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Abstract We present an evolution equation which simulta-
neously sums the leading BFKL and DGLAP logarithms for
the integrated gluon distribution in terms of a single variable,
namely the emission angle of the gluon. This form of evo-
lution is appropriate for Monte Carlo simulations of events
of high energy pp (and p p̄) interactions, particularly where
small x events are sampled.

1 Introduction

The aim is to devise an evolution equation for PDFs in the
low x region which simultaneously incorporates, at the same
level, both the DGLAP and BFKL leading logarithms. There
has been attempts in this direction, which, however, have not
been very convenient [1,2]. In the Gribov et al. [1] paper the
result was written in terms of an integral over Mellin moments
and anomalous dimensions, while Marchesini [2] attempted
to improve the CCFM equation by working in terms of highly
unintegrated distributions which depended on six arguments.

Procedures to combine BFKL and DGLAP effects, based
on CCFM, were implemented in the ‘Small x’ Monte Carlo
[3] and in the ‘CASCADE’ Monte Carlo [4,5]. These Monte
Carlos were written in terms of an ‘effective’ transverse
momentum, labelled q ′ and q̄ , respectively, both variables
being proportional to the square root of the gluon emission
angle. However, in [3] the finite terms in the DGLAP gluon–
gluon splitting function were neglected; and in [4,5] there
was no possibility to include the full DGLAP contribution,
which is included in the evolution equation proposed here.

Another possibility to unify the BFKL and DGLAP equa-
tions was proposed by Kwiecinski et al. [6], where the role
of the BFKL contribution was studied for the deep inelastic
structure function F2. However, there, an integral equation

a e-mail: a.d.martin@durham.ac.uk

was proposed for the unintegrated parton distribution. The
equation was written in terms of the usual x, kt variables,
and was not converted into the form of an evolution equa-
tion. It was already noted by Ciafaloni [7] that ordering in
emission angle, provided by the coherence effect, plays an
important role. Indeed this angular ordering was the basis of
the CCFM integral equation. However, evolution in terms of
the opening angle was not discussed.

Here we start with the integral equation analogous to that
in [6], and based on this equation, we show how it is possi-
ble to obtain an expression which describes the evolution in
angle of the emitted parton with respect to the initial proton
direction (in the infinite momentum frame). The momen-
tum of the parton transverse to the direction of the proton is
denoted by kt . A good feature of this evolution is that angu-
lar ordering of successive emissions is naturally provided by
coherence effects. Therefore already at LO the results should
be closer to experimental application. Another point is that
the angular variable, θ = kt/xp, accounts for both DGLAP
and BFKL large logarithmic intervals; log kt in DGLAP and
log(1/x) in BFKL. The evolution equation for PDFs is thus
written, in terms of only two arguments—the emission angle
θ and the momentum fraction x . In this sense its form is very
close to the conventional evolution equations. So it should
be straightforward to implement.

In the present paper we consider only LO evolution; that is
the simultaneous summation of LO BFKL and LO DGLAP
logarithms. However, it should be possible to follow the same
logic so as to include the known NLO BFKL and DGLAP
effects.

2 Unified BFKL–DGLAP evolution

As mentioned above, following Ref. [6], we start with a
‘unified’ BFKL–DGLAP evolution equation for the unin-
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tegrated gluon distribution, f (x, kt), written in integral
form:
f (x, kt) = f0(x, kt)

+ αs

2π

(∫ ∞

0
d2k′

t

∫ 1

x

dx′

x ′ K(kt, k′
t) f (x ′, k′

t)

+
∫ k2

t

Q2
0

dk
′2
t

k
′2
t

∫ 1

x
dz P(z) f

(
x

z
, k′

t

)
− DL

)
, (1)

where the first term on the right-hand side is the input
distribution, the second and third terms are the BFKL
and DGLAP contributions, respectively, written using the
usual DGLAP and BFKL variables. The final term, DL,
denotes the subtraction of the double-logarithmic contribu-
tion,

∫
(dx ′/x ′)(dk

′2
t /k

′2
t ), hidden in both the DGLAP and

the BFKL terms, which to avoid double counting needs to
be subtracted. It is best to subtract it from the BFKL part,
since the DGLAP contribution already satisfies the energy-
momentum sum rule. Note that the LO BFKL term produces
more energy in the final state than there was in the incoming
state. So anyway we need to correct for this. After the subtrac-
tion of the double-log term DL, the k′

t integral in the BFKL
part is no longer logarithmic. The original BFKL kernel K is
replaced symbolically by

K(kt, k′
t) = K(kt, k′

t) − 2Nc

k
′2
t

, (2)

where the kernel K(kt, k′
t) acts as

K(kt, k′
t) f (x ′, k′

t)

=2Nc
k2

t

k
′2
t

⎡
⎣ f (x ′, k′

t)− f (x ′, kt)

|k ′2
t −k2

t | + f (x ′, kt)√
4k

′4
t +k4

t

− f (x ′, k′
t)

k2
t

⎤
⎦ .

(3)

Recall that the (LO) BFKL part of the equation sums the lead-
ing αs ln(1/x) contributions. However, there is an important
kinematical constraint. For a real emission [6–9]

k
′2
t <

k2
t

z
, where z = x/x ′, (4)

which actually sums an essential part of the higher-order
corrections. The constraint arises from the fact that, for larger
values of k′

t , the longitudinal part of the gluon virtuality would
spoil the logarithmic structure of the integral; note that for
LO BFKL we assume that the virtuality k2 � k2

t . Thus the
expression (3) should be rewritten as

K(kt, k′
t) f (x ′, k′

t)

= 2Nc
k2

t

k
′2
t

⎡
⎣�(k2

t /z − k
′2
t ) f (x ′, k′

t) − f (x ′, kt)

|k ′2
t − k2

t |

+ f (x ′, kt)√
4k

′4
t + k4

t

− �(k2
t − k

′2
t ) f (x ′, k′

t)

k2
t

⎤
⎦ . (5)

Note that in the last term of (5) we subtract the DL term with
the � function, which limits the available k′

t interval, corre-
sponding to DGLAP kt ordering. After this subtraction the
BFKL part does not contain the DL contribution equivalent
to that in the DGLAP part. Incidentally, therefore, the BFKL
kernel still retains a DL contribution coming from the inter-
val k2

t < k
′2
t < k2

t /z which does not occur in DGLAP. In this
way double counting is avoided.

Strictly speaking, the BFKL kernel, K, depends on the
azimuthal angle1 φ between kt and k′

t . However, here, for
simplicity, in order not to introduce another variable, we have
already integrated over φ assuming a flat φ dependence of
f . That is, we consider only the zero harmonic, which cor-
responds to the rightmost intercept.2

3 Evolution in θ

Our aim is to obtain an evolution equation for the integrated
gluon distribution, g(x, θ), which contains both BFKL and
DGLAP logarithms, in terms of the single variable–the gluon
emission angle3 θ . That is, a ‘unified’ evolution equation
for dg(x, θ)/d ln θ . The relation between the (conventional)
integrated gluon distribution, g, and the distribution, f , unin-
tegrated over its transverse momentum is

xg(x, k2
t ) =

∫ k2
t dk

′2
t

k
′2
t

f (x, k
′2
t ). (6)

If we express this in terms of θ , we have

xg(x, θ) =
∫ θ2

f (x, θ ′)dθ
′2

θ
′2 . (7)

Thus we should replace kt and k′
t in (1) by θ = kt/xp and θ ′ =

k′
t/x ′ p. Now, it is convenient in the DGLAP term to replace

the logarithmic integration
∫
(dk

′2
t /k

′2
t ) by the logarithmic

integration 2
∫
(dθ ′/θ ′). Then the DGLAP part in (1), written

in terms of (x, θ) variables, has the same form as before.
When we change the limit of integration in (7) to θ1 =

θ +dθ we have the usual DGLAP contribution, equivalent to
the replacement ln(k2

1t ) = ln(k2
t ) + 2dθ/θ , plus the contri-

bution from the BFKL part arising from the increase of the
available ln(1/x ′) interval; d ln(1/x ′) = d ln(θ). Indeed, for

1 For the DGLAP contribution we have a flat φ dependence from the
beginning, due to strong kt ordering.
2 It was demonstrated in [10] that the full BFKL amplitude is well
approximated by the sum of the leading ‘zero’ harmonic contribution
and simple two-reggeised-gluon exchange.
3 Recall that some Monte Carlo generators actually make use of the
angular variable. However, while the HERWIG Monte Carlo [11–13]
accounts for DGLAP evolution, it neglects the BFKL contribution (and
the higher-twist BFKL effects), whereas the CASCADE Monte Carlo
[4,5] does not include the full DGLAP splittings.
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a relatively large kt , the condition θ ′ < θ in (7) limits the
part of the x ′ domain in (1).

Note that, to LO accuracy, after the subtraction shown in
(2), we may neglect the variation of ln(k2

t ) in the BFKL part,
since now we do not have a logarithmic dk2

t /k2
t integration

here. For this reason we may replace dx ′/x ′ in the BFKL part
of (1) by dθ ′/θ ′. Hence we may write (1) for the unintegrated
distribution f (x, θ), in the form

f (x, θ) = f0(x, θ0)

+ αs

2π

∫ θ

θ0

(∫ ∞

0
d2k′

t K(kt, k′
t) f (x ′, k′

t = x ′ pθ ′)

+2
∫ 1

zmin

dz P(z) f

(
x

z
, θ ′
))

dθ ′

θ ′ , (8)

where θ0 is the starting point of the evolution. The input
function is fixed f0(x, θ0). Recall that actually the upper limit
in k′

t integral for the real gluon emission is fixed by the �-
functions in (5). Since kt = xpθ and k′

t = x ′ pθ ′, the value
of the argument x ′ in the BFKL part is x ′ = k′

t/(pθ ′), and
correspondingly z = x/x ′ = ktθ

′/k′
tθ .4 The lower limit of

the z integration in the DGLAP part is given by

zmin = max (θ ′/θ, x), (9)

which on one hand provides the correct k′
t = x ′ pθ ′ < kt =

xpθ DGLAP ordering, while on the other hand, ensures that
the longitudinal momentum fraction y = x/z < 1. Now, we
discuss the limits of the k′

t integration in the BFKL part. For
the real gluon emission term the upper limit is prescribed by
the first � function in (5), but it runs up to infinity in the vir-
tual loop correction which reflects gluon reggeisation. Note
that these integrals are convergent. We may put the lower
limit of the k′

t integration as k0 in order not to enter the non-
perturbative domain. However, with reasonable extrapolation
of the gluon density into the region k′

t < k0 (as described by
(13) or (14) below), the integral may, in fact, be extended
down to k′

t = 0.
Since the LO contribution is now written in terms of an

integral over dθ ′/θ ′, it appears that we may be able to find
an evolution equation in the usual derivative form for the
integrated distribution g(x, θ). That is, it seems that we may
be able to obtain an evolution equation for dg(x, θ)/dlnθ2.
But first we have some points we must investigate.

3.1 Ensuring the evolution is for an integrated distribution

Usually the evolution equation is written completely in terms
of the integrated parton distributions. For example

∂ PDF(x, Q2)

∂ ln Q2 = αs

2π

∫ 1

x
dz P(z) PDF

(
x

z
, Q2

)
. (10)

4 The condition z < 1 means that for low k′
t < kt , the upper limit of θ ′

in the BFKL part is not θ , but it is θ ′
max = θk′

t/kt .

On the contrary, in (8) we deal with unintegrated gluon den-
sities, as was convenient for the BFKL equation. As a result,
the value of derivative over ln θ2, that is, the unintegrated
distribution in the left-hand side of (8), is calculated using
not only the PDFs at the same θ angle (or kt), but it involves
distributions at other angles θ ′. This is a common property
of the BFKL equation (see (1), where the right-hand side
contains an integration over k′

t ).
Actually, this is not a problem, since the unintegrated dis-

tribution which enters (8) is measured at values of θ ′ < θ

where the derivative, ∂ PDF(x, θ)/∂ ln θ , is already known
from the previous evolution starting from a very small θ = θ0.
If we start the evolution from a small value of kt (that is, a
small angle θ ), then at each step of the evolution with a larger
θ we will already know the distributions corresponding to
lower values θ ′ < θ . But we still have to check that only
smaller values of θ ′ < θ enter (8). Indeed, in the DGLAP
part we have θ ′ = zθ < θ . Moreover, in BFKL part we have
the kinematical constraint, k

′2
t < k2

t /z of (4), which gives

θ ′ = zk′
t

xp
<

√
z

kt

xp
<

√
zθ. (11)

Strictly speaking, this constraint is valid only for real emis-
sions. On the other hand, in the virtual part (which describes
gluon reggeisation) the unintegrated distribution on the right-
hand is taken at the same kt point as that on the left-hand side
of the BFKL equation. So, again, we never face values of
θ ′ > θ .

This is an advantage of the evolution in terms of θ in
comparison with the conventional evolution in terms kt (or
k2). In the latter (kt) case, we face a contribution from k′

t > kt

in the BFKL part.5

Let us return to Eq. (8). If, for the moment, we omit the
quark contribution in the DGLAP part, then the equation can
be written in the form

∂(xg(x, θ))

∂lnθ2 = f (x, θ) = f0(x, θ0)

+ αs

2π

∫ θ

θ0

∫ ∞

0
d2k′

t K(kt, k′
t) f

(
x ′ = x

z
, θ ′
)

dθ ′

θ ′

+
∫ 1

x
dz P(z)

x

z
g

(
x

z
, zθ

)
, (12)

where f0 accounts for the possible (infrared) contribution
coming from k′

t < k0, and where we already have used
(7) in the final (DGLAP) term, accounting for the fact that,
for a fixed longitudinal momentum fraction, x/z, the max-
imum allowed value of θ ′, which satisfies DGLAP order-
ing k′

t < kt , is zθ . Since now in the DGLAP part we have
θ ′ < zθ , the lower limit zmin = x . The argument x ′ in the

5 An alternative way to see that the evolution in θ can be written in
terms of integrated densities is to take the integral ‘by parts’, based on
the relation d(u)v = d(uv) − ud(v); see [14].
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BFKL term is calculated from k′
t as x ′ = x(k′

tθ/ktθ
′) (that

is, z = ktθ
′/k′

tθ ); and f (x ′, θ) = ∂[x ′g(x ′, θ)]/∂ ln θ2, with
x ′ fixed according to (7).

Recall after the subtraction (2), the integral over k′
t does not

have a logarithmic form, and is well convergent for k′
t � kt .

So, as far as we consider sufficiently large kt (where per-
turbative QCD is valid), we may treat the contribution from
the non-perturbative low k′

t domain as ‘power’ corrections.
To be more precise, working at not such large kt one may
extrapolate the unintegrated gluon for kt < k0 using

f (x, kt < k0) = k2
t

k2
t + k2

a

k2
0 + k2

a

k2
0

f (x, k0), (13)

or the extrapolation in terms of integrated gluons

xg(x, kt < k0) = k2
t

k2
t + k2

a

k2
0 + k2

a

k2
0

xg(x, k0), (14)

where ka is a parameter (see also [6]). The parameter ka

(or even ka(x)) may be used to provide a better matching
between the derivative of f at a small kt < k0 and that gen-
erated by the evolution equation in kt > k0 domain. Recall
that confinement will nullify any coloured contribution, and
correspondingly any parton distribution, at large distances,
that is, for kt → 0.

Using the extrapolation (13, 14), one may perform a new
global parton analysis. For input we need to parametrise the
DGLAP-like parton distribution at kt = k0 only in some
limited interval of 1 > x > x0. Then the DGLAP part of
the evolution will provide the input for the BFKL part at
x = x0 at all kt > k0, while the contribution for kt < k0

will be given, say, by (13). Now all the energy- (i.e. 1/x-)
dependence at small x < x0 will be driven by the BFKL
part of the equation, and not by the input distribution as in
conventional DGLAP evolution.

Finally, we should mention that since the infrared domain
is limited by the value of kt < k0, and not defined in terms
of the angle θ , the evolution (12) should be considered only
in the region of θ > k0/xp, and not at some θ > θ0 domain
with θ0 = const . Of course, formally, in infinite momentum
frame the initial momentum p → ∞; so any θ0 = const is
acceptable. Nevertheless, it would be better to bear in mind
the realistic condition θ > k0/xp.6

3.2 Energy-momentum conservation

While the DGLAP evolution conserves the energy (and the
flavour) of system of partons this is not true for the LO BFKL

6 At first sight, it appears that working in terms of θ we get a result
which depends explicitly on the incoming proton momentum p. This
is not completely true. For a very large p the logarithm of angle (ln θ)
plays the role of (pseudo)rapidity, and under variation of p the argument
ln θ2 is simply shifted by a constant value.

equation. Formally in the leading ln(1/x) approximation
an additional energy of the new partons is negligibly small
(∼ 1/ ln(1/x)), but numerically this maybe is not a negligible
effect.

In order to provide energy-momentum conservation we
may add to the LO BFKL contribution the non-logarithmic
term (analogous to the 1/ω → 1/ω−1 replacement proposed
to achieve the same goal in [15–17]). That is, we replace in
(12) the usual BFKL integral

αs

2π

∫ 1

x

dx ′

x ′

∫ ∞

0
d2k′

t K(kt, k′
t) f

(
x ′ = x

z
, k′

t

)
(15)

by

αs

2π

(∫ 1

x

dz

z

∫ ∞

0
d2k′

t K(kt, k′
t) f

(
x

z
, k′

t

)

−
∫ 1

0
dz
∫ ∞

0
d2k′

t K(kt, k′
t) f (x, k′

t)

)
. (16)

Unfortunately, in (16), we cannot replace the second inte-
gral by 1 (

∫ 1
0 dz = 1) since we have to account for the kine-

matical limit (4) in the part of the BFKL kernel correspond-
ing to real emission. Therefore the integral over z is written
explicitly.

A problem is that in the second term of (16) we now sam-
ple the region θ ′ > θ , since the function f (x, k′

t) depends
on x and not on x/z. Recall, however, that after the sub-
traction of the leading double-logarithmic term (which was
included in the DGLAP part) the violation of energy con-
servation in the remaining BFKL part is rather small, and is
caused only by next-to-leading corrections. Thus formally,
at LO level, we may neglect the second term of (16); that
is, the term which restores energy conservation. However,
since the integral over k′

t is well convergent for k′
t > kt , it

is sufficient in the second term of (16), just to take a simple
extrapolation into the θ ′ > θ domain using, at each value
of x , the ‘frozen’ anomalous dimension of the unintegrated
gluon density, f (x, k′

t). To be more precise, we may in fact
ensure exact energy-momentum conservation by performing
a few iterations; where the previous iteration provides the
values of f (x, k′

t) for θ ′ > θ .
Thus, finally, the θ -evolution of the ‘integrated’ gluon dis-

tribution has the form

∂[xg(x, θ)]
∂lnθ2 = f0(x, θ0)

+ αs

2π

[∫ θ

θ0

∫ ∞

0
d2k′

t K(kt, k′
t)

∂[x ′g(x ′, θ ′)]
∂ ln θ

′2
dθ ′

θ ′

−
∫ 1

0
dz
∫ ∞

0
d2k′

t K(kt, k′
t)

∂[xg(x, θ ′)]
∂ ln θ

′2

+
∫ 1

x
dz P(z)

x

z
g

(
x

z
, zθ

)]
, (17)
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Fig. 1 Evolution in θ unifying DGLAP and BFKL. Each diagonal
dashed line corresponds to a different fixed value of θ , with the value
of θ increasing towards the upper-right corner of the plot. The upper
near-horizontal path is an example of DGLAP evolution, where kt gets
successively larger kt 	 k′

t ..., but x gets a bit smaller, x � x ′. Similarly
the near-vertical path is an example of BFKL evolution where x gets
successively smaller x � x ′... with random walk in kt . Unified evolu-
tion subsumes all paths with θ > θ ′ to reach the point (x, θ), such as
the central path shown

where x ′ = k′
t/pθ ′ in the first term in [...] and θ ′ =

k′
t/xp in the second term. According to (7) the derivatives

∂[x ′g(x ′, θ ′)]/∂ ln θ ′ (or ∂[xg(x, θ ′)]/∂ ln θ ′ in the second
term) are taken at fixed x ′ (or x). The limit zmin is given in (9).

For illustration, in Fig. 1 we sketch possible evolution
paths in the lnkt–ln(1/x) plane. The three paths shown are
examples of pure DGLAP evolution, pure BFKL evolution
and unified evolution in θ .

Notice from Fig. 1 that to obtain a PDF at small x using
DGLAP evolution we have to start evolving from an input dis-
tribution at rather low x from the beginning. Analogously, in
the BFKL case, to obtain a large kt gluon PDF, we need to start
evolving from large kt . Of course, both DGLAP and BFKL
contain the double-log terms which allow DGLAP to evolve
from large x (and BFKL to evolve from low kt). However, for
example in the DGLAP case, if we start from large x , then
we will generate a PDF ∝ exp(

√
(4αs Nc/π) ln(1/x) ln Q2),

but never containing a power of x , that is, never7 one of the
form x−λ. The evolution in θ will be more physical, since it
starts from a region of relatively large x and low kt . This is
more natural for an input PDF, which is driven by physics at
large distances (∼0.5 fm), corresponding to a parton confined
inside a proton.

3.3 The Sudakov T -factor

Up to now we assumed that the upper scale, μ, corresponding
to the ‘hard’ matrix element is of the order of kt . If in some

7 We could put x−λ in the input distribution, but then λ is arbitrary, and
not generated by BFKL dynamics.

situation we will have a much higher scale μ 	 kt , then
we have to account for the Sudakov suppression. That is to
multiply the result by the probability that no other partons
(which will change the final values of kt and x) are produced
during the DGLAP evolution from scale kt up to the hard
scale μ. This probability is given by so-called T -factor

Ta(kθ , μ)

=exp

(
−
∫ μ2

k2
θ

dκ2

κ2

αS(κ
2)

2π

∫ 1

0
dζ ζ

∑
b

P̃ba(ζ,�)

)
, (18)

where P̃ denotes the part of splitting function corresponding
to real emission, and

� = κ

μ + κ
. (19)

Moreover, the 1/(1 − z) singularity in the kernel P̃(z,�)

contains a function �(1− z −�) which ensures the absence
of a soft parton being emitted with opening angle larger than
that, θμ, given by the upper scale, μ = μF , of the DGLAP
evolution. In this way we separate the partons which occur
during the evolution from those that are included in the ‘hard’
matrix element. Correspondingly, for the last step of the evo-
lution, in the last (DGLAP) term of (12) the splitting function
P(z) should be replaced by P̃(z,�) with κ = kt in (19); see
[18,19] for more details.

3.4 The quark contributions

So far we have considered just the evolution equation for
the gluon parton distribution. However, the generalisation
to include, besides the gluon, the evolution equations for
the light- and heavy-quark distributions is straightforward.
These latter equations have the usual DGLAP form, with
no explicit BFKL contribution. Here the BFKL effects are
hidden in the incoming gluon PDF driven by the equation
for the gluon. Moreover, in this form it is easy to include the
heavy-quark mass effects. We simply follow [20] and obtain
a full set of evolution equations, which have the symbolic
form

ġ =BFKL term+Pgg ⊗ g+
∑
q,q̄

Pgq ⊗ q +
∑
h,h̄

Pgh ⊗ h

q̇ = Pqg ⊗ g + Pqq ⊗ q

ḣ = Phg ⊗ g + Phh ⊗ h (20)

where q = u, d, s denotes the light-quark density functions
and h = c, b, t are the heavy-quark densities. We have used
the abbreviation ȧ = (2π/αS)∂a/∂ ln θ2. The splitting func-
tions involving heavy quarks are given in [20].

Since the splitting function corresponding to the quark to
gluon transition, Pgq(z), contains a 1/z singularity (analo-
gous to that in Pgg) we have to consider a possible ‘BFKL’
contribution to this q → g transition. Recall, however, that
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there is no high energy (ln(1/x)) leading log BFKL term
for quark exchange. Therefore within our LO approxima-
tion, in the quark cell we have to keep only the logarithmic
dk

′2
t /k

′2
t (DGLAP-like) contribution with k′

t << kt . Then the
only possible form of the BFKL kernel Kqg(k, k′) is again
pure logarithmic 1/k2

t [21,22], which should be subtracted
to avoid double counting. In other words, at LO level, the
whole q → g splitting is completely described by the usual
DGLAP term.

4 Discussion

It is relevant to mention how the present approach compares
with that of Refs. [23–25] and the references therein. In
Ref. [23] a small x resummation of the BFKL contributions
was performed for the DGLAP splitting functions, that is,
for the anomalous dimension. However, the small-x power
behaviour is still controlled by the input distribution, and
not generated by the BFKL part of the evolution. Recall that
the BFKL effects go beyond the anomalous dimension, and
involve higher-twist effects. In Refs. [24,25] the DGLAP-
induced contributions were resummed to obtain the correc-
tion to the BFKL-Pomeron intercept. This achieved stability
of the (next-to-leading-order) BFKL intercept by resumming
a major part of the higher-order contributions. The procedure
is very recursive equation, taking contributions from a large
region of the phase space. The improved BFKL equation
was not written in terms of the evolution of integrated par-
ton densities. Again, it was claimed that the small x power
behaviour is mainly controlled by the input distribution. In
both approaches it was not shown that the angle is a good
variable, which brings uniformity to the different contribu-
tions to the equation.

Our aim is different. We wish to determine an evolution
equation for an integrated gluon distribution, which simulta-
neously sums both the leading BFKL and the DGLAP log-
arithms, in terms of a single variable. We have shown that
the appropriate variable is the emission angle, θ , of the emit-
ted gluon; giving an evolution equation for ∂g(x, θ)/∂lnθ2.
This novel equation is given by (17) (or (20), when the quark
contribution is included). It brings uniformity to the two dif-
ferent contributions to the equation. A crucial observation
is that, although the right-hand side depends on g(x ′, θ ′),
this does not pose a problem, since the contribution comes
from θ ′ < θ where g(x ′, θ ′) is known from the previous
evolution.

Recall that the inequality θ ′ < θ is provided by the kine-
matical constraint k

′2
t < k2

t /z of (4), which simultaneously
accounts for the major part of the higher-order BFKL next-
to-leading contribution [8]. Besides this, we add to the BFKL
part of our equation the next-to-leading term which provides
energy-momentum conservation.

The evolution in θ for the integrated gluon distribution,
g(x, θ), is in contrast to the conventional BFKL equation,
which is written for the unintegrated gluon distribution,
f (x, k2

t ). In this case there is diffusion in logk2
t to larger

values of kt , as well as smaller kt and in terms of k′
t inte-

grals we have the contribution from k′
t > kt . Rather, θ in the

natural variable for evolution of an integrated distribution.
This form of ‘integrated’ evolution in terms of a single

variable should be convenient for implementation in Monte
Carlo simulations of events for high energy pp (and p p̄)
collisions, particularly where small x events are sampled.
For instance, it would be useful to have the possibility to
implement in a Monte Carlo generator the PDFs obtained
independently from a global parton analysis, based on the
angular evolution proposed here. Instead, for example, the
gluon PDF used by CASCADE [4,5] is evolved and fitted by
the same CASCADE Monte Carlo description of a limited
set of data.
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