feedback vertex number O(kn) time 2

O(k) vertices and edges (Theorem 2)
Results for  Bipartite Matching

 Distance to chain graphs O(n + m) time O(k3) vertices (Theorem 3)
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[5, 13]. They are motivated as follows. First, note that it is important that the param-
eters we exploit can be computed, or well approximated (within constant factors), in 
linear time regardless of the parameter value. Next, note that maximum-cardinality 
matchings can be trivially found in linear time on trees (or forests). That is why we 
consider the edge deletion distance (feedback edge number) and vertex deletion dis-
tance (feedback vertex number) to forests. Notably, there is a trivial linear-time algo-
rithm for computing the feedback edge number and there is a linear-time factor-4 
approximation algorithm for the feedback vertex number [1]. We mention in passing 
that the parameter vertex cover number, which is lower-bounded by the feedback 
vertex number, has been frequently studied for kernelization. In particular, Gian-
nopoulou, Mertzios, and Niedermeier [12, 14] provided a linear-time computable 
quadratic-size kernel for Matching with respect to the parameter solution size (or 
equivalently vertex cover number). Coming to bipartite graphs, we parameterize by 
the vertex deletion distance to chain graphs which is motivated as follows. First, 
chain graphs form one of the most obvious easy cases for bipartite graphs where 
Matching can be solved in linear time [25]. Second, we show that the vertex dele-
tion distance of any bipartite graph to a chain graph can be 4-approximated in linear 
time. Moreover, vertex deletion distance to chain graphs lower-bounds the vertex 
cover number of a bipartite graph.

An overview of our main results is given in Table 1. We study kernelization for 
Matching parameterized by the feedback vertex number, that is, the vertex deletion 
distance to a forest (see Sect. 3). As a warm-up we first show that a subset of our 
data reduction rules for the “feedback vertex set kernel” also yields a linear-time 
computable linear-size kernel for the typically much larger parameter feedback edge 
number (see Sect. 3.1). As for Bipartite Matching no faster algorithm is known than 
on general graphs, we kernelize Bipartite Matching with respect to the vertex dele-
tion distance to chain graphs (see Sect. 4).

Seen from a high level, our two main results (Theorems 2 and 3, see Table 1) 
employ the same algorithmic strategy, namely upper-bounding (as a function of 
the parameter) the number of neighbors in the appropriate vertex deletion set (also 
called modulator) X; that is, in the feedback vertex set or in the deletion set to chain 
graphs, respectively. To achieve this we develop new “irrelevant edge techniques” 
tailored to these two kernelization problems. More specifically, whenever a ver-
tex v of the deletion set X has large degree, then we efficiently detect edges inci-
dent to v whose removal does not change the size of the maximum matching. Then 
the remaining graph can be further shrunk by scenario-specific data reduction rules. 
While this approach of removing irrelevant edges is natural, the technical details 
and the proofs of correctness become quite technical and combinatorially challeng-
ing. Note that there exists a trivial O(km)-time solving (not only kernelization) algo-
rithm, where k is the feedback vertex number. Our kernel has size 2O(k) . Therefore, 
only if k = o(log n) our kernelization algorithm provably shrinks the initial instance. 
However, our result is still relevant: First, our data reduction rules might assist in 
proving a polynomial upper bound—so our result is a first step in this direction. 
Second, the running time  O(kn) of our kernelization algorithm is a kind of “half 
way” between O(km) (which could be as bad as O(k2n) ) and O(n + m) (which is best 
possible). Finally, note that this work focuses on theoretical and worst-case analysis; 
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in practice, our kernelization algorithm might achieve much better upper bounds 
on real-world input instances. In fact, in experiments using the kernelization with 
respect to the feedback edge number, the observed kernels were always significantly 
smaller than the theoretical bound [18].

As a technical side remark, we emphasize that in order to achieve a linear-time 
kernelization algorithm, we often need to use suitable data structures and to care-
fully design the appropriate data reduction rules to be exhaustively applicable in lin-
ear time, making this form of “algorithm engineering” much more relevant than in 
the classical setting of mere polynomial-time data reduction rules.

2  Preliminaries and Basic Observations

Notation and Observations. We use standard notation from graph theory. A feed-
back vertex (edge) set of a graph G is a set X of vertices (edges) such that G − X is 
a tree or forest. The feedback vertex (edge) number denotes the size of a minimum 
feedback vertex (edge) set. All paths we consider are simple paths. Two paths in a 
graph are called internally vertex-disjoint if they are either completely vertex-dis-
joint or they overlap only in their endpoints. A matching in a graph is a set of pair-
wise disjoint edges. Let G = (V ,E) be a graph and let M ⊆ E be a matching in G. 
The degree of a vertex is denoted by deg(v) . A vertex v ∈ V  is called matched with 
respect to M if there is an edge in M containing v, otherwise v is called free with 
respect to M. If the matching M is clear from the context, then we omit “with respect 
to M”. An alternating path with respect to M is a path in G such that every second 
edge of the path is in M. An augmenting path is an alternating path whose endpoints 
are free. It is well known that a matching M is maximum if and only if there is no 
augmenting path for it. Let M ⊆ E and M′ ⊆ E be two matchings in G. We denote 
by G(M,M�) ∶= (V ,M △M�) the graph containing only the edges in the symmetric 
difference of M and M′ , that is, M △M� ∶= M ∪M�⧵(M ∩M�) . Observe that every 
vertex in G(M,M�) has degree at most two.

For a matching M ⊆ E for G we denote by Mmax
G

(M) a maximum matching in G 
with the largest possible overlap (in number of edges) with M. That is, Mmax

G
(M) is 

a maximum matching in G such that for each maximum matching M′ for G it holds 
that |M △M�

| ≥ |M △Mmax
G

(M)| . Observe that if M is a maximum matching for G, 
then Mmax

G
(M) = M . Furthermore observe that G(M,Mmax

G
(M)) consists of only odd-

length paths and isolated vertices, and each of these paths is an augmenting path 
for M. Moreover the paths in G(M,Mmax

G
(M)) are as short as possible:

Observation 1 For any path  v1, v2,… , vp in  G(M,Mmax
G

(M)) it holds 
that {v2i−1, v2j} ∉ E for every 1 ≤ i < j ≤ p∕2.

Proof Assume that {v2i−1, v2j} ∈ E . Then v1, v2,… , v2i−2, v2i−1, v2j, v2j+1,… , vp is a 
shorter path which is also an augmenting path for M in G. The corresponding maxi-
mum matching  M′ satisfies |M △Mmax

G
(M)| > |M △M�

| , a contradiction to the 
definition of Mmax

G
(M) .   ◻
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It is easy to see that removing  k vertices in a graph can reduce the maximum 
matching size by at most k:

Observation 2 Let G = (V ,E) be a graph with a maximum matching MG , let X ⊆ V  
be a vertex subset of size k, and let MG−X be a maximum matching for G − X . Then, 
|MG−X| ≤ |MG| ≤ |MG−X| + k.

Kernelization. A parameterized problem is a set of instances (I, k) where I ∈ �∗ 
for a finite alphabet � , and k ∈ ℕ is the parameter. We say that two instances (I, k) 
and (I�, k�) of parameterized problems  P and P′ are equivalent if (I,  k) is a yes-
instance for P if and only if (I�, k�) is a yes-instance for P′ . A kernelization is an algo-
rithm that, given an instance (I, k) of a parameterized problem P, computes in poly-
nomial time an equivalent instance (I�, k�) of P (the kernel) such that |I�| + k� ≤ f (k) 
for some computable function f. We say that f measures the size of the kernel, and 
if  f (k) ∈ kO(1) , then we say that P admits a polynomial kernel. Typically, a kernel 
is achieved by applying polynomial-time executable data reduction rules. We call a 
data reduction rule R correct if the new instance (I�, k�) that results from applying R 
to (I, k) is equivalent to (I, k). An instance is called reduced with respect to some 
data reduction rule if further application of this rule has no effect on the instance.

3  Kernelization for Matching on General Graphs

In this section, we investigate the possibility of efficient and effective preprocessing 
for Matching. As a warm-up, we first present in Sect. 3.1 a simple, linear-size kernel 
for Matching with respect to the parameter feedback edge number. Exploiting the 
data reduction rules and ideas used for this kernel, we then present in Sect. 3.2 the 
main result of this section: an exponential-size kernel for the almost always signifi-
cantly smaller parameter feedback vertex number.

3.1  Warm‑Up: Parameter Feedback Edge Number

We provide a linear-time computable linear-size kernel for Matching parameter-
ized by the feedback edge number, that is, the size of a minimum feedback edge 
set. Observe that a minimum feedback edge set can be computed in linear time via a 
simple depth-first search or breadth-first search. The kernel is based on the next two 
simple data reduction rules due to Karp and Sipser [17]. These rules deal with verti-
ces of degree at most two.

Reduction Rule 1 Let v ∈ V  . If deg(v) = 0 , then delete v. If deg(v) = 1 , then delete v 
and its neighbor and decrease the solution size  s by one (v is matched with its 
neighbor).

Reduction Rule 2 Let v be a vertex of degree two and let u, w be its neighbors. Then 
remove v, merge u and w, and decrease the solution size s by one.
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The correctness was stated by Karp and Sipser [17]. For the sake of complete-
ness, we give a proof.

Lemma 1 Reduction Rules 1 and 2 are correct.

Proof If  v has degree zero, then clearly  v cannot be in any matching and we can 
remove v.

If  v has degree one, then let  u be its single neighbor. Let  M be a maximum 
matching of size at least s for G. Then u is matched in M since otherwise adding 
the edge {u, v} would increase the size of the matching. Thus, a maximum match-
ing in G� = G − u − v has size at least s − 1 . Conversely, a maximum matching of 
size s − 1 in G′ can easily be extended by the edge {u, v} to a maximum matching of 
size s in G.

If  v has degree two, then let  u and  w be its two neighbors. Let  M be a maxi-
mum matching of size at least s . If v is matched in M (i.e. either with the edge {u, v} 
or with the edge {v,w} ), then deleting v and merging u with w decreases the size 
of M by one. Similarly, if v is not matched in M, then both u and w are matched 
in M, since otherwise adding the edge {u, v} (resp. {v,w} ) would increase the size 
of the matching, a contradiction. Thus, in this case, deleting v and merging u with w 
decreases again the size of M by one (M looses either the edge incident to v or one 
of the edges incident to u and w). Hence, the resulting graph G′′ has a maximum 
matching of size at least s − 1 . Conversely, let M′′ be a matching of size at least s − 1 
for G′′ . If the merged vertex vw is free, then M ∶= M�� ∪ {{u, v}} is a matching of 
size s in G. Otherwise, vw is matched to some vertex y in M′′ . Then matching y in G 
with either v or w (at least one of the two vertices is a neighbor of y) and matching u 
with the other vertex yields a matching of size at least s for G.   ◻

While it is easy to exhaustively apply Reduction Rule 1 in linear time, applying 
Reduction Rule  2 exhaustively in linear time is nontrivial [2]. Note that applying 
Reduction Rule 2 might create new degree-one vertices and thus Reduction Rule 1 
might become applicable again. To show our problem kernel, in the following theo-
rem it is sufficient to first apply Reduction Rule 1 exhaustively and afterwards apply 
Reduction Rule 2 exhaustively.

Theorem  1 Matching admits a linear-time computable linear-size kernel with 
respect to the parameter feedback edge number k.

Proof Let G be the input graph. First we apply Reduction Rule 1 to G exhaustively, 
obtaining graph G1 = (V1,E1) , and then we apply Reduction Rule 2 to G1 exhaus-
tively, obtaining graph  G2 = (V2,E2) . Note that both G1 and G2 can be computed in 
linear time [2]. We will prove that G2 has at most 6k vertices and 7k edges. Denote 
with X1 ⊆ E1 and X2 ⊆ E2 the minimum feedback edge sets for G1 and G2 respec-
tively. Note that |X2| ≤ |X1| ≤ k . For any graph H, denote with V1

H
 , V2

H
 , and V≥3

H
 the 

vertices of H that have degree one, two, and more than two, respectively (in our case 
H will be replaced by G1 − X1 or G2 − X2 , respectively). Observe that all vertices 
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in G1 have degree at least two, since G1 is reduced with respect to Reduction Rule 1. 
Thus |V1

G1−X1
| ≤ 2k , as each leaf in G1 − X1 has to be incident to an edge in X1 . Next, 

since G1 − X1 is a forest, we have that |V≥3

G1−X1
| < |V1

G1−X1
| , and thus |V≥3

G1−X1
| < 2k . 

Note that the number of degree-two vertices in G1 cannot be upper-bounded by a 
function of k . However, observe that the exhaustive application of Reduction Rule 2 
to G1 removes all vertices that have degree-two in G1 and possibly merges some of 
the remaining vertices. Thus, G2 contains no vertices with degree two and thus, 
|V2

G2−X2
| ≤ 2k . Altogether, the number of vertices in  G2 is at most 

|V1
G1−X1

| + |V2
G2−X2

| + |V≥3

G1−X1
| ≤ 6k . Since G2 − X2 is a forest, it follows that G2 has 

at most |V2| + k ≤ 7k edges.   ◻

Applying the O(m
√

n)-time algorithm for Matching [21] on the above kernel 
yields the following.

Corollary 1 Matching can be solved in O(n + m + k1.5) time, where k is the feedback 
edge number.

3.2  Parameter Feedback Vertex Number

We next provide for Matching a kernel of size 2O(k) computable in  O(kn) time 
where  k is the feedback vertex number. Using a known linear-time factor 
4-approximation algorithm [1], we can compute an approximate feedback vertex 
set and use it in our kernelization algorithm.

Roughly speaking, our kernelization algorithm extends the linear-time com-
putable kernel with respect to the parameter feedback edge set. Thus, Reduction 
Rule 1 and 2 play an important role in the kernelization. Compared to the other 
kernels presented in this paper, the kernel presented here comes at the price of 
higher running time O(kn) and bigger kernel size (exponential). It remains open 
whether Matching parameterized by the feedback vertex number admits a linear-
time computable kernel (possibly of exponential size), or whether it admits a pol-
ynomial kernel computable in O(kn) time.

Subsequently, we describe our kernelization algorithm which keeps in the ker-
nel all vertices in the given feedback vertex set X and shrinks the size of G − X . 
Before doing so, we need some further notation. In this section, we assume that 
each tree is rooted at some arbitrary (but fixed) vertex such that we can refer to 
the parent and children of a vertex. A leaf in G − X is called a bottommost leaf 
either if it has no siblings or if all its siblings are also leaves. (Here, bottom-
most refers to the subtree with the root being the parent of the considered leaf.) 
The outline of the algorithm is as follows (we assume throughout this section 
that k < log n since otherwise the input instance is already a kernel of size O(2k) ): 

1. Reduce G wrt. Reduction Rule 2 and 1.
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2. Compute a maximum matching MG−X in G − X (where X is a feedback vertex set 
that is computed by the linear-time 4-approximation algorithm [1]).

3. Modify MG−X in linear time such that only the leaves of G − X are free.
4. Upper-bound the number of free leaves in G − X by k2 (Sect. 3.2.1).
5. Upper-bound the number of bottommost leaves in G − X by O(k22k) (Sect. 3.2.2).
6. Upper-bound the degree of each vertex in X by O(k22k) . Then, use Reduction 

Rule 2 and 1 to provide the kernel of size 2O(k) (Sect. 3.2.3).

Whenever we reduce the graph at some step, we also show that the reduction is cor-
rect. That is, the given instance is a yes-instance if and only if the reduced one is a 
yes-instance. The correctness of our kernelization algorithm then follows by the cor-
rectness of each step. We discuss in the following the details of each step.

3.2.1  Steps 1–4

In this subsection, we first discuss the straightforward Steps 1 to 3 and then turn to 
Step 4.

Steps  1–3. As in Sect.  3.1, we perform Step  1 in linear time by first applying 
Reduction Rule 1 and then Reduction Rule 2 using the algorithm due to Bartha and 
Kresz [2]. By Lemma 1 this step is correct.

A maximum matching MG−X in Step 2 can be computed by repeatedly matching 
a free leaf to its neighbor and by removing both vertices from the graph (thus effec-
tively applying Reduction Rule 1 to G − X ). Clearly, this can be done in linear time.

Step 3 can be done in O(n) time by traversing each tree in G − X in a BFS manner 
starting from the root: If a visited inner vertex v is free, then observe that all children 
are matched since MG−X is maximum. Pick an arbitrary child u of v and match it 
with v. The vertex w that was previously matched to u is now free and since it is a 
child of u, it will be visited in the future. Observe that Steps 2 and 3 do not change 
the graph but only the auxiliary matching MG−X , and thus the first three steps are 
correct. The next observation summarizes the short discussion above.

Observation 3 Steps 1 to 3 are correct and can be applied in linear time.

Step 4. Our goal is to upper-bound the number of edges between vertices of X 
and V⧵X , since we can then use a simple analysis as for the parameter feedback edge 
set. Furthermore, recall that by Observation 2 the size of any maximum matching 
in G is at most k plus the size of MG−X . Now, the crucial observation here is that, if 
a vertex x ∈ X has at least k neighbors {v1,… , vk} in V⧵X which are free wrt. MG−X , 
then there exists a maximum matching where x is matched to one of {v1,… , vk} since 
at most k − 1 can be “blocked” by other matching edges. Indeed, consider otherwise 
a maximum matching M in which x is not matched with any of {v1,… , vk} . Then, 
since |X| = k , note that at most k − 1 vertices among {v1,… , vk} are matched in M 
with a vertex in X; suppose without loss of generality that vk is not matched with any 
vertex in X (and thus vk is not matched at all in M). If x is unmatched in M, then the 
matching M ∪ {{x, vk}} has greater cardinality than M, a contradiction. Otherwise, if 
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x is matched in M with a vertex z, then M ∪ {{x, vk}}⧵{{x, z}} is another maximum 
matching of G, in which x is matched with a vertex among {v1,… , vk} . Formalizing 
this idea, we obtain the following data reduction rule.

Reduction Rule 3 Let G = (V ,E) be a graph, let X ⊆ V  be a vertex subset of size k, 
and let MG−X be a maximum matching for G − X . If there is a vertex x ∈ X with at 
least k free neighbors Vx = {v1,… , vk} ⊆ V⧵X , then delete all edges from x to verti-
ces in V⧵Vx.

We first show the correctness and then the running time of Reduction Rule 3.

Lemma 2 Reduction Rule 3 is correct.

Proof Denote by s the size of a maximum matching in the input graph G = (V ,E) 
and by s′ the size of a maximum matching in the new graph G� = (V �,E�) , where 
some edges incident to x are deleted. We need to show that s = s� . Since any match-
ing in G′ is also a matching in G, we easily obtain s ≥ s′.

It remains to show  s ≤ s′ . To this end, let  MG ∶= Mmax
G

(MG−X) be a maxi-
mum matching for  G with the maximum overlap with  MG−X (see Sect.  2). If  x 
is free wrt. MG or if x is matched to a vertex v that is also in G′ a neighbor of x, 
then MG is also a matching in G′ ( MG ⊆ E′ ) and thus we have s ≤ s′ . Hence, con-
sider the remaining case where x is matched to some vertex v such that {v, x} ∉ E� , 
that is, the edge {v, x} was deleted by Reduction Rule  3. Hence, x has  k neigh-
bors  v1,… , vk in V⧵X such that each of these neighbors is free wrt.  MG−X and 
none of the edges {vi, x}, i ∈ [k] , was deleted. Observe that by the choice of MG , 
the graph G(MG−X ,MG) (the graph over vertex set V and the edges that are either 
in  MG−X or in  MG , see Sect.  2) contains exactly  s − |MG−X| paths of length at 
least one. Each of these paths is an augmenting path for MG−X . By Observation 2, 
we have  s − |MG−X| ≤ k . Observe that {v, x} is an edge in one of these augment-
ing paths; denote this path with P. Thus, there are at most k − 1 augmenting paths 
in G(MG−X ,MG) that do not contain x. Also, each of these paths contains exactly two 
vertices that are free wrt. MG−X : the endpoints of the path. This means that no ver-
tex in X is an inner vertex on such a path. Furthermore, since MG−X is a maximum 
matching, it follows that for each path at most one of these two endpoints is in V⧵X . 
Hence, at most  k − 1 vertices of v1,… , vk are contained in the  k − 1 augmenting 
paths of G(MG−X ,MG) except P. Consequently, one of these vertices, say vi , is free 
wrt. MG and can be matched with x. Thus, by reversing the augmentation along P 
and adding the edge {vi, x} we obtain another matching  M′

G
 of size  s. Observe 

that M′
G

 is a matching for G and for G′ and thus we have s ≤ s′ . This completes the 
proof of correctness.   ◻
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Lemma 3 Reduction Rule 3 can be exhaustively applied in O(n + m) time.

Proof We exhaustively apply the data reduction rule as follows. First, initialize for 
each vertex x ∈ X a counter with zero. Second, iterate over all free vertices in G − X 
in an arbitrary order. For each free vertex v ∈ V⧵X iterate over its neighbors in X. 
For each neighbor x ∈ X do the following: if the counter is less than k, then increase 
the counter by one and mark the edge {v, x} (initially all edges are unmarked). Third, 
iterate over all vertices in X. If the counter of the currently considered vertex x is k, 
then delete all unmarked edges incident to x. This completes the algorithm. Clearly, 
it deletes edges incident to a vertex  x ∈ X if and only if  x has  k free neighbors 
in V⧵X and the edges to these k neighbors are kept. The running time is O(n + m) : 
When iterating over all free vertices in V⧵X we consider each edge at most once. 
Furthermore, when iterating over the vertices in X, we again consider each edge at 
most once.   ◻

To finish Step 4, we exhaustively apply Reduction Rule 3 in linear time. After-
wards, there are at most k2 free (wrt. to MG−X ) leaves in G − X that have at least one 
neighbor in X since each of the k vertices in X is adjacent to at most k free leaves. 
Thus, applying Reduction Rule 1 we can remove the remaining free leaves that have 
no neighbor in  X. However, since for each degree-one vertex also its neighbor is 
removed, we might create new free leaves in G − X and need to again apply Reduc-
tion Rule 3 and update the matching (see Step 3). This process of alternating appli-
cation of Reduction Rule 1 and 3 stops after at most k rounds since the neighborhood 
of each vertex in X can be changed by Reduction Rule 3 at most once. This shows 
the running time O(k(n + m)) . We next show how to improve this to O(n + m) . In 
doing so, we arrive at the central proposition of this subsection, stating that Steps 1 
to 4 can be performed in linear time.

Proposition 1 Given a matching instance (G, s) and a feedback vertex set X, Algo-
rithm 1 computes in linear time an instance (G�, s�) with feedback vertex set X and a 
maximum matching MG�−X in G� − X such that the following holds.

– There is a matching of size s in G if and only if there is a matching of size s′ in G′.
– Each vertex in G� − X that is free wrt. MG�−X is a leaf in G� − X.
– There are at most k2 free leaves in G� − X.
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Before proving Proposition  1, we explain Algorithm  1 which reduces the 
graph with respect to Reduction Rules 1 and 3 and updates the matching MG−X 
as described in Step  3. The algorithm performs in Lines  1 and 2 Steps  1 to 3. 
This can be done in linear time (see Observation 3). Next, Reduction Rule 3 is 
applied in Lines 8 to 15 using the approach described in the proof of Lemma 3: 
For each vertex in  x a counter  c(x) is maintained. When iterating over the free 
leaves in G − X , these counters will be updated. If a counter c(x) reaches k, then 
the algorithm knows that  x has  k fixed free neighbors and according to Reduc-
tion Rule 3 the edges to all other vertices can be deleted (see Line 10). Observe 
that once the counter c(x) reaches k, the vertex x will never be considered again 
by the algorithm since its only remaining neighbors are free leaves in G − X that 
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already have been popped from the stack L. The only difference from the descrip-
tion in the proof of Lemma 3 is that the algorithm reacts if some leaf v in G − X 
lost its last neighbor in X (see Line 15). If v is free, then add v to the stack L of 
unmatched degree-one vertices and defer dealing with v to a second stage of the 
algorithm (in Line 16 to 24). (If v is matched, then we deal with v in Step 6.)

We next discuss this second stage from Lines 16–24 (see Fig. 1 for an illustra-
tion): Let u be an entry in L such that u has degree one in Line 16, that is, u is a free 
leaf in G − X and has no neighbors in X. Then, following Reduction Rule 1, delete u 
and its neighbor v and decrease the solution size s by one (see Lines 18 and 19). 
Let w denote the previously matched neighbor of v. Since v was removed, w is now 
free. If w is a leaf in G − X , then we can simply add it to L and deal with it later. 
If w is not a leaf, then we need to update MG−X since only leaves are allowed to be 
free. To this end, augment along an arbitrary alternating path from w to a leaf in the 
subtree with root w (see Lines 20 to 23). This is done as follows: Pick an arbitrary 
child w′ of w. Let w′′ be the matched neighbor of w′ . Observe that w′′ has to exist 
as if w′ would be free, then {w,w�} could be added to MG−X ; a contradiction to the 
maximality of MG−X . Since w is the parent of w′ , it follows that w′′ is a child of w′ . 
Now, remove {w�,w��} from MG−X , add {w�,w} and repeat the procedure with w′′ 
taking the role of w. Observe that the endpoint of this found alternating path, after 
augmentation, always is a free leaf. Thus, this free leaf needs to be pushed to L. This 
completes the algorithm description.

The correctness of Algorithm 1 (stated in the next lemma) follows in a straight-
forward way from the above discussion. For the formal proofs we introduce some 
notation. We denote by Gi (respectively  Mi ) the intermediate graph (respectively 
matching) stored by Algorithm 1 before the ith iteration of the while loop in Line 6, 

Fig. 1  Dealing with new degree-one vertices occurring during the application of Reduction Rule  3 
within Step 4. Only vertices visited in the tree G − X in Lines 16–24 of Algorithm 1 are shown. Further 
possible neighbors are indicated by edges. Left side: Vertex v is a free leaf in G − X (vertices in X are not 
illustrated). The gray highlighted alternating path indicates where Algorithm 1 augments the maximum 
matching MG−X in G − X . Bold edges indicate edges in MG−X . Vertex w′′ is the leaf where the augmenta-
tion stops ( w′′ is matched, otherwise MG−X would not be a maximum matching). Right side: Situation 
after Algorithm 1 augmentation. Vertex w′′ will be added to the list L and further processed
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that is, G1 is the input graph and M1 is the initial matching computed in Line 2. The 
following observation is easy to see but useful in our proofs.

Observation 4 For each  i ∈ {1,… , q} where  q is the number of iterations of the 
while loop in Line 6, we have that Mi is a maximum matching for Gi − X . If i ≥ 2 , 
then Gi is a subgraph of Gi−1.

Lemma 4 Algorithm  1 is correct, that is, given a matching instance  (G,  s) and a 
feedback vertex set X, it computes an instance (G�, s�) with feedback vertex set X and 
a maximum matching MG�−X in G� − X such that: 

1. There is a matching of size s in G if and only if there is a matching of size s′ in G′.
2. Each vertex in G� − X that is free wrt. MG�−X is a leaf in G� − X.
3. There are at most k2 free vertices in G� − X.

Proof Observation 4 implies that the returned graph G′ is a subgraph of the input 
graph G. Thus, X is a feedback vertex set for both these graphs. Moreover, by Obser-
vation 4, MG�−X is a maximum matching for G� − X.

As to 1, observe that Algorithm 1 obtains G′ from G by deleting edges in Line 
14 according to Reduction Rule 3 and by deleting vertices in Line 18 according to 
Reduction Rule 1. Thus, 1 follows from the correctness of these data reduction rules 
(see Lemmas 1 and 2).

As to 2, observe that G − X is changed if and only if the matching  MG−X is 
changed accordingly (see Lines 16 to 24 ). That is, after each deletion of vertices, the 
algorithm ensures that only leaves are free. Moreover, during the algorithm MG−X is 
always a maximum matching for G − X.

As to 3, observe that any free leaf in G − X that is not removed needs to have a 
neighbor in X (see Line 16). As Reduction Rule 3 is applied in Lines 8 to 15, there 
are at most k2 such free leaves.   ◻

We next show that Algorithm 1 runs in linear time. To this end, we need a further 
technical statement.

Lemma 5 In Gi , let P be an even-length alternating path wrt. Mi from a free leaf r 
to a matched inner vertex t of Gi − X . Let u be the matched neighbor of t. Then for 
each  j ∈ {1,… , i} there exists in Gj an even-length alternating path P′ from t to a 
free leaf r′ such that the neighbor of t on P′ is either (i) u, (ii) t’s parent, or (iii) a 
vertex not contained in Gi.

Proof We prove the statement of the lemma by induction on i. The base case i = 1 is 
trivial since G1 = G and thus P� = P.

Now assume the statement is true for Gi−1 , i ≥ 2 . We show that it holds for Gi 
as well. By Observation 4, Gi is a subgraph of Gi−1 (and of G). Thus, the path P is 
also contained in Gi−1 (and in G). If r is a leaf in Gi−1 − X and if Mi contains the 
same edges of P as Mi−1 , then P is an even-length augmenting path in Gi−1 and the 
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statement of the lemma follows from applying the induction hypothesis and Obser-
vation 4. Thus, assume that (a) r is not a leaf in Gi−1 − X or (b) Mi does not contain 
the same edges of P as Mi−1 (or both).

We start with case (a) assuming that  r is not a leaf in  Gi−1 − X . Then in 
the (i − 1)st iteration of the while loop in Line 6, Algorithm 1 deleted the child r′ 
of r and the child r′′ of r′ in Line 18. Moreover, Mi−1 contained the edge {r, r�} and r′′ 
was a free leaf in Gi−1 − X . Thus, extending P by the two vertices r′, r′′ yields in Gi−1 
an even-length alternating path P∗ from t to the free leaf r′′ such that the neigh-
bor of  t on P∗ is u. Hence, the statement of the lemma follows from the induction 
hypothesis and Observation 4.

We next consider case (b), assuming that Mi and Mi−1 do not contain the same 
edges of P. Thus, in the (i − 1)st iteration of the while loop in Line 6, Algorithm 1 
augmented along some alternating path in Lines 20 to 23. Denote with Q this alter-
nating path and let wq be starting point of Q, that is, wq is the vertex w in Line 17. 
Let vQ, uQ be the two deleted vertices in Line 17. Let rQ be the other endpoint of Q, 
that is, rQ is a leaf in Gi−1 and thus a free leaf in Gi . Since Mi and Mi−1 differ on P, 
this implies that the two paths Q and P overlap. Let z be the vertex on P and on Q 
which is closest to r. If z = r = rq , then P is a subpath of Q and in Gi−1 there is an 
alternating path P∗ from  t to the free leaf uQ . (Here, P∗ is the part of Q that is not 
contained in P.) Since the alternating path built in Line 20 to 23 is only extended 
by selecting child vertices, this implies that wq = t or wq is an ancestor of t. Thus, 
the neighbor of  t in P∗ is either  t’s parent or vQ , that is, a child of  t not contained 
in Gi . Hence, the statement of the lemma follows from the induction hypothesis and 
Observation 4.

It remains to consider the case that z ≠ r . Let zQ ( zP ) be the neighbor of z that is 
on Q but not on P (on P but not on Q); similarly let zPQ be the neighbor of z that is 
on both P and Q. Since Q is an alternating path either {z, zQ} or {z, zPQ} is in Mi−1.

First consider the case that {z, zQ} is in Mi−1 . Then, since both the subpath of Q 
from z to uQ and the subpath of P from z to r are alternating, we obtain an augment-
ing path from uQ over z to r. This is a contradiction to the maximality of Mi−1.

Second, consider the case that {z, zPQ} is in Mi−1 . Thus, (after augmenting Q) the 
edge {z, zPQ} is not in Mi . Moreover, as {z, zQ} is in Mi , the edge {z, zP} is also not 
in Mi . This contradicts the fact that P is an alternating path.   ◻

Lemma 6 Algorithm 1 runs in O(n + m) time.

Proof By Observation 3, Steps 1 to 3 in Lines 1 and 2 can be executed in linear time. 
Moreover, it is easy to execute Lines 3 to 5 in one sweep over the graph, that is, in 
linear time. It remains to show that Lines 6 to 24 run in linear time. To this end, we 
prove that each edge in E is being processed at most two times in Lines 6 to 24.

Start with the edges with at least one endpoint in X. These edges will be inspected 
at most twice by the algorithm: Once, when the edge is marked (see Line 9). The 
second time is when the edge is checked and possibly deleted Lines 13 and 14. This 
shows that the first part (Lines 8 to 15) runs in linear time.
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It remains to consider the edges within G − X . To this end, observe that the algo-
rithm performs two actions on the edges: deleting the edges (Line 18) and finding and 
augmenting along an alternating path (Lines 20 to 23). Clearly, after deleting an edge 
it will no longer be considered, so it remains to show that each edge is part of at most 
one alternating path in Line 22. Assume toward a contradiction that the algorithm aug-
ments along an edge twice or more. From all the edges that are augmented twice or 
more let e ∈ E be one that is closest to the root of the tree containing e, that is, there is 
no edge closer to a root. Let P1 and P2 be the first two augmenting paths containing e. 
Assume without loss of generality that the algorithm augmented along P1 in iteration i1 
and along P2 in iteration i2 of the while loop in Line 6 with i1 ≤ i2 . Let w1 and w2 be the 
two start points (the respective vertex w in Line 17) of P1 and P2 respectively. Let u1 
and v1 ( u2 and v2 ) be the vertices deleted in Line 18 which in turn made w1 ( w2 ) free. 
Observe that e does not contain any of these four vertices u1, v1, u2, v2 since before 
augmenting P1 ( P2 ) the vertices u1 and v1 ( u2 and v2 ) are deleted in Line 18. Since e is 
contained in both paths, either w1 is an ancestor of w2 or vice versa (or w1 = w2).

Assume first that w2 is an ancestor of  w1 . Thus, e = {w1,w
�
1
} where  w′

1
≠ v1 

and w′
1
 is a child of w1 (see Line 21). Consider Gi2

 and Mi2
 before the augmentation 

along P2 . Clearly, in Gi2
 there is an alternating path of length two from w2 to the 

free leaf u2 . Thus, by Lemma 5, in Gi1
 there is an alternating path Q1 from w2 to a 

free leaf r such that r and w1 are not in the same subtree of w2 . Moreover, by choice 
of  e the two matchings Mi1

 and Mi2
 contain the same edges on the path from w1 

to w2 in G − X . Hence, there is an alternating path Q2 from w1 to w2 in Gi1
 . There is 

also an alternating path Q3 from w1 to the free leaf u1 in Gi1
 (see Line 17). Combin-

ing Q1,Q2,Q3 gives an augmenting path from u1 to r in Gi1
 ; a contradiction to the 

maximality of Mi1
 (see Observation 4).

Next, consider the case that w1 = w2 . By choice of e we have that e = {w1,w
�} 

with w′ being a child of w1 in Gi2
 and w′ ≠ v2 . Thus, after the augmentation along P1 

the edge e is matched (see Line 21). This is a contradiction to the choice of P2 and 
the fact that {w2, v2} ∈ Mi2

 (see Line 17).
Finally, consider the case that w1 is an ancestor of w2 . By choice of e we have 

that e = {w2,w
�
2
} with w′

2
 being a child of w2 in Gi2

 and w′
2
≠ v2 . From the argu-

mentation used in the case w1 = w2 above, we can infer that after augmenting P1 
the edge e is not matched, thus e ∉ Mi1+1

 and e ∈ Mi1
 . Observe that in Gi2

 there is a 
length-two alternating path from w2 to the free leaf u2 . Thus, by Lemma 5, there is an 
even-length alternating path P from w2 to a free leaf in Gi . Moreover, the (matched) 
neighbor w′

2
 of w2 in P is either (i) v2 , (ii) the parent of w2 , or (iii) a vertex not in Gi2

 . 
Since e ∈ Mi1

 , it follows that w′
2
 is the matched neighbor of w2 on P. However, w′

2
 is 

in Gi2
 , is neither the parent of w2 nor of v2 , a contradiction.  ◻

Proposition 1 now follows from Lemmas 4 and 6.

3.2.2  Step 5

In this step we reduce the graph in O(kn) time so that at most k2(2k + 1) bottommost 
leaves will remain in the forest G − X . We will restrict ourselves to consider leaves 
that are matched with their parent vertex in MG−X and that do not have a sibling. 
We call these bottommost leaves interesting. Any sibling of a bottommost leaf is by 
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definition also a leaf. Thus, at most one of these leaves (the bottommost leaf or one 
of its siblings) is matched with respect to MG−X and all other leaves are free. Recall 
that in the previous step we upper-bounded the number of free leaves with respect 
to MG−X by k2 . Hence there are at most 2k2 bottommost leaves that are not interest-
ing (each free leaf can be a bottommost leaf with a sibling matched to the parent).

Our general strategy for this step is to extend the idea behind Reduction Rule 
3: We want to keep for each pair of vertices  x, y ∈ X at most  k different inter-
nally vertex-disjoint augmenting paths from x to y. In this step, we only consider 
augmenting paths of the form x, u, v, y where v is a bottommost leaf and u is v’s 
parent in G − X . Assume that the parent u of v is adjacent to some vertex x ∈ X . 
Observe that in this case any augmenting path starting with the two vertices  x 
and u has to continue to v and end in a neighbor of v. Thus, the edge {x, u} can 
be only used in augmenting paths of length three. Furthermore, for different par-
ent vertices u ≠ u′ the length-three augmenting paths are clearly internally vertex-
disjoint. If we do not need the edge {x, u} because we kept k augmenting paths 
from x to each neighbor y ∈ N(v) ∩ X already, then we can delete {x, u} . Further-
more, if we deleted the last edge from u to X (or u had no neighbors in X in the 
beginning), then u is a degree-two vertex in G and can be removed by applying 
Reduction Rule 2. As the child v of u is a leaf in G − X , it follows that v has at 
most  k + 1 neighbors in  G. We show below (Lemma 7) that the application of 
Reduction Rule 2 to remove u takes O(k) time. As we remove at most n vertices, 
at most O(kn) time is spent on Reduction Rule 2 in this step.

We now show that, after a simple preprocessing, one application of Reduction 
Rule 2 in the algorithm above can indeed be performed in O(k) time.

Lemma 7 Let u be a leaf in the tree G − X , v be its parent, and let w be the parent 
of v. If v has degree two in G, then applying Reduction Rule 2 to v (deleting v, merg-
ing u and v, and setting s ∶= s − 1 ) can be done in O(k) time plus O(kn) time for an 
initial preprocessing.

Proof The preprocessing is to simply create a partial adjacency matrix for G with 
the vertices in  X in one dimension and  V in the other dimension. This adjacency 
matrix has size O(kn) and can clearly be computed in O(kn) time.

Now apply Reduction Rule 2 to v. Deleting v takes constant time. To merge u 
and w iterate over all neighbors of u. If a neighbor u′ of u is already a neighbor of w, 
then decrease the degree of u′ by one, otherwise add u′ to the neighborhood of w. 
Then, relabel w to be the new merged vertex uw.

Since u is a leaf in G − X and its only neighbor in G − X , namely v, is deleted, it 
follows that all remaining neighbors of u are in X. Thus, using the above adjacency 
matrix, one can check in constant time whether u′ is a neighbor of w. Hence, the 
above algorithm runs in O(deg(u)) = O(k) time.   ◻

The above ideas are used in Algorithm 2 which we use for this step (Step 5). The 
algorithm is explained in the proof of the following proposition stating the correct-
ness and the running time of Algorithm 2.



3538 Algorithmica (2020) 82:3521–3565

1 3

Proposition 2 Let (G = (V ,E), s) be a Matching instance, let X ⊆ V  be a feedback 
vertex set, and let MG−X be a maximum matching for G − X with at most k2 free 
vertices in G − X that are all leaves. Then, Algorithm  2 computes in  O(kn) time 
an instance  (G�, s�) with feedback vertex set  X and a maximum matching  MG�−X 
in G� − X such that the following holds.

– There is a matching of size s in G if and only if there is a matching of size s′ in G′.
– There are at most 2k2(2k + 1) bottommost leaves in G� − X.
– There are at most k2 free vertices in G� − X and they are all leaves.

Proof We start with describing the basic idea of the algorithm. To this end, 
let {u, v} ∈ E be an edge such that  v is an interesting bottommost leaf, that is, v 
has no siblings and is matched to its parent  u by  MG−X . Counting for each 
pair  x ∈ N(u) ∩ X and  y ∈ N(v) ∩ X one augmenting path in a simple worst-case 
analysis gives O(k2) time per edge, which is too slow for our purposes. Instead, we 
count for each pair consisting of a vertex x ∈ N(u) ∩ X and a set Y = N(v) ∩ X one 
augmenting path. In this way, we know that for each y ∈ Y  there is one augmenting 
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path from x to y without iterating through all y ∈ Y  . This comes at the price of con-
sidering up to k2k such pairs. However, we will show that we can do the computa-
tions in O(k) time per considered edge in G − X . The main reason for this improved 
running time is a simple preprocessing that allows for a bottommost vertex  v to 
determine N(v) ∩ X in constant time.

The preprocessing is as follows (see Lines 1 to 3): First, fix an arbitrary bijec-
tion f between the set of all subsets of X to the numbers {1, 2,… , 2k} . This can be 
done for example by representing a set Y ⊆ X = {x1,… , xk} by a length-k binary 
string (a number) where the ith position is 1 if and only if xi ∈ Y  . Given a set Y ⊆ X 
such a number can be computed in O(k) time in a straightforward way. Thus, Lines 
1 to 3 can be performed in O(kn) time. Furthermore, since we assume that k < log n 
(otherwise the input instance has already at most 2k vertices), we have that  f (Y) < n 
for each Y ⊆ X . Thus, reading and comparing these numbers can be done in constant 
time. Furthermore, in Line 3 the algorithm precomputes for each vertex the number 
corresponding to its neighborhood in X.

After the preprocessing, the algorithm uses a table Tab where it counts an aug-
menting path from a vertex x ∈ X to a set Y ⊆ X whenever a bottommost leaf v has 
exactly  Y as neighborhood in  X and the parent of  v is adjacent to  x (see Lines 4 
to 18). To do this in O(kn) time, the algorithm proceeds as follows: First, it com-
putes in Line 5 the set P which contains all parents of interesting bottommost leaves. 
Clearly, this can be done in linear time. Next, the algorithm processes the vertices 
in P. Observe that further vertices might be added to P (see Line 18) during this 
processing. Let u be the currently processed vertex of P, let v be its child vertex, and 
let Y be the neighborhood of v in X. For each neighbor x ∈ N(u) ∩ X , the algorithm 
checks whether there are already k augmenting paths between x and Y with a table 
lookup in Tab (see Line 10). If not, then the table entry is incremented by one (see 
Line 11) since u and v provide another augmenting path. If yes, then the edge {x, u} 
is deleted in Line 13 (we show below that this does not change the maximum match-
ing size). If u has degree two after processing all neighbors of u in X, then, by apply-
ing Reduction Rule 2, we can remove  u and merge its two neighbors  v and  w. It 
follows from Lemma 7 that this application of Reduction Rule 2 can be done in O(k) 
time. Hence, one iteration of the while loop requires O(k) time and thus Algorithm 2 
runs in O(kn) time.

Recall that all vertices in G − X that are free wrt. MG−X are leaves. Thus, the 
changes to MG−X by applying Reduction Rule 2 in Line 15 are as follows: First, 
the edge {u, v} is removed and second the edge {w, q} is replaced by {vw, q} for 
some  q ∈ V  . Hence, the matching  MG−X after running Algorithm  2 has still at 
most k2 free vertices and all of them are leaves.

It remains to prove that 

(a) the deletion of the edge {x, u} in Line 13 results in an equivalent instance and
(b) that the resulting instance has at most 2k2(2k + 1) bottommost leaves.

First, we show (a). To this end, assume towards a contradiction that the new 
graph G� ∶= G − {x, u} has a smaller maximum matching than G (clearly, G′ can-
not have a larger maximum matching). Thus, any maximum matching MG for G has 
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to contain the edge {x, u} . This implies that the child v of u in G − X is matched 
in MG with one of its neighbors (except u): If v is free wrt. MG , then deleting {x, u} 
from MG and adding {v, u} yields another maximum matching not containing {x, u} , 
a contradiction. Recall that N(v) = {u} ∪ Y  where Y ⊆ X since v is a leaf in G − X . 
Thus, each maximum matching MG for G contains for some y ∈ Y  the edge {v, y} . 
Observe that Algorithm 2 deletes {x, u} only if there are at least k other interesting 
bottommost leaves v1,… , vk in G − X such that their respective parent is adjacent 
to x and N(vi) ∩ X = Y  (see Lines 9 to 13). Since |Y| ≤ k , it follows by the pigeon-
hole principle that at least one of these vertices, say vi , is not matched to any ver-
tex in Y. Thus, since vi is an interesting bottommost leaf, it is matched to its only 
remaining neighbor: its parent ui in G − X . This implies that there is another maxi-
mum matching

a contradiction to the assumption that all maximum matchings for G have to con-
tain {x, u}.

We next show (b) that the resulting instance has at most  2k2(2k + 1) bottom-
most leaves. To this end, recall that there are at most 2k2 bottommost leaves that 
are not interesting (see discussion at the beginning of this subsection). Hence, it 
remains to upper-bound the number of interesting bottommost leaves. Observe that 
each parent u of an interesting bottommost leaf has to be adjacent to a vertex in X 
since otherwise u would have been deleted in Line 15. Furthermore, after running 
Algorithm 2, each vertex x ∈ X is adjacent to at most k2k parents of interesting bot-
tommost leaves (see Lines 10 to 13). Thus, the number of interesting bottommost 
leaves is at most k22k . Hence, the number of bottommost leaves is upper-bounded 
by 2k2(2k + 1) .   ◻

3.2.3  Step 6

In this subsection, we provide the final step of our kernelization algorithm. Recall 
that in the previous steps we have upper-bounded the number of bottommost leaves 
in G − X by O(k22k) . We also computed a maximum matching MG−X for G − X such 
that at most k2 vertices are free wrt. MG−X and all free vertices are leaves in G − X . 
Using this, we next show how to reduce G to a graph of size O(k32k) . To this end 
we need some further notation. A leaf in G − X that is not bottommost is called a 
pendant. We define T to be the pendant-free tree (forest) of G − X , that is, the tree 
(forest) obtained from G − X by removing all pendants. The next observation shows 
that G − X is not much larger than T. This allows us to restrict ourselves on giving 
an upper bound on the size of T instead of G − X.

Observation 5 Let G − X be as described above with vertex set V⧵X and let T be the 
pendant-free tree (forest) of G − X with vertex set VT . Then, |V⧵X| ≤ 2|VT | + k2.

M�
G
∶= (MG⧵{{v, y}, {x, u}, {ui, vi}}) ∪ {{vi, y}, {x, ui}, {u, v}},
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Proof Observe that V⧵X is the union of all pendants in G − X and VT . Thus, it suf-
fices to show that G − X contains at most |VT | + k2 pendants. To this end, recall that 
we have a maximum matching for G − X with at most k2 free leaves. Thus, there are 
at most k2 leaves in G − X that have a sibling which is also a leaf since from two 
leaves with the same parent at most one can be matched. Hence, all but at most k2 
pendants in G − X have pairwise different parent vertices. Since all these parent ver-
tices are in VT , it follows that the number of pendants in G − X is |VT | + k2 .   ◻

We use the following observation to provide an upper bound on the number of 
leaves of T.

Observation 6 Let F be a forest, let F′ be the pendant-free forest of F, and let B be 
the set of all bottommost leaves in F. Then, the set of leaves in F′ is exactly B.

Proof First observe that each bottommost leaf of F is a leaf of F′ since no bottom-
most leaf is removed and F′ is a subgraph of F. Thus, it remains to show that each 
leaf v in F′ is a bottommost leaf in F.

We distinguish two cases of whether or not v is a leaf in F: First, assume that v 
is not a leaf in F. Thus, all of its child vertices have been removed. Since we only 
remove pendants to obtain F′ from  F and since each pendant is a leaf, it follows 
that  v is in  F the parent of one or more leaves u1,… , u� . Thus, by definition, all 
these leaves u1,… , u� are bottommost leaves, a contradiction to the fact that they 
were deleted when creating F′.

Second, assume that v is a leaf in F. If v is a bottommost leaf, then we are done. 
Thus, assume that v is not a bottommost leaf and hence a pendant. However, since 
we remove all pendants to obtain F′ from F, it follows that v is not contained in F′ , a 
contradiction.   ◻

From Observation 6 it follows that the set  B of bottommost leaves in G − X 
is exactly the set of leaves in T. In the previous step we reduced the graph such 
that |B| ≤ 2k2(2k + 1) (see Proposition 2). Thus, T has at most 2k2(2k + 1) vertices 
of degree one and, since T is a tree (a forest), T also has at most 2k2(2k + 1) ver-
tices of degree at least three. Let V2

T
 be the vertices of degree two in T and let V≠2

T
 

be the remaining vertices in T. From the above it follows that |V≠2

T
| ≤ 4k2(2k + 1) . 

Hence, it remains to upper-bound the size of V2
T
 . To this end, we will upper-bound 

the degree of each vertex in X by O(k22k) and then use Reduction Rule 1 and 2.  
We will check for each edge {x, v} ∈ E with  x ∈ X and  v ∈ V⧵X whether we 
“need” it. This check will use the idea from the previous subsection where each 
vertex in X needs to reach each subset Y ⊆ X at most k times via an augmenting 
path. Similarly as in the previous subsection, we want to keep “enough” of these 
augmenting paths. However, this time the augmenting paths might be long and 
different augmenting paths might overlap. To still use the basic approach, we use 
the following lemma stating that we can still somehow replace augmenting paths.
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Lemma 8 Let MG−X be a maximum matching in the forest G − X . Let Puv be an aug-
menting path for MG−X in G from u to v. Let Pwx , Pwy , and Pwz be three internally 
vertex-disjoint augmenting paths from w to x, y, and z, respectively, such that Puv 
intersects all of them. Then, there exist two vertex-disjoint augmenting paths with 
endpoints u, v, w, and one of the three vertices x, y, and z.

Proof Label the vertices in Puv alternating as odd or even with respect to Puv so that 
no two consecutive vertices have the same label, u is odd, and  v is even. Analo-
gously, label the vertices in Pwx , Pwy , and Pwz as odd and even with respect to Pwx , 
Pwy , and Pwz , respectively, so that w is always odd. Since all these paths are aug-
menting, it follows that each edge from an even vertex to its succeeding odd vertex 
is in the matching MG−X and each edge from an odd vertex to its succeeding even 
vertex is not in the matching. Observe that Puv intersects each of the other paths at 
least at two consecutive vertices, since every second edge must be an edge in MG−X . 
Since G − X is a forest and all vertices in X are free with respect to MG−X , it follows 
that the intersection of two augmenting paths is connected and thus a path. Since Puv 
intersects the three augmenting paths from w, it follows that at least two of these 
paths, say Pwx and Pwy , have a “fitting parity”, that is, in the intersections of Puv 
with Pwx and with Pwy the even vertices with respect to Puv are either even or odd 
with respect to both Pwx and Pwy.

Assume without loss of generality that in the intersections of the paths the ver-
tices have the same label with respect to the three paths (if the labels differ, then 
revert the ordering of the vertices in Puv , that is, exchange the names of u and v and 
change all labels on Puv to their opposite). Denote with v1

s
 and v1

t
 the first and the last 

vertex in the intersection of Puv and Pwx . Analogously, denote with v2
s
 and v2

t
 the first 

and the last vertex in the intersection of Puv and Pwy . Assume without loss of gener-
ality that Puv intersects first with Pwx and then with Pwy . Observe that v1

s
 and v2

s
 are 

even vertices and v1
t
 and v2

t
 are odd vertices since the intersections have to start and 

end with edges in MG−X (see Fig. 2 for an illustration). For an arbitrary path P and 
for two arbitrary vertices p1, p2 of P, denote by p1 − P − p2 the subpath of P from p1 
to  p2 . Observe that u − Puv − v1

t
− Pwx − x and w − Pwy − v2

t
− Puv − v are vertex-

disjoint augmenting paths.   ◻

Algorithm description. We now provide the algorithm for Step 6 (see Algo-
rithm  3 for pseudocode). The algorithm uses the same preprocessing (see 
Lines 1 to 3) as Algorithm  2. Thus, the algorithm can determine whether two 
vertices have the same neighborhood in X in constant time. As in Algorithm 2, 
Algorithm  3 uses a table  Tab which has an entry for each vertex  x ∈ X and 
each set Y ⊆ X . The table is filled in such a way that the algorithm detected for 
each  y ∈ Y  at least Tab [x, Y] internally vertex-disjoint augmenting paths from x 
to y. The main part of the algorithm is the boolean function ‘Keep-Edge’ in Line 
13 to 22 which makes the decision on whether to delete an edge {x, v} for v ∈ V⧵X 
and x ∈ X . The function works as follows for edge {x, v} : Starting at v the graph 
will be explored along possible augmenting paths until a “reason” for keeping 
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the edge {x, v} is found or no further exploration is possible (see Fig.  3 for an 
illustration).

Fig. 2  The situation in the proof of Lemma 8. The augmenting path from u to v intersects the two aug-
menting paths Pwx and Pwy from w to x and y, respectively. Bold edges indicate edges in the matching, 
dashed edges indicate odd-length alternating paths starting with the first and last edge not being in the 
matching. The gray paths in the background highlight the different augmenting paths: the initial paths 
from u to v, w to x, and x to y as well as the new paths from u to x and w to v as postulated by Lemma 8

Fig. 3  Illustration of the graph exploration of the function Keep-Edge in Algorithm 3: The vertices x and 
y are vertices in the feedback vertex set X. The vertices v1,… , v10 are part of G − X where v10 is a free 
leaf. The matching MG−X is denoted by the thick edges. Three alternating paths are highlighted; each 
path represents an exploration of Keep-Edge from x that returns true: First, the path via v3 ends in v1 —a 
vertex with degree more than two in G − X (see Line 14). The second path via v4 ends in v5 —a vertex 
connected to two vertices in X (here we assume that there are less than 6k2 paths from x to vertices adja-
cent to y and z; see Lines 17–19). The third path via v8 ends in the free leaf v10 (see Line 14)
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If the vertex  v is free wrt.  MG−X , then {x, v} is an augmenting path and we 
keep {x, v} (see Line 14). Observe that in Step 4 (see Proposition  1) we upper-
bounded the number of free vertices by k2 and all these vertices are leaves. Thus, we 
keep a bounded number of edges incident to x because the corresponding augment-
ing paths can end at a free leaf. We provide the exact bound below when discussing 
the size of the graph returned by Algorithm 3. In Line 14, the algorithm also stops 
exploring the graph and keeps the edge {x, v} if v has degree at least three in T. The 
reason is to keep the graph exploration simple by following only degree-two verti-
ces in T. This ensures that the running time for exploring the graph from x does not 
exceed O(n). Since the number of vertices in T with degree at least three is bounded 
(see discussion after Observation 6), it follows that only a bounded number of such 
edges {x, v} are kept.

If v is not free wrt. MG−X , then it is matched with some vertex w. If w is adja-
cent to some leaf u in G − X that is free wrt. MG−X , then the path x, v, w, u is an 
augmenting path. Thus, the algorithm keeps in this case the edge {x, v} , see Line 
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16. Again, since the number of free leaves is bounded, only a bounded number 
of edges incident to x will be kept. If w has degree at least three in T, then the 
algorithm stops the graph exploration here and keeps the edge {x, v} , see Line 16. 
Again, this is to keep the running time at O(kn) overall.

Let Y ⊆ X denote the neighborhood of  w in  X. Thus the partial augmenting 
path x, v, w can be extended to each vertex in Y. Thus, if the algorithm did not 
yet find 6k2 paths from x to vertices whose neighborhood in X is also Y, then the 
table entry Tab [x, fX(w)] (where fX(w) encodes the set Y = N(w) ∩ X ) is increased 
by one and the edge {x, v} will be kept (see Lines 18 and 19). (Here we need 6k2 
paths since these paths might be long and intersect with many other augmenting 
paths, see proof of Proposition 3 for the details of why 6k2 is enough.) If the algo-
rithm already found 6k2 “augmenting paths” from x to Y, then the neighborhood 
of w in X is irrelevant for x and the algorithm continues.

In Line 20, all above discussed cases to keep the edge {x, v} do not apply and 
the algorithm extends the partial augmenting part  x,  v,  w by considering the 
neighbors of  w except  v. Since the algorithm dealt with possible extensions to 
vertices in  X in Lines 17 and 19 and with extensions to free vertices in G − X 
in Line 14, it follows that the next vertex on this path has to be a vertex u that 
is matched wrt. MG−X . Furthermore, since we want to extend a partial augment-
ing path from x, we require that u is not adjacent to x: otherwise the length-one 
path x, u would be another, shorter partial augmenting path from x to u and we do 
not need the currently stored partial augmenting path.

Statements on Algorithm 3. To show that Algorithm 3 indeed performs Step 6, 
we need further lemmas. For each edge {x, z} with x ∈ X and z ∈ V⧵X we denote 
by P(x, z) the induced subgraph of G − X on the vertices that are explored in the 
function Keep-Edge when called in Line 9 with x and z. More precisely, we ini-
tialize P(x, z) ∶= � . Whenever the algorithm reaches Line 14, we add v to P(x, z). 
Furthermore, whenever the algorithm reaches Line 17, we add w to P(x, z). Simi-
larly, when the recursive call in Line 21 returns true, then we add u to P(x, z) in 
the recursive call (with u taking the role of v).

We next show that P(x, z) is a path with at most one additional pendant.

Lemma 9 Let x ∈ X and z ∈ V⧵X be two vertices such that {x, z} ∈ E . Then, P(x, z) 
is either a path or a tree with exactly one vertex z′ having more than two neighbors 
in P(x, z). Furthermore, z′ has degree exactly three and z is a neighbor of z′.

Proof We first show that all vertices in  P(x,  z) except  z and its neighbor  z′ have 
degree at most two in  P(x,  z). Observe that having more vertices than  z and  z′ 
in P(x, z) requires Algorithm 3 to reach Line 20.

Let w be the currently last vertex when Algorithm 3 continues the graph explora-
tion in Line 20. Observe that the algorithm therefore dealt with the case that w has 
degree at least three in the pendant-free tree T in Line 16. Thus, w is either a pendant 
leaf in G − X or w ∉ V≥3

T
 (that is, w has degree at most two in T). In the first case, 

there is no candidate to continue and the graph exploration stops. In the second case, 
w has degree at most two in T.
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We next show that any candidate u for continuing the graph exploration in Line 
21 is not a leaf in G − X . Assume toward a contradiction that u is a leaf in G − X . 
Since the parent w of u is matched with some vertex v ≠ u (this is how w is chosen, 
see Line 15), it follows that u is not matched. This implies that the function ‘Keep-
Edge’ would have returned true in Line 16 and would not have reached Line 20, a 
contradiction. Thus, the graph exploration follows only vertices in T. Furthermore, 
the above argumentation implies that w is not adjacent to a leaf unless this leaf is its 
predecessor v in the graph exploration.

We now have two cases: Either w is not adjacent to a leaf in G − X or v = z is a 
leaf and w = z� is its matched neighbor. In the first case, w has at most one neigh-
bor u ≠ v since w ∉ V≥3

T
 . Hence, w has degree two in P(x, z). In the second case, 

w = z� has at most two neighbors u ≠ v and u′ ≠ v . Thus, z′ has degree at most three.  
 ◻

For x ∈ X let

be the union of all induced subgraphs that Algorithm 3 explores from x.

Lemma 10 There exists a partition of Px into Px = P
A
x
∪ P

B
x
 such that all graphs 

within PA
x
 and within PB

x
 are pairwise disjoint.

Proof Since G − X is a tree (or forest), G − X is also bipartite. Let A and B be its two 
color classes (so A ∪ B = V⧵X ). We define the two parts PA

x
 and PB

x
 as follows: A 

subgraph P ∈ Px is in PA
x
 if the neighbor v of x in P is contained in A, otherwise P is 

in PB
x
.

We show that all subgraphs in PA
x
 and PB

x
 are pairwise vertex-disjoint. To this end, 

assume toward a contradiction that two graphs P,Q ∈ P
A
x
 share some vertex. (The 

case P,Q ∈ P
B
x
 is completely analogous.) Let p1 and q1 be the first vertex in P and Q 

respectively, that is, p1 and q1 are adjacent to x in G. Observe that p1 ≠ q1 . Let u ≠ x 
be the first vertex that is in P and in Q. By Lemma 9, P and Q are paths or trees with 
at most one vertex of degree more than two and this vertex has degree three and 
is the neighbor of  p1 or q1 , respectively. This implies together with q1, p1 ∈ A that 
either u = p1 or u = q1 . Assume without loss of generality that u = p1 . Since p1 ∈ A 
and q1 ∈ A and u is a vertex in Q, it follows that Algorithm 3 followed u in the graph 
exploration from q1 in Line 21. However, this is a contradiction since the algorithm 
checks in Line 20 whether the new vertex u in the path is not adjacent to x. Thus, all 
subgraphs in PA

x
 and PB

x
 are pairwise vertex-disjoint.   ◻

We next show that if Tab [x, f (Y)] = 6k2 for some x ∈ X and Y ⊆ X (recall that f 
maps Y to a number, see Line 1), then there exist at least 3k2 internally vertex-dis-
joint augmenting paths from x to Y.

Lemma 11 If in Line 17 of Algorithm  3 it holds for  x ∈ X and  Y ⊆ X 
that Tab [x, f (Y)] = 6k2 , then there exist in  G wrt.  MG−X at least 3k2 alternating 

Px ∶= {P(x, v) ∣ {x, v} ∈ E ∧ v ∈ V⧵X}
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paths from  x to vertices v1,… , v3k2 such that all these paths are pairwise vertex-
disjoint (except x) and N(vi) ∩ X = N(w) ∩ X for all i ∈ [3k2].

Proof Note that each time Tab [x, f (Y)] is increased by one (see Line 18), the 
algorithm found a vertex  w such that there is an alternating path  P from  x to  w 
and N(w) ∩ X = Y  . Furthermore, since the function Keep-Edge returns true in this 
case, the edge from  x to its neighbor on  P is not deleted in Line 10. Thus, there 
exist at least 6k2 alternating paths from x to vertices whose neighborhood in X is 
exactly Y. By Lemma 10, it follows that at least half of these 6k2 paths are vertex-
disjoint.   ◻

The next lemma shows that Algorithm 3 is correct and runs in O(kn) time.

Proposition 3 Let  (G = (V ,E), s) be a matching instance, let X ⊆ V  be a feed-
back vertex set of size k with k < log n and at most 2k2(2k + 1) bottommost leaves 
in G − X , and let MG−X be a maximum matching for G − X with at most k2 free verti-
ces in G − X that are all leaves. Then, Algorithm 3 computes in O(kn) time an equiv-
alent instance (G�, s�) of size O(k32k).

Proof We split the proof into three claims, one for the correctness of the algorithm, 
one for the returned kernel size, and one for the running time.   ◻

Claim 1 The input instance (G, s) is a yes-instance if and only if the instance (G�, s�) 
produced by Algorithm 3 is a yes-instance.

Proof Observe that the algorithm changes the input graph only in two lines: Lines 
10 and 11. By Lemma 1, applying Reduction Rules 1 and 2 yields an equivalent 
instance. Thus, it remains to show that deleting the edges in Line 10 is correct, that 
is, it does not change the size of a maximum matching. To this end, observe that 
deleting edges does not increase the size of a maximum matching. Thus, we need to 
show that the size of the maximum matching does not decrease. Assume toward a 
contradiction that it does.

Let  {x, v} be the edge whose deletion decreased the maximum match-
ing size. Redefine  G to be the graph before the deletion of {x, v} and G′ to be 
the graph after the deletion of  {x, v} . Recall that Algorithm  3 gets as addi-
tional input a maximum matching  MG−X for  G − X . Let  MG ∶= Mmax

G
(MG−X) 

be a maximum matching for  G with the largest possible overlap with MG−X and 
let GM ∶= G(MG−X ,MG) = (V ,MG−X △MG) (see Sect. 2). Since {x, v} ∈ MG⧵MG−X 
and x is free wrt. MG−X , it follows that there is a path P in GM with one endpoint 
being x.

Recall (see Sect. 2) that since P is a path in GM it follows that P is an augmenting 
path for MG−X . Since all vertices in X are free wrt. MG−X , it follows that all vertices 
in P except the endpoints are in V⧵X . Let z be the second endpoint of this path P. 
We call a vertex on P an even (odd) vertex if it has an even (odd) distance to x on P. 
(So x is an even vertex and v and z are odd vertices). Observe that v is the only odd 
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vertex in P adjacent to x: Otherwise there would be another augmenting path from x 
to  z which only uses vertices from  P. This would imply the existence of another 
maximum matching that does not use {x, v} , a contradiction.

Let u be the neighbor of z in P. Since no odd vertex on P except v is adjacent 
to x, it follows that the graph exploration in the function Keep-Edge starting from x 
and v in Line 9 either reached u or returned true before. If z ∈ V⧵X , then in both 
cases, the function Keep-Edge would have returned true in Line 9 and Algorithm 3 
would not have deleted {x, v} , a contradiction. Thus, assume that z ∈ X . Therefore, 
the function Keep-Edge considered the vertex  u in Line 17 but did not keep the 
edge {x, v} . Thus, when considering u, it holds that Tab [x, fX(u)] = 6k2 , where  fX(u) 
encodes Y ∶= N(u) ∩ X and z ∈ Y .

By Lemma 11, it follows that there are 3k2 pairwise vertex-disjoint (except  x) 
alternating paths from  x to vertices  u1,… , u3k2 with  N(ui) ∩ X = Y  . Thus, there 
is a set Q of 3k2 internally vertex-disjoint paths from  x to  y in  G. If one of the 
paths Q ∈ Q does not intersect any path in GM , then reverting the augmentation 
along P and augmenting along Q would result in another maximum matching not 
containing {x, v} , a contradiction. Thus, assume that each path in Q intersects at least 
one path in GM.

For each two paths Q1,Q2 ∈ Q that intersect the same path P′ in GM it holds that 
each further path P′′ in GM can intersect at most one of Q1 and Q2 : Assume toward 
a contradiction that P′′ does intersect both Q1 and Q2 . Since no path in GM except P 
contains x and z it follows that all intersections between the paths are within G − X . 
Since P′ and P′′ are vertex-disjoint and Q1 and Q2 are internally vertex-disjoint, it 
follows that there is a cycle in G − X , a contradiction to the fact that X is a feedback 
vertex set.

Since  3k2 > 3k + k2 , it follows from the pigeon hole principle that there is a 
path P� ∈ GM that intersects at least three paths Q1,Q2,Q3 ∈ Q such that no further 
path in GM intersects them. We can now apply Lemma 8 and obtain two vertex-dis-
joint augmenting paths Q and Q′ . Thus, reverting the augmentation along P and P′′ 
and augmenting along  Q and Q′′ yields another maximum matching for  G which 
does not contain {x, v} , a contradiction.   ◻

Claim 2 The graph G′ returned by Algorithm 3 has O(k32k) vertices and edges.

Proof We first show that each vertex x ∈ X has degree O(k22k) in G′ . To this end, we 
need to count the number of neighbors v ∈ N(x)⧵X where the function Keep-Edge 
returns true in Line 9. By Lemma 9, the function Keep-Edge explores the graph 
along one or two paths (essentially growing from one starting point into two direc-
tions). Recall that Px denotes the subgraphs induced by the graph exploration of 
Keep-Edge for the neighbors of x. By Lemma 10 there is a partition of Px into PA

x
 

and PB
x
 such that within each part the subgraphs are pairwise vertex-disjoint. We 

consider the two parts independently. We start with bounding the number of graphs 
in PA

x
 where the function ‘Keep-Edge’ returned true (the analysis is completely anal-

ogous for PB
x
).
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Since all explored subgraphs are disjoint and all free vertices in G − X wrt. MG−X 
are leaves, it follows that Algorithm 3 returned at most k2 times true in Line 16 due 
to w being adjacent to a free leaf in G − X . Also, the algorithm returns at most k2 
times true in Line 14 due to v  being free. Furthermore, the algorithm returns at 
most 6k2 ⋅ 2k times true in Line 19. Finally, we show that the algorithm returns at 
most 8k2 ⋅ (2k − 1) times true in Line 14 and 16, respectively. It follows from the 
discussion below Observation 6 that  T, the pendent-free tree of  G − X , has at 
most 2k2(2k + 1) leaves (denoted by V1

T
 ) and 2k2(2k + 1) vertices of degree at least 

three (denoted by V≥3

T
 ). Let VT be the vertices of T. Since T is a tree (or forest), it has 

more vertices than edges and hence

which implies

Thus, Algorithm  3 returns at most  2 ⋅ |V≥3

T
| + |V1

T
| < 6k2(2k + 1) times 

true in Line 16 due to  w being a vertex in V≥3

T
 . Also, Algorithm  3 returns at 

most |V≥3

T
| ≤ 2k2(2k + 1) times true in Line 14 due to v being a vertex in V≥3

T
.

Summarizing, considering the graph explorations in PA
x
 , Algorithm 3 returns at 

most

times true in the function Keep-Edge. Analogously, considering the graph explora-
tions in PA

x
 , Algorithm 3 also returned at most O(k22k) times true. Hence, each ver-

tex x ∈ X has degree at most O(k22k) in G′.
We now show that the exhaustive application of first Reduction Rule 1 and then 

Reduction Rule 2 indeed results in a kernel of the claimed size. To this end, denote 
with V1

G�−X
 , V2

G�−X
 , and V≥3

G�−X
 the vertices that have degree one, two, and at least 

three in G� − X . We have |V1
G�−X

| ∈ O(k32k) since each vertex in  X has degree at 
most O(k22k) and G′ is reduced wrt. Reduction Rule 1. Next, since G� − X is a for-
est (or tree), we have |V≥3

G�−X
| < |V1

G�−X
| and thus |V≥3

G�−X
| ∈ O(k32k) . Finally, each 

degree-two vertex in G′ needs at least one neighbor of degree at least three since G′ 
is reduced with respect to Reduction Rule 2. Thus, each vertex in V2

G�−X
 is either 

incident to a vertex in X or adjacent to one of the at most O(k22k) vertices in G� − X 
that have degree at least three. Thus, |V2

G�−X
| ∈ O(k32k) . Summarizing, G′ contains at 

most O(k32k) vertices and edges.   ◻

Claim 3 Algorithm 3 runs in O(kn) time.

Proof First, observe that Lines 1 to 6 can be done in O(kn) time: The preprocess-
ing and table initialization can be done in O(kn) time as discussed in Sect.  3.2.2. 
Furthermore, T and V≥3

T
 can clearly be computed in O(n + m) ≤ O(kn) time. Second, 

∑

v∈VT

degT (v) < 2|VT |

∑

v∈V≥3

T

degT (v) < 2 ⋅ |V≥3

T
| + |V1

T
|.

k2 + k2 + 6k2 ⋅ 2k + 8k2(2k + 1) ∈ O(k22k)
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applying Reduction Rule 1 in O(n + m) time is straightforward and Bartha and Kresz 
[2] showed how to apply Reduction Rule 2 in O(n + m) time. Thus, it remains to 
show that each iteration of the foreach-loop in Line 7 can be done in O(n) time.

By Lemma 10, the graphs  Px explored from  x can be partitioned into two 
parts such that within each part all subgraphs are vertex-disjoint. Thus, each ver-
tex in G − X is visited only twice during the execution of the function Keep-Edge. 
Furthermore, observe that in Line 17 and 18 the table can be accessed in constant 
time. Thus, the function Keep-Edge only checks once whether a vertex in V⧵X 
has a neighbor in X, namely in Line 20. This single check can be done in constant 
time. Since the rest of the computation is done on G − X which has less than |V⧵X| 
edges, it follows that each iteration of the foreach-loop in Line 7 can indeed be done 
in O(n) time.

This completes the proof of Proposition 3.   ◻

This completes the description of Step 6. Combining Steps 1 to 6 we obtain our 
kernelization algorithm for the parameter feedback vertex number.

Theorem 2 Matching parameterized by the feedback vertex number k admits a ker-
nel of size 2O(k) . It can be computed in O(kn) time.

Proof First, using the linear-time factor-four approximation of Bar-Yehuda et  al. 
[1], we compute an approximate feedback vertex set  X with |X| ≤ 4k . Then, we 
apply Step 1 to 6 using Algorithms 1 to 3. By Propositions 1 to 3, this can be done 
in O(kn) time and results in a kernel of size O((4k)324k) = 2O(k) .   ◻

Applying the O(m
√

n)-time algorithm for Matching [21] on the kernel yields the 
following.

Corollary 2 Matching can be solved in O(kn + 2O(k)) time, where k is the feedback 
vertex number.

4  Kernelization for Matching on Bipartite Graphs

In this section, we investigate the possibility of efficient and effective preprocessing 
for Bipartite Matching. More specifically, we show a linear-time computable poly-
nomial-size kernel with respect to the parameter distance to chain graphs. In the first 
part of this section, we provide the definition of chain graphs and describe how to 
compute the parameter. In the second part, we discuss the kernelization algorithm.

Definition and computation of the parameter. We first define chain graphs which 
are a subclass of bipartite graphs with special monotonicity properties.

Definition 1 [4] Let G = (A,B,E) be a bipartite graph. Then G is a chain graph 
if each of its two color classes A, B admits a linear ordering wrt.  neighborhood 
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inclusion, that is, A = {a1,… , a�} and  B = {b1,… , b�} where  N(ai) ⊆ N(aj) 
and N(bi) ⊆ N(bj) whenever i < j.

Observe that if the graph G contains twins, then there is more than one linear 
ordering wrt. neighborhood inclusion. To avoid ambiguities, we fix for the vertices 
of the color class A (resp. B) in a chain graph G = (A,B,E) one linear ordering ≺A 
(resp. ≺B ) such that, for two vertices u, v ∈ A (resp. u, v ∈ B ), if u ≺A v (resp.  if 
u ≺B v ) then N(u) ⊆ N(v) . In the remainder of the section we consider a bipartite 
representation of a given chain graph G = (A,B,E) where the vertices of A (resp. B) 
are ordered according to ≺A (resp. ≺B ) from left to right (resp. from right to left), as 
illustrated in Fig. 4.

For simplicity of notation we use in the following ≺ to denote the orderings ≺A 
and ≺B whenever the color class is clear from the context. Note that we use the 
direction left/right to indicate the ordering ≺ . That is, for a vertex a� ∈ A to the right 
(left) of a ∈ A we have a ≺ a′ ( a′ ≻ a ). In contrast, for a vertex b� ∈ B to the right 
(left) of b ∈ B we have b ≻ b′ ( b ≺ b′).

We next show that we have a constant-factor approximation for the parameter and 
the corresponding vertex subset working in linear time. To this end, we use the fol-
lowing characterization of chain graphs. Here, 2K2 denote the one-regular graph on 
four vertices (with disjoint two edges).

Lemma 12 [4] A bipartite graph is a chain graph if and only if it does not contain an 
induced 2K2.

Lemma 13 There is a linear-time factor-4 approximation for the problem of deleting 
a minimum number of vertices in a bipartite graph in order to obtain a chain graph.

Proof Let  G = (A,B,E) be a bipartite graph. We compute a set  S ⊆ A ∪ B such 
that G − S is a chain graph and S is at most four times larger than a minimum size of 

Fig. 4  A chain graph. Note that the ordering ≺A of the vertices in A is going from left to right while the 
ordering ≻B of the vertices in  B is going from right to left. The reason for these two orderings being 
drawn in different directions is that a maximum matching can be drawn as parallel edges, see e. g. the 
bold edges. In fact, Algorithm 4 computes such matchings with the matched edges being parallel to each 
other
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such a set. The algorithm iteratively tries to find a 2K2 and deletes the four correspond-
ing vertices until no further 2K2 is found. Since in each 2K2 , by Lemma 12, at least one 
vertex needs to be removed, the algorithm yields the claimed factor-4 approximation.

The details of the algorithm are as follows: First, it initializes  S = � and sorts 
the vertices in  A and in  B by their degree; the vertices in  A = {a1,… , a�} in 
increasing order and the vertices in  B = {b1,… , b�} in decreasing order, that 
is,  deg(a1) ≤ … ≤ deg(a�) and  deg(b1) ≥ … ≥ deg(b�) . Since the degree of each 
vertex is at most max{�, �} , this can be done in linear time with e. g. Bucket Sort. At 
any stage the algorithm deletes all vertices of degree zero and all vertices which are 
adjacent to all vertices in the other partition. The deleted vertices are not added to S 
since these vertices cannot participate in a 2K2 . Next, the algorithm recursively pro-
cesses the vertices in A in a nondecreasing order of their degrees. Let a ∈ A be a min-
imum-degree vertex and let b ∈ B be a neighbor of a. Since b is not adjacent to all 
vertices in A (otherwise b would be deleted), there is a vertex a� ∈ A that is not adja-
cent to b. Since deg(a) ≤ deg(a�) it follows that a′ has a neighbor b′ that is not adja-
cent to a. Hence, the four vertices a, a′, b, b′ induce only two edges: {a, b} and {a�, b�} 
and thus form a 2K2 . Thus, the algorithm adds the four vertices to S, deletes them 
from the graph, and continues with a vertex in A that has minimum degree.

As to the running time, we now show that, after the initial sorting, the algorithm 
considers each edge only twice: Selecting a and b as described above can be done 
in O(1) time. To select a′ , the algorithm simply iterates over all vertices in A until 
it finds a vertex that is not adjacent to b. In this way at most deg(b) + 1 vertices are 
considered. Similarly, by iterating over the neighbors of a′ , one finds b′ . Hence, the 
edges incident to a, a′ , b, and b′ are used once to find the vertices and a second time 
when these vertices are deleted. Thus, using appropriate data structures, the algo-
rithm runs in O(n + m) time.   ◻

Kernelization overview. In the rest of this section, we provide a linear-time com-
putable kernel for Bipartite Matching with respect to the parameter vertex deletion 
distance k to chain graphs. On a high level, our kernelization algorithm consists of 
two steps: First, we upper-bound by O(k) the number of neighbors of each vertex in 
the deletion set. Second, we mark O(k2) special vertices and we use the monotonic-
ity properties of chain graphs to upper-bound the number of vertices that lie between 
any two consecutive marked vertices, thus bounding the total size of the reduced 
graph to O(k3) vertices.

Step 1. Let G = (A,B,E) be the bipartite input graph, where V = A ∪ B , and 
let X ⊆ V  be a vertex subset such that G − X is a chain graph. By Lemma 13, we 
can compute an approximate X in linear time. Our kernelization algorithm uses a 
specific maximum matching MG−X ⊆ E in G − X with Algorithm 4 where all edges 
in MG−X are “parallel” and all matched vertices are consecutive in the ordering ≺A 
and ≺B , see also Fig. 4. Since in convex graphs matching is linear-time solvable [25] 
and convex graphs are a superclass of chain graphs, this can be done in O(n + m) 
time. We use MG−X in our kernelization algorithm to obtain some local information 
about possible augmenting paths. For example, each augmenting path has at least 
one endpoint in X. Forming this into a data reduction rule, with s denoting the size 
of a maximum matching, yields the following.
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Reduction Rule 4 If |MG−X| ≥ s , then return a trivial yes-instance; if s > |MG−X| + k , 
then return a trivial no-instance.

The correctness of Reduction Rule 4 follows from Observation 2.
We will show next that there is a maximum matching MG for G in which each 

vertex in X is either matched with another vertex in X or with a “small-degree ver-
tex” in G − X . This means that an augmenting path starting at some vertex in X will 
“enter” the chain graph G − X in a small-degree vertex. We now formalize this con-
cept. Recall that u ≺ v implies N(u) ⊆ N(v) . For a vertex x ∈ X we define NV⧵X

small
(x) to 

be the set of the k neighbors of x in V⧵X with the smallest degree, formally,

Lemma 14 Let G = (V ,E) be a bipartite graph and let X ⊆ V  be a vertex set such 
that G − X is a chain graph. Then, there exists a maximum matching MG for G such 
that every matched vertex x ∈ X is matched to a vertex in NV⧵X

small
(x) ∪ X.

Proof Assume, towards a contradiction, that there is no such matching  MG . 
Let  M′

G
 be a maximum matching for  G that maximizes the number of verti-

ces  x ∈ X that are matched to a vertex in  NV⧵X

small
(x) ∪ X , that is, let M′

G
 maxi-

mize  |{x ∈ X ∣ {u, x} ∈ M�
G
∧ u ∈ N

V⧵X

small
(x) ∪ X}| . Let  x ∈ X be a vertex that 

is not matched with any vertex in  NV⧵X

small
(x) ∪ X , that is, x is matched to a ver-

tex u ∈ V⧵(N
V⧵X

small
(x) ∪ X) . If there is an unmatched vertex w ∈ N

V⧵X

small
(x) in M′

G
 , then the 

matching M��
G
∶= M�

G
∪ {{x,w}}⧵{{u, x}} is a maximum matching with more vertices 

x ∈ X (compared to M′
G
 ) that are matched to a vertex in NV⧵X

small
(x) ∪ X , a contradiction. 

Hence, assume that there is no free vertex in NV⧵X

small
(x) . Since |NV⧵X

small
(x)| = |X| = k , it 

follows that at least one vertex w ∈ N
V⧵X

small
(x) is matched to a vertex v ∈ V⧵X . Observe 

that, by definition of NV⧵X

small
(x) , we have NG−X(w) ⊆ NG−X(u) . Thus, we have {u, v} ∈ E 

and thus, M��
G
∶= M�

G
∪ {{x,w}, {u, v}}⧵{{u, x}, {w, v}} is a maximum matching with 

more vertices in X (compared to M′
G
 ) fulfilling the condition of the lemma, a contra-

diction.   ◻

N
V⧵X

small
(x) ∶= {w ∈ N(x)⧵X ∣ k > |{u ∈ N(x)⧵X ∣ u ≺ w}|}.
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Based on Lemma 14, we can provide our next data reduction rule.

Reduction Rule 5 Let (G, s) be an instance reduced with respect to Reduction Rule 4 
and let x ∈ X . Then delete all edges between x and V⧵NV⧵X

small
(x).

Clearly, Reduction Rule 5 can be exhaustively applied in O(n + m) time by one 
iteration over A and B in the ordering ≺.

Step 2. For the second step of our kernelization algorithm, we first mark a set K 
of O(k2) vertices that are kept in the graph (and thus will end up in the kernel): Keep 
all vertices of X. For each vertex x ∈ X keep all vertices in NV⧵X

small
(x) and if a kept 

vertex is matched wrt. MG−X , then keep also the vertex with which it is matched. 
Formally, we have:

Observe that exhaustively applying Reduction Rule 5 ensures that  K is of size at 
most 2k2.

Next, we use the monotonicity properties of the chain graph to show that it suf-
fices to keep for each vertex v ∈ K at most k vertices to the right and to the left of v. 
Consider an augmenting path  P = x, a1, b1,… , a� , b� , y from a vertex  x ∈ B ∩ X 
to a vertex  y ∈ A ∩ X . Observe that if  a1 ≺ a� , then also {b1, a�} ∈ E and thus 
P� = x, a1, b1, a� , b� , y is an augmenting path (see Fig.  5 for a visualization). Fur-
thermore, the vertices in the augmenting path P′ are a subset of K ∪ X and, thus, by 
keeping these vertices (and the edges between them), we also keep the augment-
ing path P′ in our kernel. Hence, it remains to consider the more complicated case 
that a� ≺ a1 (see Fig. 6). To this end, we next show that in certain “areas” of the 
chain graph G − X the number of augmenting paths “passing through” such an area 
is upper-bounded. To specify an “area”, we need the following definition.

Definition 2 Let G = (A,B,E) be a chain graph and let M be a matching in G. Fur-
thermore let a ∈ A , b ∈ B with {a, b} ∈ M . Then #lmv (b,M) (resp. #rmv (a,M) ) is 

K ∶= X ∪ {v ∣ ∃x ∈ X ∶ v ∈ N
V⧵X

small
(x) ∨ ({u, v} ∈ MG−X ∧ u ∈ N

V⧵X

small
(x))}.

Fig. 5  A chain graph with a maximum matching (thick edges) and two additional vertices x and y. An 
augmenting path P = x, a1, b1, a2, b2,… , a7, b7, y with a1 ≺ a� implies that there is a shorter augment-
ing path  P� = x, a1, b1, a7, b7, y of length five (indicated by the gray background) in the input graph 
since N(a1) ⊆ N(a7)
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the number of neighbors of b (resp. of a) that are to the left of a (resp. to the right 
of b); formally:

In Definition 2 the terms “left” and “right” refer to the ordering of the vertices of 
A and B in the bipartite representation of G, as illustrated in Fig. 6. The abbreviation 
#rmv ( #lmv ) stands for “number of vertices right (left) of the matched vertex”. We 
set

and

Finally, we define

for a1, a2 ∈ A and

for  b1, b2 ∈ B . For example, in the graph displayed in Fig.  6, we 
have #lmv (b2, b3,M) = 2 and #lmv (b3, b6,M) = 1.

With these definitions, we can show a limit on the number of augmenting paths 
that can “cross” an edge in MG−X.

#lmv (b,M) ∶= |{a� ∈ N(b) ∣ a� ≺ a}|, #rmv (a,M) ∶= |{b� ∈ N(a) ∣ b� ≺ b}|.

#lmv (a,M) ∶= #lmv (b,M)

#rmv (b,M) ∶= #rmv (a,M).

#rmv(a1, a2,M) ∶= min
a1≺a

�≺a2

{#rmv(a�,M)}

#lmv (b1, b2,M) ∶= min
b2≺b

�≺b1

{ #lmv (b�,M)}

Fig. 6  The graph from Fig. 5 with the only difference being that the positions of x and y are exchanged 
(and the vertex names are adjusted accordingly, so x is still adjacent to a1 ). Again, the thick, black edges 
denote a maximum matching M for the chain graph (containing all vertices except x and y). The graph 
contains an augmenting path P = x, a1, b1, a2, b2,… , a7, b7, y with a1 ≻ a7 . In contrast to the example 
displayed in Fig. 5, there is no augmenting x–y-path of length five. The shortest augmenting x–y-path is 
displayed. For the edge {a4, b4} ∈ M the vertices certifying that #lmv (b4,M) = 1 and #rmv (a4,M) = 2 
are highlighted by dashed boxes (see Definition 2)
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Lemma 15 Let G = (A,B,E) be a chain graph and M be a maximum matching for G 
computed by Algorithm 4. Let a, b ∈ V  with {a, b} ∈ M . Then the number of vertex-
disjoint alternating paths that (1) start and end with edges not in M and that (2) 
have endpoints left of a and right of b is at most min{ #lmv (b,M), #rmv (a,M)}.

Proof We prove the case  #lmv (b,M) ≤ #rmv (a,M) , that is, 
min{ #lmv (b,M), #rmv (a,M)} = #lmv (b,M) . The case #lmv (b,M) > #rmv (a,M) 
follows by symmetry (with switched roles of a and b). Let #aug denote the number 
of vertex-disjoint alternating paths from {a� ∈ A ∣ a� ≺ a} to {b� ∈ B ∣ b� ≺ b} such 
that the first and last edge are not in M (see Fig. 6 for an example with #aug = 1 
for a = a4 and b = b4 ). Furthermore, let ab

1
,… , ab

#lmv (b,M)
 be the neighbors of b that 

are to the left of a, that is, ab
1
≺ ab

2
≺ … ≺ ab

#lmv (b,M)
≺ a . Since G is a chain graph it 

follows that no vertex  a� ∈ A with  a′ ≺ ab
1
 is adjacent to any vertex  b� ∈ B 

with b� ⪯ b . Furthermore, for any edge {a�, b�} ∈ E with a ≺ a′ and b ≺ b′ it follows 
from the construction of M (see Algorithm 4) that {a�, b�} ∉ M . Hence, any of these 
alternating paths has to contain at least one vertex from ab

1
,… , ab

#lmv (b,M)
 . Since the 

alternating paths are vertex-disjoint it follows that #aug ≤ #lmv (b,M) .   ◻

From the previous lemma, we directly obtain the following.

Lemma 16 Let  G = (A,B,E) be a chain graph and let  M be the maximum 
matching for  G computed by Algorithm  4. Let  a1, a2 ∈ A and b1, b2 ∈ B 
with {a1, b1}, {a2, b2} ∈ M with  a1 ≺ a2 . Then there are at most  #lmv (b1, b2,M) 
vertex-disjoint alternating paths that (1) start and end with edges not in M and that 
(2) have endpoints left of a1 and right of b2.

Lemma 16 states that the number of augmenting paths passing through the 
“area” between a1 and a2 is bounded. Using this, we want to replace this area by 
a gadget with O(k) vertices. To this end, we need further notation. For each kept 
vertex v ∈ K , we may also keep some bounded number of vertices to the right 
and to the left of v. We call these vertices the left buffer (right buffer) of v.

Definition 3 Let  G = (A,B,E) be a chain graph and let  M be the maxi-
mum matching for  G computed by Algorithm  4. Let  a1, a2 ∈ A and b1, b2 ∈ B 
with {a1, b1}, {a2, b2} ∈ M and a1 ≺ a2 . Then the (at most) #lmv (b1, b2,M) vertices 
to the right of a1 form the right buffer Br(a1,M) of a1 ; formally,

Analogously,

Br(a1,M) ∶= {a ∈ A ∣ a1 ≺ a∧

|{a� ∈ A ∣ a1 ≺ a� ≺ a}| ≤ min{ #lmv (b1, b2,M), k}}.
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Note that in  Definition 3 each of the sets Br(a1,M) , B�(a2,M) , Br(b1,M) , and 
B�(b2,M) depends on all four vertices a1, a2, b1, b2 ; we omit these dependencies 
from the names for the sake of brevity.

The basic idea is now to delete vertices “outside” these buffers. See Fig. 7 for an 
illustrating example of the following data reduction rule formalizing this idea.

Reduction Rule 6 Let  (G, s) be an instance reduced with respect to Reduc-
tion Rule 4. Let  a1, a2 ∈ K ∩ A with a1 ≺ a2 and {a1, b1}, {a2, b2} ∈ MG−X such 
that A� ∶= {a ∈ A ∣ a1 ≺ a ≺ a2} is of size at least 2 ⋅min{ #lmv (b1, b2,M), k} + 1 
and A� ∩ K = � . Then delete all vertices in A�

D
∶= A�⧵(Br(a1,MG−X) ∪ B�(a2,MG−X)) 

B�(a2,M) ∶= {a ∈ A ∣ a ≺ a2∧

|{a� ∈ A ∣ a ≺ a� ≺ a2}| ≤ min{ #lmv (b1, b2,M), k}},

Br(b1,M) ∶= {b ∈ B ∣ b ≺ b1∧

|{b� ∈ B ∣ b ≺ b� ≺ b1}| ≤ min{ #lmv (b1, b2,M), k}},

B�(b2,M) ∶= {b ∈ B ∣ b2 ≺ b∧

|{b� ∈ B ∣ b2 ≺ b� ≺ b}| ≤ min{ #lmv (b1, b2,M), k}}.

Fig. 7  An example for the application of Reduction Rule 6. Top: A part of a chain graph G − X is dis-
played and the thick edges indicate parts of the maximum matching MG−X . There are two vertex-disjoint 
augmenting paths from the two vertices left of a1 to the two vertices right of b2 highlighted by gray back-
ground. Moreover, #lmv (b1, b2,MG−X) = 2 . Bottom: The part of the graph after applying Reduction Rule 
6 and the corresponding two vertex-disjoint augmenting paths. Note that the only edges that are in the 
graph below but not above are the edges from vertices in Br(a1,MG−X) to B�(b2,MG−X)
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and their matched neighbors in B, add all edges between the vertices in the right 
buffer of a1 and the vertices in the left buffer of b2 , and decrease s by |A′

D
|.

Lemma 17 Reduction Rule 6 is correct and can be exhaustively applied in O(n + m) 
time.

Proof We first introduce some notation and provide some general observations. 
Then we show the correctness in two separate claims. Finally, we discuss the run-
ning time.

Let a1 , a2 , b1 , and b2 be as stated in Reduction Rule 6. Denote by A′ (resp. B′ ) 
the set of vertices between  a1 and  a2 (resp.  between  b1 and  b2 ). Further denote 
by  A′

D
⊆ A′ and  B′

D
⊆ B′ the sets of deleted vertices. Note that  |A�

| = |B�
| 

and |A�
D
| = |B�

D
| since MG−X was produced by Algorithm 4. Denote the vertices in 

the buffers of a1, a2, b1 , and b2 by

for x ∈ {r,�}, y ∈ {a, b}, z ∈ [2] , and x = r ⟺ z = 1 (see Fig. 7 for examples of 
the concrete variable identifier).

Since the input instance is reduced with respect to Reduction Rule 4, it follows 
that  s − k ≤ |MG−X| < s . Denote by  MG�−X ∶= MG−X ∩ E� the matching obtained 
from MG−X by deleting all edges not in the reduced graph G′ . Recall that s� = s − |A�

D
| . 

We next show in  Claims 4 and 5 that the input instance  (G = (V ,E), s) is a yes-
instance if and only if the produced instance  (G� = (V �,E�), s�) is a yes-instance. 
Before we present these two claims, observe that there is a perfect matching between 
the vertices in A′

D
 and B′

D
 , and thus

Claim 4 If (G, s) is a yes-instance, then (G�, s�) is a yes-instance.

Proof Recall that Mmax
G

(MG−X) is a maximum matching for G minimizing the size 
of MG−X △Mmax

G
(MG−X) . Since (G, s) is a yes-instance it holds that |Mmax

G
(MG−X)| ≥ s . 

For brevity we set  GM ∶= G(MG−X ,M
max
G

(MG−X)) = (V ,MG−X △Mmax
G

(MG−X)) . 
Note that GM is a graph that only contains odd-length paths (see Sect. 2). We will 
show that there are as many vertex-disjoint augmenting paths for MG�−X in G′ as 
there are paths in GM . This will show that G′ contains a matching of size

To this end, observe that all paths that do not use vertices in V⧵V � = A�
D
∪ B�

D
 are 

also contained in G′ . Thus, consider the paths in GM that use vertices in V⧵V ′ . 
Denote by PM the set of all paths in GM using vertices in V⧵V ′ and set t ∶= |P

M
| . 

Consider now an arbitrary i ∈ [t] , and let PM
i
∈ P

M.

Bx(yz,MG−X) ∶= {yx
1
,… , yx

min{ #lmv (b1,b2,MG−X ),k}
}

(1)s − |MG−X| = s� − |MG�−X|.

|MG�−X| + |Mmax
G

(MG−X)| − |MG−X| ≥ |MG�−X| + s − |MG−X|

(1)
= |MG�−X| + s� − |MG�−X| = s�.
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Denote by vi
1
, vi

2
,… , vi

pi
 the vertices in PM

i
 in the corresponding order, that is, vi

1
 

and vi
pi
 are the endpoints of PM

i
 and we have {vi

2j
, vi

2j+1
} ∈ MG−X for all  j ∈ [pi∕2] . 

Observe that exactly one endpoint of PM
i

 is in A and the other endpoint is in B, since 
PM
i

 is an odd-length path. Assume without loss of generality that vi
1
∈ A and vi

pi
∈ B . 

Thus, the vertices in PM
i

 with odd (even) index are in A (B).
We next show that for any two vertices vi

j
, vi

�
 of PM

i
 with  j < � < pi − 1 and both 

being in A⧵X , it follows that vi
j
≺ vi

�
 . First, observe that if  j = 1 , then vi

j
∈ A⧵X is a 

free vertex wrt. MG−X . Since vi
�
 is matched wrt. MG−X and since MG−X is computed 

by Algorithm 4, it follows that vi
1
≺ vi

�
 . Thus, assume that  j > 1 and � > 1 (thus  j ≥ 3 

and  j > 1 ). Assume toward a contradiction that  vi
�
≺ vi

j
 . Since  � < pi − 1 , we 

have vi
�+1

∈ B⧵X and since G − X is a chain graph, it follows that {vi
j
, vi

�+1
} ∈ E , a 

contradiction to Observation 1. Thus, vi
j
≺ vi

�
.

We next show that the path PM
i

 contains at least one vertex vi
j
 left of a1 and at least 

one vertex vi
�
 right of b2 . Recall that MG−X was computed by Algorithm 4 and, thus, 

the free vertices are the smallest wrt. the ordering ≺ (see also Fig. 4). Thus, if one 
endpoint of PM

i
 is in (A ∪ B)⧵X , then this vertex is either vi

1
 and left of a1 or it is vi

p1
 

and right of b2 . Thus, assume that the endpoints of PM
i

 are in X. We showed in the 
previous paragraph that  vi

3
≺ vi

5
≺ … ≺ vi

p1−3
 . Thus, we also 

have  vi
pi−2

≺ vi
pi−4

≺ … ≺ vi
2
 since  MG−X is computed by Algorithm  4. Since we 

assumed some vertices of PM
i

 to be in V⧵V ′ , it follows that for at least one ver-
tex vi

2j+1
 it holds that a1 ≺ vi

2j+1
≺ a2 . Furthermore since by assumption no vertex 

between a1 and a2 or between b1 and b2 is in K, it follows that vi
3
≺ a1 (since vi

3
∈ K ) 

and vi
pi−2

≺ b2 (since vi
pi−2

∈ K).
For each i ∈ [t] denote by aPM

i  the last vertex on the path PM
i

 that is not right of a1 , 
that is, aPM

i  is the vertex on PM
i

 such that for each vertex a� ∈ A⧵X that is in PM
i

 it 
holds that a1 ≺ a′ or a� ⪯ aP

M
i  . It follows from the previous paragraph that aPM

i  exists. 
Analogously to aPM

i  , for each i ∈ [t] denote by bPM
i  the first vertex on the path PM

i
 that 

is not left of b2 , that is, bPM
i  is the vertex on PM

i
 such that for each vertex b� ∈ B that is 

in PM
i

 it holds that b2 ≺ b′ or b� ⪯ bP
M
i  . This means that in GM there is for each i ∈ [t] 

an alternating path from aPM
i  to bPM

i  starting and ending with non-matched edges and 
all these paths are pairwise vertex-disjoint. We show that also in G′ there are pair-
wise vertex-disjoint alternating paths from aPM

i  to bPM
i  . Assume without loss of gener-

ality that aPM
1 ≺ aP

M
2 ≺ … ≺ aP

M
t  . Since in each path PM

i
 , i ∈ [t] , the successor of aPM

i  
is to the right of b1 , it follows that aPM

i  has at least i neighbors right of b1 . Since the 
right buffer of b1 contains the #lmv (b1, b2,MG−X) ≥ t (see Lemma 16) vertices to 
the right of b1 , we have {aPM

i , br
i
} ∈ E . By symmetry, we have {bPM

i , a�
i
} ∈ E . Recall 

that MG−X forms a perfect matching between Br(b1,MG−X) and Br(a1,MG−X) as well 
as between B�(a2,MG−X) and B�(b2,MG−X) . Since Reduction Rule 6 added all edges 
between Br(a1,MG−X) and B�(b2,MG−X) to E′ , it follows that each path PM

i
 can be 

completed as follows: aPM
i , br

i
, ar

i
, b�

i
, a�

i
, bP

M
i  ; note that exactly the edges {br

i
, ar

i
} 

and {b�
i
, a�

i
} are in MG−X . Thus, each path in PM can be replaced by an augmenting 

path for MG�−X in G′ and all these augmenting paths are vertex-disjoint. Thus, there 
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are as many augmenting paths for MG�−x in G′ as there are paths in GM and therefore 
(G�, s�) is a yes-instance.   ◻

Claim 5 If (G�, s�) is a yes-instance, then (G, s) is a yes-instance.

Proof Let MG′ a maximum matching for G′ . Observe that |MG′ | ≥ s′ . We construct a 
matching MG for G as follows. First, copy all edges from MG� ∩ E into MG . Second, 

add all edges from MG−X ∩

(

V⧵V �

2

)

 , that is, a perfect matching between A′
D
 and B′

D
 

is added to MG . Observe that if all edges in MG′ are also in E, then MG is a matching 
of size  s in  G. Thus, assume that some edges in  MG′ are not in  E, that is, 
{ar

i1
, b�

j1
},… , {ar

it
, b�

jt
} ∈ MG�⧵E for some  t ∈ [ #lmv (b1, b2,MG−X)] . Observe 

that  s − |MG| ≤ t . Clearly, the vertices ar
i1
,… , ar

it
, br

j1
,… , br

jt
 are free with respect 

to MG.
We show that there are t  pairwise vertex-disjoint augmenting paths 

from {ar
i1
,… , ar

it
} to {b�

j1
,… , b�

jt
} ; note, however, that these paths are not necessarily 

from  ar
ir
 to b�

jr
 , where r ∈ [t] . To this end, recall that, by definition 

of  #lmv (b1, b2,MG−X) , each vertex  b ∈ B with b2 ≺ b ≺ b1 has at 
least #lmv (b1, b2,MG−X) neighbors to the left of its matched neighbor. This allows 
us to iteratively find augmenting paths as follows: To create the  qth augmenting 
path Pq start with some vertex b�

jq
 . Denote by v the last vertex added to Pq (in the 

beginning we have  v = b�
jq
 ). If  v ∈ A , then add to Pq the neighbor matched to  v. 

If v ∈ B , then do the following: if v is adjacent to a vertex a ∈ {ar
i1
,… , ar

it
} , then 

add  a to Pq , otherwise add the leftmost neighbor of  v to Pq . Repeat this process 
until Pq contains a vertex from {ar

i1
,… , ar

it
} . After we found Pq , remove all vertices 

of Pq from G. If q < t , then continue with Pq+1 . Observe that any two vertices of Pq 
that are in A have at least #lmv (b1, b2,MG−X) − 1 other vertices of A between them 
(in the ordering of the vertices of A, see Fig. 4). Thus, after a finite number of steps, 
Pq will reach a vertex in {ar

i1
,… , ar

it
} . Furthermore, it follows that after removing the 

vertices of Pq it holds that #lmv (b1, b2,MG−X) is decreased by exactly one: Pq con-
tains for each vertex b ∈ B at most one vertex among the #lmv (b1, b2,MG−X) neigh-
bors of b that are directly to the left of its matched neighbor in MG−X . Thus, in each 
iteration we have #lmv (b1, b2,MG−X) > 0 . It follows that the above procedure con-
structs t vertex-disjoint augmenting paths from {ar

i1
,… , ar

it
} to {b�

j1
,… , b�

jt
} . Hence, 

G contains a matching of size s and thus (G, s) is a yes-instance.   ◻

The correctness of the data reduction rule follows from the previous two 
claims. It remains to prove the running time. To this end, observe that the match-
ing MG−X is given. Computing all degrees of  G can be done in O(n + m) time. 
Also  #lmv (v,MG−X) can be computed in linear time: For each vertex  b ∈ B 
one has to check for each neighbor of b whether it is to the left of b’s matched 
neighbor and to adjust  #lmv (b,MG−X) accordingly. Furthermore, comput-
ing #lmv (b1, b2,MG−X) and removing the vertices in  A′

D
 and  B′

D
 can be done 
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in O(
∑

b∈B� deg(b) +
∑

a∈A� deg(a))  time. Thus, Reduction Rule 6 can be exhaus-
tively applied in O(n + m) time.   ◻

We next upper-bound the number of free vertices with respect to MG−X . Let

and

that is, Ak
free

 contains the k rightmost free vertices in A⧵X . Observe that all vertices 
in Ak

free
 are left of MG−X . Analogously, denote by Bk

free
 the set containing the k left-

most free vertices in B⧵X.

Reduction Rule 7 Let (G, s) be an instance reduced with respect to Reduction Rule 
4. Then delete all vertices in 

(

Afree⧵(K ∪ Ak
free

)
)

∪
(

Bfree⧵(K ∪ Bk
free

)
)

.

Lemma 18 Reduction Rule 7 is correct and can be applied in O(n + m) time.

Proof The running time is clear. It remains to show the correctness. Let  (G, s) 
be the input instance reduced with respect to Reduction Rule 4 and let (G�, s) be 
the instance produced by Reduction Rule 7. We show that deleting the vertices 
in Afree⧵(K ∪ Ak

free
) yields an equivalent instance. It then follows from symmetry that 

deleting the vertices in Bfree⧵(K ∪ Bk
free

) yields also an equivalent instance.
We first show that if  (G, s) is a yes-instance, then also the produced 

instance (G�, s) is a yes-instance. Let (G, s) be a yes-instance and MG be a maxi-
mum matching for  G. Clearly, |MG| ≥ s . Observe that for each removed ver-
tex  a ∈ Afree⧵(K ∪ Ak

free
) it holds that every vertex  a� ∈ Ak

free
 is to the right of  a, 

that is, a ≺ a′ and thus NG−X(a) ⊆ NG−X(a
�) . Since  (G, s) is reduced with respect 

to Reduction Rule 4, it follows that |MG−X| ≥ |MG| − k . Thus, there exist at most k 
augmenting paths for MG−X in G. If none of these augmenting paths ends in a ver-
tex a ∈ Afree⧵(K ∪ Ak

free
) , then all augmenting paths exist also in G′ and thus (G�, s) 

is a yes-instance. If one of these augmenting paths, say P, ends in a, then at least 
one vertex a� ∈ Ak

free
 is not endpoint of any of these augmenting paths. Since a ∉ K , 

it follows from the definition of K that the neighbor b of a on P is indeed in B⧵X . 
Since  NG−X(a) ⊆ NG−X(a

�) , it follows that {a�, b} ∈ E and thus we can replace  a 
by a′ in the augmenting path. By exhaustively applying the above exchange argu-
ment, it follows that we can assume that none of the augmenting paths uses a vertex 
in Afree⧵(K ∪ Ak

free
) . Thus, all augmenting paths are also contained in G′ and hence 

the resulting instance (G�, s) is still a yes-instance.
Finally observe that if (G�, s) is a yes-instance, then also (G, s) is a yes-instance: 

any matching of size s in G′ is also a matching in G since G′ is a subgraph of G.   ◻

We have now all statements that we need to show our second main result.

Afree ∶= {a ∈ A ∣ a is free with respect toMG−X}

Ak
free

∶= {a ∈ Afree ∣ |{a
� ∈ Afree ∣ a ⪯ a�}| ≤ k},
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Theorem 3 Matching on bipartite graphs admits a cubic-vertex kernel with respect 
to the vertex deletion distance to chain graphs. The kernel can be computed in linear 
time.

Proof Let (G, s) be the input instance with G = (V ,E) , the two partitions V = A ∪ B , 
and X ⊆ V  such that G − X is a chain graph. If X is not given explicitly, then use 
the linear-time factor-four approximation provided in Lemma 13 to compute  X. 
The kernelization is as follows: First, compute the matching MG−X in linear time 
with Algorithm 4. Next compute the set of kept vertices K. Then, apply Reduction 
Rules 5 to 7. By Lemmas 17 and 18, this can be done in linear time. Let bK

�
 the 

leftmost vertex in K ∩ B and aK
r

 rightmost vertex in A ∩ K . Let aK
�

 and bK
r

 be their 
matched neighbors. Since we reduced the instance with respect to Reduction Rule 5, 
we have |K| ≤ 2k2 . Moreover, as we reduced the instance with respect to Reduction 
Rule 6, it follows that the number of vertices between aK

�
 and aK

r
 as well as the num-

ber of vertices between bK
�

 and bK
r

 is at most 4k3 , respectively. Furthermore, there 
are at most 2k free vertices left in V⧵X since we reduced the instance with respect 
to Reduction Rule 7. It remains to upper-bound the number of matched vertices left 
of bK

�
 and right of aK

r
 (see Fig. 8).

Observe that all vertices left of bK
�

 are matched with respect to MG−X . If there 
are more than 2k vertices to the left of bK

�
 , then do the following: Add four ver-

tices a� , b� , xa� , x
b
�
 to V. The idea is that {a� , b�} should be an edge in MG−X such 

that a� ∈ A and b� ∈ B are in K and there is no vertex left of b� . This means we add 
these vertices to simulate the situation where the leftmost vertex in B⧵X is also in K. 
To ensure that a� and b� are in K and that they are not matched with some vertices 
in G, we add xa

�
 and xb

�
 to X and make xa

�
 respectively xb

�
 to their sole neighbors. In 

this way, we ensure that there is maximum matching in the new graph that is exactly 
two edges larger than the maximum matching in the old graph. In this new graph 
we can then apply Reduction Rule 6 to reduce the number of vertices between b� 
and bK

�
 . Formally, we add the following edges. Add {a� , xa�}, {b� , x

b
�
} to E. Add all 

edges between b� and the vertices in B⧵X . Let a be the rightmost vertex in Ak
free

 . 

Fig. 8  Schematic representation of the situation in the proof of Theorem 3; only the chain graph G − X is 
shown. The vertices within the dashed boxes are bounded by the applications of Reduction Rules 5 to 6. 
Moreover, the vertices aK

r
 , aK

�
 , bK

r
 , and bK

�
 are all adjacent to vertices in X. It remains to upper-bound the 

vertices right of aK + r and left of bK
�
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Then, add edges between a� and NG−X(a) . Set b′ ≺ b� for each b� ∈ B⧵X , set a ≺ a� 
for each vertex a ∈ Afree , and set a� ≺ a′ for each matched vertex in A⧵X . Further-
more, add {a� , b�} to MG−X and add a� and b� to K. Finally, increase s by two. Next, 
apply Reduction Rule 6 in linear time, then remove a� , b� , xa� , x

b
�
 and reduce s by 

two. After this procedure, it follows that there are at most 2k vertices left of bK
�

 . 
If there are more than 2k vertices right of the rightmost vertex aK

r
 in A ∩ K , then 

use the same procedure as above. Thus, the total number of vertices in the remain-
ing graph is at most |X| + 2k + 4k3 = O(k3) . Furthermore, observe that adding and 
removing the four vertices as well as applying Reduction Rule 6 can be done in lin-
ear time. Thus, the overall running time of the kernelization is O(n + m) .   ◻

Applying an O(n2.5)-time algorithm for Bipartite Matching [15] on the kernel 
yields the following.

Corollary 3 Bipartite Matching can be solved in O(k7.5 + n + m) time, where k is the 
vertex deletion distance to chain graphs.

Using the randomized O(n�)-time algorithm for Matching [22], one would obtain 
a randomized algorithm with running time  O(k3� + n + m) . Here, 𝜔 < 2.373 is 
the matrix multiplication coefficient, that is, two n × n matrices can be multiplied 
in O(n�) time.

5  Conclusion

We focussed on kernelization results for unweighted (Bipartite) Matching. There 
remain numerous challenges for future research as discussed in the second part of 
this concluding section. First, however, let us discuss the closely connected issue of 
FPTP algorithms for Matching . There is a generic augmenting path-based approach 
to provide FPTP algorithms for Matching: Note that one can find an augmenting 
path in linear time [3, 11, 21]. Now the solving algorithm for Matching parameter-
ized by some vertex deletion distance k works as follows: 

1. Use a constant-factor linear-time (approximation) algorithm to compute a vertex 
set X such that G − X is a “trivial” graph (where Matching is linear-time solv-
able).

2. Compute in linear time an initial maximum matching M in G − X.
3. Start with M as a matching in G and increase the size at most |X| = k times to 

obtain in O(k ⋅ (n + m)) time a maximum matching for G.

From this we can directly derive that Matching can be solved in O(k(n + m)) time, 
where k is one of the following parameters: feedback vertex number, feedback edge 
number, and vertex cover number. Moreover, Bipartite Matching can be solved 
in O(k(n + m)) time, where k is the vertex deletion distance to chain graphs. Using 
our kernelization results, the multiplicative dependence of the running time on 
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parameter k can now be made an additive one. For instance, in this way the run-
ning time for Bipartite Matching parameterized by vertex deletion distance to chain 
graphs “improves” from O(k(n + m)) to O(k7.5 + n + m).

We conclude with some questions and tasks for future research. Can the size 
or the running time of the kernel with respect to feedback vertex set (see Sect. 3) 
be improved? In particular, can the exponential upper bound on the kernel size be 
decreased to a polynomial upper bound? Is there a linear-time computable kernel 
for Matching parameterized by the treedepth � (assuming that � is given)? This 
would complement the recent O(�m) time algorithm [16]. Can one extend the kernel 
of Sect. 4 from Bipartite Matching to Matching parameterized by the distance to 
chain graphs?
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