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ABSTRACT: Ab initio multiple spawning provides a powerful and
accurate way of describing the excited-state dynamics of molecular
systems, whose strength resides in the proper description of
coherence effects during nonadiabatic processes thanks to the
coupling of trajectory basis functions. However, the simultaneous
propagation of a large number of trajectory basis functions can be
numerically inconvenient. We propose here an elegant and simple
solution to this issue, which consists of (i) detecting uncoupled
groups of coupled trajectory basis functions and (ii) selecting
stochastically one of these groups to continue the ab initio multiple
spawning dynamics. We show that this procedure can reproduce
the results of full ab initio multiple spawning dynamics in cases
where the uncoupled groups of trajectory basis functions stay
uncoupled throughout the dynamics (which is often the case in high-dimensional problems). We present and discuss the
aforementioned idea in detail and provide simple numerical applications on indole, ethylene, and protonated formaldimine,
highlighting the potential of stochastic-selection ab initio multiple spawning.

I. INTRODUCTION

Developing accurate and efficient nonadiabatic ab initio
molecular dynamics methods is an important challenge for
theoretical chemistry. At least two obstacles can be identified.
First, the description of nonadiabatic phenomena requires
nuclear dynamics beyond the Born−Oppenheimer approxima-
tion and, quite often, beyond the standard classical approx-
imation for the nuclei. Second, the nuclear dynamics relies on
accurate and efficient electronic structure calculations for
potential energy surfaces, their gradients, and also derivatives
of the electronic wave functions (which lead to the nonadiabatic
coupling matrix elements that govern the propensity for
transitions between electronic states). In this work, we focus
primarily on the first problem, i.e. the efficient and accurate
description of nonadiabatic dynamics. In principle, the required
potential energy surfaces and couplings might come from
parametrized analytic functions or “on the fly” ab initio quantum
chemical methods, although we will generally prefer the latter.
Nonadiabatic dynamics methods are usually classified in

different families. Grid-based wavepacket dynamics can provide
a numerically exact description of nonadiabatic events, but
unfortunately turns out to be computationally practical only for
few nuclear degrees of freedom.1,2 Trajectory-based methods,
such as Ehrenfest dynamics or trajectory surface hopping3−7

(TSH), propose a mixed quantum/classical description of
nonadiabatic dynamics (treating the nuclear coordinates

classically and providing a quantum mechanical description for
the electronic coordinates or some coarse-grained representa-
tion thereof). Although the dynamics of molecules in their full
dimensionality is rendered tractable by trajectory methods, this
comes at the cost of uncontrolled (and generally difficult to
improve) approximations.
At the intersection between these quantum grid and mixed

quantum/classical trajectory methods lies the ab initio multiple
spawning (AIMS) approach. In AIMS, the nuclear wave
function is represented by a swarm of coupled frozen Gaussian
functions following classical trajectories, whose evolution is
computed “on-the-fly” with a given electronic structure
method.8−11 The number of trajectory basis functions (TBFs)
used to describe the wavepacket increases during the dynamics
(through “spawning”) to accurately describe wavepacket
bifurcation in nonadiabatic regions. In the limit of a complete
basis set and exact evaluation of all the integrals required for the
propagation, AIMS constitutes a formally exact solution of the
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time-dependent Schrödinger equation. Despite these attractive
features, the number of coupled basis functions spawned during
dynamics can become uncomfortably large. This is problematic
because most of the computational burden in AIMS is due to
electronic structure calculations, and the number of required
electronic structure calculations grows at least linearly and at
worst quadratically with the number of TBFs.12 In many
problems, nonadiabatic transitions are relatively rare events, and
in these cases the increase in the number of TBFs causes little
difficulty. However, there are important problems that involve a
plethora of nonadiabatic transitions, especially when the density
of electronic states is large. A prominent example is electronic
energy transfer in multichromophoric systems such as photo-
synthetic light harvesting proteins13−15 or conjugated poly-
mers.16−18 In these problems, a myriad of electronic state
crossings is expected and this will rapidly lead to a large number
of TBFs in AIMS (see ref 19 for a recent strategy using TBFs for
dense manifolds of electronic states). In some cases, population
transfer may be highly efficient at these crossings, leading to the
frustrating situation where there is an ever increasing number of
TBFs, many of which carry little or no population (and thus add
nothing to the physical description).
In this article, we propose a variation of the AIMS method,

called stochastic-selection AIMS (SSAIMS), which exploits the
decoupling between TBFs that occurs naturally in the course of
the dynamics to reduce the number of running trajectories.
SSAIMS still preserves the accurate description of nonadiabatic
events provided by AIMS and can be converged to the AIMS
results in well-defined limits. Numerical tests on different
molecules are further presented to validate the SSAIMSmethod.

II. THEORY

II.a. Brief Summary of Full Multiple Spawning. Inserting
the Born−Huang representation20 for a molecular wave
function

∑Ψ = Ω Φt tr R R r R( , , ) ( , ) ( ; )
J

J J
(1)

into the time-dependent Schrödinger equation leads to an
equation of motion for a nuclear wave function ΩI(R,t) in
electronic state I
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In eq 2,ΦI (r; R) is the electronic wave function for state I with
corresponding electronic energy Eel

I (R), T̂N is the nuclear kinetic
energy operator, N is the number of nuclei, and ρ indexes the
Cartesian coordinates of the nuclei. The electronic states are
chosen to be orthonormal in eq 2 and the following.
Full multiple spawning (FMS) represents the nuclear wave

function for each electronic state I by a linear combination of
multidimensional frozen Gaussians called trajectory basis
functions (TBFs):11,21,22
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A particular frozen Gaussian l evolving on electronic state I at
time t, χl

I(R; R̅l
I(t), P̅l

I(t), γ̅l
I(t), α), has its phase-space center

located at position R̅l
I(t) and momentum P̅l

I(t). Its width α is
time-independent (i.e., frozen) and the phase γ̅l

I(t) is integrated
semiclassically in order to factor out the largest oscillations from
the complex amplitudes, Cl

I(t), and improve the numerical
stability of their propagation.10

A set of equations of motion for the complex amplitudes Cl
I(t)

is obtained by inserting the FMS Ansatz into eq 2:
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The TBF centers simply follow classical trajectories on a
particular electronic state, although other equations of motion
are also possible (such as the Ehrenfest-type equations used in
ab initio multiple cloning23,24). In eq 4, bold symbols indicate
matrices with respect to the nonorthogonal Gaussian basis
functions. The overlap matrix S has elements (SII)kl = ⟨χk

I |χl
I⟩R

and its corresponding right-acting time-derivative Ṡ is defined by

χ χ̇ = ∂
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mediate interstate and intrastate amplitude transfer, where the
last two terms in eq 6 are responsible for nonadiabatic effects:
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We note that the second derivative GIJ terms are usually
neglected,10 as justified recently.25 Usually, eq 4 is rewritten in
terms of differences of electronic energies (with respect to a
ground-state reference) in order to make the numerical
integration more stable. A similar procedure is also often used
in TSH.26

A key feature of the FMS method is that it uses an adaptive
basis set to ensure an accurate description of nonadiabatic
processes. The number of TBFs describing the nuclear wave
function for the Ith state, NI(t), changes in time as a result of
spawning events. In short, a TBF entering a region of strong
nonadiabaticity can spawn one or more new TBFs onto the
coupled electronic state. Upon spawning, the size of the matrices
in eq 4 is extended and the resulting coupled propagation of the
enlarged set of TBFs allows for exchange of nuclear amplitude
between electronic states. For detailed discussions about the
spawning algorithm, the reader is referred to previous
work.8,10,27
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In AIMS,8−10 eq 4 is solved along classical trajectories
computed on-the-fly using a given electronic structure method,
which provides the electronic energies and nonadiabatic
coupling vectors required by eq 6. Two important numerical
approximations simplify this coupled electron−nuclear prop-
agation for molecular systems. First, the integrals in eq 6 are
computed in a zeroth-order saddle-point approximation,10 i.e.,

∑
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where Rkl
(c) is the position of the centroid between TBFs k and l

(i.e., the position of the maximum of the product of the two
TBFs). Second, the initial nuclear wave function is represented
at time t = 0 by a given number of initial TBFs, which will be run
independently in the subsequent nuclear dynamics (the
independent first generation approximation). A number of
reviews and previous papers provide extended discussions about
both approximations.10,28−33

II.b. Stochastic-Selection Ab InitioMultiple Spawning.
At the beginning of an AIMS run, the initial TBF evolves on a
given electronic state I. When this TBF encounters a region of
strong nonadiabatic coupling with a different electronic state J, a
new TBF is created on the Jth electronic state in a process called
spawning. The two TBFs are now connected by an off-diagonal
element of the H matrix in eq 6 (involving both nuclear and
electronic coordinates, i.e. this is the vibronic matrix element
H12

IJ ). Each TBF can spawn additional TBFs during the
dynamics, resulting in a growing number of coupled trajectories
for a particular initial condition (see Figure 1). A large number of
TBFs obviously implies a large number of electronic structure
calculations that might complicate the application of AIMS to

long-time dynamics, or nonadiabatic dynamics with a large
number of electronic states. A further practical consideration is
the possibility that one of the electronic structure calculations
might fail for some numerical reason (e.g., divergence of iterative
orbital optimization). This is a well-known difficulty in even
ground-state ab initiomolecular dynamics methods but tends to
be more problematic when excited electronic states are involved,
because of the added complexity when multiple electronic states
need to be obtained at a given molecular geometry. This
difficulty is further exacerbated when multiple TBFs are being
propagated, because a failure in any of the electronic structure
calculations will necessitate stopping the entire dynamics
simulation and intervention (ideally automated, but often
manual) to solve the problem. The probability of requiring
such intervention will therefore increase with the number of
TBFs being propagated.
In order to reduce the number of costly electronic structure

calculations and simultaneously minimize the probability of
manual intervention, it would be highly desirable to reduce the
number of TBFs during the simulation. This could be
accomplished with a “death” process that decreases the basis
set size, in analogy to the “spawning” process that increases the
basis set size. Indeed, such death processes have been used
previously, but normally only when the dynamics is deemed
uninteresting. For example, when one is only interested in the
excited-state lifetime, there is rarely any need to follow ground-
state TBFs for the entire length of the simulation.34,35

Here, we introduce a general stochastic death process that in
many cases does not change observable results at all. The key
observation is that the expectation value of an operator Ô for the
nuclear wave function associated with the Ith electronic state is
calculated in AIMS as

Figure 1. Schematic representation of a typical SSAIMS propagation for a particular initial TBF (red Gaussian function with center depicted by the red
circle). Initially, a single TBF evolves on a given electronic state (thin red line). A spawn occurs after a short time and two TBFs are now propagated,
coupled by the Hamiltonian matrix given by eq 6. A horizontal dashed line represents the coupling between two TBFs (the stronger the coupling, the
darker the line). Additional TBFs are spawned over the course of the dynamics. Until tSS, the SSAIMS algorithm does not alter the dynamics in any way
and all TBFs are directly or indirectly coupled. A detailed pictorial representation of the stochastic-selection process at time tSS is presented on the right.
(a) The three TBFs on the left are coupled, while the one on the right is only weakly coupled to the third TBF. (b) The stochastic-selection algorithm
detects the weak coupling (coupling is below the threshold ε) and forms two uncoupled blocks of coupled trajectories (3 TBFs in the first block, 1 in
the other). (c) A random number is generated and one of the blocks is selected (with selection probability proportional to the population in the block).
In this example, the first block is selected. The unselected blocks (the fourth TBF in this example) are then removed from the simulation and the
population of each TBF in the selected block is scaled to maintain normalization of the wave function. The nonadiabatic dynamics then proceeds with
only TBFs from the selected block.
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Most observables of interest correspond to local operators,
implying that the matrix elements in the numerator will vanish
when the bra and ket TBFs are well-separated in phase space.
Thus, one only needs to consider pairs of TBFs that are close to
each other. Typically, this is accomplished by “screening,”which
neglects the observable matrix elements in the numerator when
the corresponding overlap matrix element is small. In the limit
where all TBFs are distant from each other, eq 11 reduces to a
fully incoherent (“classical-like”) sum:

χ χ
≈

∑ ⟨ | ̂| ⟩

∑
O t

n t O

n t
( )

( )

( )
I

k
N t

k
I

k
I

k
I

k
N t

k
I

R
( )

( )

I

I
(12)

where we have defined the population of a basis function as

= *n t C t C t( ) ( ) ( )k
I

k
I

k
I

(13)

Similar considerations apply to the nonadiabatic couplingmatrix
elements, i.e. two TBFs will be most effectively coupled when
they are close to each other (implying that the overlap matrix
element for the pair of TBFs is non-negligible) and also close to
an avoided crossing or conical intersection (where the
nonadiabatic coupling is large).
These observations suggest a new approach to AIMS

dynamics that incorporates sparsity: whenever TBFs (or groups
of TBFs) become uncoupled, the full AIMS dynamics becomes
superfluous as there is no population transfer or observable
quantum interference between the uncoupled groupsthis
observation is reminiscent of coarse graining in quantum
decoherence introduced by Rossky and co-workers.36 Analysis
of eq 11 suggests that one could split the “mother” simulation
into several “daughter” simulations (one for each group of
uncoupled TBFs). As long as the uncoupled groups do not
become coupled later in the dynamics, any observables
computed using eq 11 for the set of daughter simulations
(summing the results across simulations with appropriate
weights) will be identical to the results that would have been
obtained without splitting. This is shown schematically in Figure
2, where the dotted lines indicate that the dynamics from the
“mother” simulation is being reused without recomputation.
The daughter simulations could be run in parallel given sufficient
computational resources, or they could be run sequentially. The
total number of TBFs in the simulation will not change
compared to a full AIMS run. However, this splitting approach
minimizes the number of TBFs in any individual simulation,
which ensures that (1) a failure in any one of the TBF electronic
structure calculations affects as few other TBFs as possible, (2)
the dimension of the matrices is minimized (simplifying
inversion of the overlap matrix), and (3) the number of required
off-diagonal Hamiltonian matrix elements is minimized. In
practice, the benefits of the latter two considerations are less
than might have been expected from a formal analysis, since
AIMS already uses sparsity (through a conjugate gradient
procedure) to solve eq 4 and also avoids computing negligible
Hamiltonian matrix elements by the screening procedure
described above.
We will christen the splitting procedure just described as

“AIMS with splitting.” Simulations are split into uncoupled
groups of TBFs (as these are identified), and then the “daughter”
simulations are run independently. Each of the daughter

simulations is split into uncoupled groups of TBFs, leading to
“granddaughter” simulations that are run independently. The
process repeats and all simulations are collected together at the
endtheir union is an approximation to the full AIMS dynamics
that would have been obtained without splitting. Although this
can already be advantageous, the procedure does have the
drawback of considerable bookkeeping since the initial
conditions for each of the daughter simulations need to be
recorded and ultimately one needs to go back and finish the
propagation for each of these (or use increasing computational
resources throughout the simulation to run these in parallel). A
stochastic approach may be more convenient. In this case, one
randomly chooses (with appropriate probability) one of the
daughter simulations at each splitting event until the end of the
propagation time. Repeating this procedure with the same initial
conditions many times and taking the union of the resulting
TBFs (appropriately weighted) would lead to the same result as
obtained in AIMS with splitting. The drawback here is that
numerous paths may be replicated, but the advantage is that
there is no bookkeeping. We call this “SSAIMS with repetition.”
Figure 3 schematically compares these different approaches.
Both AIMS with splitting and SSAIMS with repetition ensure
that the fully coupled AIMS propagation is used only when
needed, thus reducing the number of evolving TBFs in a given
run. Finally, we note that one can also independently
stochastically sample both initial conditions and the choice of
uncoupled groups at each splitting event. Although this is the
variant that we will recommend (SSAIMS with repetition,
independently sampling initial conditions and selection of TBF
groups), we present results for some of the other variants to fully
characterize convergence.
The idea of stochastic selection rests on the approximation

that by stochastically selecting one TBF, or a group of TBFs, we
consider that it will remain uncoupled to the rest of the AIMS
swarm for all future times. In other words, we consider that
uncoupled TBFs will never overlap again during the non-
adiabatic dynamics. This “no-reoverlap” approximation is
closely related to the notion of Poincare ́ recurrence time. We

Figure 2. Schematic splitting procedure for AIMS simulations. The
“mother” simulation proceeds until the TBFs are naturally arranged in
weakly coupled groups. At this point, each of the TBF groups forms the
initial conditions for an independent “daughter” AIMS dynamics
simulation. For each of the daughter simulations, the TBFs again
separate and the simulation can be split into “granddaughter”
simulations. Dotted lines indicate parts of the daughter simulation
that are not replicated as they are present in the mother simulation. In
many multidimensional problems, TBFs will not come close to each
other after separating. In that case, the union of all the TBFs created in
the mother/daughter/granddaughter simulations will replicate the
results that would have been obtained without simulation splitting.
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expect it to be an excellent approximation for high-dimensional
systems, but is likely to fail for low-dimensional ones. Let us now
define more precisely what we mean by uncoupled. In the
following, we will compare the absolute value of the matrix
elements Hkl

·· (both Hkl
IJ and Hkl

II) with a threshold criterion to
determine whether trajectories can be considered uncoupled.
Hence, the stochastic selection will be applied on truly
uncoupled TBFs only if a sufficiently small threshold is selected.
On the other hand, we can relax the definition of uncoupled
TBFs and perform the stochastic selection more often by
employing a larger threshold. The resulting reduced number of
TBFs in the dynamics comes at the cost of neglecting the effect
of nonvanishing interference terms. Since the proposed criterion
has an energy unit, we label the resulting stochastic-selection
AIMS method as ESSAIMS. We finally note that other
definitions of uncoupled TBFs could obviously be used for
SSAIMS, such as the overlap between two TBFs. This definition
was tested (see the Supporting Information) and found to
closely reproduce ESSAIMS results.
The ESSAIMS method works as follows. After each nuclear

time step, the algorithm monitors the off-diagonal matrix
elements ofH between the running TBFs (heavy dashed lines in
Figure 1). If the absolute value of one matrix element falls below
a preset threshold ε, the corresponding TBFs are considered
uncoupled (Figure 1a).37 More precisely, a connectivity matrix
M between TBFs is constructed and element (M)kl is set to unity
if |(H)kl| > ε, i.e., if TBFs k and l are coupled according to the
predefined threshold, and zero otherwise. The algorithm should
also detect indirect couplings, which are couplings between two
TBFs occurring through one or more other TBFs. These
couplings are easily identified by constructing powers of the
connectivity matrix. If TBFs k and l are indirectly coupled via
one other TBF m, the matrix element (M2)kl will be nonzero. If
the indirect coupling between k and l takes place through two
other TBFs, the matrix element (M3)kl will be nonzero. These
relationships continue for indirect couplings of higher orders.
The matrix multiplication is therefore performed until no more
changes happen in the connectivity pattern. Special care is
needed during a spawning process, as coupled propagation with
the newly created TBF is usually initiated in a region where

couplings are small. The stochastic-selection algorithm is
therefore suspended from the entry time of a new TBF until
spawning time, preventing the newly created TBF from
generating an unwanted selection event. It is finally important
to remark that the ε threshold is likely to be system dependent
(since it is given in energy units), and will need to be determined
prior to any ESSAIMS dynamics. It is however clear that the
asymptote for the off-diagonal Hamiltonian matrix elements will
always tend toward zero whenever TBFs are sufficiently distant.
Once the coupling pattern between TBFs is identified,

uncoupled blocks of coupled trajectories are identified
(Figure 1b) and the respective coherent population,

= ∑ ∑α
*α

P C t C t S( ) ( )I kl
N t

k
I

l
I

kl
II( )I , is computed for each block α,

whereNI
α(t) represents the number of TBFs in group α, evolving

on electronic state I. If multiple uncoupled blocks exist, we now
stochastically select one of these for further propagation. The
βth block is selected if

∑ ∑ζ≤ ≤
α

β

α
α

β

α

−

P P
1

(14)

where ζ is a random number generated in the interval [0: 1]. All
TBFs that are not in the βth block are removed from the
simulation and the coefficients of the TBFs in the βth block are
scaled to maintain wave function normalization, as depicted in
Figure 1c. The simulation then continues with the reduced
subspace of TBFs. The ESSAIMS method therefore ensures a
reduced number of TBFs throughout the dynamics for any given
simulation when a sufficiently large value of ε is used. ESSAIMS
can either be used as an approximation to AIMS by running only
a few stochastic trajectories, or it can be fully converged to
recover the AIMS population distribution among the different
electronic states. The first case is particularly attractive for the
nonadiabatic dynamics of large molecular systems or for
dynamics involving several excited states. The second case
would be useful if important electronic structure instabilities are
encountered during an AIMS dynamics. If the different
uncoupled blocks of TBFs are run independently to completion
(AIMS with splitting), the scheme is reminiscent of the “ant”
method in surface hopping.3,38 We note here that another
approach, coined apoptosis, was recently proposed to remove
moving nonorthogonal basis functions and stabilize matrix
inversion in quantum dynamics simulations.39

It is finally interesting to note that ESSAIMS shares some
similarities with the TSH algorithm commonly used in
nonadiabatic dynamics. In TSH, the nuclear dynamics is
represented by a swarm of uncoupled classical trajectories that
can hop from one electronic state to another in nonadiabatic
regions. The hopping process is determined by means of a
stochastic algorithm, based on probabilities computed after each
nuclear time step from propagated amplitudes in different
electronic states. As the trajectories are all independent, any
expectation value is obtained by definition from an incoherent
analysis. In some sense, the selection of ESSAIMS resembles the
hopping process of TSH, as a swarm of TBFs evolving in
different states are suddenly reduced to a subset of renormalized
TBFs whenever the subset can be considered independent from
the other TBFs. Nevertheless, two major differences should be
highlighted. First, the ESSAIMS calculation maintains coupling
between TBFs as they separate−this captures decoherence
effects that are often approximated (and sometimes ignored) in
TSH. Second, a fully converged ESSAIMS calculation (small

Figure 3. Comparison between full AIMS, AIMS with splitting, and
SSAIMS with repetition. Diagram follows Figures 1 and 2, with
simulation time flowing vertically from top to bottom and the x axis
denoting schematic position. Ellipses indicate that multiple runs are
carried out for SSAIMS with repetition.
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coupling threshold ε) will reproduce the AIMS results. With
sufficient fully coupled initial conditions, this is guaranteed to
converge to exact quantum dynamics (although it may be
difficult to reach this limit in practice). In TSH, decoherence
effects are only captured with ex post facto corrections.36,43−48

The ambiguity in describing decoherence in TSH stems from
the lack of a rigorous derivation for the procedure, although
there have been some notable attempts.40−42 Furthermore, TSH
is not guaranteed to converge to the exact quantum dynamical
result, regardless of the number of trajectories (one consequence
of this is the well-known dependence of TSH results on the
electronic representation used, i.e. adiabatic or diabatic).
II.c. Computational Details.The nonadiabatic dynamics of

ethylene, protonated formaldimine, and indole were used to test
the ESSAIMS method and to compare it with AIMS. AIMS and
ESSAIMS dynamics for the ethylene and protonated formal-
dimine were performed with a modified version of the AIMS/
MolPro 2012.1 interface.12,49 The time step used for the classical
propagation was 20 atomic time units (atu) (reduced to 5 atu in
coupling regions). The spawning threshold was fixed to 3.0
a.u.−1 (magnitude of the nonadiabatic coupling vectors) and the
minimum population to spawn was set to 0.01 (0.05 for
protonated formaldimine). Initial conditions (positions and
momenta representing the center of the initial TBFs) were
randomly sampled from a harmonic Wigner distribution, with
60 samples for ethylene and 39 for protonated formaldimine.
The electronic structure of ethylene was described with SA-3-
CASSCF(2/2)/6-31G*, i.e. state average complete active space
self-consistent field (SA-CASSCF) calculation with an active
space of two electrons in two orbitals, equally weighting the
lowest three singlet states (S0, S1, and S2) and using the 6-31G*
basis set.50−52 For the protonated formaldimine molecule, SA-4-
CASSCF(6/5)/6-31G* was used.
The AIMS dynamics of indole was computed with the AIMS/

TeraChem interface.53 Classical propagation used a time step of
20 atu (reduced to 5 atu in coupling regions). The spawning
threshold was set to 0.005 au (scalar product of the nonadiabatic
coupling vector and velocity), and the minimum required

population to spawn was 0.1. The first three electronic states
were considered in the dynamics and the electronic structure
was calculated with density functional theory54,55 (DFT) and
linear-response time-dependent density functional theory56−58

(LR-TDDFT), applying the Tamm−Dancoff59,60 and adiabatic
approximations. We used the PBE61 exchange and correlation
functional and the 6-311G62 basis set. As a consequence of the
adiabatic approximation,63 LR-TDDFT poorly describes the
coupling between the ground state and the first excited
electronic state.64,65 This problem, however, is not relevant
here since we focus on transitions from S2 to S1 (and not
subsequent relaxation to S0). The initial conditions for indole
were obtained by first equilibrating the system for 7.9 ps with
NVT (300 K) ground-state ab initio molecular dynamics in
TeraChem66−68 using DFT-PBE/6-311G. A frame was then
extracted from the end of a subsequent NVE run (18.4 ps) at the
same level of theory. All error bars indicate standard errors of the
mean.

III. RESULTS

We validate the ESSAIMS approach by comparing to AIMS for
excited-state dynamics of various molecules. We start by
discussing the difference between an AIMS and an ESSAIMS
run for the excited-state dynamics of a medium-size molecule,
indole. We then address the question of ESSAIMS performance
based on the ethylene and protonated formaldimine non-
adiabatic dynamics. First, we determine how many ESSAIMS
runs are necessary to reproduce the AIMS population trace.
Each of the ESSAIMS runs is initiated from the same initial
condition (positions andmomenta), but with a different seed for
the random number generator (which influences the stochastic-
selection process). Second, we study the influence of the ε
threshold parameter on the population trace for a fixed number
of runs. Finally, we compare the average ESSAIMS population
trace with AIMS, by using a small number of ESSAIMS runs for
each initial condition.
It is worth noting at this stage that the purpose of this study is

to validate the ESSAIMS methodology and not to provide a full

Figure 4. Nonadiabatic dynamics of indole with AIMS/LR-TDDFT/TDA/PBE for a single initial condition. (left) Population of the S2 state for a
single initial condition with AIMS and with ESSAIMS (two different thresholds). (right) Indole central CC bond distance for each of the TBFs, with
line width proportional to TBF population and color indicating the TBF electronic state label (red TBF on S2; blue TBF on S1). Gray lines indicate
stochastic-selection events. The upper right panel corresponds to AIMS dynamics, and middle/lower right panels correspond to ESSAIMS with
indicated thresholds.
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and precise characterization of the ethylene, protonated
formaldimine, or indole photodynamics. Interested readers
can refer to previous work on the photodynamics of these
molecules.12,69−72

III.a. Example of an ESSAIMS Run with Indole.We start
by illustrating the behavior of SSAIMS with the excited-state
dynamics of indole. In the following, we focus on the dynamics
produced by SSAIMS for a single initial condition and compare
it with AIMS (as done schematically in Figure 3). This first
example is meant to illustrate the stochastic-selection process
and exemplify some potential limitations of the method. It is
important to note at this stage that a single SSAIMS run is not
expected to reproduce the AIMS dynamics for a single initial
condition, and multiple runs are required as discussed above.
Numerical examples showing how SSAIMS can be converged
toward AIMS will be presented later.
The AIMS dynamics of indole along a given initial condition is

presented in Figure 4 (left panel). The population of the S2 state
decreases rapidly after less than 500 atomic time units (atu) of
dynamics but reappears briefly before a final transfer to S1 occurs
at the end of the run. A specific ESSAIMS run also predicts a
complete depopulation of the S2 state by the end of the run
(Figure 4 left panel), but themechanism varies depending on the
threshold used (and will also vary depending on the random
seed). For a better visualization of the selection events, we use a
projection of the running TBFs on the central CC bond
length of indole (right panel, Figure 4). Each line represents a
TBF and the thickness of the line is directly proportional to the
population of the TBF. For a medium threshold (10−4 a.u.), the
stochastic-selection algorithm enters into play directly after the
first nonadiabatic event (before 500 atu). In this example, the
algorithm dismisses the TBF running on S2 and only a single
TBF evolves on S1 until the end of the run, with a population
renormalized to 1.0. For a slightly larger threshold parameter
(10−5 a.u., middle panel on the right of Figure 2), the stochastic
selection algorithm does not consider the two TBFs as
uncoupled after the first transfer, and a second exchange of
population (without any new spawning event) takes place at 700
atu. As a result, the second TBF transfers all its population back
to the first TBF on S1. After 1250 atu of dynamics, a new spawn
occurs from the first TBF and a complete transfer to S1 takes
place. The selection algorithm then detects that all TBFs in S1
are coupled together, but none is coupled with the one in S2,
resulting in a selection of the TBFs in S1 (the line width slightly
changes in Figure 4 as a result of the renormalization). Although
the overall population transfer is well captured by ESSAIMS

with a 10−5 threshold, it misses the last spawning event taking
place 1800 atu in the AIMS dynamics (upper panel on the right
of Figure 4), leading to a complete depopulation of S2.
Importantly, changing the seed for the random number
generator can alter the overall dynamics, as a different group
of coupled TBFs might be selected in the stochastic process.
Therefore, convergence of ESSAIMS toward the AIMS results
requires an average over multiple runs, each one being initiated
with a different seed (see following sections).
In terms of performance, the AIMS dynamics required 1619

electronic structure evaluations (12.2 h on 2 GeForce GTX
Titan GPU cards), while the ESSAIMS dynamics only required
1211 electronic structure evaluations (9.0 h on the same
machine) with ε = 10−5 a.u. or 354 evaluations (2.5 h wall time)
with ε = 10−4 a.u.
Despite the fact that the overall depopulation of S2 is well

predicted by the ESSAIMS dynamics, the fine details of the
nonadiabatic process will be lost when a single ESSAIMS run is
compared to AIMS starting with the same initial conditions. The
threshold value is also likely to be system dependent and initial
tests are needed to estimate its value. A small threshold will
obviously capture all interferences between TBFs (with a
vanishing threshold reproducing AIMS results exactly) but will
then require many TBFs to be treated simultaneously. On the
other hand, a larger threshold will significantly decrease the
computational cost but may considerably alter the nonadiabatic
processes, as illustrated by the indole dynamics with ε = 10−4 a.u.
In this particular case, the stochastic selection is triggered too
rapidly and does not allow for a second interaction between the
two TBFs at a later time. The large threshold therefore
compromises the accuracy of the no-reoverlap approximation
discussed above. This example shows that one must carry out
numerous samples when using ESSAIMS, and this is pursued in
the following.

III.b. Nonadiabatic Decay of Ethylene and Protonated
Formaldimine. The S1 population decay of ethylene (H2C
CH2) is presented in Figure 5 (red curve) for a single initial
condition in AIMS. We are first interested in reproducing this
population trace by averaging over a number of ESSAIMS runs,
initiated from the same initial condition but with different seeds
for the random number generator. For a small enough ε
threshold (10−10 a.u.), only a few ESSAIMS runs are necessary to
capture the overall dynamics of the S1 population (Figure 5, left
panel). As expected, averaging over more runs converges to the
AIMS result. The effect of the ε threshold for a fixed number of
runs (50) is given in the right panel of Figure 5. Interestingly, the

Figure 5. S1 population for the nonadiabatic dynamics of ethylene. (left) Comparison of AIMS with ESSAIMS for a single initial condition and an
increasing number of ESSAIMS runs with ε = 10−10 a.u. (right) Comparison of AIMS and ESSAIMS using different values of the selection threshold ε
with 50 samples for each threshold.
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overall averaged population varies only weakly for small values of
ε, and sizable deviations (larger than a few percent) are observed
only when the threshold is set to 10−2 a.u.
Based on these results, we computed an average of five runs

for each initial condition used to obtain the total AIMS
population trace (Figure 6, red curves). The overall agreement
between the fully coupled AIMS dynamics and ESSAIMS for the
population decay of S1 is excellent (Figure 6, left panel), even for
an aggressive threshold (10−2 a.u.). During the nonadiabatic
dynamics, the second excited state is slightly populated and
ESSAIMS predicts this weak population transfer rather
accurately (Figure 6, right panel). It is finally interesting to
compare the average number of TBFs per initial condition for
each method (inset of the left panel, Figure 6). While AIMS
requires an average of 8 TBFs (per initial condition) by the end
of the dynamics, an average of fewer than 2 simultaneous TBFs
are required using ESSAIMS. Furthermore, the average number
of TBFs grows linearly with time in this AIMS example, while the
average number of simultaneous TBFs required in ESSAIMS is
roughly constant with propagation time. Since the number of
electronic structure calculations required by AIMS is formally
quadratic in the number of TBFs, ESSAIMS constitutes an
appealing solution to reduce the cost of AIMS dynamics.
The accuracy of ESSAIMS in reproducing the AIMS result is

further confirmed by the nonadiabatic dynamics of the
protonated formaldimine (H2CNH2

+), initiated from its
second electronic excited state. Upon photoexcitation, proto-
nated formaldimine rapidly relaxes from S2 to S1 (red curve in
Figure 7), losing 50% of S2 population in the first 415 atu (10 fs)
of dynamics, in agreement with former TSH results.69,70 The
ground state already starts to become populated after 460 atu
(11 fs) of dynamics, but we will focus here on the S2 and S1
population traces (see the SI for detailed information about the
populations of all electronic states).
As observed for the case of ethylene, ESSAIMS accurately

mirrors the AIMS population trace for a single initial condition,
even with rather high threshold values (see the SI).
Furthermore, averaging over a small number of ESSAIMS runs
(5 in average) with different seeds for each initial condition
reproduces the S2 and S1 population trace given by AIMS, well
within the error bars (Figure 7). In fact, a single run per initial
condition is already sufficient to reproduce the overall transfer of
population between S1 and S2 (blue curve in Figure 7). By

limiting the average number of TBFs (inset in left panel of
Figure 7), ESSAIMS reduces by a factor of 3 the average number
of electronic structure calls per run with respect to AIMS: 1068
for AIMS (average over 39 initial conditions) compared to 316
for ESSAIMS (average over 194 runs, ε = 10−3 a.u.).
In summary, the numerical tests presented here show that

with appropriate numerical parameters (threshold and number
of runs per initial condition), ESSAIMS accurately reproduces
the AIMS population traces and allows for a substantial decrease
in the number of coupled TBFs during the dynamics.

IV. CONCLUSIONS
The main conclusions of this work may be summarized as
follows. We showed that a stochastic-selection algorithm can
reduce the computational effort of AIMS dynamics by
preventing the proliferation of weakly coupled TBFs during a
simulation, leading to a stabilization of the average number of
TBFs during a multiple spawning run. When nuclear basis
functions can be grouped into blocks that are mutually
uncoupled, the proposed algorithm stochastically picks one of
the blocks to continue the nonadiabatic dynamics. In the limit of

Figure 6. Time evolution of excited state population (left S1; right S2) of photoexcited ethylene from AIMS (red line) and ESSAIMS (dark gray and
blue lines). Note the different vertical scales for the left and right panels. Both AIMS and ESSAIMS dynamics use 60 initial conditions. The ESSAIMS
dynamics further samples each of those initial conditions an average of five times (with different random number seeds such that different blocks are
selected in the stochastic-selection process). Results are shown for ESSAIMS with two different values of the selection threshold: ε = 10−2 (blue line)
and 10−5 (dark gray line) a.u. The light red area depicts the estimated standard error of the AIMS population mean. (left inset) Time evolution of the
average number of TBFs per initial condition.

Figure 7. Time evolution of excited state population (left S2; right S1)
of photoexcited formaldimine from AIMS (red line) and ESSAIMS
(dark gray and blue lines). Both AIMS and ESSAIMS use 39 initial
conditions. The ESSAIMS dynamics results are shown for a single run
per initial condition (blue line) and for an average of five runs per initial
condition (dark gray line) to sample the nonadiabatic transitions. The
selection threshold is set to 10−3 a.u. in ESSAIMS. The light red area
depicts the estimated standard error of the AIMS populationmean. (left
inset) Time evolution of average number of TBFs per initial condition
for AIMS (red line) and ESSAIMS with five runs per initial condition
(dark gray line).
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truly uncoupled TBFs and long recurrence time, ESSAIMS is
formally exact and can be converged to the AIMS result by
performing several runs for each initial starting condition. We
confirmed this by different numerical tests and showed that
ESSAIMS reproduces accurately the AIMS results with a limited
number of additional runs, while avoiding an exponential
increase in the number of trajectories treated simultaneously,
leading to a substantial reduction in the number of running
TBFs.
More generally, stochastic-selection AIMS opens new

perspectives for the spawning process in nonadiabatic dynamics.
While the spawning algorithm in AIMS tries to minimize the
number of spawning events by judiciously placing the newly
created child TBF, stochastic-selection AIMS allows for more
general spawning criteria, as only importantor coupled
TBFs will survive the selection process. Therefore, spawning
could potentially take place as soon as a new TBF is expected to
be useful, for not only nonadiabatic but also tunneling events,73

since the selection process will discard it at a later time if this
TBF is not important. This perspective will stimulate more work
on stochastic-selection AIMS.
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