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Abstract
Experimental studies suggest that individuals exhibit more risk aversion in choices
among prospects when the payment and resolution of uncertainty are immediate rela-
tive to when it is delayed. This leads to preference reversals that cannot be attributed to
discounting.When data suggest that utility is time-independent, probability weighting
functions, such as those used to model prospect theory preferences, can accommodate
such reversals. We propose a simple descriptive model with a two-parameter proba-
bility weighting function where one of these parameters depends on the time at which
a prospect is resolved. The time-dependent parameter is responsible for the curvature
of the probability weighting function and is regarded as an index of (in)sensitivity
towards changes in probabilities. We provide conditions that characterize increased
sensitivity towards more distant probabilities; this can account for the observed rel-
atively less risk aversion towards delayed prospects. In our framework, the discount
function is unrestricted, such that the model is compatible with empirical findings of
non-constant discounting. In a simple application to bargaining we illustrate when it
is advantageous for an individual to advance or delay the bargaining resolution time
if an opponent displays increased sensitivity towards probability changes with delay.
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1 Introduction

Many decisions taken by individuals concern risky outcomes obtained at various points
in time. These range from the purchase of lottery tickets, the ordering of goods that
need to be delivered at certain dates, the booking of accommodation for business
or holidays, to more complex financial instruments such as options or employment
contracts with performance-based pay components. Traditionally, such streams of
risky outcomes are evaluated by taking a weighted average of the future expected
utility (EU) of each risky option, where the weights are determined using a constant
discount rate. The literature has questioned this form of discounting from a descriptive
point of view (Loewenstein and Prelec 1992; Frederick et al. 2002) as well as the use
of EU for risk (Starmer 2000) and has called for more flexibility in modeling temporal
discounting and attitudes towards probabilities.

As recent experimental studies suggest that risk attitude may be affected by the
time at which prospects are obtained, we propose a simple theory that combines the
domains of choice under risk and over time in a specificway. A connection between the
domain of risk and that of pure time preferences has been suggested before (Prelec and
Loewenstein 1991; Dasgupta andMaskin 2005) and a specific role has been attributed
to the treatment of probabilities (Quiggin and Horowitz 1995; Halevy 2008). Recent
contributions suggest that there may be subtle differences across these choice domains
and that inverse-S weighting functions, as proposed in rank-dependent models and
empirically supported by prospect theory (PT; Kahneman and Tversky and Kahneman
1992; Stott 2006;Wakker 2010), can play an important role for time (Wu 1999; Epstein
2008; Baucells and Heukamp 2012; Epper and Fehr-Duda 2015; Gerber and Rohde
2018). Accordingly, we develop a model in which the empirically founded shape of
the probability weighting function may be affected by time delay.

In general, we can expect that time delay inflates or deflates any of the descriptively
relevant parameters of a static decision theory model for risk and there are too few
empirical studies to be conclusive. Earlier studies have often focused on how dis-
counting is affected by future risk (Stevenson 1992; Shelley 1994), how static choice
EU-paradoxes farewith delay (Keren andRoelofsma1995;Weber andChapman2005)
and, more recently, on how risk behavior is affected by delay (Noussair andWu 2006).
It is, therefore, not much of a surprise that the empirical basis for our motivation to
focus on the probability weighting function is arguably thin. We are mainly motivated
by the relatively recent study of Abdellaoui et al. (2011), which finds that, in a setting
where discounting, attitudes towards outcomes and attitudes towards probabilities are
separated, virtually all of the effect of time delay is captured by probability weight-
ing. The experimental design of Abdellaoui et al. is such that discounting cannot be
made responsible for changes in the preference among delayed prospects. Moreover,
the elicited data suggest that the utility of outcomes is unaffected by delay. As a
result, it can only be the treatment of probabilities that can account for changes in
the observed choice behavior. This explains why our focus is on the interaction of
probability weighting and time delay.

In our model we want to be more precise about which aspects of probability
weighting are foremost responsible for changes in probabilistic risk attitudes. Looking
somewhat closer at the distortions in probabilities, the results in Table 5 of Abdellaoui
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et al. (2011) show that the probability weights attached to the probability value of
p = 1/3, which has often been reported to be the least distorted probability in static
binary choice under risk (Wakker 2010), are not significantly impacted by time delay
either. Further, at the aggregate level of all individuals in their study, the low probabil-
ity (p = 1/6) is less overweighted with delay, while moderate and large probabilities
(p ∈ {1/2, 2/3, 5/6}) are less underweightedwhen prospects are delayed. Thus, while
confirming that delayed probabilities are also treated in accordance with the inverse-S
shape of standard PT-weighting functions, albeit that the shape is less pronouncedwith
delay, Abdellaoui et al. were able to qualify the finding of Noussair and Wu (2006)
and others, which was termed “more risk tolerance with delay”. Since underweight-
ing of probabilities is associated with pessimism (formally defined in Wakker 1994),
which in PT induces risk-averse choice behavior, we prefer to use the term relatively
less risk aversion with delay instead. But the complete picture on the treatment of
probabilities has to include the observation that, jointly with reduced pessimism with
delay, small probabilities are less overweighted (i.e., less optimism; Wakker 1994),
and that the undistorted probability (i.e., p = 1/3) apparently remains unaffected by
delay. Such a treatment of probabilities is better attributed to a change in the index of
insensitivity (Wakker 2010), a measure that captures the ability of a decision maker
to discriminate among probabilities (Wu 1999).1 Therefore, our working hypothesis
is that delay mainly affects insensitivity.

For a theoretical analysis concerning changes in the index of insensitivitywith delay,
we invoke the two-parameter constant relative sensitivity (CRS) weighting function
of Abdellaoui et al. (2010). Other parametric probability weighting functions could, in
principle, also be adopted,2 but the CRS-family has the advantage that it connects opti-
mism (overweighting of small probabilities plus concavity of the weighting function)
and pessimism (underweighting of medium and large probabilities plus convexity)
in a direct way to its insensitivity index, which is the parameter of our interest. The
CRS-function also identifies an elevation parameter, which Gonzalez and Wu (1999)
interpret as “attractiveness to gambling”, because it captures a general propensity of
an individual to take risks in a particular choice environment. In accordance with
the view that insensitivity and elevation represent logically independent psychologi-
cal components of behavior (Gonzalez and Wu 1999, p. 139), the CRS-function also
achieves a clean separation between these parameters based on behavioral preference
foundations.

To better understand the relation between optimism/pessimism and insensitiv-
ity/elevation it is useful to present more formal arguments. The CRS-weighting
function is a power-function over probabilities that are overweighted and is the (dual
of that) power-function over probabilities that are underweighted; both functions have
the same exponent, σ , as the index for (in-)sensitivity. Except for the probabilities
0 and 1 the CRS-weighting function may have a further fix-point at an intermediate
probability, η, which is the index for elevation. At one extreme with η = 1 only opti-
mism governs choice behavior (i.e., the weighting function is concave and overweighs

1 Instead of insensitivity, Gonzalez and Wu (1999) use the term discriminability and, related to the degree
of concavity/convexity of the inverse-S weighting function, curvature.
2 E.g., parametric families proposed by Goldstein and Einhorn (1987), Prelec (1998), or Diecidue et al.
(2009).
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all probabilities) while at the other extreme with η = 0 only pessimism is revealed
(the weighting function underweighs all probabilities and is convex). The empirically
founded inverse-S probability weighting function will have the elevation parameter
bounded away from extreme probabilities (as noted earlier, usually around probability
p = 1/3;Wakker 2010, p. 205/206). Similarly, for the curvature parameter the empiri-
cally relevant parameter range is limited to (0, 1) to generate the empirically supported
inverse-S shape. A lower value for σ indicates less sensitivity (or, equivalently, more
insensitivity), such that at one extreme (σ = 0) we have no sensitivity at all as each
intermediate probability receives the same weight, while at the other extreme (σ = 1)
we have uniform sensitivity as no probability is distorted, i.e., preferences agree with
EU.

Given our objective to pragmatically incorporate some descriptive features in our
model, it is worth reviewing in some more detail the few experimental findings related
to temporal risk attitudes which we seek to capture. We do that in Sect. 2, however,
familiar readers can choose to move ahead to Sect. 3 where the theoretical setup is
presented. A foundation for time-dependent CRS-probability weighting is provided
in Sect. 4. Subsequently, we provide some comparative analyses, some simple appli-
cations to bargaining (Sect. 5), some further discussion (Sect. 6), highlight relevant
aspects for time preferenceswhich have not been our focus (Sect. 7), and then conclude
(Sect. 8). Proofs are presented in the Appendix.

2 Empirical studies on preference changes with delay

Earlier studies have focused on comparing discounting of risky and riskless outcomes
(Stevenson 1992) and on comparing discounting of losses and gains inmixed prospects
(Shelley 1994). The latter study findsmore discounting for risky losses relative to risky
gains. This is in contrast to the findings in Thaler (1981) concerning sure outcomes,
where more discounting for sure gains than for sure losses is reported. These opposite
findings on discounting for risky versus sure gains and losses can be reconciled by
invoking time-dependent probability weighting, suggesting an explanation based on
changes in probabilistic risk attitude with delay.

Keren and Roelofsma (1995) focused on the immediacy effect, that is, the empirical
observation that a strong preference for ‘a sure outcome now’ relative to ‘a somewhat
larger delayed outcome’ is reversedwhen a commondelay is added to both alternatives.
In Experiment 1, Keren and Roelofsma change the alternatives by adding risk and
observe that the immediacy effect is significantly reduced when the outcomes are
likely (that is, when their probability is p = 0.9) and the effect is next to non-existent
if outcomes are made even more risky (p = 0.5). In Experiment 2, they replicate
Kahneman and Tversky (1979) common consequence choices in a between-subject
design and find that the common consequence effect persists when a common delay
of 1 year is added. This suggests a role for models building on PT-weighting functions
as these are seen as a prominent class that can accommodate Allais’ (1953) common
consequence paradox for EU-preferences.

Weber andChapman (2005) conduct a study similar toKeren andRoelofsma (1995),
and find that the immediacy effect is replicated for sure outcomes and that it persists
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when those same outcomes are made risky (i.e., the outcomes obtain with probability
p = 0.5). Like Keren and Roelofsma, they find that the common consequence effect
persists when a common delay is added. Weber and Chapman also consider com-
mon ratio effect choices, adopting the version introduced by Kahneman and Tversky
(1979), and find that adding a common delay does not have any measurable impact
on the choice behavior in the common ratio tasks. They do, however, find that elicited
certainty equivalents for different prospects are affected by a common delay. Baucells
and Heukamp (2010) also study the effect of delay in common ratio choice tasks. They
find that a preference for the sure outcome is significantly reduced by delay. These
findings suggest that subjects become less risk-averse when prospects are delayed.

Noussair and Wu (2006) use choice lists in which the outcomes of two binary
prospects are fixed and probabilities vary (Holt and Laury 2001). In prospect A the
outcomes were close ($10 versus $8) while prospect B had outcomes more spread
($19.50 versus $0.50). Starting with probability 0.1 for the higher outcome (residual
probability being given to the lower outcome) and repeatedly shifting probability mass
in units of 0.1 from the lower to the higher outcome, an expected value maximizer
would choose prospect A for all low probabilities of the higher outcome and change
to B at the 50:50 probability distribution (and choose the latter from there on). A more
risk-averse decision maker may swap from choosing A to choosing B at probabilities
above 0.5 for the better outcome. Since the outcome-stimuli are of a small scale and
are kept fixed within the choice lists, it is likely that attitudes towards probabilities,
as captured in PT, may be the main driver for risk behavior.3 When the resolution and
payment of the prospects are delayed by 3 months, most subjects remain consistent in
their choices or become more inclined to accept risk: they start choosing prospects B
at lower probabilities for the larger outcomes relative to the treatment when resolution
and payment are immediate. Noussair and Wu interpret this finding as individuals
become more risk-tolerant when a received prospect’s resolution is delayed.

Abdellaoui et al. (2011) study choice behavior for prospects that are obtained and
resolved at a common date. This enables them to separate effects attributed to dis-
counting from the treatment of probabilities and attitudes towards outcomes over time
much cleaner than in earlier studies. By adopting a general canonical model and elic-
iting temporal certainty equivalents for correspondingly timed prospects, they obtain
data for utility and probability weighting functions for instant and delayed settings.
As highlighted in Sect. 1, they find that the probability weights for p = 1/3 are
not significantly impacted by time (Abdellaoui et al. 2011, Table 5). Further, at the
aggregate level, the low probability (p = 1/6) is less overweighted with delay, and
that moderate and large probabilities (p ∈ {1/2, 2/3, 5/6}) are less underweighted
when prospects are delayed. The latter is interpreted as more risk tolerance with delay.
At the individual level the picture is more mixed: Abdelaoui et al. report in Table 4 a
mixed picture for elevation parameters of the Prelec (1998) type probability weighting
function, but a clear tendency for increments in the corresponding sensitivity index.

3 Assuming EU with a slightly concave utility for small-scale outcomes (e.g., a power utility with power
parameter of 0.88) is not sufficient to explain a preference for A when the best outcome has a probability
larger than 0.5. Indeed, the consequence of a concave utility for small-scale gains under EU is that an
unreasonable degree of risk aversion for larger scale gains is implied, which has forcefully been criticized
by Rabin (2000).
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Their last paragraph in Sect. 6 clarifies that it is the range over which pessimism is
observed that seems to explain their findings, that is the range where the sensitivity
index is mainly responsible for choice behavior.4 For utility they find no significant
effect of time. Overall, the results of Abdellaoui et al. support the view that subjects
are more sensitive to changes in probabilities when delayed prospects are evaluated.

3 Theoretical framework

Initially, we present notation for risky objects in a timeless setting and the general
preference model used to evaluate these. Then we discuss the specific probability
weighting functions adopted in our temporal model. Subsequently, the more general
setting is presented inwhichprofiles of lotteries obtained and resolved at specifieddates
are defined. Following that, we introduce the temporal model with time-dependent
constant relative sensitivity weighting functions.

3.1 Risky outcomes

Let R+ denote the set of non-negative deterministic outcomes. General outcomes are
denoted x, y, z, . . ., while in specific cases we use a, b, c, d, . . .. A prospect is a finite
probability distribution over outcomes and is denoted as x̃ = (p1 : x1, . . . , pn : xn)
meaning that outcome x j ∈ R+ is obtained with probability p j , for j = 1, . . . , n. As
usual, p j ≥ 0 for all j = 1, . . . , n and

∑n
i=1 pi = 1 is assumed. Let L denote the set

of all prospects.
For convenience of notation we always write prospects with the outcomes ordered

from best toworst, i.e., for x̃ = (p1 : x1, . . . , pn : xn)we have x1 ≥ · · · ≥ xn . Further,
we identify sure outcomes with the corresponding degenerate prospect; also, for x̃ =
(p1 : x1, . . . , pn : xn) ∈ L, the set of prospects with the probabilities {p1, . . . , pn}
fixed is denoted byL{p1,...,pn}. By a j x̃ wedenote the lottery x̃ = (p1 : x1, . . . , pn : xn)
with outcome x j replaced by a ∈ R+ if p j > 0 for j ∈ {1, . . . , n}. Given the ordering
of outcomes within prospects, the implicit constraint x j−1 ≥ a ≥ x j+1 applies. This
ensures that both a j x̃ and x̃ are lotteries in L{p1,...,pn}.

3.2 Prospect theory for risky outcomes

In our models below, we adopt prospect theory, PT for short (Tversky and Kahneman
1992) with an inverse-S probability weighting function. As we do not treat outcomes
as gains or losses relative to a fixed reference point, our model boils down to rank-
dependent utility (RDU; Quiggin 1982; Segal 1987; Wakker 1994), though much
of the literature refers to this as PT because of the specific form of the probability
weighting function; we follow this convention. Under PT, the value of a prospect is
x̃ = (p1 : x1, . . . , pn : xn) ∈ L is given by

4 For instance, of the six highlighted subjects in Abdellaoui et al. (2011, p. 982)’s Figure 3, one subject
displays probability weighting functions that indicate changes in elevation while the other subjects appear
to have time delay invariant elevation paired with significant changes in curvature.
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PT (x̃) =
n∑

j=1

[w(p1 + · · · + p j ) − w(p1 + · · · + p j−1)]u(x j ), (1)

where (p0 := 0 and) p∗
j := p1+· · ·+ p j are cumulated probabilities for j = 1, . . . , n

and w is a probability weighting function on the unit interval, i.e., w : [0, 1] → [0, 1]
is strictly increasing and continuous and it satisfies w(0) = 0 and w(1) = 1. Further,
u is a utility function, i.e., u : R+ → R is strictly increasing and continuous. In Eq.
(1) the probability weighting function is unique and the utility function is cardinal,
i.e., unique up to multiplication by a positive constant and addition of a real number.
If w(p) = p for all p ∈ [0, 1], then PT reduces to expected utility (EU).

3.3 Constant relative sensitivity weighting

In analogy to how power utility functions are related to constant absolute risk aversion
in EU, power probability weighting functions are related to modeling risk attitudes
related to probabilities. This was exploited in Abdellaoui et al. (2010) to obtain the
constant relative sensitivity (CRS) weighting functions, which are defined as follows:

w(p) =
{

η1−σ pσ , if p ∈ [0, η],
1 − (1 − η)1−σ (1 − p)σ , if p ∈ (η, 1], (2)

where η ∈ [0, 1] is the parameter for elevation and σ > 0 is the (in)sensitivity param-
eter. To ensure the empirically documented inverse-S shape for the CRS weighting
function, we require 0 < η < 1 and σ < 1. If η = 1 then the CRS-weighting
function in Eq. (2) is a power function that is concave over the entire probability
interval, hence exhibiting optimism (Wakker 1994); for η = 0 we have pessimism as
the CRS-weighting function is convex. Our restrictions on η ensure that optimism is
exhibited for small probabilities (p < η) of good outcomes and pessimism for larger
probabilities of less good outcomes (p > η).

As shown in Abdellaoui et al. (2010), the index of curvature of the CRS weighting
function can bemeasured using the analogous of theArrow–Pratt coefficient of relative
risk aversion (Arrow 1971; Pratt 1964). For the CRS-weighting function this index is
constant and equals 1 − σ , hence it is positive and bounded when the shape of the
probability weighting function is inverse-S. For intermediate probabilities away from
0 and 1 and close to η the CRS-function can be approximated by a linear weighting
function that has slope σ and fixed point p = η, and which is discontinuous at 0 and
at 1. Such probability weighting functions are referred to as NEO-additive as they
induce preferences close to EU at non-extreme outcomes but give extra weight to best
and worst outcomes (Chateauneuf et al. 2007; Webb and Zank 2011).5 The constant
σ or the relative curvature index 1 − σ of the CRS weighting function can therefore
be used for comparative interpersonal analyses and, in particular, for intrapersonal

5 For empirically founded intrapersonal comparisons of insensitivity to choice based probabilities derived
using different source of uncertainty, Abdellaoui et al. (2011a) have adopted NEO-additive probability
weighting functions. See alsoWebb (2015, 2017) for continuous extensions that approximate NEO-additive
preferences.
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comparative statics concerning the changes in sensitivity resulting from a temporal
delay of prospects. To this aim we expand our static framework and consider profiles
of risky outcomes.

3.4 Risky profiles

In this paper we consider preferences over profiles of risky outcomes. We assume
discrete time periods t = 0, . . . , T for T ≥ 1. The objects of choice are risky profiles,
i.e., profiles of prospects that are obtained and resolved at the indicated time period.
We use bold-faced letters to denote profiles, that is, x = (x̃0, x̃1, . . . , x̃T ) is a profile
where prospect x̃t = (pt,1 : xt,1, . . . , pt,nt : xt,nt ) is obtained and resolved at time
t for all t ∈ {0, . . . , T }. The set of all profiles is P = ΠT

t=0L. Sometimes we write
(x̃t )x or simply x̃tx to highlight the prospect obtained at time t .

A preference relation is a binary relation � defined over P , with � denoting strict
preference, and∼ denoting indifference; reversed symbols denote corresponding pref-
erence, as usual. A real-valued functionV represents� onP if x � y ⇔ V (x) ≥ V (y)
for all profiles x, y ∈ P . Profiles of prospects are evaluated by discounted prospect
theory. We present this general model within a formal definition.

Definition 1 General Discounted Prospect Theory (DPT) holds if the preference rela-
tion � on P is represented by

DPT(x) =
T∑

t=0

D(t)PTt (x̃t ), (3)

where the discount function, D(·), is positive valued with D(0) = 1, and PTt stands
for time-dependent prospect theory, which in general has a time-dependent probability
weighting function,wt , and a corresponding utility function, ut , for t = 1, . . . , T . The
specific normalization of the discount function renders it unique as are the weighting
functions, while the utility functions are jointly cardinal (i.e., they can be replaced by
vt = Aut + Bt for a positive A and real valued Bt , t = 0, . . . , T ).

DPT differs from the classical constant discounted expected utility (DEU) model as
it allows for a general discounting function. For instance, we have not invoked the
standard assumption of impatience [that is, D(t) > D(s) for all s, t ∈ {0, . . . , T }
with t < s], which is a natural condition in the context of choice among profiles with
sure outcomes. Assuming impatience will not affect any of our results below, hence,
we have not explicitly required the property. In applications one can bemore restrictive
by adopting specific parametric forms like exponential discounting (Samuelson 1937;
Koopmans 1960), quasi-hyperbolic discounting (Phelps and Pollak 1968; Laibson
1997), or more general parametric families as discussed in Bleichrodt et al. (2009). A
further aspect where DPT departs from classical DEU is the evaluation of prospects,
where in DPT, the most successful descriptive model for static choice, PT (Wakker
2010; Barberis 2013), is used. That DPT is quite general also follows from the fact
that, without invoking further constraints on behavior, the weighting functions and
utility functions at different time points can be unrelated.
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The preference relation� onP induces a corresponding relation,�t , over prospects
obtained at time t = 0, . . . , T , which in turn induces a preference relation over timed
outcomes; we use the same symbol, �t , for the latter. As the preference considered in
Definition 1 is additively separable over time periods, the restrictions of the preference
relation to individual time periods are well-defined. While DPT allows for general
probability weighting functions to depend on time, the specific version we adopt here
has further restrictions as stated in the next assumption.

Assumption 1 Throughout we assume that DPT in Eq. (3) has CRS-probability
weighting functions in each time period. That is, we assume that, for each induced
preference relation �t over prospects obtained at time t = 0, . . . , T , the preference
conditions of Abdellaoui et al. (2010) are satisfied.

The preceding assumption allows for each induced preference relation �t , t =
0, . . . , T , to be represented by PT with a CRS-probability weighting function. The
assumption does not impose further relationships between the CRS parameters across
time periods nor for the utility functions which, in general, can depend on the delay
time t = 0, . . . , T . We are, however, interested in some form of consistency across
time periods. To obtain such a connection we require specific preference conditions,
which we present in the next section.

4 Preference properties

This section presents additional preference conditions to further restrict the general
class of DPT representations. From Definition 1 one can infer that � on P is a com-
plete and transitive preference (which are necessary for the existence of a representing
function) that satisfies continuity and monotonicity in outcomes (as the discount func-
tion is positive valued, the weighting functions are strictly increasing and the utility
functions are strictly increasing and continuous in each period). Further, according
with our Assumption 1, the preference also satisfies continuity in probabilities as CRS
weighting functions are assumed to be continuous on the probability interval. The next
subsection focuses on properties for utility and the elevation parameters. Subsequently,
we consider properties that relate to the curvature parameter of the CRS-probability
weighting function.

4.1 Time-invariant utility and elevation

As our theory is intended for the study of today’s preferences over risky profiles
and to understand if delay has an effect on attitudes towards probabilities, we feel
that the assumption of a common utility (i.e., today’s risky utility) being used in
the evaluation of profiles of risky prospects is in order. When studying preferences
at different time points one would need to account for tastes that may change over
time, which could well be captured by a time-dependent utility (see, e.g., Gerber
and Rohde 2018). Here, we model today’s preference over (streams of) risky objects.
For such choices, the study of Abdellaoui et al. (2011) finds less risk aversion for
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delayed risky prospects but no evidence for a significant impact of time on utility
was documented. Arguably, reference to a single experimental study is only indicative
evidence and further empirical tests are required to obtain conclusive evidence that
time-invariant utility is an adequate assumption in the context of choice over streams of
risky prospects. For instance, less risk aversion for delayed prospects can in principle
be explained with a less-concave utility for outcomes relative to the current period’s
utility; however, it would be unclear how tomodel less optimism for delayed prospects
with that assumption. For this reason, we pursue our theoretical analysis by building
on the hypothesis that utility is time-invariant.

The next preference condition proposes a consistency requirement for utility across
time periods. It demands that riskless outcome-tradeoffs measured at different time
periods are invariant to delay. Similar conditions have been used in the derivation
of cardinal utility in static decision models for risk and ambiguity (Köbberling and
Wakker 2003).

We say that the preference relation � on P satisfies time-invariance for outcome
tradeoffs if for all time periods t, s ∈ {0, . . . , T }, s < t , all outcomes a, b, c, d ∈ R+
and all profiles x, y ∈ P any three of the following indifferences imply the fourth:

asx ∼ bsy, csx ∼ dsy,
atx ∼ bty, ctx ∼ dty.

Substitution of DPT into the preceding four indifferences, taking differences of the
first pair of resulting equations and similarly of the second pair, and cancelling of
common terms, one obtains the following utility differences

us(a) − us(b) = us(c) − us(d)

ut (a) − ut (b) = ut (c) − ut (d),

which are supposed to hold for all time periods t, s ∈ {0, . . . , T }, s < t , and all
outcomes a, b, c, d ∈ R+. That is, whenever the first equation holds the second must
also hold, and it means that the continuous and strictly increasing utility functions us
and ut are proportional and can be taken equal. We obtain the following result.

Proposition 1 Assume that the preference relation � on P is represented by DPT as
in Definition 1. Then, � on P satisfies time-invariance for outcome tradeoffs if and
only if u := u0 = ut for all time periods t ∈ {1, . . . , T }. �

The proof of this proposition follows directly from the results of Köbberling and
Wakker (2003); their results are tailored for ambiguity but their arguments apply
similarly for our frameworkwith risky profiles.Köbberling andWakker show (see their
Corollaries 29 and 10) that the analogous condition of time-invariance for outcome
tradeoffs is a powerful property which, for a representation that is continuous and
strictly monotonic in outcomes, implies additive separability across time periods;
subsequently, the proportionality results for utility are derived. The advantage of using
outcome tradeoffs as a preference condition is that the tradeoff tool leans itself to the
measurement of utility and this allows for non-parametric tests that can be used to
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empirically verify the time independence of utility under DPT (Wakker and Deneffe
1996; Abdellaoui 2000; Abdellaoui et al. 2010).

Our next property requires further consistency of preferences across time periods.
It ensures that the elevation parameter of the CRS probability weighting functions
is also time-invariant. The elevation parameter is regarded as an index that measures
a general propensity of a decision maker to take risks. A higher propensity to take
risks, i.e., a larger value of the elevation parameter, graphically shifts the entire CRS
weighing function upward. Consequently, the region where the CRS-function exhibits
optimism increases at the expense of the region where pessimism governs choice
behavior. Behaviorally it means that relatively more optimism is exhibited globally
for all probabilities and all choices, which is in contrast to the findings of Abdellaoui
et al. (2011).

Like risk attitudes captured in the time-invariant utility function, we impose that
elevation is not affected by delay, although both assumptions need a better empirical
foundation (we discuss this aspect further in Sect. 6). Accordingly, by adopting the
terminology of Gonzalez and Wu (1999), we say that the preference relation � on P
satisfies time-invariant propensity to gamble if for all time periods t, s ∈ {0, . . . , T },
s < t , all outcomes a, b, x, y ∈ R+ and all profiles x ∈ P the following holds:

(ηs : a, 1 − ηs : x)sx ∼ (ηs : b, 1 − ηs : y)sx
⇒ (ηt : a, 1 − ηt : x)tx ∼ (ηt : b, 1 − ηt : y)tx.

Time-invariant propensity to gamble says that, for binary prospects where the prob-
ability of the better outcome is not distorted, hence, locally neither optimism nor
pessimism can be inferred, only the tradeoffs among outcomes govern choice behav-
ior. There is some empirical support for probabilities that are not distorted, in particular
many studies report that probabilities close to 1/4−1/3 are less subjected to distortion
(Tversky and Kahneman 1992; Wu and Gonzalez 1996; Abdellaoui 2000; Bleichrodt
and Pinto 2000; Abdellaoui et al. 2005; Etchart-Vincent 2004; see also the discussion
in Wakker 2010, Chapter 7). Abdellaoui et al. (2010) find no statistically significant
difference between the elevation parameters of the CRS-weighting functions for gains
and losses, andAbdellaoui et al. (2011, Tables 5, 6) at the aggregate level find no statis-
tical significant differences between the distorted probability of p = 1/3 for delayed
prospects. Both findings suggest that behavior captured through the elevation index is
relatively stable across choice contexts (gains/losses and instant/delayed), and these
findings are compatible with our preference requirement and with the property of the
CRS-probability weighting functions that have a fixed point at ηt , i.e., wt (ηt ) = ηt
for all t = 0, . . . , T .6

By additionally invoking the time-invariance property for the propensity to gamble
in Proposition 1we obtain theDPTmodelwith time-invariant utility and time-invariant
elevation index.

6 Wakker (2010, pp. 205–206) reports that w(1/3) being approximately 1/3 is the most common finding
for probability weighting w under PT.
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Proposition 2 Assume that the preference relation � on P satisfies Assumption 1 and
that time-invariance for outcome tradeoffs holds. Then,� onP satisfies time-invariant
propensity to gamble if and only if η := η0 = ηt for all time periods t ∈ {1, . . . , T }.

Proposition 2 provides a characterization of a special case of DPT with CRS-
probability weighting and constant elevation parameter across time; we label it DPTη.
In contrast to the elevation parameter and the utility of outcomes, we do not restrict
the curvature parameter of the probability weighting functions in the DPTη model.
This allows for intrapersonal comparisons of the changes to curvature across time
periods. This means that the discounting function and the curvature parameters are the
only means to explain changes in choice behavior when prospects are delayed and,
as the discounting function is separable from attitude towards outcomes and attitudes
towards probabilities in DPTη, the whole burden of behavioral change with delay will
be carried by the curvature parameter. We present this analysis in the next subsection.

4.2 Insensitivity and delay

This subsection relates changes in the curvature of the probability function when risks
are commonly delayed to risk aversion. We proceed by recalling some examples of
choices among prospects used in the experimental literature, some of which were
briefly touched upon in Sect. 2.

The first example is due to Baucells and Heukamp (2010). They tested the effect
of delay on the common ratio paradox to EU of Allais (1953). In one experiment
(Baucells and Heukamp, Table 1) the choices were among two pairs of prospects that
were obtained at time t = 0 (now), t = 1 (1 month), t = 2 (3 months), as follows
(payments in EURO):

A = (1 : 9)t versus B = (0.8 : 12, 0.2 : 0)t
and

A′ = (0.1 : 9, 0.9 : 0)t versus B ′ = (0.08 : 12, 0.92 : 0)t .

For t = 0 they find that 58% favor A in the first choice while 78% prefer B ′ in the
second choice. For t = 1 the corresponding proportion of choices are 55% and 74%,
and when t = 2 the respective proportions are 43% and 79%. The results suggest that
delay induces many individuals to change their preference from A � B at time t = 0
to B � A at time t = 2. This shift in preference seems to happen gradually as a delay
of 1 month does lead to just minor changes in the proportions, such that an immediacy
effect as explanation of the common ratio effect can be excluded here. Moreover, as
the proportions of choices for B ′ in the second pair of prospects are relatively stable,
it seems as if the subjects in this experiment are better at discriminating between
probabilities 0.8 and 1.0 when the choices are delayed, even though the common ratio
effect persists, albeit less pronounced.

The implications of delay for the common consequence effect of Allais (1953) were
tested in Weber and Chapman (2005). The choices in their experiment were—using
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the Kahneman and Tversky (1979) version—among two pairs of prospects that were
obtained at time t = 0 (now), t = 1 (1 year), t = 2 (25 years), as follows (payments
in US$):

C = (1 : 2700)t versus D = (0.33 : 3000, 0.66 : 2700, 0.01 : 0)t
and

C ′ = (0.66 : 2700, 0.34 : 0)t versus D′ = (0.33 : 3000, 0.67 : 0)t .
They find that the common consequence effect persists when prospects are delayed
although it becomes somewhat weaker when t = 1. That is, for t = 0 prospect C
is chosen by 85% of the subjects while 58% favor D′; for t = 1 and t = 2 the
corresponding percentages are 76% and 60% and, respectively, 82% and 57%. While
a time delay of 25 years adds a lot of uncertainty and may lead subjects to adhere to
current preferences, the delay of 1 year suggests that individuals have a slight tendency
to better account for small probability differences (1.0 and 0.99) of gaining a large
sum of money, which indirectly means that they better discriminate between those
large probabilities.

The preceding two studies have indicated that changes in preference as a result of
delay are most likely to be observed when the choice is between a sure or very likely
outcome and a non-degenerate prospect. Accordingly, our third summary example
looks at the more recent study of Abdellaoui et al. (2011) who employ such choices.
More specifically, they elicited certainty equivalents for binary prospectswhile varying
outcomes and probabilities, and they considered settings with no delay (t = 0), 6
months delay (t = 1) and a delay of 1 year (t = 2).7 Their initial finding is that certainty
equivalents tend to increase with delay, indicating less risk aversion as suggested by
Noussair and Wu (2006). Such risk behavior can be the result of better discrimination
between probabilities when prospects are delayed.

A further finding of Abdellaoui et al. (2011), based on the assumption that utility
is a power function as in Tversky and Kahneman (1992), was that statistically there is
no significant difference between the elicited power parameters for utility. This means
that the observed reduction in risk aversion canmainly be attributed to the treatment of
probabilities. Indeed, Abdellaoui et al. find that the weights for probabilities p ≥ 1/2
increase with delay but remain relatively unchanged for p ∈ {1/6, 1/3}. Both, the
findings for utility and for probability weighting are in line with the assumptions
underlying the DPTη model suggested in Proposition 2. Therefore, to explain the
phenomenon of less risk aversion as a result of delay, we have just one more degree of
freedom left in our model, namely the curvature parameter σ of our CRS-probability
weighting functions.

Next we proceed with intrapersonal analysis on the empirically observed phe-
nomenon of more sensitivity due to delay. We adopt the probability midweight tool of
van de Kuilen and Wakker (2011). This tool has recently been adopted by Werner and
Zank (2019) to provide preference foundations for PT in a static framework without

7 Abdellaoui et al. (2011) also used a setting with an unspecified or “ambiguous” date of delay between
6 and 12 months. Such ambiguity adds an additional consideration into the decision-making process, not
captured by DPT, and seems to lead to more risk aversion than observed for the clearly specified dates of 6
and 12 months.
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prior knowledge of the location for the reference point. Werner and Zank indicate that
the probability midweight method is suitable for empirically detecting reference point
effects beyond it being a non-parametric way of eliciting probability weighting effects
and its appeal for comparative analyses.

The midweight method of van de Kuilen and Wakker (2011) requires the prior
elicitation of a utility midpoint before proceeding with the elicitation of probabilities.
Given the continuity assumptions for utility and probability weighting functions under
DPT as in Proposition 2, such midpoints for utility and weighting functions are always
feasible and well-defined. Hence, we can fix outcomes x > y > 0 such that u(x) −
u(y) = u(y) − u(0) and find, for some t ∈ {0, . . . , T − 1}, the probability pt such
that

(η : x, 1 − η : y)tz ∼ (pt : x, 1 − pt : 0)tz.

Then, adding a delay of one time period leads to reduced insensitivity (equivalently,
increased sensitivity) if

(η : x, 1 − η : y)t+1z ∼ (pt+1 : x, 1 − pt+1 : 0)t+1z

implies that pt > pt+1. If this implication holds for all t ∈ {0, . . . , T −1} we say that
� on P satisfies increasing sensitivity with delay.

To further clarify the implications of delay on the sensitivity parameter of the CRS-
probability weighting functions, we proceed with some derivations resulting from
substitution of DPTη into the first of the preceding indifferences. After canceling the
common terms related to z outside period t , we obtain

wt (η)u(x) + [1 − wt (η)]u(y) = wt (pt )u(x) + [1 − wt (pt )]u(0).

Next, exploiting that η is a fix-point of wt and that y is a utility midpoint between 0
and x , we obtain

wt (pt ) = 1 + η

2
, (4)

such that pt is a midweight between η and 1 for wt (i.e., a probability midpoint on the
wt -scale). Similarly, using DPTη in the second indifference, we obtain that pt+1 is a
midweight between η and 1 for wt+1. We conclude that increasing sensitivity to delay
implies that pt > pt+1 and wt (pt ) = wt+1(pt+1). The corresponding implication for
the CRS-weighting functions of adjacent time periods can be seen in Fig. 1, where the
horizontal axis depicts cumulated probabilitieswhich areweighted bywt , respectively,
wt+1 to values on the vertical axis:

Figure 1 indicates, that the requirement for the midweight pt+1 to be smaller than
pt implies that wt+1 is closer to the 45-degree line [where ws(p) = p as in EU] than
wt is. This means that wt+1 is steeper than wt , hence, is more sensitive to changes
in probabilities. This can also be inferred from substitution of the CRS-probability
weighting function in Eq. (4). As η < pt+1 < pt < 1, one obtains
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Fig. 1 Effect of increasing sensitivity to delay

1 − (1 − η)(1/2)1/σt+1 = pt+1 < pt = 1 − (1 − η)(1/2)1/σt

from which σt < σt+1 follows as a result of reduced insensitivity with delay.
Next, we discuss the empirically observed phenomenon of less risk aversion with

delay. Recall the example of choices inBaucells andHeukamp (2010) discussed above.
It appears as if at time 0 individuals have a preference for A �0 B and at a later date
t > 0 this is reversed to B �t A. Such behavior suggests that the preference for the
sure A today is changing as a result of delay to a preference for the risky B. Thus,
an increased willingness to take risk is observed when prospects are obtained later.
Formally, we say that � on P exhibits reduced risk aversion with delay if for all
outcomes x > y > 0, all profiles z ∈ P , all probabilities η < p < 1 and all time
periods t ∈ {0, . . . , T − 1} we have

(p : x, 1 − p : 0)tz ∼ (1 : y)tz ⇒ (p : x, 1 − p : 0)t+1z � (1 : y)t+1z.

Reduced risk aversion is formulated for probabilities where the CRS weighting func-
tions display pessimism, i.e., they are convex-shaped (Chew et al. 1987; Chateauneuf
and Cohen 1994; Wakker 1994, 2010; Baucells and Heukamp 2006; Ryan 2006;
Schmidt and Zank 2008). For positive probabilities smaller than η the CRS-weighting
functions exhibit optimism, i.e., risk proneness relative to EU-preferences as revealed
through concavity of the probability weighting function. It seems less plausible to
demand or detect less risk aversion over a domain of prospects where the typical
behavior would be more risk-seeking relative to EU. For this reason, reduced risk
aversion due to delay is defined for choices among binary prospects where the typical
finding is risk aversion. Substitution of DPTη into the preceding preferences implies
that there must be less convexity of the CRS-weighting function as a result of delay.
This means that σt < σt+1 for all t ∈ {0, . . . , T − 1}. We summarize the analysis of
this section in the following theorem.
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Theorem 1 Assume that � on P is represented by DPTη as in Proposition 2. Then the
following statements are equivalent:

(i) The preference � on P satisfies increased sensitivity with delay;
(ii) The preference � on P exhibits reduced risk aversion with delay;
(iii) For all t ∈ {0, . . . , T − 1} we have 0 < σt < σt+1 < 1.

The data in Abdellaoui et al. (2011) indicate that indeed the subjects in their study
exhibit less risk aversion with the delay of prospects. They inferred this through the
elicitationof certainty equivalents for binary prospects. Theorem1 indicates alternative
means of detecting reduced risk aversion through the identification of midweights, the
non-parametric tool proposed by van de Kuilen and Wakker (2011). Empirically, it
is unclear if the monotonic relationship for the sensitivity parameter of the CRS-
weighting function is valid for all conceivable time periods. As the example in Weber
and Chapman (2005) suggests, a delay of 25 years seems to lead to more insensitivity
for moderate probabilities. Such a distant time period may indeed induce subjects not
to worry about small changes in probabilities as the outcome of those prospects will
affect them only in the very distant future, if at all (for instance, survival considerations
may play a role, which are not part of our DPT model).

5 An application to bargaining

In this section, we provide an application of our model to bargaining. In doing so, we
demonstrate how reduced aversion to risk due to delay introduces interesting dynamic
issues that do not arise under discounted expected utility. A central result of non-
cooperative bargaining theory (Rubinstein 1982) is that agreements will be reached
immediately. The reason for this prediction is that delay is costly to all parties involved
in the bargaining process. Delays may nonetheless occur and a literature has emerged
that attempts to explain how delays in agreement can result. Most explanations for
bargaining delays have appealed to asymmetric information (Rubinstein 1985; Gul
and Sonnenschein 1988; Abreu and Gul 2000). Other explanations have considered
alternative assumptions regarding the opportunity costs of delay (Fernandez andGlazer
1991), the possibility of credible threats to reduce the available surplus (Avery and
Zemsky 1994), and the way disagreement outcomes are decided (Busch and Wen
1995).

In the standard cooperative setting, assuming DEU, delay has a similar effect to
enforcing immediate agreement; the timing of the bargaining and the timing of the
outcome are immaterial for reaching a solution. Aiming at immediate agreement may
therefore explain why in the cooperative setting time has been invoked as a convenient
additional dimension. For the more general preferences discussed in this paper, new
possibilities to obtain solutions arise, hence, we need to expand the standard cooper-
ative setting. Suppose that two individuals, labeled A and B, are bargaining over the
chance to receive an indivisible rent R obtained at time τ ∈ {0, . . . , T }. Disagreement
results in outcome d for each individual. The actual bargaining takes place at time
tb ∈ {0, . . . , τ }, a period that we assume endogenously given. The fact that individu-
als are bargaining at time tb over an outcome received at time τ introduces a possible

123



Delayed probabilistic risk attitude: a parametric approach 217

bargaining outcome delay, as measured by τ − tb. We ask the question if this delay is
advantageous for any of the individuals in a bargaining context and compare the result
with the classical DEU case.

We next assume that both individualsmaximizeDPTwith constant relative sensitiv-
ity (i.e.,DPTη for individuals A, Bwith respective discount functions DA, DB , utilities
uA, uB andweighting functionswA,t , wB,t with corresponding parameters ηA, ηB and
σA,t , σB,t ). After normalizing utilities so that DA(τ )uA(R) = DB(τ )uB(R) = 1 and
DA(τ )uA(d) = DB(τ )uB(d) = 0. The bargaining set in utility space with bargaining
outcome time τ and bargaining time tb is:

Btb
τ = {(wA,τ−tb (pA), wB,τ−tb (pB)) : pA, pB ≥ 0, pA + pB ≤ 1},

with the interpretation that either individual A obtains R with probability pA, or
individual B obtains R with probability pB at time τ [else 0 utility is obtained leading
to (0, 0), the disagreement outcome pair].

A few potential solutions to the one-shot bargaining problem could be considered,
and we follow Köbberling and Peters (2003) who argued that for PT-preferences—
like the one considered here—the Kalai–Smorodinsky (KS) solution is appropriate.
Existence is guaranteed, as the Pareto frontier of the bargaining set in utility space is
strictly decreasing (Conley andWilkie 1991). One can then show that, in utility space,
the KS-solution is given by:

KS(Btb
τ , (0, 0)) = {(w,w) : wA,τ−tb (p) = wB,τ−tb (1 − p) = w, p ∈ [0, 1]},

which is unique and well-defined.
With bargaining time being tb and bargaining outcome time being τ various scenar-

ios emerge allowing for comparative analyses. For expositional reasons and tomaintain
simplicity, we consider the case of two periods, 0 and 1, only, and we compare the
results of DPTη-preferences with those implied by DEU.

Claim 1 Let discounted expected utility hold. For a given bargaining time, bargaining
outcome delays are never beneficial. For a given bargaining outcome time, bargaining
delays have no effect.

The following table illustrates the statements in Claim 1. In Table 1, the change
from tb = 0, τ = 0 to tb = 0, τ = 1 corresponds to a bargaining outcome delay.
Since for both individuals the discount function is strictly decreasing under DEU, it
follows that Di (1) < Di (0) = 1, which implies Di (1)/2 < 1/2, for i = A, B. Thus,
if individuals have a choice, they would be best placed to bargain in period 0 and

Table 1 Bargaining outcomes
under DEU

Bargaining/outcome time Utilities at time t = 0

tb = 0, τ = 0 (1/2, 1/2)

tb = 0, τ = 1 (DA(1)/2, DB (1)/2)

tb = 1, τ = 1 (DA(1)/2, DB (1)/2)
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Table 2 Bargaining outcomes under DEU

Bargaining/outcome time Utilities at time t = 0

tb = 0, τ = 0 (w, w) with wA,0(p) = wB,0(1 − p) = w

tb = 0, τ = 1 (DA(1)w, DB (1)w) with wA,1(p) = wB,1(1 − p) = w

tb = 1, τ = 1 (DA(1)w, DB (1)w) with wA,0(p) = wB,0(1 − p) = w

reach immediate agreement with outcomes paid out at the same time. To see that, for
a given outcome time, bargaining time delays have no effect, we compare the cases in
the last two columns of Table 1. We observe that for both scenarios (tb = 0, τ = 1 and
tb = 1, τ = 1) the utilities are identical: (DA(1)/2, DB(1)/2). For DPTη-preferences
the results are different, as we state in our next claim.

Claim 2 Let DPT hold with reduced risk aversion. Then, bargaining outcome delays
can be beneficial.

Table 2 illustrates the possible outcomes under the assumptions of Claim 2. To give
a concrete example where one individual’s preferences deviate from DEU, suppose
that individual A maximizes DEU (i.e., DPTη with σA = 1) and individual B is
purely pessimistic (ηB = 0). Let σB,0 = 1/2 while σB,1 = 1. That is, individual B
is pessimistic today but has EU-preferences over delayed prospects. It then follows
that

KS(Btb
τ , (0, 0)) = {(w,w) : w = 1 − wστ }.

For the case tb = 0, τ = 0 this implies that the KS-solution corresponds to the chances

of receiving R shared as ( 3−
√
5

2 ,
√
5−1
2 ). If tb = 1, τ = 1, because both individuals

have EU-preferences in this period, their outcome is similar to the preceding case but
discounted.

Now considering the case tb = 0, τ = 1. The KS-solution gives probabilities of
obtaining the rent (1/2, 1/2). As the payment is delayed, the corresponding utilities are
(DA(1)/2, DB(1)/2). Individual A compares utility relative to the bargaining outcome

time being τ = 0, thus DA(1)
2 with 3−√

5
2 . therefore, individual Awould prefer to delay

the bargaining outcome if DA(1) > 3 − √
5 ≈ 0.76.

Let us explain the intuition for why delayed bargaining outcomes can be beneficial.
In our example, individual A’s probability of receiving the rent is determined such
that p = 1 − pσB,τ . By implicit differentiation we obtain

dpA
dσB,τ

= − ln(pA)pσB,τ

1 + σB,τ pσB,τ −1 ,

which is positive for all p ∈ (0, 1). This means that individual A’s chance of receiving
the rent increases with individual B’s reduction in risk aversion, provided that σB,tb <

1. The argument used here follows the explanation provided by Köbberling and Peters
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(2003): the higher risk aversion of B corresponds to less curvature in the region where
pessimism governs behavior, whichmeans that individual B is more difficult to please.
Hence, A must offer B a better deal at A’s own expense. With reduced risk aversion
for the bargaining outcome, B is easier to please, thus A’s chances of obtaining the
rent improve. Provided that this improvement is large enough to counteract the fact
that delayed outcomes are discounted, individual Awill prefer the bargaining outcome
delay.

The simple example of an application to bargaining of this section illustrates the
implication of one individual exhibiting pessimism today, which is reduced by delay
of the risky bargaining outcome. At the bargaining time, pessimism for one individual
can have a negative effect on both individuals in the bargaining problem. Clearly,
optimism of one individual at the bargaining time but not at the outcome time has the
opposite effect for the opponent’s outcome. As one expects that the probability weight
w, which reflects a similar perceived chances to obtain the rent, is likely to exceed the
individuals η-value (if the latter are close to 1/3 as the data for static choice suggests),
the case for pessimism appears to be the more prominent. Hence our simple analysis
was focused on this case only.

6 Further discussion

In this section, we reconsider the psychological interpretation of insensitivity and
elevation and speculate if a categorization of a prospects resolution and payout time
into “now”versus “anytime later” psychologically can affect choice behavior and if this
would call for elevation to also be dependent on time delay. Alternatively, we consider
a potential behavioral explanation based on a “source-dependent” argument, where
the interpretation of “risk today” being different to “delayed risk” has similarity to the
distinction into sources of uncertainty (Abdellaoui et al. 2011a). Finally, we briefly
review some empirical studies that view changes in risk attitude with delay as being
a feature that needs to be captured by utility.

Recall that Gonzalez and Wu (1999) regard insensitivity as the index that captures
the ability of decision makers to discriminate between probabilities and see this as
one important psychological dimension that affects the choice behavior of individu-
als facing risk. It is, therefore, plausible that this ability captures a cognitive aspect
concerning the processing of probabilistic information. In turn, such processing of
information may be affected by an individual’s emotional state (e.g., Kahneman 2011;
Evans and Stanovich 2013). A potential (good or bad) outcome that affects the decision
maker instantly can intensify emotional feelings, thereby, putting the decision maker
in a so-called “hot” state of cognition in which the ability to discriminate among prob-
abilities is reduced because the focus is on the immediate consequences of obtaining
the outcome. By contrast, in a choice situation where the resolution of uncertainty
and the receipt of the outcome is more distant in the future, the decision maker is
in a “cold” state of cognition as emotional aspects are close to neutral. Being in dif-
ferent cognition states will then be revealed in the treatment of the probabilities of
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corresponding outcomes showing different degrees of insensitivity for the weighting
function.8

While curvature as index of (in)sensitivity captures one psychological dimension
that has an impact on the treatment of probabilities, Gonzalez and Wu (1999) iden-
tified a second dimension that is relevant. This dimension refers to the propensity of
individuals to take risks and is captured by the elevation measure. This inclination
to take risks, which Gonzalez and Wu termed “attractiveness to gambling”, can be
seen as a tradeoff between optimism and pessimism in the sense that a more elevated
inverse-S weighting function reduces the range of probabilities over which pessimism
is revealed and, hence, increases the range of probabilitieswhere optimism is exhibited.
As this means more overweighting of unlikely best outcomes and less underweighting
of likely worst outcomes, elevation can be regarded as an index of relative pessimism
(Abdellaoui et al. 2011a). In some sense elevation reflects the relative confidence level
of an individual in taking risks when acting in a particular choice environment. For
instance, a person aquainted with financial investment products may appear optimistic
when choosing among different home or car insurance policies with deductibles, while
in a situation where the choices are among medical drugs with potential side effects
the very same person may appear relatively more pessimistic. Such behavior is inde-
pendent of their cognitive processing of probabilistic information. Thus, elevation as
a measure for a propensity to take risk may reflect a personal trait of individuals; it
can vary across decision contexts while over time such traits may not change (Frey
et al. 2017). This has been our assumption and for our model we have provided the
testable preference condition that can serve for an empirical investigation.

For choice behavior where the probabilistic information is generated by different
sources of uncertainty (Fox andTversky1995;Kilka andWeber 2001), such as ambigu-
ity (unknown probabilities for events) versus risk (known probabilities), descriptively
elevation may be particularly important. As shown in the study of Abdellaoui et al.
(2011a), across these sources of uncertainty relative pessimism (i.e., elevation) seems
to vary considerably. Their results also indicatemore insensitivity to ambiguity relative
to risk; which is natural as under ambiguity there is little objective information avail-
able for processing, hence, making it more difficult for individuals to reach a decision.
However, when considering different ambiguity sources (e.g., temperature in Paris or
changes in the value of the French Stock IndexCAC40 on a particular day), Abdellaoui
et al. did not find significant differences for insensitivity. By contrast, their measure of
relative pessimism varied significantly across ambiguity sources, e.g., Parisians have
a higher relative pessimism index for choices involving uncertainty over the tempera-

8 Such behavior would also accord with construal-level theory of psychological distance (Trope and Liber-
man 2010) applied to probabilities. One can think of decisions with immediate resolution as triggering
Footnote 8 continued
emotions because the decision maker is instantly affected by the outcome. Fearing the worst outcome or
being hopeful to obtain the best outcome of a prospect might be more accentuated and would be reflected
in higher probability weights at the expense of those for intermediate outcomes. If uncertainty resolution
and outcome receipt are delayed the decision maker’s emotions may be supressed because of the absence of
immediate affect. The opposite behavior may also show. The desirability of a future potential outcome that
can serve to fulfill a planned action (like going on holiday to one’s favorite destination next summer) might
trigger emotions that show as inflated weights for the probabilities of extreme outcomes in a prospect. We
are not aware of experimental studies that show such an effect on the probability weighting functions.
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ture in Paris than for choices where the uncertainty is over foreign temperature events
(Abdellaoui et al., p. 19, Figure 9). Such findings support the view that elevation cap-
tures aspects of familiarity or confidence in the source of uncertainty that generates
the ambiguity. As our setting considers a single source of uncertainty, namely risk
provided as objective probabilities, we extrapolate from here that elevation may be
source-dependent but otherwise it can be regarded as a delay-independent attribute of
an individual’s probabilistic risk attitude.9

While the time-dependence of probability weighting is central in this paper, it
should be noted that in our model we assume that the cardinal utility under risk
is equal to the utility for intertemporal outcomes. We think that, when considering
choices among prospects resolved at the same date, adding a time-delay of 6 months–
1 year for resolution and receipt of outcomes may have less impact on the utility and
individuals may accurately foresee this. For longer delays the tastes of individuals
may change as well as the environment within which they act, so that more ambiguity
about the future tastes gradually becomes significant. Then the assumption of a time-
invariant utility may no longer be justified. Indeed, assuming a time-invariant utility
is not uncontroversial, for instance, Booij and van Praag (2009) show that the degree
of risk aversion may be affected by time-preferences. Assuming EU-preferences for
risk, Andreoni and Sprenger (2012) and Coble and Lusk (2010) find differences in the
utilities for risk and for time.10

Accounting for non-EU preferences, Abdellaoui et al. (2013), who empirically
measured risky and temporal utility for gains and losses, find that utility curvature
and loss aversion are more pronounced for risk relative to time. Comparing risky
utility revealed from choices with utility under certainty derived from strength of
preference judgments, Abdellaoui et al. (2007) find little difference when accounting
for potential biases attributed to the treatment of probabilities under risk. Similarly,
Abdellaoui et al. (2011) conclude that probability weighting is accountable for all of
the effect on risk attitude of delay and suggested that the reduction in risk aversion
relative to immediately resolved risk is attributable to less bias in the perception of
probabilities mainly by subjects exhibiting more sensitivity towards moderate and
large probabilities, or equivalently, relatively less pessimism. It is precisely this aspect
that we isolate as the focus for this paper.

The assumptions of time-invariance for utility and elevation in our theory are fal-
sifiable, although there is some, albeit limited, empirical evidence to support them.

9 One could argue that delaying the resolution of prospects adds ambiguity about the probabilities and
outcomes. Such an argument would be in the spirit of saying that delaying a sure outcome makes the latter
equivalent to a risky outcome obtained today (Halevy 2008). For risk, and in the absence of certainty, this
wouldmean that relativelymore pessimismwould govern choices over those delayed prospects. As reviewed
earlier, however, the literature reports on experiments where the opposite behavior of less risk aversion is
documented when adding delay to binary choices. It is therefore unclear how to reconcile elevation with
less risk aversion for delayed prospects.
10 Within a discountedEU-framework suchdifferences canbe explainedbydisentangling the time-elasticity
of substitution from the degree of risk aversion captured by a standard utility function under risk (e.g., Selden
1978, and for non-EU preferences see Chew and Epstein 1990). Indeed,Miao and Zhong (2015) andCheung
(2015) revisited the hypothesis put forward by Andreoni and Sprenger (2012) and find evidence supporting
a separation of time-elasticity of substitution from risk aversion in the utility function. As in our setting
such a separation is not sufficient to explain classical EU-paradoxes in risky choice, we abstract away from
this issue.
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For instance, the study of Abdellaoui et al. (2011) provides direct results on utility
curvature and elevation that do not contradict our position. That said, we think that
there is scope for further empirical exploration of the impact of delay and the passage
of time on the various components of risk attitude. Certainly, in a dynamic context
with a long planning horizon, more flexibility is justified as preferences may change
over long passages of time and individuals choice behavior will be affected by antici-
pated changes in tastes as well as weighting functions (Gerber and Rohde 2018); the
research on these dynamic aspects of risk and time is not, however, our current aim.

7 Other aspects of behavior not accounted for

This paper has mentioned several experimental studies that support time-dependent
probability weighting and, in doing so, has focused on those empirical findings that we
seek to accommodate in our model. For a more balanced impression, it is worthwhile
to report on a few experimental results that are related to resolution of uncertainty
and which also give some support for adopting time-dependent probability weighting
functions. That said, we have to be clear that in our framework, where the time of
resolution of uncertainty and the time of outcome receipt are the same, a separate
analysis of uncertainty resolution independent of the date at which outcomes are
received falls outside the scope of our model.

Ahlbrecht and Weber (1997) consider preferences over risky prospects with fixed
payment dates but distinct timing of the resolution of some of the uncertainty. They
compare choices among gain prospects, where all resolution of uncertainty is early,
gradual resolution where some uncertainty is resolved early and some late, or all reso-
lution is late; similarly, they also implement choices among loss prospects. Ahlbrecht
and Weber find that a large majority of their subjects have a consistent preference for
the timing of resolution and that most subjects prefer early relative to late resolution
of uncertainty when these are the only possibilities. Ahlbrecht and Weber go on to
compare these consistent subjects with their choices among the gradually resolved
prospects and report various inconsistencies that cannot be accommodated by a trans-
formation of risky utility as proposed in the Kreps and Porteus (1978) type models.

A similar argument was presented in the study of Chew and Ho (1994). They
observed risk attitudes in accordance with PT for instantly resolved uncertainty while,
for temporal prospects, they report that risk attitude and attitude towards resolution of
uncertainty do not seem correlated. As the timing of the payment is common in the
prospects with gradually resolved uncertainty, discounting cannot explain the findings
in these studies either. Indirectly these findings also give support for a model that
allows for probability weighting to be time-dependent, as suggested in Wu (1999).

In our framework, we have not disentangled the timing of the resolution from the
date at which an outcome of a prospect is obtained.We adopted an additively separable
model of time preferences in which we could circumvent the effect of impatience or
discounting when discussing the effect of delay on the perception of probabilities.
However, as indicated in Epstein (2008) probability weighting functions may be a
useful tool to capture behavior that is exclusively related to resolution delay rather
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than outcome delay. For that a more flexible framework is required than the one
adopted for the purposes of this paper.

8 Conclusions

Motivated by empirical observations that a joint delay in resolution and receipt of
risky outcomes seems to generate less risk aversion, a framework is proposed where
the primitives are choices among profiles of timed prospects. Our setting deviates
from classical discounted utility only in that it replaces profiles of sure outcomes by
profiles of risky prospects, while it is sufficiently rich to incorporate settings adopted
in previous empirical studies on the interaction of time on risk attitude. To analyze
this interaction, we hypothesize that only attitudes towards probabilities can vary with
delayed prospects. Hence, we propose a simple descriptive discounted utility model
that separates temporal discounting from the evaluation of risky outcomes. We do
allow the discounting function to be quite general, and thereby obtain flexibility to
incorporate descriptive features related to the time discounting dimension. When it
comes to the evaluation of prospects, however, we adopt a PT-specification that is
arguably restrictive.

To achieve simplicity, we had to specify the parameters that are allowed to vary
with delay and those which are fixed. This calls for a tradeoff, of course, between
descriptive generality and tractability of the model. In general, minimal deviations
from establishedmodels have been regarded as compelling as they provide a pragmatic
account of several desiderata (e.g., Gul 1991, whose model of disappointment adds
just one parameter over and above EU, thereby achieving descriptive appeal in addition
to maintaining many normative features). For our purposes here, we adopted prospect
theory, the most successful descriptive theory for risk, within a temporal setting in
which, specifically, theCRS-probabilityweighting function ofAbdellaoui et al. (2010)
was considered, which identifies a single parameter as index for (in)sensitivity towards
changes in probabilities.

To accommodate the empirical findings on less risk aversion with delay we have
developed preference conditions that describe such choice behavior. Subsequently, we
have demonstrated that, within our framework, there is a one-to-one correspondence
between increased sensitivity with delay as a probabilistic risk aspect, and reduced
risk aversion with delay as a revealed choice behavior. Our Theorem 1 also provides
a relationship of these choice behaviors to the sensitivity parameters of the CRS-
weighting functions at different points in time. We think that these results point to
testable implications, hence, they are useful to develop new empirical studies on the
interaction of risk and time. Our application to cooperative bargaining indicates that
delays can be beneficial for individuals bargaining over indivisible objects if opponents
display reduced risk aversion. This is a simple application of a model that can be
regarded as a minor deviation from discounted expected utility, where “minor” is
meant to reflect that empirical regularities have been incorporated yet a tractable
version of a potentially much more general model has been obtained.
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Appendix: proofs

Proof of Proposition 1 As mentioned in the main text, the proof of this proposition
follows from the results of Köbberling andWakker (2003). Our time invariance of out-
come tradeoffs comes down toKöbberling andWakker’s tradeoff consistency property,
which they use to obtain a subjective expected utility foundation (see their Theorem
5). We assume that general DPT holds, which, together with the time-invariance of
outcome tradeoffs, implies that the conditions in statement (ii) of Köbberling and
Wakker’s Theorem 5 are satisfied. As indicated in the main text, this implies that
utility in DPT is time-independent. Given that our general DPT model satisfies a
strong outcome monotonicity property, all periods are essential for the preference;
hence, the uniqueness results stated in Köbberling and Wakker’s Observation 6(c)
apply. Different to the normalization employed for obtaining uniqueness of subjective
probabilities in subjective expected utility derivations, the normalization used for the
unique weights in DPT each time period is such that D(0) = 1 and if, additionally,
one requires impatience, then the weights D(t) have to be strictly decreasing; but the
result here holds without this assumption. This completes the proof of Proposition 1.

��

Proof of Proposition 2 We can assume that Proposition 1 holds. That is, the preference
is represented by DPT with common time-independent utility u(·), general discount
function D(·), and time-dependent CRS-probability weighting function wt (·). Next,
we show that � on P satisfies time-invariant propensity to gamble if and only if
η := η0 = ηt for all timeperiods t ∈ {1, . . . T }. Recall that the preference relation�on
P satisfies time-invariant propensity to gamble if for all time periods t, s ∈ {0, . . . , T },
s < t , all outcomes a, b, x, y ∈ R+ and all profiles x ∈ P the following holds:

(ηs : a, 1 − ηs : x)sx ∼ (ηs : b, 1 − ηs : y)sx
⇒ (ηt : a, 1 − ηt : x)tx ∼ (ηt : b, 1 − ηt : y)tx.

Obviously, if η := η0 = ηt for all time periods t ∈ {1, . . . T }, then time-invariant
propensity to gamble follows immediately.

Next, assume that time-invariant propensity to gamble holds. Set η := η0 and
let a, b ∈ R+ be arbitrary distinct outcomes and x ∈ P be an arbitrary profile. By
continuity of u there exist distinct outcomes x, y ∈ R+ such that (η : a, 1 − η :
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x)0x ∼ (η : b, 1 − η : y)0x. Substitution of DPT as given by Proposition 1 implies

D(0)PT0(η : a, 1 − η : x) +
T∑

t=1

D(t)PTt (x̃t ) = D(0)PT0(η : b, 1 − η : y)

+
T∑

t=1

D(t)PTt (x̃t ),

which, after cancellation of common terms, gives:

w0(η)u(a) + [1 − w0(η)]u(x) = w0(η)u(b) + [1 − w0(η)]u(y)

or, using the property of the CRS-weighting functions thatw0(η) = η and our assump-
tion that 0 < η < 1, equivalently

η

1 − η
= u(y) − u(x)

u(a) − u(b)
. (5)

Further, time-invariant propensity to gamble implies that (ηs : a, 1−ηs : x)sx ∼ (ηs :
b, 1 − ηs : y)sx holds for all time periods s ∈ {1, . . . , T }. This implies, by a similar
argument as above, that

ηs

1 − ηs
= u(y) − u(x)

u(a) − u(b)
.

Given Eq. (5) and the fact that g(ηs) = ηs/(1−ηs) is strictly increasing on the interval
(0, 1) with image (0,∞), it follows that there is a unique solution for ηs that satisfies
η/(1−η) = ηs/(1−ηs), namely that ηs = η for all s ∈ {1, . . . , T }. Hence,ws(η) = η

for all time periods s ∈ {0, . . . , T }. This completes the proof of Proposition 2. ��
Proof of Theorem 1 We assume that the preference � on P is represented by DPTη

as in Proposition 2. Next we assume Statement (i) and derive Statement (iii) of the
theorem. If � on P satisfies increasing sensitivity with delay, then for all outcomes
x > y > 0 such that u(x) − u(y) = u(y) − u(0), and all z ∈ P such that for some
time period t ∈ {0, . . . , T − 1} and probabilities pt , pt+1 the two indifferences

(η : x, 1 − η : y)tz ∼ (pt : x, 1 − pt : 0)tz

and

(η : x, 1 − η : y)t+1z ∼ (pt+1 : x, 1 − pt+1 : 0)t+1z

are satisfied, it follows that

pt > pt+1.
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As continuity of u ensures that we can always find outcomes x > y > 0 such that
u(x)−u(y) = u(y)−u(0) and continuity (and strict monotonicity) of the probability
weighting functions ensures that there exists (unique) probabilities pt , pt+1 ∈ (η, 1)
such that the above indifferences hold, substitution of of DPTη implies that

ηu(x) + (1 − η)u(y) = wt (pt )u(x) + [1 − wt (pt )]u(0)

and

ηu(x) + (1 − η)u(y) = wt+1(pt+1)u(x) + [1 − wt+1(pt+1)]u(0)

from which

wt (pt ) = wt+1(pt+1)

follows for all t ∈ {0, . . . , T −1}. Further, exploiting that u(x)−u(y) = u(y)−u(0)
we find that

ηu(x) + (1 − η)u(y) = w(pt )u(x) + [1 − wt (pt )]u(0)
⇔ η[u(x) − u(y)] + u(y) = wt (pt )[u(x) − u(0)] + u(0)
⇔ (η + 1)[u(x) − u(y)] = 2wt (pt )[u(x) − u(y)],

from which we obtain that

wt (pt ) = η + 1

2
for all t ∈ {0, . . . , T }.

Next we substitute the CRS-weighting function in the preceding equation and obtain

1 − (1 − η)1−σt (1 − pt )σt = (η + 1)/2
⇔ 1 − (η + 1)/2 = (1 − η)1−σt (1 − pt )σt

⇔ 1/2 = [(1 − pt )/(1 − η)]σt
⇔ (1 − η)(1/2)1/σt = 1 − pt

⇔ 1 − (1 − η)(1/2)1/σt = pt for all t ∈ {0, . . . , T }.
Now we use the condition that pt > pt+1 for all t ∈ {0, . . . , T − 1} together with the
preceding equation to find that

1 − (1 − η)(1/2)1/σt = pt > pt+1 = 1 − (1 − η)(1/2)1/σt+1

which implies

(1/2)1/σt < (1/2)1/σt+1 ⇔ 1/σt > 1/σt+1

for all t ∈ {0, . . . , T − 1}. As the parameters σs are strictly bounded between 0 and 1
for all time periods s, we obtain σt < σt+1 for all t ∈ {0, . . . , T − 1}. This completes
the derivation of Statement (iii) from Statement (i).
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Next we assume Statement (iii) and prove Statement (ii). Assume an arbitrary time
period t ∈ {0, . . . , T − 1}, outcomes x > y > 0, profile z ∈ P , and probabilities
η < p < 1 such that

(p : x, 1 − p : 0)tz ∼ (1 : y)tz.

We need to show that

(p : x, 1 − p : 0)t+1z � (1 : y)t+1z.

Assume to the contrary that

(p : x, 1 − p : 0)t+1z � (1 : y)t+1z.

From the indifference (p : x, 1 − p : 0)tz ∼ (1 : y)tz and substitution of DPTη it
follows that

wt (p)[u(x) − u(0)] = u(y) − u(0)

while the preference (p : x, 1 − p : 0)t+1z � (1 : y)t+1z and substitution of DPTη

implies

wt+1(p)[u(x) − u(0)] ≤ u(y) − u(0).

Combining the latter inequality with the preceding equation and cancellation of com-
mon terms gives

wt+1(p) ≤ wt (p)

But this contradicts the fact that, as a result of σt+1 > σt , the CRS-weighting function
wt+1 gives higher values to probabilities in (η, 1) than wt does. Hence, (p : x, 1− p :
0)t+1z � (1 : y)t+1z follows. As t ∈ {0, . . . , T − 1}, outcomes x > y > 0, profile
z ∈ P , and probabilities η < p < 1 were arbitrary chosen, the implication holds
for all t ∈ {0, . . . , T − 1}, outcomes x > y > 0, profile z ∈ P , and probabilities
η < p < 1. This means that the preference � satisfies reduced risk aversion with
delay, which completes the derivation of Statement (ii) from Statement (iii).

Next we assume that Statement (ii) holds and derive Statement (i). Suppose that
for some arbitrary outcomes x > y > 0 such that u(x) − u(y) = u(y) − u(0), profile
z ∈ P , time period t ∈ {0, . . . , T − 1} and probabilities pt , pt+1 we have the two
indifferences

(η : x, 1 − η : y)tz ∼ (pt : x, 1 − pt : 0)tz

and

(η : x, 1 − η : y)t+1z ∼ (pt+1 : x, 1 − pt+1 : 0)t+1z.
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We need to show that pt > pt+1. By continuity and strict monotonicity of the utility
u there exists some outcome 0 < z < x such that

(pt : x, 1 − pt : 0)tz ∼ (1 : z)tz.

Now reduced risk aversion with delay implies that

(pt : x, 1 − pt : 0)t+1z � (1 : z)t+1z.

Continuity and strict monotonicity of the CRS-probability weighting function wt+1
implies that there exists a positive probability q < pt such that

(q : x, 1 − q : 0)t+1z ∼ (1 : z)t+1z.

Further, by transitivity (pt : x, 1 − pt : 0)tz ∼ (1 : z)tz and (η : x, 1 − η : y)tz ∼
(pt : x, 1 − pt : 0)tz imply

(η : x, 1 − η : y)tz ∼ (1 : z)tz,

such that substitution of DPTη and cancellation of common terms gives

ηu(x) + (1 − η)u(y) = u(z).

This equation is independent of the time period t , hence, using the fact that η is a
common fix point of all CRS-weighting functions, we obtain wt+1(η)u(x) + [1 −
wt+1(η)]u(y) = u(z) from which we derive

(η : x, 1 − η : y)t+1z ∼ (1 : z)t+1z.

Given our assumption that (η : x, 1 − η : y)t+1z ∼ (pt+1 : x, 1 − pt+1 : 0)t+1z and
transitivity, we obtain

(pt+1 : x, 1 − pt+1 : 0)t+1z ∼ (1 : z)t+1z,

hence, q = pt+1. Now reduced risk aversion with delay implies that

(pt+1 : x, 1 − pt+1 : 0)tz ≺ (1 : z)tz.

Together with (pt : x, 1 − pt : 0)tz ∼ (1 : z)tz and transitivity we obtain

(pt+1 : x, 1 − pt+1 : 0)tz ≺ (pt : x, 1 − pt : 0)tz,

which can only hold if pt+1 < pt (as the CRS-weighting functions are strictly increas-
ing).
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This conclusion has been obtained starting with arbitrary outcomes x > y > 0
such that u(x) − u(y) = u(y) − u(0), arbitrary profile z ∈ P and time period t ∈
{0, . . . , T − 1} such that the indifferences

(η : x, 1 − η : y)tz ∼ (pt : x, 1 − pt : 0)tz

and

(η : x, 1 − η : y)t+1z ∼ (pt+1 : x, 1 − pt+1 : 0)t+1z

hold. Hence, the conclusion is valid for all probability midpoints pt , pt+1 and time
periods t ∈ {0, . . . , T − 1}. This completes the derivation of Statement (i) from
Statement (ii).

To summarize: first, we have shown that Statement (i) implies Statement (iii), then
we have derived Statement (ii) from Statement (iii) and , finally, we have proven that
Statement (ii) implies Statement (i). This completes the proof of the theorem. ��
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