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Abstract We present a ‘global’ description of the wide
variety of high-energy elastic and diffractive data that are
presently available, particularly from the LHC experiments.
The model is based on only one pomeron pole, but it includes
multi-pomeron interactions and, significantly, it includes the
transverse momentum dependence of intermediate partons
as a function of their rapidity, which provides the rapidity
dependence of the multi-pomeron vertices. We give predic-
tions for the diffractive observables at LHC energies.

1 Introduction

High-energy diffractive processes caused by pomeron
exchange are usually described within the framework of
Reggeon Field Theory (RFT) [1]. In the simplest case the
high-energy elastic scattering amplitude (and correspond-
ingly the total cross section) is parametrised by single
pomeron exchange, where the trajectory of this effective
‘soft’ pomeron reads1

αP(t) = 1 +�+ α′
Pt, (1)

with � = 0.08 and α′
P = 0.25 GeV−2 [2].

However, already two-particle s-channel unitarity gener-
ates a series of non-enhanced multi-pomeron diagrams lead-
ing to the eikonal approximation, in which the elastic ampli-
tude in impact parameter, b, space is of the form

Tel = i(1 − e−�/2), (2)

where the opacity �(s, b) plays the role of the phase-shift,
δl , of the (partial wave) amplitude with orbital momentum
l = b

√
s/2 with�/2 = 2iδl . To be precise, (2) is the solution

of the s-channel unitarity equation. We have

2Im Tel(b) = |Tel(b)|2 + G inel(b), (3)

a e-mail: a.d.martin@durham.ac.uk

where G inel is the sum of the inelastic contributions. As usual,√
s is the c.m. energy. Hence we have

σtot(s, b) = 2(1 − e−�/2) (4)

σel(s, b) = (1 − e−�/2)2, (5)

σinel(s, b) = 1 − e−�. (6)

To account for the possibility that the proton may dissoci-
ate into low-mass states, such as p → N∗, we follow Good–
Walker [3] and introduce a multi-channel eikonal. That is,
we decompose the proton state, |p〉 into the G–W diffrac-
tive eigenstates |φi 〉 (|p〉 = ∑

ai |φi 〉) which undergo elastic
scattering only,

〈φi |T |φk〉 = 0 for i �= k, (7)

leading to a multi-channel eikonal �ik , where the indices i
and k now correspond to the beam and to the target protons.

Such an approach accounts for the rescattering of the
incoming partons. However, from the microscopic point of
view, pomeron exchange is described by a set of ladder-type
diagrams. (This is true for both the ‘hard’ BFKL pomeron and
the ‘soft’ multiperipheral pomeron.) So we cannot exclude
the rescattering of the intermediate partons (produced during
the evolution inside this ladder). In terms of RFT these effects
are described by triple and multi-pomeron vertices (with cou-
plings g1

2 and gn
m , respectively); that is, by the pomeron–

pomeron interactions.
Recall that in conventional RFT it was assumed that all

the transverse momenta are limited and that the Reggeon
trajectories and the couplings (including those for the multi-
pomeron vertices) do not depend on incoming energy,

√
s.

This framework allowed a satisfactory description of the
available diffractive data up to the Tevatron energy. How-
ever, the new LHC data start to signal some problems2:

1 More recent fits slightly change the values of� andα′
P, but the precise

values are not important for our discussion.
2 Some of these problems are also noted in Ref. [4].
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• The total cross section and the t-slope of elastic scattering
grow a bit faster than was expected based on the simplified
DL parameterisation (1). Indeed, the DL fit predicts σtot =
90.7 mb at

√
s = 7 TeV, while TOTEM observes 98.6 ±

2.2 mb [5]. The elastic slope was measured at the Tevatron
(
√

s = 1.8 TeV) to be Bel = 16.3 ± 0.3 GeV−2 by the
E710 experiment [6] and to be Bel = 16.98±0.25 GeV−2

by the CDF group [7]. Even starting from the CDF result,
and using α′

P = 0.25 GeV−2, we expect Bel = 16.98+4×
0.25× ln(7/1.8) = 18.34 GeV−2 at 7 TeV, while TOTEM
finds 19.9 ± 0.3 GeV−2 [5].

• On the other hand, the preliminary values of cross section
of diffractive dissociation, measured by TOTEM, turn out
to be lower than those expected based on conventional
RFT.

• Simultaneously, a growth of the mean transverse momenta
of secondaries, with collider energy, is observed.

In the present paper we study, within RFT, the possibil-
ity that the transverse momentum, kt , increases with energy.
Can the growth of kt explain the new features of the diffrac-
tive events observed at the LHC? The aim is not to reach
a perfect quantitative description of the experimental data,
but rather to understand the characteristic properties of high-
energy strong interactions.

Bearing in mind the relatively small values of the triple-
and multi-pomeron couplings, we start with the simplest
Reggeon diagrams. We include the absorptive (gap survival)
effects caused by the eikonal and we consider the role of the
increasing transverse momenta, which leads to a decrease
of the pomeron (and multi-pomeron) couplings, which are
proportional to 1/kt . To make the discussion more transpar-
ent, we will not include explicitly the enhanced diagrams
(which account for the rescattering of the intermediate lad-
der partons). The role of these diagrams is mainly to renor-
malise (diminish) the intercept of the original (bare) pomeron
and to enlarge the characteristic transverse momentum which
arises from the stronger absorption of the partons with low
kt . Therefore we will use renormalised parameters of the
pomeron trajectory (determined by fitting to the data), and a
reasonable assumption for the energy and rapidity behaviour
of kt .

2 The high-energy diffractive data

At the moment, data for diffractive processes are available
at 7 TeV, mainly from the TOTEM collaboration. TOTEM
have measured the total and elastic cross sections (in a wide
t interval including the dip region) [5,8], the cross section of
low-mass (MX < 3.4 GeV) diffractive single (pp → p+ X )
[9] and double (pp → X1 + X2) [10] dissociation; and they
made preliminary measurements of high-mass single proton
dissociation, σSD, integrated over the three intervals of MX :

Table 1 The values of the cross section (in mb) for single proton disso-
ciation (integrated over the three indicated mass intervals) as observed
by TOTEM [11], compared with the values obtained in the present
model

Mass interval (GeV) (3.4, 8) (8, 350) (350, 1,100)

Prelim. TOTEM data 1.8 3.3 1.4

Present model 2.3 4.0 1.4

Recall that TOTEM claims that their preliminary measured cross sec-
tions have about 20 % error bars

namely (3.4, 8); (8, 350); (350, 1100) GeV [11]. In addi-
tion we have the inelastic cross sections and the cross sections
of events with a Large Rapidity Gap (LRG) measured by the
ATLAS [12], CMS [13] and ALICE [14] collaborations.

Formally the data from different groups do not contradict
each other, since they are measured for different conditions.
However, there appear to be several tensions between the data
sets.

• First, it is not easy to accommodate simultaneously the
TOTEM result for σSD and the yield of LRG events
observed by ATLAS/CMS; see the discussion in Sects. 4.2
and 5.3 and in footnote 12. An analogous problem is
described in the next bullet point below.

• Moreover, the TOTEM σSD cross section looks too small
in comparison with the value of dσSD/dξdt cross section
measured by CDF at Tevatron energy, as given in [15].
In particular, at

√
s = 1.8 TeV, with a proton momentum

fraction transferred through the pomeron of ξ = 1− xL =
0.01 and −t = 0.05 GeV2, the CDF collaboration claim

dσ/d ln ξdt 	 2 mb/GeV2, (8)

while TOTEM at
√

s = 7 TeV give about3 1.2 mb/GeV2,
for the same mass of the diffractive state, MX ∼
100−200 GeV. That is, TOTEM have a cross section about
factor 1.7 smaller than CDF. On the other hand, naively, we
would expect that the value of the diffractive dissociation
cross section to increase with energy.

• Next the cross section dσSD/d ln ξ in the first (3.4 to
8 GeV) MX interval is more than twice larger than that
in the central interval. (Indeed, dividing the TOTEM pre-
liminary cross sections presented in Table 1 by the size of
the ln M2 intervals (1.71 and 7.56) we find dσSD/d ln ξ =
1.05 mb and 0.44 mb for the first and the second mass

3 To obtain this estimate we have divided the cross section (3.3 mb
for single proton dissociation of both incoming protons) measured in
the central 8 < MX < 350 GeV interval by the size (� ln M2

X =
7.56) of the rapidity interval, and we accounted for the corresponding
t-slope (B = 8.5 GeV−2) observed by TOTEM [11]. Thus we obtain
dσSD/d ln ξdt = (3.3 mb/2/7.56)×8.5 GeV−2 ×exp(−8.5×0.05) =
1.2 mb/GeV2.
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intervals, respectively.) Of course, according to the triple-
Regge formula, a pomeron intercept αP(0) > 1 leads to an
increase of the cross section when ξ decreases, but by the
same argument we have to observe a larger cross section
at the LHC than at the Tevatron, for the same value of MX ,
contrary to the data.

• An analogous problem is observed for low-mass dissoci-
ation, where the cross section, σ lowMX

SD , was about 30 %
of the elastic cross section at CERN-ISR and fixed target
energies [16], whereas it turns out to be only 10 % at the
LHC [9].

All these puzzles may be explained semi-quantitatively
by the fact that the values of the pomeron couplings are not
fixed but decrease with energy due to the growth of kt of the
intermediate partons along the pomeron exchange ladder.

We attempt a simultaneous description of all these data
within a two-channel eikonal framework, together with
multi-pomeron interactions. We discuss elastic and low-mass
dissociation in the next section. Then in Sects. 4 and 5 we
discuss the description of data for high-mass single dis-
sociation and double dissociation, respectively. Although
these discussions may seem to be self-contained analyses,
we emphasise that they are just parts of a single ‘global’
description. We give a discussion in Sect. 6, together with
a summary of model predictions of high-energy diffractive
observables.

3 Elastic scattering and low-mass dissociation

These quasi-elastic processes are described in terms of the
Good–Walker formalism in which both incoming proton
states are expressed as a linear sum over the diffractive eigen-
states, |p〉 = ∑

i ai |φi 〉.

3.1 Description of elastic scattering

In terms of the G–W framework, the differential elastic cross
section takes the form

dσel

dt
= 1

4π

∣
∣
∣
∣
∣
∣

∫

d2b eiqt ·b
∑

i,k

|ai |2|ak |2 (1−e−�ik (b)/2)

∣
∣
∣
∣
∣
∣

2

,

(9)

where −t = q2
t and the opacity is driven by one-pomeron

exchange (between states φi and φk in the b-representation)

�ik(s, b) =
∫

d2qt

4π2 �ik(s, qt )e
iqt ·b (10)

with

�ik(s, qt ) = gN
i (t)g

N
k (t)

(
s

s0

)αP(t)−1

. (11)

We use a two-channel eikonal; that is, two G–W diffractive
eigenstates i, k = 1, 2. The normalisation, ImT = sσ , is
such that the pomeron–nucleon couplings are

gN
i = γi

√
σ0 Fi (t), (12)

where the form factors satisfy Fi (0) = 1. Thus the cross
section for the interaction of eigenstates φi and φk , via one-
pomeron exchange, is

σik = σ0γiγk(s/s0)
�. (13)

The form factors are parametrised as

Fi (t) = exp((−bi (ci − t))di + (bi ci )
di ). (14)

The ci term is added to avoid the singularity tdi in the physical
region of t < 4m2

π . Note that Fi (0) = 1.
The parameters bi , ci , di , together with the intercept and

slope of the pomeron trajectory are tuned to describe the elas-
tic scattering data, paying particular attention to the energy
behaviour of low-mass dissociation cross section. We first
discuss the description of the elastic data. In order to cor-
rectly describe the dip region we must include the real part
of the amplitude. We use a dispersion relation. For the even-
signature pomeron-exchange amplitude this means

A ∝ sα+(−s)α and so we have
Re A

Im A
= tan(π(α−1)/2),

(15)

that is the usual signature factor. This formula is transformed
into b-space, so that the complex opacities,�ik(b) in (10) can
be constructed. For each value of b, that is, for each partial
wave l, we calculate α and determine Re A from (15).

In order to reproduce the cross section in the diffractive
dip region we find that the form factors, (14) have to have
powers d1 = 0.52 and d2 = 0.51, close to the form used long
ago by Orear et al., F = exp(−b

√
t) [17]. The values of the

other parameters are c1 = 0.35, c2 = 0.25, b1 = 4.7, b2 =
4.1 in GeV units. In addition we take |a1|2 = 0.265, with
|a2|2 = 1−|a1|2, and σ0 ≡ (gN (0))2 = 57 mb, where gN (t)
is the proton–pomeron coupling. The resulting description of
the elastic data is shown in Fig. 1.

The description of the proton–antiproton scattering at
large |t | > 0.6 GeV2 is not perfect. This may be caused
by the fact that we do not include secondary Reggeon contri-
butions. We also are not considering here a possible odderon
exchange contribution.

3.2 Description of low-mass dissociation

The next part of the ‘global’ description that we discuss is
low-mass dissociation. Here the experimental information is
a puzzle in that the cross section σ lowMX

D goes from about
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 dσel/dt  (mb/GeV2)

-t  (GeV2)

ISR pp at 62.5GeV   (x100)

LHC (x0.1) CERN (Sp
_
pS)

546 GeV  (x10)
Tevatron

1.8 TeV
(x1)

Fig. 1 The description of pp or (p p̄) elastic data. The references to the
pre-LHC elastic data can be found in [18]. Here LHC refers to 7 TeV
and the data are from [5,8]

2–3 mb at the CERN-ISR energy4 of 62.5 GeV to only 2.6±
2.2 mb at 7 TeV at the LHC [9]. Thus σ lowMX

D is about 30 %
of σel at 62.5 GeV and only about 10 % at 7 TeV, whereas
we would expect these percentages to be about the same for
single pomeron exchange. This problem was discussed in
[18], and its resolution involves more understanding of the
decomposition of the G–W diffractive eigenstates |φi 〉.

First, recall some properties of the Good–Walker frame-
work. If, for simplicity, we fix state k and consider the dis-
sociation of only one proton |p〉 = ∑

i ai |φi 〉, then

σel = |〈p|T |p〉|2 =
(

∑

i

|ai |2Ti

)2

= 〈T 〉2, (16)

where 〈T 〉 denotes the average of Ti over the probability
distribution of the diffractive eigenstates. On the other hand,
if we include both the elastic process and proton dissociation,
then

σel + σSD =
∑

i

|〈φi |T |p〉|2 =
∑

i

|ai |2T 2
i = 〈T 2〉. (17)

That is, the cross section for dissociation,

σSD = 〈T 2〉 − 〈T 〉2, (18)

is given by the dispersion of the scattering amplitude, T . If
all the components of the initial proton are absorbed equally,

4 The relevant experimental references are listed in [18].

then the diffracted superposition is equal to the initial one
and the dissociation cross section is zero.

The generalisation to double dissociation is straightfor-
ward. For completeness we give the full expressions for the
elastic and the ‘total’ low-mass diffractive cross sections
(analogous to (16) and (17), respectively)

σel =
∫

d2b

∣
∣
∣
∣
∣
∣

∑

i,k

|ai |2|ak |2 (1 − e−�ik(b)/2)

∣
∣
∣
∣
∣
∣

2

, (19)

σel+SD+DD =
∫

d2b
∑

i,k

|ai |2|ak |2
∣
∣
∣(1 − e−�ik(b)/2)

∣
∣
∣
2
,

(20)

where SD includes the single dissociation of both protons.
So the low-mass diffractive dissociation cross section is

σ lowM
D = σel+SD+DD − σel. (21)

We are now ready to resolve the puzzle of the energy
dependence of σ lowMX

D . The pomeron eigenstate |φi 〉 cou-
pling is driven by the impact parameter separation, 〈r〉,
between the partons in the |φi 〉 state. The well-known exam-
ple is so-called colour transparency, where the cross section
σ ∝ α2

s 〈r2〉 [19–22]. However, if the transverse size of the
pomeron becomes much smaller than this separation, then
the cross section (and coupling) will be controlled by the
pomeron size, that is by the characteristic kt in the pomeron
ladder. In this limit σ ∝ 1/k2

t . Therefore it is natural to
choose the following parameterisation for the pomeron–|φi 〉
couplings:

γi ∝ 1

k2
P + k2

i

, (22)

where the γi are defined in (12), with the normalisation
(γ1 + γ2)/2 = 1. Here kP is the characteristic transverse
momentum of the pomeron, which we expect to behave as

k2
P = k2

P0

(
sx2

0

s0

)D

. (23)

In other words, during the evolution in ln(1/x), due to the
BFKL diffusion in ln k2

t [23], the square of the characteristic
momentum k2

P grows as a power D of 1/x . Of course, we do
not expect that the whole available ln(1/x) (rapidity) space
will be subject to diffusion. Rather, we assume, that as x
decreases, the diffusion starts from some relatively low x =
x0 parton with x0 = 0.1. That is, the rapidity space available
for the ln k2

t diffusion is not ln(s/s0), but it is diminished by
ln(1/x0) from both sides. (As usual we use s0 = 1 GeV2.)
The typical transverse momentum of this (starting) parton,
inside the state φi , is denoted by ki in (22). In our ‘global’
model description we take D = 0.28. The value of D is
related to the s� behaviour, with� = 0.2−0.3, of resummed
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BFKL, which is mentioned in Sect. 3.3 below. However, the
relation is not direct. Rather, it is some approximation of the
resummed BFKL diffusion in ln kt . For this reason we keep
D as a free parameter.

The parameterisation of γi in (22) is such that at very large
energies all the γi tend to the same value, so the dispersion
shown in (18) decreases leading to a smaller probability of
low-mass proton dissociation, while at lower energies we
tend to the naive expectation γi ∝ 1/k2

i . Actually the value
of the additional transverse momenta kP in (22) turns out
to be rather small in the fit to the data—kP/k1 = 0.35 and
kP/k2 = 0.17 at

√
s = 1,800 GeV. Nevertheless the dis-

sociation is slowed sufficiently with increasing energy such
that we achieve values of the cross section σ lowMX

D which are
compatible with the data—namely, we find the model gives
2.6 mb at

√
s = 62.5 GeV, and 3.8 mb at

√
s = 7 TeV.

3.3 Parameters of the ‘effective’ pomeron trajectory

In the present approach we do not account explicitly for
enhanced absorptive effects, which would renormalise the
pomeron trajectory. Instead, we deal with an effective renor-
malised pomeron. Therefore it is not surprising that the value
� = 0.12 found for the effective pomeron is larger than 0.08
(the value obtained when the amplitude was parametrised
by one-pole-exchange without any multi-pomeron correc-
tions [2]), but it is smaller than the intercept, � ∼ 0.2−0.3,
expected for the bare pomeron of the resummed NLL(1/x)
BFKL approach [24–26]. Indeed, in comparison with the
simple model, we explicitly account for the non-enhanced
eikonal absorption which suppresses the growth of the ampli-
tude with energy. Therefore to describe the same data we
need a larger intercept (� = 0.12). On the other hand, since
we do not explicitly include the enhanced diagrams (which
would also slow down the growth of the cross section in
the eikonal approach) we anticipate a smaller effective inter-
cept than that given by resummed BFKL. Similar arguments
apply to the slope of the effective trajectory, leading to a
value5 (α′ = 0.05 GeV−2) intermediate between the BFKL
prediction (α′ � 0) and the old one-pole parameterisation
[2] (α′ = 0.25 GeV−2).

4 High-mass dissociation

The process pp → X + p, where one proton dissociates into
a system X of high-mass M is conventionally studied in terms
of the triple pomeron coupling, shown as the dot between the
dashed lines in Fig. 2a. In the absence of absorptive correc-
tions, the corresponding cross section is given by

5 Besides the constant slope, α′, of the pomeron trajectory, we insert the
π -loop contribution as proposed in [27], and as implemented in [28].

Sik Sik

k
b1

b2

i

t

(a) (b)

Fig. 2 a A schematic diagram showing the notation of the impact
parameters arising in the calculation of the screening corrections to the
triple pomeron contributions to the cross section; b a symbolic diagram
of multi-pomeron effects

M2dσSD

dtdM2 = g3P(t)gN (0)g2
N (t)

16π2

( s

M2

)2α(t)−2
(

M2

s0

)α(0)−1

,

(24)

where gN (t) is the coupling of the pomeron to the pro-
ton and g3P(t) is the triple pomeron coupling. The value
of the coupling g3P is obtained from a triple-Regge analy-
sis of lower energy data. Mainly they are the data on pro-
ton dissociation taken at the CERN-ISR with energies from
23.5 → 62.5 GeV.

The problem with the above determination of g3P is that
the value obtained is actually an effective vertex with cou-
pling

geff = g3P 〈S2〉 (25)

which already includes the suppression S2(b)= exp(−�(b))
—the probability that no other secondaries, simultaneously
produced in the same pp interaction, populate the rapidity
gap region denoted by the + sign in pp → X + p. Recall that
this survival factor S2 depends on the energy of the collider.
Since the opacity � increases with energy, the number of
multiple interactions, N ∝ �, grows,6 leading to a smaller
S2. Thus, we have to expect that the naive triple pomeron for-
mula with the coupling [29,30], measured at relatively low
collider energies will appreciably overestimate the cross sec-
tion for high-mass dissociation at the LHC. A more precise
analysis [31] accounts for the survival effect S2

eik caused by
the eikonal rescattering of the fast ‘beam’ and ‘target’ par-
tons. In this way, a coupling g3P about a factor of 3 larger
than geff is obtained, namely g3P 	 0.2gN , where gN is the
coupling of the pomeron to the proton. The analysis of Ref.
[31] enables us to better allow for the energy dependence
of S2

eik.
To account for the absorptive effect, it is easier to work in

the impact parameter, b, representation. To do this we follow
the procedure of Ref. [31]. We first take Fourier transforms
with respect to the impact parameters specified in Fig. 2a.
Then (24) becomes

6 This is because at larger optical density�we have a larger probability
of interactions.
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M2dσik

dtdM2 = A
∫

d2b2

2π
eiqt ·b2�i (b2)

∫
d2b3

2π
eiqt ·b3�i (b3)

×
∫

d2b1

2π
�k(b1), (26)

where �i (b) is the opacity corresponding to the interaction
of eigenstate φi with an intermediate parton placed at the
position of the triple pomeron vertex, while�k(b) describes
the opacity of the eigenstate φk from the proton which disso-
ciates and interacts with the same intermediate parton. The
normalisation constant is

A = π2/2g2
N (0). (27)

After integrating (26) over t , the cross section becomes

M2dσik

dM2 = A
∫

d2b2

π

∫
d2b1

2π
|�i (b2)|2�k(b1)

·S2
ik(b2 − b1), (28)

where here we have included the screening correction S2
ik ,

which depends on the separation in impact parameter space,
(b2 − b1), of states φi , φk coming from the incoming protons

S2
ik(b2 − b1) ≡ exp(−�ik(b2 − b1)). (29)

If we now account for more complicated multi-pomeron ver-
tices, coupling m to n pomerons, and if we assume an eikonal
form of the vertex with coupling

gm
n = (gNλ)

m+n−2, (30)

then we have to replace �i by the eikonal elastic ampli-
tude and �k by the inelastic interaction probability. That is,
instead of �i (b2) and �k(b1), we put

�i → 2(1 − e−�i (b2)/2), �k → (1 − e−�k (b1)). (31)

Figure 2b symbolically indicates multi-pomeron couplings.
In (30), gN is the proton–pomeron coupling and λ determines
the strength of the triple pomeron coupling.7

7 In comparison with the (10) and (11) expressions the formula for �i
contains an additional factor λ/π , that is, we use (10) with �i (t) =
gN

i (t)g3P(t) exp(�yi (αP(t) − 1))/π = gN
i (t)λgN (0) exp(B3Pt +

�yi (αP(t) − 1))/π where we assume the exponential dependence of
g3P(t) ∝ exp(B3Pt) (for the each pomeron leg; see eqs. (4.6) and (4.7)
of [31]). Here �yi is the rapidity interval between the proton (i) and
the triple pomeron vertex (intermediate parton); π in the denominator
comes from the definition of the multi-Reggeon couplings; see an extra
π (1/16π2 and not 1/16π as in usual elastic cross section) in (24).
t dependence of the vertex is parametrised by conventional exponent
with the slope B3P = 0.7 GeV−2 for each pomeron leg which is in
agreement with the last H1 data on diffractive J/ψ production with
proton dissociation [32] and with the results (B3P < 1/GeV2 is small)
of the previous triple-Regge analysis [30,31].

4.1 Implications of the TOTEM data for σSD at high mass

There are indications that the data for high-mass dissociation
are not in agreement with the M and s dependence expected
from the form of M2dσ/dtdM2, based on (24), assuming a
constant λ. From (24) we see that the cross section should
increase with decreasing M2 as

(1/M2)2αP(t)−αP(0)−1 ∼ (M2)−�. (32)

However, the preliminary TOTEM data at
√

s = 7 TeV,
give cross sections integrated over the 3.4 < M < 8 and
8 < M < 350 GeV mass intervals of 1.8 and 3.3 mb, respec-
tively [11]. This translates into a cross section M2dσ/dtdM2

more than twice (∼2.4) smaller for M values in the second
as compared to the first mass interval, whereas (32) predicts
only about a 60 % increase. This observation indicates that
the value of λ (which specifies the multi-pomeron coupling)
should be smaller in the second mass interval. Secondly, since
αP(0) > 1, the cross section for fixed M2 should increase
with energy (

√
s). On the other hand, the TOTEM result is

about factor 1.7 less than that measured by CDF at the Teva-
tron (

√
s = 1.8 TeV). Of course at the higher LHC energy

we have a stronger suppression caused by the gap survival
factor S2

ik (which was not included in the simplified expres-
sion (24)), but this is not enough to explain the discrepancy.
(Note that the eikonal S2 suppression is rather well fixed
after the model was tuned to describe the elastic scattering
and low-mass dissociation data.)

So we have phenomenological arguments in favour of
introducing some energy dependence of λ, which specifies
the multi-pomeron couplings via (30). Since the gm

n coupling
is a dimensionful quantity and the characteristic transverse
momenta of the intermediate partons inside the pomeron lad-
der (i.e. the size of the pomeron) depend on the rapidity of
corresponding partons, it looks natural to take

λ ∝ 1/k2
t (y). (33)

The diffusion in ln k2
t occurs from both the beam and target

sides of the ladder. Following (23) we take k2
T ∝ (x0/x)D

for diffusion from one side and k2
T ∝ (x0/x ′)D from the

other side, where xx ′s = 〈m2
T 〉, which we take equal to

s0 = 1 GeV2. So we parameterise kt (y) by

k2
t = k2

0

(( x0

x

)D +
( x0

x ′
)D

)

, (34)

where we take the same D = 0.28 and evolve from the same
starting point x0 = 0.1 as (23) for γi of (23). We calculate x ′
as x ′ = s0/xs with s0 = 1 GeV2. If x > x0 we replace the
x0/x ratio by 1, and similarly for x ′.

After we introduce the dependence of the multi-pomeron
couplings on x , via (33) and (34), the values obtained for
the single proton dissociation cross section (integrated over
the three mass intervals used by TOTEM [11]) are shown
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in Table 1. We see that the agreement with the mass depen-
dence of the TOTEM data is now satisfactory. The t-slopes,
defined by

dσSD/dt ∝ e−B|t |, (35)

evaluated, using the present model, for the interval 0.02 <
|t | < 0.1 GeV2, for the three mass TOTEM intervals are B =
8.5, 7.2, 6.0 GeV−2, respectively (the preliminary TOTEM
slopes are B = 10.1, 8.5, 6.8 GeV−2; in agreement with
the theoretical results within the experimental 15 % error
bars).

To obtain the model predictions listed in Table 1, we
have included in the last mass interval the contribution of
the secondary RRP term using the value of the RRP ver-
tex found in the triple-Regge fit of [31]. In the other two
mass intervals such a contribution is negligible (less than
0.02 mb). We do not include the PPR contribution since
it is dual to the low-mass proton excitations, which in our
approach are accounted for in terms of the G–W diffractive
eigenstates.

In the present analysis we have takenλ of (30) to be energy
dependent, However, we find λ = 0.18 at relatively low
energies when both x > x0 and x ′ > x0 such that λ ceases
to be energy dependent. This value is in agreement with the
previous triple-Regge analysis of [30,31].

4.2 Tension between high-mass single dissociation data

Although TOTEM have made the most detailed observa-
tions of high-mass single proton dissociation in high-energy
pp collisions, the present ‘global’ diffractive model has
been tuned to simultaneously describe the TOTEM data
together with earlier measurements of single dissociation.
Here we compare with the description of measurements
made by CDF at the Tevatron, and, later, in Sect. 5.3, we
show the description of information obtained by ATLAS
[12].

The comparison of the model with the cross section of
single proton dissociation observed by the CDF collabora-
tion at

√
s = 1,800 TeV and −t = 0.05 GeV2 is shown in

Fig. 3. We see that the agreement with the CDF data is not
particularly good. However, note that:

(a) there is some tension between the TOTEM data on the
one hand, and CDF results (as well as those of ATLAS and
CMS) on the other hand, which enforce us to tune the param-
eters in such a way that we overestimate the TOTEM single
dissociation data, but simultaneously we underestimate the
CDF, ATLAS and CMS cross sections,

(b) actually these results were not published by the CDF
collaboration, but were published in a separate paper by
Goulianos–Montanha [15] and a normalisation uncertainty
of about 10–15 % was not included in the error bars.

ξd2σ/dtdξ (mb/GeV2)

√s=1800 GeV

-t=0.05 GeV2

ξ

Fig. 3 The comparison of the model with data for single proton dis-
sociation measured by the CDF collaboration, given in [15] but not
including a normalisation uncertainty of about 10–15 %. The inclusion
of the secondary Reggeon contribution RRP is responsible for the rise
of the curve as ξ increases

5 Factorisation and double dissociation

The recent TOTEM measurement of high-energy double dis-
sociation [10] opens the way to study the relation between
elastic, single dissociation and double dissociation cross sec-
tions.

5.1 Naive factorisation

Within the framework of RFT, the simplest Reggeon diagram
which describes the cross section of high-mass diffractive
double dissociation at high energies is the pomeron exchange
diagram shown in Fig. 4a. As clear from Fig. 4, it is natural
to expect the factorisation relation

dσDD

dtdη1dη2
= dσSD

dtdη1

dσSD

dtdη2

/dσel

dt
. (36)

to be valid. Note that relation (36) is written for the differ-
ential cross section for some fixed value of the square of the
momentum transfer t , and not for the cross sections integrated
over t . The corresponding naive integrated factorisation rela-
tion is

σDD = (σSD)
2

σel
or

σDD σel

(σSD)2
= 1, (37)
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t

t

t

η1

η2

a

c

b1

bc

b2

ba

(a) (b) (c)

Fig. 4 A pictorial representation of the naive factorisation formulae of
(37) and (36), resulting from the simplest pomeron exchange diagrams
for a DD, b SD*SD and c elastic ac scattering. It is convenient to
evaluate the dissociation cross sections in impact parameter space, so
we also show the variables bi

where here σSD is the single dissociation cross section from
one proton, not the sum of both dissociations. Before we com-
pare the factorisation relation with the cross sections obtained
by the TOTEM collaboration at

√
s = 7 TeV, we must include

some obvious violations expected for the naive form (37).
First, the relation is violated by the different t-slopes,

B, of the elastic, single and double dissociation cross sec-
tions. Indeed, at 7 TeV the corresponding slopes are: Bel 	
20 GeV−2 [5,8], BSD 	 10 GeV−2 for the lowest mass inter-
val8 in [11], and the estimated slope

BDD 	 2B3P + 2α′
P|η1 − η2| = 2.4 GeV−2. (38)

corresponding to the TOTEM experimental kinematics with
|η1 − η2| ∼ 10. For the estimate of BDD we take the value
α′

P = 0.05 GeV−2 obtained in Sect. 3.3 to describe the
elastic proton–proton cross section, and we put the slope
of the triple pomeron vertex B3P = 0.7 GeV−2. Thus we
already expect a violation of the naive relation (37) by a fac-
tor B2

SD/Bel BDD ∼ 2.
More serious are the role of the eikonal rapidity gap sur-

vival factors S2
eik. Both the single and the double dissociative

cross sections are suppressed by S2. However, S2
SD enters

(37) as the square of S2
SD, while S2

DD enters as the first power.
The elastic scattering cross section, which results from uni-
tarity, has no explicit S2 suppression, but, after accounting
for the multi-pomeron diagrams, its value becomes less than
that given by single pomeron pole exchange. Using the ‘elas-
tic’ parameters of our model (given in Sect. 3.1) we find a
suppression of dσ/dt |t=0 by a factor of about 6.8. More-
over, double dissociation occurs typically at somewhat larger
values of the impact parameter, b, so S2

DD > S2
SD, see, for

8 To be specific, the preliminary values of the slopes observed
by TOTEM [11] in their three mass intervals are BSD =
10.1, 8.5, 6.8 GeV−2, respectively, with 15 % errors.

example, [28]. These observations all lead to the left-hand-
side being larger than the right-hand-side of (37).

Thus, it is not a surprise to find sizeable breaking of naive
factorisation. The question is whether we can account for the
actual observed size of the breaking. Using the present model
we find S2

SD 	 0.08 and a twice larger S2
DD 	 0.16. Thus,

including the suppression of the elastic cross section and the
slope factor, our estimate so far is

σDDσel

(σSD)2
	 2

6.8

0.16

(0.08)2
	 7.3. (39)

On the other hand, the TOTEM data give a much smaller
violation of factorisation

σDDσel

(σSD)2
	 0.116 × 25

(0.9)2
	 3.6, (40)

where here we use σDD = 0.116 mb [10], σSD = 1.8/2 =
0.9 mb9 [10] and σel = 25 mb [5,8].

Our model already gives satisfactory values for σel and
σSD. Below, we therefore consider the possibility that a
value of σDD consistent with the TOTEM results can be
obtained by the inclusion of more detailed properties of our
present model: the forms of the distributions in b-space, the
multi-pomeron effects etc. The multi-pomeron vertices were
already included in our description of high-mass single dis-
sociation; see (30) and (31).

5.2 Double dissociation and multi-pomeron contributions

We start with the simplest expression for the double disso-
ciative cross section, corresponding to the process pp →
X1 + X2 diagram shown in Fig. 4a; that is,

M2
1 M2

2 dσDD

dtdM2
1 dM2

2

= g2
3P(t)g

2
N (0)

16π3

(
M2

1

s0

M2
2

s0

)αP(0)−1

e2|η2−η1|(αP(t)−1),

(41)

where we have neglected the survival factor S2. Here M1

and M2 are the masses of the dissociating systems from the
two colliding protons, and the ηi are the (pseudo)rapidities
shown on the diagram. If we now integrate over the square
of the momentum transferred, t , around the pomeron loop,
and if we express the opacities as a functions of their impact
parameters, then (41) takes the form

9 The TOTEM result of 1.8 mb corresponds to single dissociation of
both protons, in the same rapidity interval as used for their measurement
of σDD.
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dσDD

dη1dη2
=

∫

dt
dσDD

dη1dη2dt

= 1

g4
N

∫

d2b1d2b2d2bc�c2(�12/2)
2�1ae−�ac|ba−bc|,

(42)

where now we have included the rapidity gap survival factor

S2 = exp(−�ac(|ba − bc|)). (43)

The notation (a, 1, 2, c) is specified in the Fig. 4a. Here the
opacities �1a and �c2, between the nucleon and the corre-
sponding triple pomeron vertex, are defined as in (10) and
(11), but since the vertex g3P = λgN , the corresponding
opacity contains an additional factor λ. In the same way,
the opacity between the two triple pomeron vertices contains
a factor (λ/π)2; see the footnote below (31). In particular,
assuming a pure exponential t dependence, this opacity takes
the form

�12(b12) = g2
N
λ2

π2 e2�|η1−η2|
(

e−b2
12/4B12

4πB12

)

, (44)

where the slope

B12 ≡ BDD = 2B3P + 2α′
P|η1 − η2|. (45)

The factor 1/g4
N in the denominator of (42) arises because

in our normalisation each opacity � ∝ g2
N , while the cross

section (41) is proportional to g4
N only.

To account for the multi-pomeron vertices, we have to
replace�c2 and�1a by the inelastic interaction probabilities
(1 − exp(−�c2)) and (1 − exp(−�1a)), while the factor
(�12/2)2 is replaced by the probability of elastic parton ‘12’
scattering, that is, by (1 − exp(−�12/2))2. Note that, after
this eikonal unitarisation, we now have no divergency in σDD

even in the case of a zero slope B12; that is, even for B3P = 0
and α′

P = 0. Such a divergency which occurs in (42), due
to the divergency of the t integral and the corresponding
divergency of �12 for b12 = 0, is now protected by the
parton ‘12’ scattering amplitude, 1 − exp(−�12/2).

In addition, the multi-pomeron vertices gm
n generate gap

survival factors with respect to ‘1c’ and ‘2a’ inelastic inter-
actions. Overall this gives a screening factor

exp(−�2a(|b2 − ba |)−�1c(|b1 − bc|)). (46)

Thus, finally, we obtain

dσDD

dη1dη2
= 1

g4
N

∫

d2b1d2b2d2bc(1−e�c2 )(1−e�12/2)2(1−e�1a )

× exp(−�ac(|ba −bc|)−�2a(|b2−ba |)−�1c(|b1 − bc|)).
(47)

Typical predictions for the differential cross section of double
dissociation, integrated over t , are shown in Fig. 5. They cor-
respond to our ‘global’ description of diffractive data, and

dσDD/dη1dη2  (μb)

η1

η2=-6

η2=-4

η2=-2

√s=7 TeV

Fig. 5 The cross section (in µb) for double dissociation,
dσDD/dη1dη2, at the 7 TeV LHC, as a function of the position
of the rapidity gap from η1 to η2, predicted by the present model which
gives a ‘global’ description of high-energy elastic and diffractive data

they account for the kt dependence of λ, keeping all the
parameters determined as described in the previous sections.

After the integration over the −4.7 > η2 > −6.5 and
4.7 < η1 < 6.5 rapidity intervals covered by TOTEM,
we obtain σDD = 145 µb, close to the upper bound of the
TOTEM measurement 116 ± 25 µb [10]. It is encourag-
ing that the more physical and complicated structure of the
present model largely reconcile the discrepancy between (40)
and (39).

5.3 Large rapidity gaps in central region, and SD and DD

The ATLAS [12] and CMS collaborations have measured the
cross section of events with a large rapidity gap,�ηF , which
starts before the edge of the forward calorimeter (η = 4.9
for ATLAS) and ends somewhere inside the opposite forward
calorimeter or in the tracking central detector. The ATLAS
data are shown in Fig. 6, and they correspond to measure-
ments of the inelastic cross section differential in the size
of the rapidity gap �ηF for particles with pT > 200 MeV.
When �ηF decreases below about 5, the data are increas-
ingly contaminated by fluctuations from the hadronisation
process, but for �ηF � 5 they are a measure of proton dis-
sociation; in fact mainly of single proton dissociation. That
is, the LRG actually starts just from a leading proton. How-
ever, we should not neglect the contribution of events where
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dσ/dΔηF (mb)

ΔηF

√s=7 TeV

DD

SD

fluctuations

+DD(low M*high M)

total

Fig. 6 The ATLAS [12] measurements of the inelastic cross section
differential in rapidity gap size�ηF for particles with pT > 200 MeV.
Events with small gap size (�ηF � 5) may have a non-diffractive
component which arises from fluctuations in the hadronisation process
[33]. This component increases as �ηF decreases (or if a larger pT
cut is used [12,33]). Therefore the curve at �ηF < 5 is shown by a
thin line. The data with �ηF � 5, which are dominantly of diffractive
origin, are compared with the present ‘global’ diffractive model

both protons dissociate, but the secondaries produced by one
proton, say, the MX -group, go into the beam pipe and are
not seen in the calorimeter. In Fig. 6 this double dissociation
contribution is shown by the dashed curve.

It was demonstrated in [33] that, depending on the par-
ticular mechanism of hadronisation, the fluctuations may be
able to account for the data at small �ηF . To allow phe-
nomenologically for such a possibility we assume an expo-
nential dependence of this contribution, ∝ exp(−a|�η|)
with a = 0.9. If this term is normalised to the ATLAS data
[12] then it gives the dotted line in Fig. 6. Recall, however,
that the behaviour at small �ηF is strongly dependent on a
hadronisation model as discussed in [33].

6 Discussion

The high-energy diffractive data that are presently available
cover a wide variety of processes. These include measure-
ments of the total and elastic pp cross sections (σtot, σel), the
elastic differential cross section (dσel/dt), the cross sections
of low- and high-mass proton dissociation (σ lowM

SD , σ
highM
SD ),

the cross section of events where both protons dissociate

(σ
highM
DD ), as well as the probability of inelastic events with a

large rapidity gap (dσ/d�η).
Here, we demonstrate that all these diffractive data

may simultaneously be described within the Regge Field
Theoretic framework based on only one pomeron pole. How-
ever, to reach agreement with the data, we have to include
pomeron–pomeron interactions, arising from multi-pomeron
vertices, and to allow for the kt (y) dependence of the multi-
pomeron vertices. Recall that, due to the BFKL-type dif-
fusion in ln k2

t space, together with the stronger absorp-
tion of low kt partons, the typical transverse momentum,
kt , increases with energy depending on the rapidity position
of the intermediate parton or the multi-pomeron vertex. This
kt (y) effect enables the model to achieve a relatively low
probability of low-mass dissociation of an incoming proton
and to reduce the cross section of high-mass dissociation in
the central rapidity region in comparison with that observed
closer to the edge of the available rapidity space—both of
which are features demanded by the recent TOTEM data.

Even though including the kt (y) dependence considerably
improves the description of the dissociation data, the overall
agreement with these data is not particularly good.10 This is
mainly due to a tension between the TOTEM and the ATLAS,
CMS, CDF results.11 It is not hard to improve the descrip-
tion of the TOTEM data on proton dissociation. We simply
need a reduction of about 10–15 % of the starting value of λ,
the parameter which specifies the multi-pomeron coupling.
However, if we do this, we will even further underestimate the
M2dσ/dM2 cross section at the Tevatron, and also the prob-
ability to have a LRG in the central rapidity region observed
by the ATLAS and CMS12 groups. Here, we have tuned the
model to give a compromise solution somewhere between
the CDF (ATLAS/CMS) and the TOTEM results.

It is also possible to obtain a lower value of σSD inte-
grated over the central of the three mass intervals used by
TOTEM (while keeping the same cross sections in the low
and large MX intervals) by choosing a larger value of the
parameter D. However, if we were to do this then we would
find that the probability of low-mass dissociation, σ lowM

D , is
too small (due to the small 〈T 2〉 − 〈T 〉2 dispersion caused
by γ1,2 → 1). Moreover, the model would then give an even
steeper dσ/d�ηF behaviour of the LRG cross sections with
increasing �ηF . The model already has dσ/d�ηF growing
faster than the ATLAS and CMS data.

10 The imperfect description of the elastic proton–antiproton cross sec-
tions at larger |t | may be due to the fact that at present we neglect the
secondary Reggeon contributions.
11 Such a tension was also emphasised by Ostapchenko [34].
12 Recall that the CMS [13] cross section of dissociation integrated
over the 12–394 GeV MX interval (close to, but, in terms of ln MX ,
a bit smaller than, the interval (8–350) GeV chosen by TOTEM) is
noticeably larger (4.3 mb) than that (3.3 mb) found by TOTEM.
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Table 2 The predictions of the present model for some diffractive observables for high-energy pp collisions at
√

s c.m. energy

√
s (TeV) σtot (mb) σel (mb) Bel(0) (GeV−2) σ lowM

SD (mb) σ lowM
DD (mb) σ

�η1
SD (mb) σ

�η2
SD (mb) σ

�η3
SD (mb) σ

�η
DD (µb)

1.8 77.0 17.4 16.8 3.4 0.2

7.0 98.7 24.9 19.7 3.6 0.2 2.3 4.0 1.4 145

8.0 101.3 25.8 20.1 3.6 0.2 2.2 3.9 1.4 139

13.0 111.1 29.5 21.4 3.5 0.2 2.1 3.8 1.3 118

14.0 112.7 30.1 21.6 3.5 0.2 2.1 3.8 1.3 115

100.0 166.3 51.5 29.4 2.7 0.1

Bel(0) is the slope of the elastic cross section at t = 0. Here σSD is the sum of the single dissociative cross section of both protons. The last four
columns are the model predictions for the cross sections for high-mass dissociation in the rapidity intervals used by TOTEM at

√
s = 7 TeV: that

is, σSD for the intervals �η1 = (−6.5,−4.7), �η2 = (−4.7, 4.7), �η3 = (4.7, 6.5), and σ�ηDD is the double dissociation cross section in the two
rapidity intervals 4.7 < |η| < 6.5. At

√
s = 7 TeV, the three ‘SD’ rapidity intervals correspond, respectively, to single proton dissociation in the

mass intervals �M1 = (3.4, 8) GeV, �M2 = (8, 350) GeV, �M3 = (0.35, 1.1) TeV, see Table 1

Here, we have adjusted the parameters of the model to
give a reasonable description of all aspects of the available
diffractive data. If, instead, we had performed a χ2 fit to
the data, then the few dissociation measurements of TOTEM
(values of σSD in three mass intervals with 20 % errors, and
one value of σDD) would have carried little weight. On the
other hand, all the TOTEM data are self-consistent between
themselves. Moreover, these data reveal a very reasonable
tendency of the dσSD/dξ dependence, close to that predicted
in the model [35] where the kt distribution of the intermediate
partons inside the pomeron ladder, and the role of the trans-
verse size of the different QCD pomeron components, were
accounted for more precisely. Therefore, we have presented
the results of this ‘compromised’ description (and not made a
χ2 fit) in order not to discard the interesting new information
coming from the recent TOTEM measurements.13

For completeness, we give in Table 2 the values of some of
the diffractive observables obtained from the present ‘global’
description of diffractive high-energy data. We include, in
particular, the values at collider energies relevant to experi-
ments at the LHC.

Recall that the slow rise of σ lowM
SD from a model value

of 2.6 mb at the CERN-ISR energy to the value 3.6 mb
at the LHC energy of

√
s = 7 TeV is due to the growth

of the characteristic momentum of the pomeron, k2
t ∝ s D;

see (23). We noted that this behaviour is in accord with the
TOTEM measurement of low-mass dissociation [9]. Also, as
just mentioned above, the energy dependence of the char-
acteristic kt of the pomeron, which translates into a rapidity
dependence, kt (y), is in accord with the preliminary TOTEM
measurements of σSD in the three different mass (or rapidity)
intervals, see Table 1. The decrease of the cross sections for

13 We do not include in the present description the secondary Reggeon
PPR contribution which is partly ‘dual’ to that arising from the G–
W diffractive eigenstates. In general, it should be considered in future
‘global’ diffractive analyses, but at present it does not change the situ-
ation qualitatively. So we prefer not to introduce the extra parameters.

dissociation at
√

s = 100 TeV, seen in Table 2, is because we
are beginning to approach the true black disk limit, where the
probability of dissociation tends to zero, while the effective
α′

eff = 1
2 dBel/d ln s of elastic slope increases.

The values listed in Table 2 for
√

s = 7 TeV are highly
constrained by the recent measurements at the LHC. These
measurements therefore largely determine the high-energy
predictions of the model. When more precise and extensive
diffractive data become available, and the tensions between
the data sets are reduced, the model predictions may have to
be adjusted.
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