
IMPROVING AND BENCHMARKING OF ALGORITHMS FOR

DECISION MAKING WITH LOWER PREVISIONS

NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

Abstract. Maximality, interval dominance, and E-admissibility are three

well-known criteria for decision making under severe uncertainty using lower
previsions. We present a new fast algorithm for finding maximal gambles. We

compare its performance to existing algorithms, one proposed by Troffaes and

Hable (2014), and one by Jansen, Augustin, and Schollmeyer (2017). To do
so, we develop a new method for generating random decision problems with

pre-specified ratios of maximal and interval dominant gambles.

Based on earlier work, we present efficient ways to find common feasible
starting points in these algorithms. We then exploit these feasible starting

points to develop early stopping criteria for the primal-dual interior point

method, further improving efficiency. We find that the primal-dual interior
point method works best.

We also investigate the use of interval dominance to eliminate non-maximal
gambles. This can make the problem smaller, and we observe that this ben-

efits Jansen et al.’s algorithm, but perhaps surprisingly, not the other two

algorithms. We find that our algorithm, without using interval dominance,
outperforms all other algorithms in all scenarios in our benchmarking.

1. Introduction

Consider a subject who needs to choose from a set of possible decisions. Each
decision leads to an uncertain reward, depending on her decision and on the state
of nature revealed after the decision. The reward could be anything, for example,
money, food, or a lottery ticket. For simplicity, we will assume that rewards are
expressed on a utility scale. In this way, we can view an uncertain reward, and
thereby, each decision, as a bounded real-valued function on the set of states of
nature. Such function will be called a gamble.

The subject wants to choose gambles that lead to the best possible reward. We
assume that, for any set of gambles, the subject can identify a subset of gambles
that she does not want to choose. We say that a gamble is optimal in a given set
of gambles if the subject is not committed to eliminate it.

If we assume that, under the usual rationality assumptions, the subject can
specify a complete probability measure on the state of nature, then she should sim-
ply choose a gamble that maximises her expected utility [Anscombe and Aumann,
1963]. However, when only little information is available, the subject may not be
able to specify a complete probability measure. In that case, the subject might
consider other ways to express her beliefs. In this study, we will assume that the
subject is able to model her beliefs using a lower prevision, or equivalently, through

Key words and phrases. decision; maximality; primal-dual; algorithm; benchmarking; impre-
cise probability.

1

2 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

probability bounding [Williams, 1975, 2007]. Maximality [Walley, 1991, §3.9.1-
3.9.3, pp. 160-162] and interval dominance [Zaffalon et al., 2003, §2.3.3, pp.68-69]
are well-known decision criteria induced by strict partial orders associated with
lower previsions [Troffaes, 2007].

Several authors proposed algorithms for finding maximal gambles, for example,
Kikuti et al. [2011], Troffaes and Hable [2014, p. 336] and Jansen et al. [2017].

Troffaes and Hable [2014, Algorithm 16.4, p. 336] present an incremental algo-
rithm where once some maximal gambles in the sets are known, we should compare
the remaining gambles against those maximal gambles first. Additionally, Troffaes
and Hable [2014, p. 336] suggest that sorting all gambles in advance, e.g. by ex-
pectation, could help the algorithm to perform better. In this paper, we propose a
new algorithm that incorporates this suggestion, and we confirm that this leads to
a considerable speed-up.

In the algorithms proposed in Kikuti et al. [2011] and Troffaes and Hable [2014,
p. 336], to check maximality of each gamble, one has to evaluate the sign of the
lower prevision of several gambles. This can be done by solving several linear
programming problems [Troffaes and Hable, 2014, p. 331]. From earlier work,
we know that the primal-dual interior point method is particularly suitable when
working with lower previsions [Nakharutai et al., 2018]. We propose early stopping
criteria to determine more quickly the sign of lower previsions, exploiting the fact
that primal-dual methods solve both the primal and dual simultaneously. We also
use results from Nakharutai et al. [2018] to quickly obtain feasible starting points,
further improving the efficiency of these methods.

Jansen et al. [2017] proposed an algorithm that can verify whether a gamble is
maximal by solving a single larger linear program. To improve this algorithm, we
exploit the fact that if a gamble is not maximal in a given iteration, then it can be
excluded from all future iterations. We verify that this improved version performs
slightly faster.

As all maximal gambles are also interval dominant, Troffaes [2007] suggested to
eliminate non-maximal gambles by applying interval dominance first. When most
gambles are not interval dominant, this can eliminate many non-maximal gambles
early on. This might be useful, because interval dominance is easier to check. In
this paper, we will compare the above mentioned algorithms for finding maximal
gambles, with and without applying interval dominance.

The contributions of the paper are as follows. We propose a new algorithm
for finding maximal gambles and compare its performance to the two algorithms
proposed by Troffaes and Hable [2014, p. 336] and Jansen et al. [2017]. For bench-
marking, we propose an algorithm for generating sets of gambles which have a
precisely given number of maximal and interval dominant gambles. For the algo-
rithm in Troffaes and Hable [2014, p. 336], and also for our new algorithm, we solve
a sequence of linear programs by the primal-dual method, because we can easily
find a common feasible starting point. For further improvement, we also develop
early stopping criteria, so the method can stop iterating before achieving an optimal
solution.

The paper is organised as follows. In section 2, we present the basic concepts
used in the remained of the paper. First, we give a brief outline of lower previsions
and natural extension. Then, we present several decision criteria for lower previ-
sions. In section 3, we discuss several algorithms from the literature, and propose

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 3

a new algorithm for finding maximal gambles. To benchmark these algorithms, in
section 4, we provide an algorithm for generating sets of gambles, and compare the
performance of various decision algorithms on generated sets. Proofs of technical
results from this section are provided in A. Section 5 concludes the paper.

2. Decision making with lower previsions

In this section, we first explain lower previsions and natural extension. Then,
we present three decision criteria: maximality, E-admissibility, and interval dom-
inance. For more about the relation between these criteria and their advantages
and disadvantages, we refer to Huntley et al. [2014] and Troffaes [2007].

2.1. Lower previsions. Let Ω denote the set of states of nature, and let L denote
the set of all gambles (i.e. bounded real-valued functions) on Ω. A lower prevision
P is a real-valued function defined on some subset of L. We denote the domain
of P by domP . Given a gamble f ∈ domP , we interpret P (f) as the subject’s
supremum buying price for f , i.e. for all α < P (f), she is willing to accept the
gamble f−α. It has been argued that this is a good way for the subject to model her
uncertainty about Ω, especially under severe uncertainty [Walley, 1991, Miranda,
2008, Miranda and de Cooman, 2014, Troffaes and de Cooman, 2014].

We say P avoids sure loss if for all n ∈ N, all λ1, . . . , λn ≥ 0, and all f1, . . . , fn ∈
domP , it holds that [Troffaes and de Cooman, 2014, p. 42]:

(1) max
ω∈Ω

(
n∑

i=1

λi [fi(ω)− P (fi)]

)
≥ 0.

If P does not avoid sure loss, then there is a finite combination of gambles f1, . . . , fn ∈
domP such that for some λ1, . . . , λn ≥ 0:

(2) max
ω∈Ω

(
n∑

i=1

λifi(ω)

)
<

n∑
i=1

λiP (fi)

which means that the subject is willing to pay more than what she could ever
gain, which does not make sense [Troffaes and de Cooman, 2014, p. 44]. Therefore,
throughout this study, we assume that all lower previsions avoid sure loss.

The conjugate upper prevision P on −domP := {−f : f ∈ domP} is defined by
P (f) := −P (−f). It represents the subject’s infimum selling price for f [Troffaes
and de Cooman, 2014, p. 41].

We can extend P to the set of all gambles L via its natural extension E. For any
gamble g, the natural extension E(g) corresponds to the supremum price a subject
should be willing to pay for g, given the prices P (f) for all f ∈ domP [Troffaes
and de Cooman, 2014, p. 47].

Definition 1. [Troffaes and de Cooman, 2014, p. 47] Let P be a lower prevision.
The natural extension of P is defined on all f ∈ L by:
(3)

E(f) := sup

{
α ∈ R : f − α ≥

n∑
i=1

λi(fi − P (fi)), n ∈ N, fi ∈ domP , λi ≥ 0

}
.

Note that E is finite, and therefore, is a lower prevision, if an only if P avoids
sure loss [Troffaes and de Cooman, 2014, p. 68]. In the case that both Ω and domP

4 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

are finite, for any gamble f , E(f) can be calculated by solving a linear program
[Troffaes and Hable, 2014, p. 331].

We denote the conjugate of E by E which is given by

E(f) := −E(−f)(4)

= inf

{
β ∈ R : β − f ≥

n∑
i=1

λi(fi − P (fi)), n ∈ N, fi ∈ domP , λi ≥ 0

}
.(5)

2.2. Decision criteria. We first define two strict partial orderings on L, and then
define optimality through maximality with respect to either of these two strict
partial orderings.

Definition 2. For any two gambles f and g, we say that f � g whenever

(6) E(f − g) > 0.

Note that Walley [1991, §3.8.1] uses a stronger ordering, which also includes
pointwise dominance. Here, we follow Troffaes [2007], Troffaes and Hable [2014,
§16.3.2] and Jansen et al. [2017] and simply omit pointwise dominance from our
definition.

Definition 3. [Huntley et al., 2014, p. 194] For any two gambles f and g, we say
that f A g whenever

(7) E(f) > E(g).

Given any strict partial order on L, we can define a notion of optimality through
maximality with respect to that order:

Definition 4. Let >>> be a strict partial order on L, and let K be a finite subset of
L. The set of maximal gambles in K with respect to >>> is then defined by:

(8) opt>>>(K) := {f ∈ K : (∀g ∈ K)(g 6>>> f)}.

We call opt�(K) the set of maximal gambles in K and optA(K) the set of interval
dominant gambles in K.

Finally, we also need to define E-admissibility, which is yet another decision
criterion. First, we need some notation. The unit simplex is the set of all probability
mass functions:

(9) ∆ :=

{
p ∈ RΩ : p ≥ 0 and

∑
ω∈Ω

p(ω) = 1

}
.

The credal set of a lower prevision P is defined by [Miranda and de Cooman, 2014,
p.37]:

(10) M := {p ∈ ∆: ∀f ∈ domP , Ep(f) ≥ P (f)}.

Definition 5 (E-admissibility). [Troffaes and Hable, 2014, p. 336] A gamble f is
E-admissible in K if there is p ∈M such that

∀g ∈ K : Ep(f) ≥ Ep(g).(11)

The set of all E-admissible gambles in K is denoted by optM(K).
Note that [Troffaes, 2007]:

(12) optM(K) ⊆ opt�(K) ⊆ optA(K).

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 5

If a gamble is not interval dominant, then it is not maximal. Consequently, if there
are many gambles in the set, one may want to eliminate non-maximal gambles in
K by applying interval dominance first [Troffaes, 2007].

Similarly, if we find an E-admissible gamble f in K, then f is immediately
maximal [Walley, 1991, §3.9.4]. In section 3, we will show how we can quickly find
an E-admissible gamble in K to speed up algorithms for finding opt�(K).

3. Improving algorithms for finding maximal gambles

3.1. Algorithms for finding maximal gambles. In this section, we will discuss
algorithms for finding opt�(K). We study two algorithms from the literature, and
propose a new algorithm based on a suggestion from Troffaes and Hable [2014,
p. 336].

One can see that a gamble f is maximal in K only if

(13) ∀g ∈ K : E(f − g) ≥ 0.

Suppose that there are m possible outcomes in Ω, k gambles in K and n gambles
in domP where P avoids sure loss. To check whether f is maximal in K, we have
to calculate E(f − g) for all g ∈ K \ {f}. Let h := g − f , we can calculate E(h)
through either (P1) or (D1):

(P1) min
∑
ω∈Ω

h(ω)p(ω)(P1a)

subject to ∀gi ∈ domP :
∑
ω∈Ω

(gi(ω)− P (gi))p(ω) ≥ 0(P1b) ∑
ω∈Ω

p(ω) = 1(P1c)

where ∀ω : p(ω) ≥ 0,(P1d)

(D1) max α(D1a)

subject to ∀ω ∈ Ω:

n∑
i=1

(gi(ω)− P (gi))λi + α ≤ h(ω)(D1b)

where ∀i : λi ≥ 0 (α free).(D1c)

E(h) is precisely the optimal value of (P1) (or (D1)). The problem (D1) is an
unconditional case of the linear program in [Augustin et al., 2014, p. 331]. Note
that (P1) has n + 1 constraints and m variables. So, to determine all maximal
gambles, we must solve (at most) k(k − 1) of these linear programs.

Troffaes and Hable [2014, algorithm 16.4, p. 336] proposed the following strategy
for finding maximal gambles: once a non-maximal gamble is detected, it is no longer
compared with other gambles. Indeed, if f is non-maximal, then there will be
some gamble g that dominates f . However, if g dominates f , and f dominates h,
then g will also dominates h as well. Consequently, every non-maximal gamble is
dominated by at least one maximal gamble in K. Therefore, the algorithm no longer
needs to consider non-maximal gambles as soon as they are deemed non-maximal
(see algorithm 1).

For algorithm 1, if the first considered gamble happens to be the only maximal
gamble in K, then the algorithm only needs to solve 2(k − 1) linear programs

6 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

Algorithm 1 Find the set of maximal gambles in K
Input: a set of k gambles K = {f1, . . . , fk}
Output: an index set of opt�(K)

1: I ← ∅ . an index set of opt�(K)
2: for i = 1 : k do
3: if IsNotDominated1(I, i) then
4: I ← I ∪ {i} . fi is maximal
5: end if
6: end for
7: return I
8: where IsNotDominated1(I, i)
9: for j ∈ I ∪ {i+ 1, . . . , k}

10: if E(fj − fi) > 0 then return False . fi is dominated by fj
11: return True

[Troffaes and Hable, 2014, p. 336]. Specifically, to verify that none of gambles in
the set dominate the first gamble, the algorithm first needs to solve k − 1 linear
programs. Next, for each of the remaining gambles, the algorithm compares it with
the only existing maximal gamble, so the algorithm additionally solves k− 1 linear
programs. If all gambles in K are maximal, then the method needs to solve k(k−1)
linear programs, because for each gamble, the algorithm has to compare it with the
other k − 1 gambles [Troffaes and Hable, 2014, p. 335].

This shows that we could speed up algorithm 1 by early identifying some maximal
gambles in K, for example, via E-admissibility. Specifically, if a gamble f is E-
admissible in K, then f is also maximal in K [Huntley et al., 2014, p. 196]. We can
simply find one of E-admissible gambles as follows. We first sort all gambles in K
as f1, . . . , fk such that for some p ∈M, for all j > i:

(14) Ep(fj)− Ep(fi) ≥ 0.

Then fk has the highest expectation, and therefore fk is E-admissible in K. We
can then improve algorithm 1 by initially setting opt�(K) = {fk}. To obtain such
p ∈ M, we can solve (P1) with h = 0. In principle, one could identify further
maximal gambles by finding all E-admissible gambles, for example by using one
of the algorithms proposed by Kikuti et al. [2005] or Utkin and Augustin [2005].
However, these algorithms require solving k linear programs where k = |K|, and
they are more complex than (P1) with h = 0. Therefore, we do not apply those
algorithms here.

In addition to identifying one E-admissible gamble in K, sorting gambles with
respect to the expectation also saves a lot of comparison steps in algorithm 1 for
finding opt�(K). Specifically, to determine whether gamble fi is maximal in K, we
need to evaluate only E(fj − fi) when j > i, because we immediately know that

(15) ∀i ≤ j : E(fi − fj) ≤ Ep(fi − fj) ≤ 0.

An algorithm for finding maximal gambles that exploits sorting gambles is presented
in algorithm 2.

Even though we have to do extra work to sort gambles at the beginning, we
do not have to make as many comparisons in algorithm 2 as in algorithm 1. In
particular, in the case that the set K has one maximal gamble, algorithm 2 only

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 7

Algorithm 2 Find the set of maximal gambles in K
Input: a set of k gambles K = {f1, . . . , fk} such that for some p ∈ M, we have

that Ep(f1) ≤ Ep(f2) ≤ · · · ≤ Ep(fk).
Output: an index set of opt�(K)

1: I ← {k} . an index set of opt�(K)
2: for i = 1 : k − 1 do
3: if IsNotDominated2(i) then
4: I ← I ∪ {i} . fi is maximal
5: end if
6: end for
7: return I
8: where IsNotDominated2(i)
9: for j ∈ {k, k − 1, . . . , i+ 1}

10: if E(fj − fi) > 0 then return False . fi is dominated by fj
11: return True

needs to solve k−1 linear programs. On the other hand, if all gambles are maximal,

algorithm 2 needs to evaluate k(k−1)
2 linear programs. In both cases, this is only

half of the number of comparisons of algorithm 1.
Instead of solving multiple linear programs, Jansen et al. [2017] suggest to solve

just a single linear program per gamble in K:

(P0) max

k∑
j=1

∑
ω∈Ω

pj(ω)(P0a)

subject to ∀j = 1, . . . , k :
∑
ω∈Ω

pj(ω) ≤ 1(P0b)

∀j = 1, . . . , k, ∀gi ∈ domP :
∑
ω∈Ω

(gi(ω)− P (gi))pj(ω) ≥ 0(P0c)

∀j = 1, . . . , k :
∑
ω∈Ω

(f(ω)− fj(ω)) pj(ω) ≥ 0(P0d)

where ∀j = 1, . . . , k, ∀ω : pj(ω) ≥ 0.(P0e)

If the optimal value of (P0) is equal to k, then f is a maximal gamble in K [Jansen
et al., 2017]. Therefore, to determine those k gambles, we solve only k linear
programs (see algorithm 3). However, the size of linear program is much bigger as
it has k(3 + n) constraints and mk variables.

Note that if we modify the constraint eq. (P0b) to the following equality:

(P0b’) ∀j = 1, . . . , k :
∑
ω∈Ω

pj(ω) = 1,

then every feasible solution of (P0’):

(16) (P0’) max 0 subject to eqs. (P0b’), (P0c), (P0d) and (P0e),

is also an optimal solution of (P0). Therefore, if (P0’) has a feasible solution, then
f is a maximal gamble in K. In our simulation study, we solve (P0’) because it is
in a more suitable format for the primal-dual method, as it needs fewer artificial
variables.

8 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

Algorithm 3 Find the set of maximal gambles in K
Input: a set of k gambles K = {f1, . . . , fk}
Output: an index set of opt�(K)

1: I ← ∅ . an index set of opt�(K)
2: for i = 1: k do
3: if (P0’) with respect to K and fi has a feasible solution then
4: I ← I ∪ {i} . fi is maximal
5: end if
6: end for
7: return I

Remember that if a gamble is not maximal in a given iteration, then we can
exclude it from all further iterations. We use this idea to improve algorithm 3 and
present it in algorithm 4.

Algorithm 4 Find the set of maximal gambles in K
Input: a set of k gambles K = {f1, . . . , fk}
Output: an index set of opt�(K)

1: I ← ∅ . an index set of opt�(K)
2: for i = 1: k do
3: if IsNotDominated4(I, i) then
4: I ← I ∪ {i} . fi is maximal
5: end if
6: end for
7: return I
8: where IsNotDominated4(I, i)
9: G = {fj ∈ K : j ∈ I ∪ {i+ 1, . . . , k}}

10: if (P0’) with respect to G and fi has a feasible solution then
11: return True

Algorithms 1, 2, 3 and 4 will be benchmarked later in section 4.

3.2. Algorithm for finding interval dominant gambles. As we mentioned
before, every maximal gamble in K is also interval dominant. Therefore, before
running each algorithm, we can eliminate some non-maximal gambles in K by
finding optA(K). To check whether a gamble f is interval dominant in K, we first
calculate maxg∈KE(g). Then f is interval dominant if

(17) E(f) ≥ max
g∈K

E(g).

Overall, to handle k gambles, we have to solve 2k−1 linear programs [Troffaes and
Hable, 2014, p. 337]. This algorithm for finding interval dominant gambles in K
is summarized in algorithm 5. So, in section 4, in addition to benchmarking those
three algorithms for finding opt�(K), we will also run algorithm 5 to helping those
three algorithms to identify maximal gambles. Specifically, we will run algorithm 5
at the beginning to eliminate non-maximal gambles in K, and then run those three
algorithms on optA(K).

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 9

Algorithm 5 Find the set of interval dominant gambles in K
Input: a set of k gambles K = {f1, . . . , fk}
Output: an index set of optA(K)

1: for j ∈ {1, 2, . . . , k} do
2: ej ← E(fj)
3: end for
4: `← arg maxk

j=1 ej
5: I ← {`} . an index set of optA(K)
6: for i ∈ {1, 2, . . . , k} \ {`} do
7: if E(fi) ≥ e` then
8: I ← I ∪ {i} . fi is interval dominant
9: end if

10: end for
11: return I

Stop if (D1) value
is positive

Stop if (P1) value
is negative

Optimal value

F

(D1) value (P1) value

Figure 1. Early stopping criterion

3.3. Fast evaluation of natural extensions inside algorithms. We can also
speed up the process of evaluating the natural extension through (P1) or (D1). To
do so, we exploit the fact that we only need to find the sign of E(g − f), and not
its exact value, to verify whether f is dominated by g or not.

As we minimize the objective function in (P1), the optimal value of (P1) is less
or equal to other feasible objective values. So, we can stop as soon as we find a
feasible solution that achieves a negative objective value, because then we know
that the optimal value of (P1) is negative. In this case, f is not maximal in K.

Similarly, as we maximize the objective function in (D1), the optimal value of
(D1) is larger or equal to other feasible objective values. Consequently, we can stop
as soon as we find a feasible solution that achieves a positive objective value. In
this case, f is not dominated by g, so we must continue to compare f to other
gambles in K.

These extra stopping criteria are illustrated in fig. 1.
We can solve (P1) and (D1) by many linear programming methods, for example,

the simplex, the affine scaling or the primal-dual interior point methods. However,
we only focus on the primal-dual method as this method solves both primal and
dual problems simultaneously, and can therefore exploit both stopping criteria si-
multaneously. We also know from earlier work that the primal-dual interior point
method is particularly suitable for working with lower previsions [Nakharutai et al.,
2018]. Finally, the primal-dual interior point method is widely regarded as one of
the best general purpose linear programming methods [Griva et al., 2009, §10.2].

Note that, in practice, the primal-dual method can start with an arbitrary point
and then generates a sequence of (not necessarily feasible) points that converges to
an optimal feasible solution [Fang and Puthenpura, 1993, §7.3]. On the other hand,

10 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

given initial feasible points, the method will generate a sequence of feasible points
converging to an optimal solution [Fang and Puthenpura, 1993, §7.3]. Therefore,
to apply the extra stopping criterion, we first have to find initial feasible points for
(P1) and (D1). Fortunately, there is an efficient way to obtain initial feasible points
for the linear programs (P1) and (D1).

For (P1), we can apply the first phase of the two-phase method to obtain an
initial feasible probability mass function p(ω) [Nakharutai et al., 2018, §4.2]. This
technique is usually used for obtaining interior feasible points for the affine scaling
method [Fang and Puthenpura, 1993, §7.1.2]. Since the constraints of (P1) do not
change, once we find a feasible starting point, we can reuse it for other problems
(P1) with different objective functions. So we only need to do this once for any
given lower prevision, and it is independent of the decision problem.

For (D1), we can very quickly calculate a feasible starting point without solving
a linear program, using a result from Nakharutai et al. [2018, Theorem 7].

Unfortunately, there is no direct way to obtain feasible starting points for the
linear programming problem (P0’) (otherwise we would have immediately solved
the problem).

4. Benchmarking

4.1. Generating sets of gambles for benchmarking. As we mentioned before,
we would like to generate a set of gambles K for benchmarking algorithms 1, 2, 3
and 4 for finding opt�(K) and algorithm 5 for finding optA(K). Can we generate a
set K such that |K| = k, | opt�(K)| = m and | optA(K)| = n where m ≤ n ≤ k?

A naive idea is to first generate K = {g}, so obviously, opt�(K) = optA(K) =
{g}. Next, we generate a gamble h such that

opt�(K ∪ {h}) = opt�(K) ∪ {h} & optA(K ∪ {h}) = optA(K) ∪ {h},(18)

and we add h to K. We repeat this process until we have |K| = | opt�(K)| =
| optA(K)| = m. After that, we generate a gamble h that satisfies

opt�(K ∪ {h}) = opt�(K) & optA(K ∪ {h}) = optA(K) ∪ {h}.(19)

Again, we add h to K and repeat this process until we have |K| = | optA(K)| = n.
However, | opt�(K)| = m. Finally, we generate a gamble h such that

opt�(K ∪ {h}) = opt�(K) & optA(K ∪ {h}) = optA(K),(20)

we add h to K, and repeat this process until we have |K| = k, | opt�(K)| = m and
| optA(K)| = n as we want.

In practice, a randomly generated gamble h may not easily satisfy eq. (18),
eq. (19) or eq. (20). We may need to sample many gambles until we satisfy the
desired conditions, and therefore it may take a while to obtain the set K that we
want.

Surprisingly, for any generated gamble h, we can modify h by shifting it by α,
for some α ∈ R, so that a new gamble h− α meets any of the above requirements.
Next, we explain for what range of α, the gamble h − α satisfies either eq. (18),
eq. (19) or eq. (20). Specifically, we identify for which values of α we have one of
the following:

(i) opt�(K ∪ {h− α}) = opt�(K) ∪ {h− α},
(ii) opt�(K∪{h−α}) = opt�(K) and optA(K∪{h−α}) = optA(K)∪{h−α},
(iii) optA(K ∪ {h− α}) = optA(K)

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 11

max
f∈opt�(K)

E(h− f) min
f∈opt�(K)

E(h− f) E(h)−max
f∈K

E(f)
α

opt�(K ∪ {h− α}) = opt�(K) ∪ {h− α},

optA(K ∪ {h− α}) = optA(K) ∪ {h− α}

opt�(K ∪ {h− α}) = opt�(K),

optA(K ∪ {h− α}) = optA(K) ∪ {h− α}

opt�(K ∪ {h− α}) = opt�(K),

optA(K ∪ {h− α}) = optA(K)

Figure 2. Ranges for α such that h−α satisfies either of the situations
described in theorem 1.

Let K be a set of gambles. Given any gamble h, lemma 1 shows for which α,
h− α is a maximal gamble in K ∪ {h− α}.

Lemma 1. Let K be a set of gambles and let h be another gamble and α ∈ R. Then
h− α is maximal in K ∪ {h− α} if and only if

(21) min
f∈opt�(K)

E(h− f) ≥ α.

Lemma 1 provides an upper bound on α for which h−α is maximal in K∪{h−α}.
However, if we set α too low, then h − α may dominate other maximal gambles
in opt�(K), that is, we risk having gambles f for which f ∈ opt�(K) but f /∈
opt�(K ∪ {h− α}). The following lemma tells us how to prevent this situation.

Lemma 2. Let K be a set of gambles and let h be another gamble and α ∈ R. Then
all maximal gambles in K are still maximal in K ∪ {h− α} if and only if

(22) max
f∈opt�(K)

E(h− f) ≤ α.

Lemma 2 provides a lower bound on α such that h − α does not dominate any
other maximal gambles in K ∪ {h− α}.

Finally, by eq. (17), we know that h − α is interval dominant in K ∪ {h − α} if
and only if

(23) E(h− α) ≥ max
f∈K

E(f).

This is equivalent to

(24) α ≤ E(h)−max
f∈K

E(f).

The next lemma ensures that these bounds on α are always ordered in the same
way:

Lemma 3. Let K be a set of gambles and let h be another gamble. Then, the
following holds:

(25) max
f∈opt�(K)

E(h− f) ≤ min
f∈opt�(K)

E(h− f) ≤ E(h)−max
f∈K

E(f).

Theorem 1 brings everything together, and summarises for which ranges of α we
have that h− α satisfies either eq. (18), eq. (19) or eq. (20).

Theorem 1. Let K be a set of gambles and let h be another gamble and α ∈ R.

12 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

(1) If we choose

(26) max
f∈opt�(K)

E(h− f) ≤ α ≤ min
f∈opt�(K)

E(h− f)

then

opt�(K ∪ {h− α}) = opt�(K) ∪ {h− α}(27)

optA(K ∪ {h− α}) = optA(K) ∪ {h− α}.(28)

(2) If we choose

(29) min
f∈opt�(K)

E(h− f) < α ≤ E(h)−max
f∈K

E(f),

then

opt�(K ∪ {h− α}) = opt�(K)(30)

optA(K ∪ {h− α}) = optA(K) ∪ {h− α}.(31)

(3) If we choose

(32) α > E(h)−max
f∈K

E(f),

then

opt�(K ∪ {h− α}) = opt�(K)(33)

optA(K ∪ {h− α}) = optA(K).(34)

Figure 2 illustrates theorem 1.
From theorem 1, we obtain an algorithm for generating a set K of k gambles

such that | opt�(K)| = m and | optA(K)| = n where m ≤ n ≤ k. First, we generate
a set K consisting of m gambles that are all maximal, so | opt�(K)| = | optA(K)| =
|K| = m. Next, we add n − m further gambles to K, where these gambles are
interval dominant but not maximal, so | optA(K)| = |K| = n but it remains that
| opt�(K)| = m. Finally, we add k − n further gambles to K, where these gambles
are not interval dominant. We then end up with a set of gambles which has a
precisely given number of maximal and interval dominant gambles, as required.
For the full algorithm, see algorithm 6.

Note that if α in the third loop is much larger than E(h)−maxf∈KE(f), then
h − α can be more easily dominated. Therefore, if we want these non-maximal
gambles to be difficult to detect, then we should set α to be only slightly larger
than E(h) −maxf∈KE(f). In our simulation study, we will choose α in the third

loop to be E(h)−maxf∈KE(f) + ε where ε is uniformly sampled from (0, 1).
Also note that we require the following condition for all i and j:

(35) E(hi − hj) < E(hi)− E(hj).

This ensures that there exists an α satisfying the strict inequality in eq. (29),
because in that case, the left hand side of eq. (29) will be strictly less than the right
hand side of eq. (29) (see eq. (60) in the appendix; the inequality there will be a
strict inequality under the assumed condition). In this way, there is always an α for
which h−α is not maximal but still interval dominant. Equation (35) requires that
E is non-linear (i.e. genuinely imprecise), and that the gambles hi are non-constant
and linearly independent. For example, if for each ω, we sample hi(ω) uniformly
from [0, 1], then this requirement is practically always satisfied, and if not, we can
simply resample hi until it is.

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 13

Algorithm 6 Generate a set of k gambles K such that | opt�(K)| = m and
| optA(K)| = n where m ≤ n ≤ k
Input: (a) Numbers m, n, k where m ≤ n ≤ k, and (b) a sequence of k gambles

h1, . . . , hk such that E(hi − hj) < E(hi)− E(hj) for all i, j ∈ {1, . . . , k}
Output: a set of k gambles K such that such that | opt�(K)| = m and | optA(K)| =

n where m ≤ n ≤ k
1: K ← {h1}
2: for i = 2 : m do . m maximal and interval dominant
3: Choose α such that max

f∈opt�(K)
E(hi − f) ≤ α ≤ min

f∈opt�(K)
E(hi − f)

4: K ← K ∪ {hi − α}
5: end for
6: for i = m+ 1 : n do . n−m interval dominant but not maximal

7: Choose α such that min
f∈opt�(K)

E(hi − f) < α ≤ E(hi)−max
f∈K

E(f)

8: K ← K ∪ {hi − α}
9: end for

10: for i = n+ 1 : k do . k − n not interval dominant

11: Choose α such that α > E(hi)−max
f∈K

E(f)

12: K ← K ∪ {hi − α}
13: end for
14: return K

Also note that algorithm 6 has to evaluate many natural extensions for each new
generated gamble. This is required to ensure that the numbers of maximal gambles
and interval dominant gambles in the sets are exactly as specified. Although this
gives us very precise control over the range of decision problems that are generated,
an obvious downside is that evaluating all these natural extensions requires a huge
computational effort. For this reason, we had to limit ourselves to |Ω| ≤ 26 and
|K| ≤ 28.

4.2. Benchmarking results. To benchmark those algorithms 1, 2, 3, 4 and 5
from section 3, in this section, we generate random sets of gambles. We consider
the case that |Ω| = 22 and |Ω| = 26 and the number of gambles in K where k = 2j

for j ∈ {4, 6, 8}. For each case, random sets of gambles K are generated as follows.

(1) We first generate a lower prevision P on a finite domain, that avoids sure
loss. To do so, we use [Nakharutai et al., 2018, algorithm 2] with 24 coherent
previsions to generate a lower prevision E on the set of all gambles, that
avoids sure loss. Next, we use [Nakharutai et al., 2018, stages 1 and 2 in
algorithm 4] to restrict E to a lower prevision P that avoids sure loss, with a
given finite size of domain. In this simulation we consider |domP | = 2i for
i ∈ {2, 4, 6}. This ensures that the generated lower prevision has no specific
structural properties (such as 2-monotonicity [Troffaes and de Cooman,
2014, Chapter 6]).

(2) We generate k gambles h1, . . . , hk as follows. For each ω and i, we sample
hi(ω) uniformly from [0, 1] and check whether they satisfy eq. (35).

14 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

(3) We use algorithm 6 to generate random setsK such that |K| = k, | opt�(K)| =
m and | optA(K)| = n where m ≤ n ≤ k, where we use the previously gen-

erated P to evaluate E and E. Note that in algorithm 6, we choose α in
the first loop as follows: we sample δ uniformly from (0, 1), and set

(36) α := δ max
f∈opt�(K)

E(hi − f) + (1− δ) min
f∈opt�(K)

E(hi − f).

For α in the second loop, we choose it as follow: sample δ uniformly from
(0, 1), and set

(37) α := δ min
f∈opt�(K)

E(hi − f) + (1− δ)
(
E(hi)−max

f∈K
E(f)

)
,

and in the last loop, we set α := E(hi)−maxf∈KE(f)+ε, where we sample
ε uniformly from (0, 1).

In the simulation, we would like to cover a range of possible options of m, n, and
k that satisfy m ≤ n ≤ k. For each different size of K, we consider 10 options
that vary the number of maximal gambles m and the number of interval dominant
gambles n in K which are illustrated in fig. 3 and table 1.

These 10 options can be grouped as follows. Options a to d represent the cases
where m = 1 while we increase n from 1 to k. Options d, g, i, and j represent
the cases where n = k while we increase m from 1 to k. Options a, e, h, and j
represent the cases where m = n while we increase them jointly from 1 to k. Option
f represents a case where m < n < k.

We then apply algorithms 1, 2, 3, 4 and 5 on each generated set of gambles K.
For algorithms 1, 2 and 5, we solve linear programs for evaluating upper and lower
natural extensions by the improved primal-dual interior point method, including all
of the improvements discussed in section 3.3, i.e. feasible starting points and early
stopping criteria. As the MATLAB implementation of the primal-dual method
cannot be easily modified, we had to write our own implementation of the im-
proved primal-dual interior point method in MATLAB (R2018a) [MATLAB, 2018],
based on the implementation used in Nakharutai et al. [2018]. For algorithms 3
and 4, we simply solve linear programs by the standard primal-dual method as the
improvements cannot be applied. For fair comparison, we also used our own im-
plementation of the standard primal-dual method here, rather than using the one
that is available in MATLAB (R2018a).

To investigate whether interval dominance is helpful for finding maximal gam-
bles, we also run each algorithm with and without algorithm 5. Specifically, we
run algorithms 1, 2, 3 and 4 as such, but additionally we also run algorithm 5 to
obtain a set of interval dominant gambles, and then again run each of algorithms 1,
2, 3 and 4 on just the resulting set of interval dominant gambles. In all cases,
we measure the total computational time taken, i.e. including the time taken on
algorithm 5 when applicable. Note that computational time to run algorithm 2
includes the time for sorting gambles from the lowest to the highest expectation as
in eq. (14). To do so, we used quicksort which is available in MATLAB (R2018a)
[MATLAB, 2018]. We repeat this process 100 times. Figure 4 summarizes the
results.

Figure 4 shows the average computational time taken during each algorithm
with and without algorithm 5. The average computational time taken for only

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 15

m

g

i

j

k

f

h

e

a b c d n

Figure 3. The area of m ≤ n ≤ k and 10 options label the different m
and n that we consider in the simulation (see table 1)

Options
|K| = 24 |K| = 26 |K| = 28

m n m n m n

a 1 1 1 1 1 1

b 1 5 1 21 1 85

c 1 11 1 42 1 170

d 1 16 1 64 1 256

e 5 5 21 21 85 85

f 5 11 21 42 85 170

g 5 16 21 64 85 256

h 11 11 42 42 170 170

i 11 16 42 64 170 256

j 16 16 64 64 256 256

Table 1. Table of points that indicate different sizes of set K with vary
the number of maximal gambles m and the number of interval dominant
gambles n in K

16 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

|Ω| = 22 |Ω| = 26

|K
|=

24
|K
|=

26
|K
|=

28

Figure 4. Comparison plots of the average computational time for al-
gorithms 1, 2, 3 and 4 for finding maximal gambles and for algorithm 5
for finding interval dominant gambles. The number of outcomes in left
column is 22 and 26 in the right column. Each row represents a differ-
ent number of gambles with vary options of the numbers of maximal
gambles and interval dominant gambles in the set (see table 1 for each
option). The labels indicate algorithms with and without algorithm 5.
We fix | domP | = 24.

algorithm 5 is also presented there. In the top plots, we show the average com-
putational time for algorithms 1, 2, 3 and 4. In the remaining plots, the average
computational time for algorithms 3 and 4 are so high that their performance are
completely dominated by the performance of the other algorithms, and is therefore
not presented in these plots. In the left column, the number of outcomes is 22 and
in the right column, it is 26. Each row represents a different size of K.

We also consider an impact of the size of domP . Figure 5 shows the average
computational time taken for algorithms 1 and 2 with and without algorithm 5. In
the left column, the number of gamble in the domain of P is 22 and in the right
column, it is 26. Each row represents different numbers of outcomes and gambles.

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 17

|domP | = 22 |domP | = 26

|K
|=

26
&
|Ω
|=

22
|K
|=

24
&
|Ω
|=

26

Figure 5. Comparison plots of the average computational time for algo-
rithms 1 and 2 for finding maximal gambles and algorithm 5 for finding
interval dominant gambles. In the left column, | domP | = 22 and in
the right column, |domP | = 26. Each row represents different numbers
of gambles and outcomes with vary options of the numbers of maximal
gambles and interval dominant gambles in the set (see table 1 for each
option). The labels indicate algorithms with and without algorithm 5.

In both figs. 4 and 5, the horizontal axis indicates different options of m, n, and
k that we consider. The vertical axis presents the computational time which is
averaged over 100 random generated sets of gambles. The error bars on the figure
represent approximate 95% confidence intervals on the mean computational time.

We also solved (P0) by the simplex method in algorithm 3, using the default
simplex method available in MATLAB (R2018a) [MATLAB, 2018]. However, this
was still slower than algorithms 1 and 2. As there is no change in general conclusion,
we do not show those plots here.

5. Discussion and conclusion

In this work, we proposed a new algorithm (algorithm 2) for finding maximal
gambles and compared its performance with Troffaes and Hable [2014, p. 336]’s
algorithms (algorithm 1) and Jansen et al. [2017] (algorithm 3). We further im-
proved algorithm 3 by applying the fact that if a gamble is not maximal in one
iteration, then it can be excluded from all subsequent iterations (algorithm 4). We
also studied the impact of using interval dominance in algorithm 5 to eliminate
non-maximal gambles as this can reduce the size of the problem.

To find the set of all maximal gambles, Jansen et al. [2017]’s algorithm solves a
single large linear program for each gamble, while Troffaes and Hable [2014, p. 336]’s

18 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

algorithm and our new algorithm solves a larger sequence of smaller linear programs.
For the second case, we proposed early stopping criteria. We also applied common
feasible starting points for the entire sequence of problems, based on earlier work
[Nakharutai et al., 2018]. We found that the primal-dual method can exploit these
improvements most effectively, and performs best overall.

To benchmark these algorithms, we presented a new algorithm for generating
random sets of gambles with a pre-determined proportion of maximal and inter-
val dominant gambles. This algorithm will be useful for others who want to test
their algorithms. Whilst our benchmarking approach allows careful control over the
properties of the generated decision problems (in particular, the fraction of optimal
gambles according to different decision criteria), it does have severe computational
limitations, due to the need to evaluate large numbers of natural extensions. Nev-
ertheless, we hope this work provides a good starting point, and we hope that it
inspires the development of further benchmarking frameworks for testing algorithms
for decision making.

We compared computational performance of algorithms 1, 2, 3 and 4 with and
without algorithm 5 on these generated sets. According to our numerical results,
the relative performance of algorithms 1, 2, 3 and 4 depends on (i) the numbers of
outcomes and gambles in the sets, (ii) the ratios of maximal and interval dominant
gambles, and (iii) the number of gambles in the domain of lower previsions. If
one of these numbers is increasing, then, generally, the average computational time
taken on the algorithm is longer. In contrast, the average computational time taken
on algorithm 5 does not depend on the ratios of maximal and interval dominant
gambles, but it depends on the numbers of outcomes and gambles in the set and the
number of gambles in the domain of lower previsions. This is because algorithm 5
has to evaluate the same number of natural extensions regardless of the structure
of the problem.

We observed that applying interval dominance (algorithm 5) at the beginning
benefits algorithms 3 and 4 as it makes the linear program smaller, especially if
there are many non-interval dominant gambles. Therefore, when using algorithms 3
and 4, we would strongly suggest to run algorithm 5 first. We found that algorithm 4
slightly outperforms algorithm 3.

In contrast, perhaps surprisingly, interval dominance (algorithm 5), at least with
our implementation of it, does not help algorithms 1 and 2. Even though using
algorithm 5 can eliminate some non-maximal gambles, applying algorithm 5 first
and then performing algorithm 1 or algorithm 2 is still slower than performing only
algorithm 1 or algorithm 2. Therefore, we do not recommend applying algorithm 5
before algorithm 1 or algorithm 2. This said, there may still be ways to speed up the
algorithm for interval dominance, for example, by adding more stopping criteria.

Overall, both algorithms 1 and 2 outperform algorithms 3 and 4 by an order
of magnitude. Algorithm 2 also outperforms algorithm 1 in all cases in the ex-
periment, especially when there is only one maximal gamble in the set. In the
case that the number of maximal gambles in the set are increasing, there is no big
difference in the time taken on algorithms 1 and 2, but algorithm 2 still slightly
outperforms algorithm 1. When we vary the number of gambles in the domain of
lower previsions, the conclusion does not change, i.e., algorithm 2 still outperforms
algorithm 1.

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 19

Based on theoretical considerations, our newly proposed algorithm, algorithm 2,
is a good choice for implementations as it reduces the number of linear programs,
as well as the number of iterations. Our benchmarking study quantified these
improvements, and we found that it outperformed all other algorithms tested over
all scenarios considered.

Acknowledgements

We would like to acknowledge support for this project from Development and
Promotion of Science and Technology Talents Project (Royal Government of Thai-
land scholarship).

References

F. J. Anscombe and R. J. Aumann. A definition of subjective probability. Annals
of Mathematical Statistics, 34(1):199–205, March 1963.

Thomas Augustin, Frank P. A. Coolen, Gert De Cooman, and Matthias C. M.
Troffaes, editors. Introduction to Imprecise Probabilities. Wiley Series in Prob-
ability and Statistics. Wiley, 2014. ISBN 978-0-470-97381-3. URL http:

//eu.wiley.com/WileyCDA/WileyTitle/productCd-0470973811.html.
Shu-Cherng Fang and Sarat Puthenpura. Linear Optimization and Extensions:

Theory and Algorithms. Springer Science+Business Media New York, 1993.
Igor Griva, Stephen G. Nash, and Ariela Sofer. Linear and Nonlinear Optimization

Second edition. SIAM, Philadelphia, 2009.
Nathan Huntley, Robert Hable, and Matthias C. M. Troffaes. Introduction to

Imprecise Probabilities, chapter Decision making, pages 190–206. Wiley, 2014.
doi:10.1002/9781118763117.ch8.

Christoph Jansen, Thomas Augustin, and Georg Schollmeyer. Decision theory
meets linear optimization beyond computation. In Alessandro Antonucci, Lau-
rence Cholvy, and Odile Papini, editors, Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, pages 329–339, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-61581-3.

Daniel Kikuti, Fabio G. Cozman, and Cassio P. De Campos. Partially ordered
preferences in decision trees: computing strategies with imprecision in probabili-
ties. In In IJCAI Workshop on Advances in Preference Handling, pages 118–123,
2005.

Daniel Kikuti, Fabio Gagliardi Cozman, and Ricardo Shirota Filho. Se-
quential decision making with partially ordered preferences. Ar-
tificial Intelligence, 175(7):1346 – 1365, 2011. ISSN 0004-3702.
doi:https://doi.org/10.1016/j.artint.2010.11.017. URL http://www.

sciencedirect.com/science/article/pii/S0004370210002067. Repre-
senting, Processing, and Learning Preferences: Theoretical and Practical
Challenges.

MATLAB. version 9.4.0.813654 (R2018a). The MathWorks Inc., Natick, Mas-
sachusetts, 2018.

Enrique Miranda. A survey of the theory of coherent lower previ-
sions. International Journal of Approximate Reasoning, 48(2):628–658, 2008.
doi:10.1016/j.ijar.2007.12.001.

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470973811.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470973811.html
http://dx.doi.org/10.1002/9781118763117.ch8
http://dx.doi.org/https://doi.org/10.1016/j.artint.2010.11.017
http://www.sciencedirect.com/science/article/pii/S0004370210002067
http://www.sciencedirect.com/science/article/pii/S0004370210002067
http://dx.doi.org/10.1016/j.ijar.2007.12.001

20 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

Enrique Miranda and Gert de Cooman. Introduction to Imprecise
Probabilities, chapter Lower prevision, pages 28–55. Wiley, 2014.
doi:10.1002/9781118763117.ch2.

N. Nakharutai, M. C. M. Troffaes, and C. C. S. Caiado. Improved linear pro-
gramming methods for checking avoiding sure loss. International Journal of
Approximate Reasoning, 101:293–310, 2018. doi:10.1016/j.ijar.2018.07.013.

Matthias C. M. Troffaes. Decision making under uncertainty using imprecise proba-
bilities. International Journal of Approximate Reasoning, 45(1):17–29, may 2007.
doi:10.1016/j.ijar.2006.06.001.

Matthias C. M. Troffaes and Gert de Cooman. Lower Previsions. Wiley Series in
Probability and Statistics. Wiley, 2014. ISBN 978-0-470-72377-7. URL http:

//eu.wiley.com/WileyCDA/WileyTitle/productCd-0470723777.html.
Matthias C. M. Troffaes and Robert Hable. Introduction to Impre-

cise Probabilities, chapter Computation, pages 329–337. Wiley, 2014.
doi:10.1002/9781118763117.ch16.

Lev V. Utkin and Thomas Augustin. Powerful algorithms for decision making under
partial prior information and general ambiguity attitudes. In ISIPTA, 2005.

Peter Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and
Hall, London, 1991.

Peter M. Williams. Notes on conditional previsions. Technical report, School of
Math. and Phys. Sci., Univ. of Sussex, 1975.

Peter M. Williams. Notes on conditional previsions. International Journal of Ap-
proximate Reasoning, 44(3):366–383, 2007. doi:10.1016/j.ijar.2006.07.019.

Marco Zaffalon, Keith Wesnes, and Orlando Petrini. Reliable diagnoses of dementia
by the naive credal classifier inferred from incomplete cognitive data. Artificial
Intelligence in Medicine, 29(1–2):61–79, 2003.

Appendix A. Proof of technical results in section 4

Proof of Lemma 1. By the definition, we have

h− α ∈ opt�(K ∪ {h− α})⇔ ∀g ∈ K : E(h− g − α) ≥ 0,(38)

⇔ ∀g ∈ K : E(h− g) ≥ α,(39)

⇔ min
g∈K

E(h− g) ≥ α.(40)

Note that

(41) E(h− g) ≥ E(h− f)− E(g − f).

Suppose that if g /∈ opt�(K), then we have E(g − f) < 0 for some f ∈ opt�(K),
as g is dominated by at least one maximal gamble in K [Troffaes and Hable, 2014,
p. 336]. Therefore, for all g /∈ opt�(K):

(42) ∃f ∈ opt�(K), E(h− g) ≥ E(h− f).

Consequently,

(43) h− α ∈ opt�(K ∪ {h− α})⇔ min
f∈opt�(K)

E(h− f) ≥ α.

�

http://dx.doi.org/10.1002/9781118763117.ch2
http://dx.doi.org/10.1016/j.ijar.2018.07.013
http://dx.doi.org/10.1016/j.ijar.2006.06.001
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470723777.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470723777.html
http://dx.doi.org/10.1002/9781118763117.ch16
http://dx.doi.org/10.1016/j.ijar.2006.07.019

IMPROVING AND BENCHMARKING OF ALGORITHMS FOR DECISION MAKING 21

Proof of lemma 2. Let f be a maximal gamble in K. We first show that f is a
maximal gamble in K ∪ {h− α} if and only if E(h− f) ≤ α. We see that

f ∈ opt�(K ∪ {h− α})⇔ ∀g ∈ K ∪ {h− α} : E(f − g) ≥ 0(44)

and because E(f − g) ≥ 0 for all g ∈ K,

⇔ E(f − h+ α) ≥ 0(45)

⇔ E(f − h) ≥ −α(46)

⇔ E(h− f) ≤ α.(47)

Consequently, all maximal gambles in K are still maximal in K ∪ {h − α} if and
only if

(48) max
f∈opt�(K)

E(h− f) ≤ α.

�

Proof of Lemma 3. We first show that

(49) ∀f, g ∈ opt�(K) : E(h− f) ≤ E(h− g).

holds. Let K be a set of gambles and let opt�(K) be the set of maximal gambles.
Suppose that h is another gamble. Then, for any f, g ∈ opt�(K), we have

0 ≤ E(f − g)(50)

= E(f − h+ h− g)(51)

≤ E(f − h) + E(h− g)(52)

= −E(h− f) + E(h− g).(53)

Therefore, by eq. (53), for any f, g ∈ opt�(K):

(54) E(h− f) ≤ E(h− g).

Consequently,

max
f∈opt�(K)

E(h− f) = E(h− f∗) for some f∗ ∈ opt�(K)(55)

≤ E(h− g) for all g ∈ opt�(K) (by eq. (49))(56)

≤ min
g∈opt�(K)

E(h− g).(57)

Next, we show that

(58) min
f∈opt�(K)

E(h− f) ≤ E(h)−max
g∈K

E(g).

We see that

min
f∈opt�(K)

E(h− f) = min
g∈K

E(h− g) (by eq. (42))(59)

≤ min
g∈K

(
E(h)− E(g)

)
(60)

= E(h)−max
g∈K

E(g).(61)

�

22 NAWAPON NAKHARUTAI, MATTHIAS C. M. TROFFAES, AND CAMILA C. S. CAIADO

Durham University, Department of Mathematical Sciences, UK

Email address: nawapon.nakharutai@gmail.com

Durham University, Department of Mathematical Sciences, UK
Email address: matthias.troffaes@durham.ac.uk

Durham University, Department of Mathematical Sciences, UK
Email address: c.c.d.s.caiado@durham.ac.uk

	1. Introduction
	2. Decision making with lower previsions
	2.1. Lower previsions
	2.2. Decision criteria

	3. Improving algorithms for finding maximal gambles
	3.1. Algorithms for finding maximal gambles
	3.2. Algorithm for finding interval dominant gambles
	3.3. Fast evaluation of natural extensions inside algorithms

	4. Benchmarking
	4.1. Generating sets of gambles for benchmarking
	4.2. Benchmarking results

	5. Discussion and conclusion
	Acknowledgements
	References
	Appendix A. Proof of technical results in sec:benchmark

