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Abstract Mesozoic-Cenozoic rifting between Greenland and North America created the Labrador Sea
and Baffin Bay, while leaving preserved continental lithosphere in the Davis Strait, which lies between
them. Inherited crustal structures from a Palaeoproterozoic collision have been hypothesized to account
for the tectonic features of this rift system. However, the role of mantle lithosphere heterogeneities in
continental suturing has not been fully explored. Our study uses 3-D numerical models to analyze the role
of crustal and subcrustal heterogeneities in controlling deformation. We implement continental extension
in the presence of mantle lithosphere suture zones and deformed crustal structures and present a suite of
models analyzing the role of local inheritance related to the region. In particular, we investigate the
respective roles of crust and mantle lithospheric scarring during an evolving stress regime in keeping with
plate tectonic reconstructions of the Davis Strait. Numerical simulations, for the first time, can reproduce
first-order features that resemble the Labrador Sea, Davis Strait, Baffin Bay continental margins, and ocean
basins. The positioning of a mantle lithosphere suture, hypothesized to exist from ancient orogenic activity,
produces a more appropriate tectonic evolution of the region than the previously proposed crustal
inheritance. Indeed, the obliquity of the continental mantle suture with respect to extension direction is
shown here to be important in the preservation of the Davis Strait. Mantle lithosphere heterogeneities are
often overlooked as a control of crustal-scale deformation. Here, we highlight the subcrust as an avenue of
exploration in the understanding of rift system evolution.

1. Introduction
Numerous previous studies have shown the potential for mantle lithosphere structures to control the evo-
lution of shallow tectonics (Balázs et al., 2018; Heron et al., 2016; Heron et al., 2019; Jourdon et al., 2017;
Pysklywec & Beaumont, 2004; Phillips et al., 2018; Salazar-Mora et al., 2018; Schiffer et al., 2018), high-
lighting a deep genesis for lithosphere-scale deformation (e.g., Holdsworth et al., 2001; Vauchez et al.,
1997). Reactivation of features formed through previous collisional or rifting events (Wilson, 1966) is well
established and thought to occur along well-defined, preexisting structures such as faults, shear zones, or
lithological contacts (Holdsworth et al., 1997). Such tectonic features exist in the present-day mantle litho-
sphere (Biryol et al., 2016; Calvert et al., 1995; Calvert & Ludden, 1999; Hopper & Fischer, 2015; Lie &
Husebye, 1994; Morgan et al., 1994; Schiffer et al., 2014; Schiffer et al., 2016) and may relate to a deep
mechanical weakness in the tectonic plate (Bercovici & Ricard, 2014; Dunbar & Sawyer, 1988, 1989; Erdős
et al., 2014; Manatschal et al., 2015; Pollack, 1986; Thomas, 2006). Here, through numerical modeling, we
apply the basic tenets of inheritance and reactivation (e.g., the Wilson cycle) to the continental mantle
lithosphere of West Greenland to understand the rift evolution of the Davis Strait (Figure 1).

The Labrador Sea, Davis Strait, and Baffin Bay (Figure 1a) formed due to Mesozoic to Cenozoic divergent
motion between Greenland and North America (Abdelmalak et al., 2018; Chalmers & Pulvertaft, 2001;
Hosseinpour et al., 2013; Jauer et al., 2019; Peace et al., 2017; Peace, McCaffrey, et al., 2018; Peace, Dempsey,
et al., 2018; Wilson et al., 2006). Rifting prior to the opening of the Labrador Sea may have started as early as
the Late Triassic to Jurassic, based on ages obtained from dike swarms in southwest Greenland that are inter-
preted to be related to early rifting (Larsen et al., 2009). Breakup from south to north between Greenland
and Canada resulted in oceanic spreading in the Labrador Sea and eventually Baffin Bay (Chian et al., 1995;
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Figure 1. (a) An overview of the North Atlantic spreading systems using the continent ocean boundaries and oceanic isochron compilations from Müller et al.
(2016) plotted on top of the National Oceanic and Atmospheric Administration (NOAA) global bathymetry/topography model (Amante & Eakins, 2009).
(b) Geographical overview of the NW Atlantic showing the key criteria that the model results are compared against. Abbreviations: BB = Baffin Bay, BI = Baffin
Island, DS = Davis Strait, GR = Greenland, LA = Labrador and LS = Labrador Sea, MOR = Mid-Ocean Ridge, and COB = Continent-Ocean Boundary.
(c) Simplified overview of the basements that comprise the NW Atlantic borderlands in a prerifting and breakup configuration modified from Kerr et al. (1997)
and St-Onge et al. (2009). (d, e) The NW Atlantic at 60 and 35 Ma, respectively, reconstructed using the model of Matthews et al. (2016) and shown with the
calculated extensional directions from Abdelmalak et al. (2012).
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Jackson et al., 1979; Roest & Srivastava, 1989; Srivastava, 1978; Welford & Hall, 2013; Welford et al., 2018).
These small ocean basins are connected through the Davis Strait in a right-stepping shape (Figure 1b). The
Davis Strait is described as a bathymetric high comprising primarily of continental lithosphere where conti-
nental breakup did not fully occur (Suckro et al., 2013), and the foci of the West Greenland Tertiary Volcanic
Province (Clarke & Beutel, 2019; Peace et al., 2017; Storey et al., 1998).

Based on this history, a first-order characterization of the West Greenland rift system (sometimes referred
to as the NW Atlantic; e.g., Abdelmalak et al., 2018) can be given in four points (later referred to as “the
checklist”):

1. Rifting south of Davis Strait in the Labrador Sea produced new oceanic crust.
2. Rifting north of Davis Strait in Baffin Bay produced new oceanic crust.
3. A right-stepping segmentation geometry (the Davis Strait) was formed to link Labrador Sea with Baffin

Bay.
4. Continental crust is preserved in the Davis Strait during rifting.

The West Greenland-Eastern Canada realm comprises multiple Archean and Proterozoic geological
domains, reflecting a complex, multiphase evolution (e.g., Kerr et al., 1997; Grocott & McCaffrey, 2017;
St-Onge et al., 2009). The evolution of these domains, including their correlation to a pre-Cretaceous recon-
struction is dealt with in detail in van Gool et al. (2002) and St-Onge et al. (2009), as such only the most
salient points relevant to this study are reiterated here.

These Archean and Proterozoic domains, and the preexisting structures they contain, likely influenced the
Mesozoic-Cenozoic rifting, breakup, and transform system development through the process of structural
inheritance (Japsen et al., 2006; Peace et al., 2017; Peace, Dempsey, et al., 2018; Peace, McCaffrey, et al., 2018;
Watterson, 1975; Wilson et al., 2006). This previous work has shown that crustal structural inheritance may
have controlled the large-scale geometry of breakup and transform systems, the geometry and kinematics
of rift-related faulting, and potentially also the location of rifting and breakup-related magmatism. As such
it is important to understand the formation of the different basement units that comprise this study area
(Figure 1c). Principally, from north to south the study area herein comprises the following gross tectonic
units: the Nagssugtoqidian and Torngat orogens; the North Atlantic Craton and the Nain Province (NP);
and the Makkovik Province and the Ketilidian Mobile Belt (Figure 1).

The once continuous Archean North Atlantic Craton is now distributed between Greenland and Labrador
(where it is called the NP; St-Onge et al., 2009; Figures 1c–1e). The North Atlantic Craton is bordered
to the north and west by segments of Palaeoproterozoic orogenic belts that are tectonically related to the
Trans-Hudson Orogen including the Nagssugtoqidian Orogen and Rinkian fold belt on the north side and
the Torngat Orogen on the west side of the craton (St-Onge et al., 2009).

The Nagssugtoqidian Orogen (Figure 1c) is a belt of Palaeoproterozoic deformation and metamorphism
in West Greenland considered to have developed simultaneously with the Torngat Orogen in northern
Labrador (van Gool et al., 2002). Although the precise spatiotemporal relationship between these orogenic
belts is questioned (Scott, 1999), they are interpreted to have formed part of the same Palaeoproterozoic pas-
sive margin prior to ocean closure and continental collision with the North Atlantic Craton and NP (van
Gool et al., 2002; Grocott & McCaffrey, 2017).

The dynamics of West Greenland rifting and the preservation of the continental Davis Strait is currently a
topic of active research, with lithospheric inheritance being discussed as a potential controlling mechanism
(Peace et al., 2017; Peace, McCaffrey, et al., 2018; Peace, Dempsey, et al., 2018; Wilson et al., 2006). In this
study, we outline a two-phase tectonic history where mantle lithosphere inheritance is generated and then
contributes to crustal deformation during subsequent rifting (Figure 2). We hypothesize that a Palaeopro-
terozoic collision, which featured the North Atlantic Craton and produced the Nagssugtoqidian Orogen (van
Gool et al., 2002), would have left mantle lithosphere scarring during the continental suturing (e.g., Calvert
et al., 1995; Vauchez et al., 1997; Holdsworth et al., 2001). Although there is no direct evidence of a mantle
structure, deformation during the Nagssugtoqidian Orogen is thought to be on a lithospheric scale, rather
than simply crustal scale (Watterson, 1975; Grocott, 1977; van Gool et al., 2002), and as a result we consider
that a mantle suture is likely to have been produced (Figure 1; e.g., Biryol et al., 2016; Calvert et al., 1995;
Calvert & Ludden, 1999; Hopper & Fischer, 2015; Lie & Husebye, 1994; Mickus & Keller, 1992; Morgan et al.,
1994; Steer et al., 1998; Schiffer et al., 2014; Schiffer et al., 2016; Vauchez et al., 1997; Vauchez et al., 1998).
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Figure 2. Tectonic history of the Nagssugtoqidian Orogen. (a) Plate outline prior to the collision of the North Atlantic Craton and the Disko Craton (modified
from van Gool et al., 2002), alongside (b) related subduction dynamics, (c) continental collision, (d) and the generation of lithosphere-scale deformation
(modified from van Gool et al., 2002). Line A'-B' in (a) gives an approximate location for the schematic in (b). Annotations: ARF, Arfersiorfik intrusive suite;
SIS, Sisimiut charnockite suite; ISB, Itivdleq steep belt; ITZ, Ikertôq thrust zone; NISB, Nordre Isortoq steep belt; NSSZ, Nordre Strømfjord shear zone; SNF,
southern Nagssugtoqidian front; p.e.s., present erosion surface. CNO, NNO, and SNO are the central, northern, and southern Nagssugtoqidian Orogen,
respectively. (e) We propose this deformation history would leave a mantle scar (highlighted by dashed green lines in c and d). The ITZ is also the proposed
location of the suture line in this orogen (van Gool et al., 2002).

Indeed, Watterson (1975) first identified the Palaeoproterozoic Nagssugtoqidian orogenic belt as a
lithosphere-scale boundary due to the presence of Cambrian age kimberlites that are crosscut by Mesozoic
pseudotachylytes, which was a finding later confirmed by Grocott (1977).

In this study, we model upper crust inheritance and a mantle lithosphere scar that approximates the shape
and extent of the suture surrounding the North Atlantic Craton. Below, in a suite of numerical simulations,
we analyze the influence of lithosphere inheritance for generating rift tectonics appropriate to the Labrador
Sea, Davis Strait, and Baffin Bay.

2. Methods
The role of three-dimensional (3-D) lithosphere structure in a continental extension tectonic setting similar
to that of the Davis Strait is investigated. The models are implemented in a high-resolution 3-D Cartesian
box (Figure 3), using the numerical code ASPECT (Bangerth et al., 2018; Bangerth et al., 2018; Heister et al.,
2017; Kronbichler et al., 2012; Rose et al., 2017), which uses the finite element method to solve the system
of equations that describes the motion of a highly viscous fluid. Specifically, we use a nonlinear viscous flow
(dislocation creep) and Drucker-Prager plasticity for our model rheology (e.g., Naliboff & Buiter, 2015).

2.1. Experimental Setup
The 3-D numerical experiments are conducted within a model domain of 800 km (x axis) by 800 km (y axis)
and 600 km vertically (z axis). The computational grid is uniform laterally, but resolution varies vertically
with higher resolution prescribed in the top 80 km of the model (from the surface to 80-km depth). Below,
the resolution becomes more coarse, with a reduction in resolution between 80 and 180 km, then finally the
lowest resolution from 180-km depth to the bottom of the model (supporting information Figure S1). There
are 1.7 million active cells in the model, with a horizontal resolution of ∼1 km at the surface.

The 3-D simulations are very computationally expensive, producing 147 million degrees of freedom and
needing around 80-GB memory. For most cases, the models used 416 CPUs and took ∼16,000 hr of
computational time to generate 12 Myr of deformation on ComputeCanada's Niagara cluster (Loken
et al., 2010).
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Figure 3. (a) Initial setup of the numerical models presented here: 3-D box featuring crust, mantle lithosphere and a
mantle scar with extension applied to the top 120 km (lithosphere) in a N-S direction, with outflow applied in the
mantle below. East panel shows initial temperature profile across the whole box. (b) Top panel shows a mantle scar
delineating the outline of North Atlantic Craton suture. Bottom panel shows our interpretation of the suture in the
form of a model scar. Here, three main sections of the North Atlantic Craton suture (south, oblique, and east) are
generated into a scar (as shown by red arrows). The scar is applied as a zone of weakness (with a lower angle of internal
friction than surrounding material). Abbreviations: UC = upper crust; LC = lower crust; ML = mantle lithosphere.

2.2. Governing Equations
In this study, we solve the equations of conservation of momentum, mass, and energy after assuming an
incompressible medium with infinite Prandtl number:

−∇ · (2𝜇 .𝛜(u)) + ∇P = 𝜌g, (1)

∇ · u = 0, (2)

𝜌CP(
𝜕T
𝜕t

+ u · ∇T) − ∇ · k∇T = 𝜌H. (3)

In the equations above, 𝜇 is the viscosity, .𝛜 is the strain rate tensor, u is the velocity vector, k is the thermal
conductivity, 𝜌 is the density, Cp is the thermal heat capacity, H the internal heat production, P the pressure,
g gravity, and T the temperature.

The upper crust, lower crust, mantle lithosphere, asthenosphere, and scar are represented by five distinct
compositional fields that are advected with the computed flow velocity. For each field ci, this formulation
introduces an additional advection equation to the system of equations:

𝜕ci

𝜕t
+ u · ▿ci = 0. (4)

Equations (1–4) are solved using the finite element method, where the domain is discretized into hexahedral
finite elements and the solution (e.g., velocity, pressure, temperature, and compositional fields) is expanded
using Lagrange polynomials as interpolating basis functions (as outlined in Glerum et al., 2018). In this
study, we employ second-order polynomials for velocity, temperature, and composition and first-order poly-
nomials for pressure (Q2Q1 elements; Donea & Huerta, 2003). The equations are solved using an iterative
Stokes solver (for more details see Kronbichler et al., 2012). The models use a temperature-dependent den-
sity in all governing equations, but no pressure dependence, since the model is incompressible. We solve
the temperature and composition equation once at the beginning of each time step and then iterate out the
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Table 1
Rheological Parameters for Model M1

Property Unit UC LC ML A ML scar
Density kg/m3 2,800 2,900 3,300 3,300 3,300
Thermal diffusivity m2/s 1.905 ×10−6 1.149 ×10−6 1.333 ×10−6 1.333 ×10−6 1.333 ×10−6

Viscosity prefactor Pa−n·s−1 8.57 ×10−28 7.13 ×10−18 6.52 ×10−16 6.52 ×10−16 6.52 ×10−16

Stress exponent 4.0 3.0 3.5 3.5 3.5
Activation energy J/mol 223 ×103 345 ×103 530 ×103 530 ×103 530 ×103

Activation volume m3/mol 0 0 18 ×10−6 18 ×10−6 18 ×10−6

Thermal expansivity K−1 2 ×10−5 2 ×10−5 2 ×10−5 2 ×10−5 2 ×10−5

Specific heat J·kg−1·K−1 750 750 750 750 750
Heat production W/m3 1.5 ×10−6 0 0 0 0
Angles of internal friction degrees 20 20 20 20 0
Cohesion Pa 20 ×106 20×106 20 ×106 20 ×106 20 ×106

Note. For angle of internal friction and cohesion, strain weakening occurs over the range 0 to 0.5 (e.g., Brune et al., 2017) and weakens by 50%. UC: upper crust;
LC: lower crust; ML: mantle lithosphere; A: asthenosphere; ML scar: mantle lithosphere scar.

solution of the Stokes equation to a solver tolerance of 10−4 (with a maximum number of nonlinear rheology
iterations set to 10).

We use a nonlinear viscous flow (dislocation creep) and Drucker-Prager plasticity for the model rheology and
follow a setup similar to previous studies (e.g., Brune et al., 2014; Brune et al., 2017;Huismans & Beaumont,
2011; Naliboff & Buiter, 2015). The viscosity for dislocation creep is defined as follows:

𝜇disl =
1
2

A− 1
n

.
𝜀e

(1−n)
n exp

(E + PV
nRT

)
(5)

where A is the viscosity prefactor, n is the stress exponent (n > 1), .
𝜀e is the square root of the deviatoric

strain rate tensor second invariant, E is activation energy, V is activation volume, and R is the gas exponent
(Karato & Wu, 1993; Karato, 2008).

Viscosity is limited through a “yielding” mechanism. Plasticity limits viscous stress through a
Drucker-Prager yield criterion, where the yield stress in 3-D is

𝜎𝑦 =
(6C cos(𝜑) + 2P sin(𝜑))

(
√

3(3 + sin(𝜑)))
. (6)

Above, C is the cohesion and 𝜑 is the angle of internal friction. If 𝜑 is 0, the yield stress is fixed and equal to
the Von Mises yield criterion. When the viscous stress (2𝜇𝜀e) exceeds the yield stress, the viscosity is rescaled
back to the yield surface 𝜇y = 𝜎y/(2 .

𝜀e) (e.g., Thieulot, 2011). This method of plastic yielding is known as the
Viscosity Rescaling Method (Kachanov, 2004; Willett, 1992).

In the models here, strain weakening is implemented for the internal friction angle and cohesion; they are
linearly reduced by 50% of their value (from 20◦ and 20 MPa; e.g., Bos, 2002) as a function of the finite strain
magnitude. This weakening occurs between 0 to 0.5 strain, which is a range used in Brune et al. (2017)
rifting study. Other strain ranges for weakening were tested and the findings are presented in supporting
information Figures S2–S4.

Compositional material fields (upper crust, lower crust, mantle lithosphere, asthenosphere, and scarring)
are each assigned individual values of thermal diffusivity, heat capacity, density, thermal expansivity, and
rheological parameters (Table 1). If more than one compositional field is present at a given point (such as
in the vicinity of material interfaces), viscosities are averaged with a harmonic scheme (e.g., Glerum et al.,
2018). In addition, strain is also tracked as a compositional field.

The rheological setup of these models closely follows that of Naliboff and Buiter (2015). Table 1 outlines
the rheological parameters used for the different compositional layers. The upper crust implements a wet
quartzite flow law (Rutter & Brodie, 2004), lower crust applies wet anorthite (Rybacki et al., 2006), and the
mantle dry olivine (Hirth & Kohlstedt, 2003). All the viscous prefactors described in Table 1 are scaled to
plane strain from uniaxial strain experiments (Ranalli, 1995).
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An initial reference viscosity of 1022 Pa·s is applied to each compositional field in the models due to the strain
rate dependence of viscosity and the lack of an initial guess for the strain rate for the first time step (Glerum
et al., 2018). This initial reference viscosity was changed in the setup of the numerical models and not found
to change the outcome of the study. During subsequent time steps, the strain rate of the previous time step
is used as an initial guess for the iterative process. The final effective viscosity is capped by a (user-defined)
minimum viscosity (set at 1018 Pa·s) and maximum viscosity (set at 1026 Pa·s) to avoid extreme excursions
and to ensure stability of the numerical scheme. In the models presented here, we apply a viscosity range
of 8 orders of magnitude. However, for the majority of models, the viscosity profile stays well within the
maximum and minimum cutoffs.

2.3. Lithosphere Scarring
In the modeling of a mantle suture, we specify an inherited plane of weakness that has remained over a long
period of time (in this case, since the Palaeoproterozoic). There are a number of mechanisms where a man-
tle lithosphere suture could remain weak over time (e.g., Erdős et al., 2014; Heron et al., 2018; Manatschal
et al., 2015; Petersen & Schiffer, 2016), one of which is through grain size reduction of peridotite mylonites
at ancient plate boundaries (Bercovici & Ricard, 2014). The mantle lithosphere scar modeled here is 10 km
thick, dipping at an angle of 45◦ from the horizontal from 32-km depth down to 52 km (Figure 3a), and rheo-
logically weak by having a reduced angle of internal friction compared to the surrounding material (Table 1).
Due to the lack of high-resolution geophysical imaging at depth in the region, there is uncertainty in the
dip of a mantle structure (or even if there is a heterogeneity present). However, the influence of changing
shape and dip angle of generic styles of such weak scars is explored in detail in Heron and Pysklywec (2016),
Heron et al. (2019), and Jourdon et al. (2017), Salazar-Mora et al. (2018), and additional models shown in
the supporting information.

2.4. Extension Rate and Boundary Conditions
Figure 4 shows the velocity azimuth and magnitude for the Davis Strait using plate reconstruction histo-
ries (Matthews et al., 2016) and the GPlates software (Müller et al., 2018). According to this reconstruction,
between 200 and 120 Ma there was no significant extension between Greenland and Eastern Canada. Dur-
ing the early to mid-Cretaceous, extension initiates with an azimuth of between 20◦ and 30◦ in present-day
coordinates (Abdelmalak, 2010). However, it was not until the late Mesozoic/early Cenozoic that there was
significant extension in the region. Thus, we identify a “Phase 1” between 75 to 55 Ma as having an average
extension velocity of 1 cm/year at an azimuth of approximately 60◦. The azimuth of continental separation
rotates anticlockwise in the Cenozoic (Figure 4a), and we identify therefore a “Phase 2” with a higher veloc-
ity magnitude at a high angle to the Phase 1 extension direction (Figure 4c). Following the work of Peace,
McCaffrey, et al. (2018), Phase 1 produced the rift shape alongside the spreading in the Labrador Sea and
Baffin Bay. In this study, we focus on the initial stages of the rift system and investigate Phase 1 closely.
Phase 2 is not thought to have significantly thinned the Davis Strait, although a number of strike-slip crustal
features are due to this approximately NE-SW extensional activity (Wilson et al., 2006).

To model Phase 1 (Figure 4c), we apply a prescribed boundary velocity on the north and south boundaries,
and tangential velocity boundary conditions on the west, east, and base walls of the model, and a free surface
on top (Rose et al., 2017). We have modeled the Cartesian 3-D box large enough so that deformation driven
from the scarring is not influenced by the tangential boundary conditions (as described below).

The prescribed boundary condition on the north wall is a 0.5-cm/year extension for the lithosphere (120 km)
and a return flow of −0.3 cm/year for the bottom 200 km of the box. In between, the velocity tapers from
0.5 to 0 cm/year from 120- to 225-km depth, and from 0 to −0.3 cm/year from 200- to 400-km depth. The
reverse is applied to the west wall, with 0.5-cm/year extension for the lithosphere. After extensive testing,
we found this velocity profile as a boundary condition to provide stable solutions while maintaining mass
balance (meaning no additional volume is added to the box). This prescribed boundary velocity produces an
extension rate of 1 cm/year in the lithosphere. This falls within the appropriate velocity magnitude as given
in Figure 4.

The free surface allows topography to form and is formulated using an Arbitrary Lagrangian-Eulerian
framework for handling motion of the mesh (for more details please refer to Rose et al., 2017). All of the
calculations presented here have ∼5,500,000 free surface degrees of freedom.
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Figure 4. Calculated velocity azimuth (a) and magnitude (b) over time for the rift zone from the global reconstruction
compiled by Matthews et al. (2016). From these values we approximate the two phases of the rift evolution (c).

2.5. Thermal Model Setup
An initial temperature field is prescribed (Figure 3a) but is allowed to evolve during the simulation. The
initial temperature follows a typical continental geotherm (Chapman, 1986) with no lateral variations. Our
initial condition models the late Mesozoic extension of two continental blocks, which collided in the Palaeo-
proterozoic (Figure 2). Therefore, the closure of the oceanic basin to accrete northern Greenland to the North
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Figure 5. Rift dynamics for Model C1, CM1, M1, C2, and CM2 (Table 2). (a) Initial geometry of mantle lithosphere (green) and crustal (blue) scar. The surface
strain rate (b) and upper crust extent (blue; c) is given after 15 Myr. Any spreading location in (c) which is not upper crust is given as red (indicating spreading).
Annotation given as (1) rifting south of modeled Davis Strait to produce new oceanic crust; (2) rifting north of Davis Strait to produce new oceanic crust; (3)
segmented rift geometry; and (4) preservation of the continental crust in the Davis Strait during extension. Green circle at base of figure indicates that model
passed the four-point Davis Strait checklist and red circles indicate a negative result.

Atlantic Craton occurred >1 Gyr in the past, and therefore, there are no remaining thermal perturbations
from that tectonic event. The temperature equation for calculating the initial geotherm is given as follows:

T(z) = To +
q
k

z − Hz2

2k
, (7)

where To is the temperature at the top of the specific layer, H is the heat production, q is the heat flow
through the surface of the specific layer, k is the thermal conductivity, and z is the depth. Table S1 gives the
values for the thermal constraints required to generate the geotherm. As described in Naliboff and Buiter
(2015), we use a high conductivity in the asthenosphere to maintain the high adiabat in the layer, and to
generate a constant heat flux into the lithosphere (Pysklywec & Beaumont, 2004).

3. Results
Below, we present numerical models of continental extension in the presence of lithosphere inheritance
related to West Greenland.

3.1. Crustal Inheritance and Mantle Inheritance
Figure 5 shows the impact of crustal and mantle lithosphere inheritance on the evolution of the Davis Strait.
To test the applicability of crustal inheritance in generating the first-order tectonics as seen in the Davis
Strait, we apply in Model C1 a crustal fault from previous geological studies (Peace, McCaffrey, et al., 2018;
van Gool et al., 2002; Wilson et al., 2006) that is similar in geometry to the Ikertôq thrust zone (Figures 2 and
5a). After 15 Myr of E-W extension, the surface strain rate in Model C1 indicates that the inheritance does
not localize in the region of the scar (Figure 5b). The rifting pattern does not generate the relevant tectonic
features, as outlined in the four-point checklist for the Davis Strait.

Model CM1 shows the rifting pattern across the region after 15 Myr of extension in the presence of the crustal
scars in Model C1 and a mantle lithosphere inherited structure (Figure 5a). The mantle lithosphere scar
represents the Nagssugtoqidian suture separating the North Atlantic craton from the continental material to
the north (Figure 3b). In Model CM1, the strain rate replicates the right-stepping segmentation of the rifted
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Table 2
List of Selected Models in Main Manuscript (Over 50 3-D Models Conducted)

Model Checklist Geometry Figure
C1 1 Crustal scar setup 1 5
CM1 1, 2, 3, and 4 C1 plus mantle suture scar 5
M1 1, 2, 3, and 4 Mantle suture scar 5, 6, 8, and 9
C2 1 Crustal scar setup 2 5
CM2 1, 2, 3, and 4 C2 plus mantle suture scar 5
M70 1, 2, 3, and 4 Oblique suture 75◦ from x axis 7
M65 1, 2, 3, and 4 Oblique suture 65◦ from x axis 7
M40 1, 2, 3, and 4 Oblique suture 40◦ from x axis 7
M20 1 Oblique suture 20◦ from x-axis 7
M1wide 1, 2, 3, and 4 M1 with wider oblique suture 7
M1gap 1 M1 with no oblique suture 7

Note. Checklist as outlined in text.

conjugate margins (Figure 5b), with the surface tectonics at 15 Myr producing spreading in the north and
south of the model (as shown in red in Figure 5c) and preserving continental upper crust material across the
oblique section of the suture (as shown in blue in Figure 5c). As a result, Model CM1 meets the four-point
checklist for the rift and ocean basin architecture.

In Model M1, the crustal inheritance from CM1 is removed, yet there is little difference in the evolution of the
rift system (Figure 5). In this instance, the tectonics of the region are dominated by the mantle lithosphere
structure. Applying only crustal inheritance that mimics the shape of the Nagssugtoqidian suture (e.g., a
shallower scar as used in Model M1) is shown in Model C2 (Figure 5a). The tectonic evolution of the region
is very different as compared to the similar Model M1. In Model C2, the southern limb of the suture begins
to spread and propagates north-south (Figure 5c). Reapplying the mantle lithosphere suture in Model CM2
(Figure 5a) dominates the evolution of the region, as previously shown in Model CM1.

3.2. Evolution of the Rift
Figure 6 shows the rift evolution of the reference Model M1, which enables an interpretation of what is
occurring to reproduce the appropriate tectonic patterns of the Davis Strait. The surface strain rate pattern
in Figure 6a shows an initial reactivation of the southern limb (A) and the oblique portion of the scar (B)
at depth generates localized deformation in the crust. After 4 Myr of extension, there is little activity in the
north of the model. However, after 7 Myr, the surface strain rate pattern indicates a localization of defor-
mation to the north of the mantle suture (C, Figure 6a). The eastern limb of the suture does not appear to
reactivate.

Figure 6. Time evolution of surface strain rate (a) alongside upper crust (blue) and spreading position (red; b) after 4, 7, 12, 13, 14, and 15 Myr for Model M1.
Marker A indicates deformation occurring in the south of the model due to the southern limb of mantle scar. Marker B shows the oblique strain across the
mantle scar, and marker C indicates deformation occurring to the north of the scar in homogenous lithosphere.
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Figure 7. Rift dynamics for Model M70, M60, M40, M20, M1wide, and M1gap. (a) Initial geometry of mantle lithosphere scar (green), surface strain rate
(b) alongside upper crust (blue), and spreading position (red; c) after 15 Myr. Annotation given as (1) rifting south of modeled Davis Strait to produce new
oceanic crust, (2) rifting north of Davis Strait to produce new oceanic crust, (3) segmented rift geometry, and (4) preservation of the continental crust in the
Davis Strait during extension. Green circle at base of figure indicates that model passed the four-point Davis Strait checklist and red circles indicate a
negative result.

The thinning and spreading of the upper crust is shown in Figure 6b, with spreading developing first in
the south (12 Myr) and then in the north (14 Myr), which is in keeping with geological interpretations of
Labrador sea and Baffin Bay (Matthews et al., 2016; Peace, McCaffrey, et al., 2018; Peace et al., 2017). There
remains a region between the north and south spreading regions that is preserved, but thinned, continental
material, which we describe as being a modeled Davis Strait.

The mantle lithosphere suture plays a significant role in the development of the southern “Labrador Sea”
rift—the southern limb of the structure is perpendicular to the extension direction and as such facilitates
the rifting and spreading (Figure 6b, A). However, the oblique portion of the scar transmits strain across it
(Figure 6a, B) until it reaches the E-W section of the proposed ancient suture. Instead of leading to deforma-
tion on this eastern limb of the scar, the extension diverts to being perpendicular to the extension direction
in the north of the model (Figure 6a, C).

3.3. The Complexity of Obliquity
Figure 7 explores the potential role of obliquity in controlling the rifting pattern. The reference setup for
Model M1 has a 45◦ angle from the extension axis for the oblique portion of the mantle lithosphere suture.
In Figure 7, this angle is changed to be less acute (M70, M65) or more acute (M40, M20) to gauge the range
of obliquity at which the reference model can still produce Davis Strait tectonics. For Models M70 and M65,
the acute angle cannot maintain the full four-point checklist as a right step segmentation is not generated.
However, a narrow region of preserved continental material is still produced (Figure 7).

Decreasing this angle of obliquity in M40 (40◦ angle from the extension axis for the oblique portion of the
mantle lithosphere suture) maintains the four-point checklist. However, a 20◦ obliquity to extension direc-
tion mantle suture (Model M20) is not able to propagate strain across it and a north-south rift pattern is
produced (Figure 7).

Figure 7 further highlights the importance of this oblique portion of the mantle suture in Model M1wide
and M1gap. In M1wide, the width of the oblique section is increased (with an angle of 45◦) and still allows
strain to propagate across it. Indeed, the spacing between the north and south spreading regions is increased
compared to Model M1 (Figure 7). However, if we remove the oblique portion from M1 altogether (e.g.,
Model M1gap), we produce north-south spreading. The ability of the suture to transmit strain across the
oblique portion is paramount to developing the appropriate rift and ocean basin architecture (Figure 7).
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Figure 8. Lithosphere cross sections with upper and lower crust and mantle lithosphere shown across the model north
rift (a), Davis Strait (b), and south rift (c; sections as shown in Figure 6b). Abbreviations: UC = upper crust, LC = lower
crust, and ML = mantle lithosphere.

3.4. Model Comparison With Gravity Data
For the models presented that satisfy the four-point tectonic checklist (e.g., CM1, M1, CM2, M40, and
M1wide), the surface evolution of the models is encouraging (Figure 6). However, it is important to com-
pare the results of the numerical models with independent estimates of subsurface structure. Figures 8 and
S6 show cross sections of Model M1 after 15 Myr for north and south sections of the rift, as well as across
the Davis Strait (lines given in Figure 6c).

The rifting dynamics across the model changes significantly from north to south. In the south of the model,
the spreading occurs asymmetrically (Figure 8c), with more pronounced necking to the west of the spread-
ing center. However, in the north (Figure 8a), the rift is more symmetric. The preexisting angled mantle
suture promotes this asymmetry in the south, whereas in the north the rift propagates without any inherited
features. It appears that in the north the spreading occurs as a result of being perpendicular to the extension
direction (Figure 6).

Figure 9a shows a subset of Figure 6b and shows the thinned Davis Strait with variable topography (with a
4-km peak in the west of the model). Figure 9b shows a gravity inversion giving the depth to Moho for the
region (as described in the supporting information and Welford & Hall, 2013; Welford et al., 2018). Across
the Davis Strait we see some areas of shallow Moho toward Greenland in the east (circled in red). This corre-
sponds to the thinning of the crust across our model Davis Strait (circled in red, Figure 9a). Furthermore, our
model could produce decompression melting related to the thin mantle lithosphere as outlined in Figure 9a.
It is understood that melting occurred during the Paleogene across the Davis Strait (Larsen et al., 2009). Our
angled and thinned mantle lithosphere could be a pathway for such decompression melting patterns, and
as a result a potential site of magmatic underplating.

4. Discussion
Results from our modeling show the impact of mantle lithosphere scarring related to a Palaeoproterozoic
orogenic event in the development of the complex Mesozoic-Cenozoic rifting and ocean basin formation
between Greenland and Canada (Figure 5), and highlight the potential role of obliquity in the rift evolu-
tion (Figure 7). Although a number of studies have previously modeled oblique rifting in three dimensions
(Brune et al., 2014; May et al., 2015; Zwaan et al., 2016; Zwaan & Schreurs, 2017; Brune et al., 2017;
Farangitakis et al., 2019), our study shows tectonic features related to West Greenland and offers a new
geodynamic explanation for the Phanerozoic rift event in the region.

4.1. Mechanism
Figure 10 outlines a mechanism for the evolution of the Davis Strait during the Paleocene. First, in the region
of the present-day Labrador Sea, there is a reactivation of a mantle lithosphere suture related to the accretion
of the North Atlantic Craton. The suture, outlined in green as given by van Gool et al. (2002), in this region
is perpendicular to the extension direction generated by the plate motion in the late Paleocene/early Eocene
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Figure 9. (a) Close-up of lithospheric cross section in Figure 8b, highlighting varying crustal thickness and shallow
mantle lithosphere. (b) Gravity inversion giving the depth to Moho for the region, with coordinates relative to UTM
zone 19 and ellipsoid WGS-84. White dashed lines giving the outline of the Nagssugtoqidian Orogen, with white solid
circle showing an area of thinner continental lithosphere across the Davis Strait (as shown in red circle in panel a).
Contour interval for the Moho map is 2000 m. Dashed gray lines represent extinct spreading centers. Black lines
represent crustal faults and shear zones. White lines outlined in black refer to seismic refraction lines (N1, Funck et al.,
2012; N2, Gerlings et al., 2009; F12, Funck et al., 2012; and S13, Suckro et al., 2013), used to assess the reliability of the
gravity inversion results.

(Matthews et al., 2016). The model rifting first to the south of the Davis Strait follows the geological history
of the region, with Labrador Sea spreading occurring before Baffin Bay spreading in the north (Abdelmalak
et al., 2018; Peace et al., 2017).

The middle panel of Figure 6 shows the angled portion of the suture that connects the NP and how the north
of the North Atlantic Craton plays an important role in the evolution of the Davis Strait (gray region). The
obliquity of the suture to the late Paleocene extension direction does not permit the Davis Strait to achieve
breakup in the same way as in the Labrador Sea. Although our model Davis Strait undergoes extensive
thinning (transtension; Figure 8), the oblique suture delays, and ultimately prohibits spreading. Stress is
transmitted across the oblique suture, creating the elevated region that becomes the Davis Strait.

This stress transfer follows the mantle suture until it becomes parallel to the extension direction on Green-
land (Figure 10). Despite the presence of a weak region of mantle lithosphere in the east of the model, the
rift propagates north perpendicular to the extension direction into the Baffin Bay region (Figure 6). In our
models there is no structural inheritance to the north of our Davis Strait; because of this, the Labrador Sea
and Baffin Bay spreading patterns are very different (Figure 9a).
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Figure 10. We propose that mantle inheritance from the Nagssugtoqidian Orogen could generate (a) south rifting,
(b) creation of Davis Strait and preservation of continental lithosphere, and (c) north rifting. RO, Rinkian Orogen; NO,
Nagssugtoqidian; CP, Churchill Province; NQO, New Quebec Orogen; SCP, Southern Churchill Province; TO, Torngat
Orogen; NP, Nain Province; NAC, North Atlantic Craton; MKO, Makkovikian-Ketilidian Orogen.

4.2. The Influence of the Mantle Lithosphere in Tectonic Processes
It has been noted by many workers that the Mesozoic rifting and Cenozoic margin and basin formation in
West Greeland crosscuts basement orogenic belts and cratons (e.g., Buiter & Torsvik, 2014; Larsen & Rex,
1992; Tappe et al., 2007). In particular, the North Atlantic Craton was split by the Labrador Sea, meaning
a thin sliver is now located to the west in the Torngat region on Labrador (see Figure 1). This crosscutting
relationship prompts the question as to why the Labrador Sea ocean basin opened where it did and not
further west at the surface in the Torngat Palaeoproterozoic belts. A possible answer provided by this study
is that an east dipping Palaeoproterozoic suture (Figure 2) would have been located at mantle depths many
tens of kilometers inboard of the surface trace of the western margin of the North Atlantic Craton. If this
mantle feature localized extensional strain in the crust directly above, as demonstrated by our models, then
it would be entirely feasible that a strip of the North Atlantic Craton could end up on the Labrador side of the
newly formed ocean basin (Figure 1). Indeed, this provides a mechanism by which structural inheritance by
unseen mantle structures influences upper crustal deformation patterns and creates crustal slivers. In this
case promoting cross-cutting narrow margins by necking of the overlying crust (e.g., Wenker & Beaumont,
2018), where the extension direction is perpendicular to the preexisting mantle scar.

The Palaeoproterozoic Nagssugtoqidian orogenic belt to the north of the North Atlantic Craton was first
identified as a persistent (>2.5 Gyr) tectonic lineament by Watterson (1975), who regarded the boundary as
a lithosphere-scale structure due to the presence of Cambrian age kimberlites that are crosscut by Mesozoic
age pseudotachylytes (Grocott, 1977). Subsequent investigation of brittle deformation in exposures of the
Nagssugtoqidian Orogen adjacent to the Davis Strait by Wilson et al. (2006) revealed a two-phase model
for fault development that is compatible with the development of the Mesozoic to Cenozoic continental
margin offshore (Chalmers et al., 1993; Oakey & Chalmers, 2012). Wilson et al. (2006) found that the Phase
1 generally N-S trending normal faults were kinematically compatible with the early NW-SE opening of the
Labrador Sea-Davis Strait-Baffin Bay seaway in the Cretaceous to Paleocene. Phase 2 faults are strike-slip
and thrust structures that are spatially confined to ductile shear zones within the Nagssugtoqidian (such
as the Norder Isortoq shear zone; Figure 2) and explained by partitioning of the wrench deformation that
formed the Eocene Ungava transform system (via preexisting structures; Wilson et al., 2006).

The main Palaeoproterozoic shear zones identified as part of the Nagssugtoqidian Orogen continue offshore
and control the primary depocenters and later transpressional deformation in the Davis Strait region (Wilson
et al., 2006; Peace et al., 2017). Early Cretaceous synrift fault patterns show generally margin parallel
NNW-SSE trends in Labrador Sea and Baffin Bay; however, in the Davis Strait region the faults show a
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broad, diffuse pattern with the main faults rotated clockwise relative to the overall margin trend (Alsulami
et al., 2015; Chalmers et al., 1993; Oakey & Chalmers, 2012; Peace et al., 2017). This pattern is compatible
with the Davis Strait forming as a zone of transtensional deformation, under local ENE-WSW extension in
a right-stepping transfer zone from Labrador Sea into Baffin Bay. In this scenario the Davis Strait was a pri-
mary structure formed prior to the change in spreading direction in the Eocene. The coincidence of the Davis
Strait transtensional zone with the offshore continuation of the Nagssugtoqidian orogenic shear zones led
Wilson et al. (2006) to suggest that deformation was “strongly influenced by basement fabrics such that this
region experienced complex 3-D strain.” We now suggest this crustal inheritance, which is clearly expressed
in the fault patterns, the depositional history of the basins and the overall crustal thickness (Welford et al.,
2018), was in effect a passive response to the oblique deformation controlled by the mantle scar beneath. The
overall right step of the margin, which set up the oblique extensional deformation zone which becomes the
Davis Strait was a first-order response to the locus of stretching deformation seeking to follow the proposed
mantle scar where it was oblique to the stretching direction. Further east, where the proposed mantle scar
related to the ancient suture becomes perpendicular to the overall stretching direction is the point (south
end of Baffin Bay) where the locus of deformation resumed its NNW-SSE direction.

Inheritance in rift evolution is commonly attributed to the influence of preexisting crustal structures such as
Proterozoic mobile belts in the East African rift and the Red Sea (Corti et al., 2007; Daly et al., 1989; Jarrige et
al., 1986). There have been fewer studies on the effects of a pre-existing mantle heterogeneity (e.g., Schiffer
et al., 2018). Autin et al. (2013) tested models to explain the evolution of the Gulf of Aden that included an
oblique mantle weakness, concluding that observed offset spreading centers were in this case more likely
to have been produced by an inherited Mesozoic basin. We suggest that on the west Greenland margin, in
the absence of an obvious inherited basin, a mantle scar induced a similar offset spreading center and that
offset zone became the Davis Strait.

This study presents a new, deep origin of the inheritance that may drive deformation in a region where only
crustal processes have previously been suggested (Wilson et al., 2006; Peace, McCaffrey, et al., 2018; Peace,
Dempsey, et al., 2018). It should be noted that it is indeed unexpected that applying a North Atlantic Craton
mantle suture (Figure 3b) in the presence of an extension field that is relevant in velocity and orientation
to the Paleogene (Figure 4) would produce appropriate rift dynamics for the Davis Strait system (Figure 6).
However, the study here complements a growing body of work that highlights the potential of the man-
tle lithosphere to play an important role in tectonic processes (Pysklywec & Beaumont, 2004; Babuška &
Plomerová, 2013; Heron et al., 2016; Jourdon et al., 2017; Salazar-Mora et al., 2018; Phillips et al., 2018;
Balázs et al., 2018; Heron et al., 2019).

The tectonic mechanism presented here may also be applicable to other oblique and transform margins
overlying significant crustal and lithospheric terrane boundaries (e.g., Equatorial Atlantic of Africa and
South America; North West Shelf Australia; and Southern and East coast of Africa).

4.3. 3-D Modeling
We present 3-D numerical models that are 800 km × 800 km and have a crustal resolution of 1 km. There
are distinct advantages to using such models over 2-D simulations, as discussed in Le Pourhiet et al. (2018).
However, there are drawbacks related to these higher dimension models. For instance, due to computa-
tional expense, we are unable to model dynamically the full evolution of the region. That is, simulate the
continental collision that produced the Nagssugtoqidian Orogen and subsequent hypothesized mantle litho-
sphere sutures in the Palaeoproterozoic, then organically generate the Mesozoic-Cenozoic rifting as a result
of far-field plate motion (e.g., Naliboff & Buiter, 2015; Salazar-Mora et al., 2018).

By manually implementing such a mantle scar as an initial condition we negate a lot of the geological history
of the region. However, our hypothesis that ancient tectonic activity could produce weak lithospheric struc-
tures that remain dormant over long timescales before reactivation is well established (e.g., Vauchez et al.,
1997; Holdsworth et al., 2001). Indeed, this study is important as it applies well-established theories regard-
ing mantle lithosphere inheritance (e.g., Bercovici & Ricard, 2014) to a regional geological feature. Here, a
mantle lithosphere structure can generate appropriate deformation related to the Davis Strait and follows
a number of previous studies highlighting the importance of the mantle lithosphere in tectonic processes
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(e.g., Balázs et al., 2018; Babuška & Plomerová, 2013; Pysklywec & Beaumont, 2004; Heron et al., 2019;
Heron et al., 2015; Heron et al., 2016; Heron & Pysklywec, 2016; Hopper & Fischer, 2015).

The plate motion, which we apply here as a boundary condition, is an important part of the history of the
region. Figure 4 shows the relative velocities and orientation of the plate motion over the course of the rift
(Matthews et al., 2016). In our modeling, we have fixed the extension velocity and orientation for 15 Myr in
order to approximate Phase 1 of the rift history (Figure 4). Our modeled Davis Strait region is susceptible
to rifting and indeed thins throughout the simulation, which is in keeping with geophysical interpretation
of the region (Figure 9b; Funck et al., 2007; Suckro et al., 2013). If we allow our reference case Model M1
to deform for longer than 15 Myr, the modeled Davis Strait thins further before joining up to the north and
south spreading zones after 19 Myr (Figure S5).

Due to numerical complexity and computational expense, it is difficult to apply a time-dependent extension
velocity covering the whole rift sequence (Figure 4). However, the extension velocity and orientation used
here fall within the estimation for Phase 1. As outlined in Peace, McCaffrey, et al. (2018; and shown in
Figure 1b), the four-point checklist for the rift evolution of the region has already been satisfied at the end of
Phase 1 (60 Ma, 15–20 Myr after extension is initiated). The rotation of the extension axis to approximately
north-south in Phase 2 (Figure 4) has an impact on the fault orientation and kinematics but not on the overall
geometry of breakup (Peace, McCaffrey, et al., 2018). As a result, modeling only Phase 1 (e.g., 1 cm/year at
15 Myr) is appropriate for our study.

4.4. Parameter Analysis
In testing the robustness of our study, we explored the parameter space surrounding these 3-D numerical
models of extension of continental lithosphere finding that the choice of rheological parameters is important
to the development of appropriate Davis Strait tectonics. Schiffer et al. (2016) interpret mantle lithosphere
scarring on the continental margin of East Greenland to be of higher density than the surrounding mantle
material, with Petersen and Schiffer (2016) providing modeling on the topic. In our study, through chang-
ing our mantle lithosphere scar from an area of weakness to being stronger than the surrounding material,
we were unable to produce any focusing of strain that would allow a Davis Strait-type geometry rift to
develop. However, a number of studies have discussed the weakening impact of tectonic processes on the
lithosphere to facilitate continental rifting (Dunbar & Sawyer, 1988, 1989). The subduction of crustal mate-
rial into the mantle through ancient processes could increase volatiles to the lower lithosphere, weakening
the seismically imaged scarred material (Petersen & Schiffer, 2016; Pollack, 1986).

We also studied the strain range over which material is weakened (e.g., Figure S3). In Models M2–M5 we
used Model M1 setup and changed the strain range for weakening to different values used in recent studies
(e.g., Huismans & Beaumont, 2011; Naliboff & Buiter, 2015; Brune et al., 2013; Salazar-Mora et al., 2018).
We found some differences between the results with regards to the evolution of the rift (e.g., Figures S3 and
S4); however, they all satisfied the required four-point checklist for Davis Strait tectonics (Figure S3). Allken
et al. (2012) showed the amount of strain weakening is an important factor in controlling the mode of rift
interaction in brittle-ductile coupled crustal systems. Although the parameters used in the main manuscript
are in keeping with the rest of the community (e.g., Brune et al., 2017), the work presented here (alongside
the previous work of Allken et al., 2012) highlights the difficulty of modeling strain weakening due to the
unconstrained nature of the values for different rheologies.

5. Conclusions
For the first time, numerical simulations show that rifting of lithosphere with a preexisting mantle structure
can reproduce first-order features that resemble the Labrador Sea, Davis Strait, Baffin Bay continental mar-
gins, and ocean basins (Figure 6). The results offer a new mechanism for rifting in the region, focusing on
the role of ancient mantle lithosphere suturing rather than or in addition to crustal inheritance (Figure 5).
The obliquity of the suture to the extension direction is important for the tectonic evolution of the region
and generates a segmented rift pattern (Figure 7). This study supplements a growing body of work that is
posing questions on the fundamentals of inheritance and shows that we should be looking deeper than the
Moho for controls on the tectonic style of lithosphere-scale deformation.
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