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Abstract. We present updated constraints on dark matter models with momentum-
dependent or velocity-dependent interactions with nuclei, based on direct detection and solar
physics. We improve our previous treatment of energy transport in the solar interior by dark
matter scattering, leading to significant changes in fits to many observables. Based on solar
physics alone, DM with a spin-independent ¢* coupling provides the best fit to data, and
a statistically satisfactory solution to the solar abundance problem. Once direct detection
limits are accounted for however, the best solution is spin-dependent v? scattering with a
reference cross-section of 1073° cm? (at a reference velocity of vg = 220kms™!); and a dark
matter mass of about 5 GeV.
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1 Introduction

Despite tremendous success in predicting neutrino fluxes and describing the bulk structure
of the Sun, the Standard Solar Model (SSM) still fails to reproduce key observables relating
to helioseismology. After the downward revision of solar photospheric abundances over 10
years ago [1-12] it has become clear that the predicted sound speed profile, position of the
base of the convection zone and surface helium abundance are all several standard deviations
away from the values obtained by direct helioseismological inversion [13—18]. Despite over a
decade of effort, no adequate solution has been found to reconcile solar modelling with these
precision observables [19-22], prompting a search for solutions beyond the Standard Model.

As the Sun travels through the dark matter halo of the Milky Way, it inevitably interacts
with the dark matter population.! If a DM particle scatters with a nucleus in the Sun
to a velocity less than the local escape velocity, it becomes gravitationally bound. From
there, it will quickly settle into an equilibrium orbit near the solar centre, governed by
the thermodynamics of the weakly-interacting DM gas in the steep gravitational potential
of the Sun. The effects of dark matter capture in stars has been studied in depth since the
1980s [24—61]. In the absence of self-annihilation (i.e. asymmetric dark matter, ADM [62, 63]),
a large population of dark matter can accumulate. This can act as a heat conductor, acquiring
kinetic energy from the hot core, and releasing it via interactions with nuclei in the cooler
outer regions. This can lead to a slightly shallower temperature gradient with height in the
star. Despite the small population of DM (at most ~1 particle per 10! baryons), these small
adjustments in the thermal gradient can have measurable effects on our own Sun. These
include the solar structure itself — including the sound speed cs(r) and convective zone
radius rcz — and on neutrino fluxes from fusion processes, due to their strong dependence
on the core temperature.

'For a review of dark matter, see e.g. [23] and references therein.



Precision solar models that include capture and heat transport from standard spin-
dependent or spin-independent ADM can be built to satisfy the solar radius, age and lu-
minosity [64—66]. Whilst these models can bring some helioseismological observables into
better agreement with data than the SSM, this comes at the cost of an elastic scattering
cross-section that is several orders of magnitude higher than allowed by direct detection
experiments. These models also lead to drastic underproduction of solar neutrinos.

However, the kinetic regime probed by solar capture is very different from earth-based
direct detection experiments: the Sun preferentially captures slower-moving particles from
the DM halo, as these are more likely to scatter to sub-escape velocities, whereas direct
detection relies on large enough velocities to produce observable recoils in a target material.
This observation is partly what led to efforts to examine DM models with less trivial inter-
actions with the Standard Model [67-71]. Such interactions are generic in particle physics:
scattering mediated by a massive particle generally gives rise to non-relativistic elastic scat-
tering cross section that is proportional to some positive power of the momentum transfer ¢
or relative velocity v (see e.g. [72]). Conversely, new long-range forces can yield cross sections
proportional to negative powers of these quantities (e.g. [73]).

Recently, we found [70, 71] that a light asymmetric particle with a momentum-dependent
interaction with quarks could be captured in large enough quantities in the Sun and conduct
heat in such a way that helioseismic observables could be brought into excellent agreement
with data. Although this led to a reduction in the predicted neutrino fluxes, the signif-
icant improvement in sound speed and convective zone depth was sufficient to produce a
marked improvement over the SSM of 6 standard deviations and a potential solution to the
solar composition problem. New searches by direct detection experiments at low scattering
threshold have since ruled out the best fit from these studies. CRESST-II [74] analysed
the specific model highlighted in [70, 71] excluding it to high significance. The even more
sensitive CDMSlite analysis [75] released by the SuperCDMS collaboration around the same
period confirms this result.

We have furthermore revised the formalism of [67], and found that the conductive
luminosity had been over (under) estimated in models with a cross section proportional to
a positive (negative) power of q or v. We have corrected this error, finding that the best fit
point in each model has moved in the parameter space. The best fits that we find are as good
as those we found in [70, 71], though the required cross sections are higher, in some cases by
as much as an order of magnitude. Given the strength of the direct detection bounds that we
derive in this work, this is of little consequence as the previously-favoured parameter space
is now entirely ruled out.

Our goals in this work are therefore 1) to update our solar simulations, correcting the
error in luminosity, and 2) to confront these results with constraints from direct detection,
to determine whether such models can indeed lead to a solution to the solar composition
problem. We find that the parameter space that remains, after taking into account the
recent CDMSlite results, is highly restricted. Although the models that obey these bounds
do not fit the solar data as well as some that are excluded by direct detection, they are
nonetheless capable of producing very significant improvements over the SSM (see also [69]
for similar results).

This paper is structured as follows. In section 2 we outline the class of models that
we are considering, and present the relevant equations for capture by the Sun and heat
transport within it. In section 3 we briefly discuss constraints from direct detection on light
DM particles able to affect solar structure. We present the results of our simulations in
section 4, and conclude in section 5.



2 Dark matter in the Sun

The method of obtaining the capture rate and subsequent energy transport due to momen-
tum or velocity-dependent DM in the Sun is presented in detail in refs. [67, 71]. Here, we
show the main results, along with a crucial correction to the transported luminosity for-
mula, eq. (2.12). Reflecting the nature of most concrete models so far proposed in the theory
literature, we focus on models with isoscalar (identical proton and neutron) DM-nucleon cou-
plings with the Standard Model. We parameterise the resulting differential cross-sections as
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o =g (q> (2.1a) and P (“fd) . (2.1b)

q0 Vo

Each of these can be spin-independent (SI), coupling coherently to all nucleons; or spin-
dependent (SD), coupling only to the spin of unpaired nucleons. This “form factor” ap-
proach [76], encompasses both non-relativistic effective operators that can come from effec-
tive point-like interactions [77-79], as well as certain classes of long-range forces (e.g. [73]).
The cross section for scattering with a nucleus is then
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2.1 Capture in the Sun

In the absence of annihilation or evaporation, the population of DM in the Sun is simply
given by N, (t) = Cx(1):

U

Ro 00 U
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0 0
Here, fo(u) is the DM speed distribution in the Sun’s frame, and ©(w) encodes the kinematics
of scattering below the local escape velocity vese(r). w(r) = /u? + v2,, is the local DM
velocity inside the star’s gravitational potential. Expressing the DM-to-nucleon mass ratio
as i = my/my;, this quantity is:
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where GFFI is the generalized form factor integral, and n;(r) is the number density of each
nuclear species in the Sun. In the case of a constant cross section, the GFFI is simply an
integral over the nuclear form factor F;(ER):

mxwzﬂi/2H$,+
GFFI,— = / |F;(ER)|? dER, (2.5)

myu?/2

where the integral limits are set by the kinematics required to downscatter the DM velocity
enough for it to be captured.

For velocity-dependent scattering, the required modification of the capture rate is
straightforward: the integrand in eq. (2.3) is simply multiplied by an overall factor of

[w(r)/vo]*™.



When the cross section is momentum-dependent, the factors of (¢/qo)*" must be in-
cluded inside the GFFI. For scattering with hydrogen (assuming a point-like particle, i.e.

Fi(BR) = 1):
o [ n+1 u >n+1:| (n £ 1)
2 , \nF —
GFFLon— (2 ™ T v (2.6)
ERRUTNET ey n = —1)

where p = m,w. For heavier nuclei, a parameterisation of the form factor must be chosen.
Significant work over the past few years has gone into computing accurate form factors that
model the nuclear response function using effective field theory; these yield interactions close
to those in egs. (2.1) and ref. [80] has computed these response functions for capture in the
Sun. The standard Helm [81] parameterisation is

Er
R = o (-3, (2.7
(]
where FE; is a constant quantity for each nuclear species i, given by
5.8407 x 1072
E; =

- mn(0.91my? +0.3)?

GeV. (2.8)

For spin-independent capture and transport, we use the following 15 elements: H, He, C,
N, O, Ne, Mg, Na, Al, Si, S, Ar, Ca, Fe and Ni. Though heavier elements are suppressed
in abundance, the A? coherence factor in eq. (2.2) can enhance the capture rate off these
elements by as much as four orders of magnitude.

We have furthermore checked in ref. [71] that for most models, the deviations with
respect to Helm are minimal, as low-momentum scattering tends to dominate the capture
rate. There is one exception: when computing spin-dependent capture rates, we neglect
elements heavier than hydrogen. These do not benefit from the A2 coherent enhancement
present for spin-independent 1nteractlons and their very low abundance further suppresses
their contribution. However, in the ¢* SD case, which can be matched to an Og = (SX .

7/mn)(Sy - §/my) coupling, the total capture rate in an evolved solar model is actually
dominated by scattering with nitrogen. This does not turn out to be very helpful, as we will
find that the cross-section required to produce an effect in the Sun with this operator is ruled
out by five orders of magnitude. We thus use the Helm form factor for every case, and the
generalised form factor integral for momentum-dependent interactions becomes:
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where B = 1m,w?/E;, and I'(m, z) is the (upper) incomplete gamma function.

The Sun cannot capture more dark matter than the so-called geometric limit, in which
all of the DM that intercepts the solar disk is captured. The total capture rate is therefore
the smallest of eq. (2.3) and

Crax(t) = TR (t / Jolu) u, R du (2.10)
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Figure 1. Cross section at which the capture rate computed in DarkStec saturates the geometric
limit (2.10). Left: spin-independent interactions, coupling to every element; right: spin-dependent
interactions with hydrogen only. Despite their small abundances, heavier elements contribute sig-
nificantly to spin-independent capture, thanks in large part to the coherent oy oc A% enhancement.

where 1y = 270kms~! is the dispersion of the Maxwell-Boltzmann DM velocity distribution,
ue = 220km s~ is the velocity of the Sun relative to the DM halo, and p, = 0.38 GeV cm 3.
is the local density of dark matter. We show the cross section that saturates this bound in
figure 1, for each of the models we consider in this paper. Strictly speaking, the transition
from egs. (2.3) to (2.10) should be smooth, rather than a sharp cutoff as we impose here. To
accurately model this transition, the full optical depth must be including in eq. (2.3). This
leads to a suppression of the capture rate as oy approaches the saturation cross section, with
the ultimate effect of slightly suppressing the effect of DM close to this threshold. As this
computation is relatively involved, we address it in an upcoming work [82].

2.2 Conductive energy transport by dark matter

In the local thermal equilibrium (LTE) regime, where the mean DM interscattering distance
l,, is much smaller than the scale of the DM distribution 7, the equilibrium distribution of
DM particles in the gravitational potential ¢(r) of the Sun is given by [55, 67, 83]

dT(r") +m do(r')

)13/ T or’ ) 4
nX,LTE(T):nijTE(O) [igoi] exp [—/0 dT/ kB ( )]:};T(T/) X dr ]’ (2'11)

where 7 = 0 represents the centre of the Sun. The conductive luminosity is:

14?2 r
Lyure(r) = 47rr2/i(r)nX,LTE(r)lX(r) [%} k:Bd];h(n), (2.12)

where we have removed the erroneous factor (?" which was present in [67, 71]. Below, we
will find that this has the effect of displacing the best fit regions in parameter space, to
higher (lower) values of og for positive (negative) values of n. vp(r) = /2kgT(r)/m, is
related to the typical thermal velocity [83]; vy and gy are respectively the reference velocity
and momentum defined in eq. (2.1). The effect of our correction to eq. (2.12) is to suppress



transport by models with positive powers of ¢ and v, and enhance it for negative powers.
The rate of energy transported per unit mass of stellar material is:

1 de,LTE(T)
47r2p(r) dr '

ex,Lre(r) = (2.13)

This quantity is usually expressed in units of erg g~! s'. The molecular diffusion coefficient
a(r,u) and conduction coefficient x(r, ) are computed by perturbatively solving a Boltz-
mann collision equation in the diffuse gas limit. This method was introduced by Gould and
Raffelt [83] and generalised in ref. [67]; as before, we use the tabulated coefficients given in
the latter reference.
In the non-LTE, “Knudsen” regime K = [, /r, > 1, the DM distribution becomes
isothermal:
Ny iso (T, 1) = N(t)7r73/2r exp(—r?/r3), (2.14)

Gould and Raffelt [83] found that the transition to the LTE regime could be well described
by the interpolating functions [55, 84]:

1

1+ (;{(())1/7] : (2.15)

b<r>=1+(“r’<)3 () =

T'x
such that
ny(r) = f(K)nyure + [1 — F(K)] g iso, (2.16)
and
Ly totar(r, 1) = f(K)b(r,t) Ly LrE(r 1). (2.17)

Energy transport has the opposite behaviour as a function of the interaction cross sec-
tion in the LTE and Knudsen regimes. In the LTE regime (large og), a higher scattering
rate suppresses the typical distance travelled, confining DM and suppressing energy trans-
port. Conversely, in the Knudsen (small o() regime, the inter-scattering distance is already
large, and energy transfer is instead dominated by the collisional efficiency: luminosity thus
increases with increasing cross section. Heat conduction is therefore maximised at the bound-
ary between these regimes, when inter-scattering distances are large, but interaction rates
are still large enough to allow efficient energy transfer. We show this behaviour in figure 2.
It follows that the largest effect of momentum or velocity-dependent dark matter on solar
observables will occur when the cross-section is closely matched to the Knudsen peak (as
long as a sufficient amount of DM can be captured with this cross section).

In figure 3 we show the equivalent for the impact of DM mass, illustrating the strong
enhancement of energy transport at low masses due to mass-matching between DM and
hydrogen or helium. This corresponds to transitions in o and k at m, ~ my for different
interactions [67], and can also be seen in the fact that transport is maximised at lower masses
for SD scattering, reflecting the fact that H plays a role due to its spin, but He does not.
The combination of this effect with the transition from LTE to non-local transport can be
seen in figure 4. Whilst this figure shows contours for momentum and velocity-independent
scattering only, other interactions lead to a very similar pattern, just scaled or shifted in the
x, y and/or z directions.

Finally, as the DM mass is lowered below 5 GeV, it may pick up sufficient speed from
thermal collisions to escape the sun. This can lead to significant loss through evaporation.
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Figure 5. CDMSlite upper limits on oy for the models that we consider, from the event rates and
instrument details given in ref. [75]. To compare with our Solar results, we use the same values of
vg = 220 km/s and ¢o = 40 MeV. We also show results obtained by the CRESSST-II low-threshold
analysis taken from [74], which are slightly less constraining than CDMSlite for DM masses above
1.4 GeV.

However, the exact amount of evaporation depends sensitively on the mass and cross section.
Since this dependence is not not known, we also explore this region of the parameter space.
In an upcoming work [82] we aim to compute these precise evaporation masses, for every
model explored here.

3 Direct detection bounds

Recently, the SuperCDMS collaboration has presented their lowest-threshold analysis
ever, [75]. This 70kgday run was sensitive to recoil energies above 56eVee (or around
300 eV nuclear recoil energies), allowing them to set exclusion bounds on DM masses ex-
tending below 2 GeV. Though CRESST-II [74] have presented analyses of specific models in
this work, we use CDMSlite data because it is both more sensitive and easier to recast into
new limits. Since CDMS uses a germanium crystal target, it presents the further advan-
tage of being sensitive to spin-dependent interactions: 7.6% of natural Ge is in the form of
Ge (J = 9/2), allowing spin-dependent bounds to be derived with the same data set. In
contrast, the CaWO, target used by CRESST-II presents no appreciable target mass with
nonzero spin.

Assuming different SI and SD couplings, but equal couplings to protons and neutrons
for each type of interaction (i.e. isoscalar couplings), the differential nuclear recoil rate is

AR py > flv) -
dER — 2mypip Ju,, o51,p(q,v)A"Fg(Er)+
4(J +1
osD,p(4; ’U)(3J) [(Sa) + <Sp>]2F52'D(ER)> i, 5.1)

where p, ~ piy is the DM-nucleon reduced mass and vmin = /myERr/ 2;@\[ is the minimum
DM velocity required to produce a recoil with energy Er. In this expression, puy is the DM-
nucleus reduced mass. Using the binned data, efficiency curve and ionisation yield presented
in ref. [75] and a simple Poisson analysis, along with the same halo parameters as in our solar
analysis, we obtain the exclusion curves presented in figure 5. For SI limits (left panel) we



use the same form factor as for solar capture. For the spin-dependent limits (right panel),
we assume scattering only on 7.6% of the target, and use the spin expectations and isoscalar
structure function Spg from ref. [85], such that

A(J +1)
3.7

167

[(Sn) + (Sp)]* Fp(ER) = 327+ 1)

Soo(ER)- (32)

Although we show limits for isoscalar couplings only, it is worth noting that most of the

unpaired spin contribution from "Ge comes from neutrons, so limits on ADM that couples

mainly to protons would be significantly weaker. The SI limits in figure 5 are slightly more

constraining than the limits presented by CRESST-II [74], for the spin-independent ¢ and
4

g~ cases.

4 Solar bounds

To produce our updated constraints, we employ the DarkStec code, developed for and de-
scribed in ref. [71]. DarkStec is a combination of the legendary GARSTEC solar evolution
code [86, 87], and the lightweight capture and transport routines from DarkStars [52, 55, 88].
These were modified to include the full capture and transport technology described above,
for momentum and velocity dependent dark matter. To obtain our results, we perform a scan
over a grid of masses m, = {3,5,10,15,20,25} GeV and one cross section per decade from
oo = 10740 to 10730 cm?, totalling over 900 simulations, or approximately 2.5 CPU years.

A full description of the observables that we use is given in ref. [71]. Here we summarise
the salient points. Solar neutrino fluxes and small frequency separations are highly sensitive
to the impacts of DM on the core of the Sun, and typically provide the strongest constraints
on DM models. The depth of the convection zone is sensitive to impacts of DM on the
temperature gradient closer to the surface, and generally depends more subtly on the overall
diffusivity of DM in the Sun. The surface helium abundance and radial profile of the sound
speed profile probe the entire radiative region, but contribute comparatively little additional
constraining power over other observables.

Plots of the neutrino fluxes, depth of the convection zone, sound-speed and small-
separation likelihoods vs m, and oy are presented in appendix A. We also provide the full
results of all our simulations, including each of these observables, their likelihoods and the
combined likelihood presented in section 4.1, as machine-readable supplementary material.

Our reference SSM uses the AGSS09 photospheric abundances [9].

Solar neutrino fluxes: Minute changes in the core temperature can have substantial effects
on the solar neutrino fluxes, due to their steep temperature-dependence. The main
fusion process in the Sun, p + p — ?H + et + 1, is quite insensitive to changes due to
DM energy transport, as the luminosity condition enforces a fairly constant reaction
rate. However, the subdominant flux of neutrinos from the decay of ®B produced in the
pp and pep chains is an especially good probe of the core temperature, as are the two
lines at F, = 862 keV and 384 keV from the decay of "Be. While these are measured
at 3% and 5% accuracy, respectively, the uncertainties in their production rates are
closer to 14% and 7%. We add these errors in quadrature when assessing the goodness
of fit. As the SSM is in very good agreement with the measured neutrino fluxes, this
serves as a constraint on the total effect DM can have in the solar core. The changes
in neutrino fluxes in different models are shown in figures 10-13. When uncertainties
are compared on the same footing, our constant, SD results are in agreement with [64].



Depth of the convection zone: The radius at which hydrostatic equilibrium breaks
down, radiative pressure is no longer balanced by gravity, and convective energy
transport begins, depends crucially on the radial temperature and pressure gradi-
ents. The height of the convection zone can be inferred from helioseismological mea-
surements, Rczo = 0.713 & 0.001 R, while the SSM predicts a much higher value:
Rczssm = 0.722 + 0.004 R5. As DM deposits energy at larger radii, the absolute
temperature gradient increases slightly, thus lowering the location of the base of the
convection zone. This is shown in figures 14 and 15.

Surface helium abundance: As the initial mass fractions of hydrogen, helium and metals
cannot be directly measured, they (along with the mixing length parameter apsr7)
are allowed to vary as DarkStec attempts to find a solution for the input parame-
ters. The present-day surface helium abundance is thus predicted by these param-
eters, when combined with the physics entering into the SSM. The measured value
is Yy = 0.2485 + 0.0034, while the SSM yields Y; = 0.2356 4+ 0.0035. The surface
helium abundance essentially reflects the initial helium abundance, which is strongly
constrained by the requirement that the model must reproduce the observed solar lu-
minosity. Any change in initial helium abundance must come with a corresponding
change in the initial hydrogen fraction, which modifies the resulting solar luminosity
unless the core temperature is also drastically altered. In extreme cases, DM can have
enough of an effect on the core temperature to change the resulting surface helium
abundance expressed by a model — so we do include this observable in our fits — but
typically, the effects on the core temperature are not drastic enough for this observable
to be significantly affected.

Sound speed: The radial sound speed profile can be inferred by inverting the oscillation
frequencies of the different angular modes projected onto the solar surface. Figure 6
shows the sound speed profile obtained with our SSM (blue solid line), when compared
with the errors from helioseismological measurement and inversions (green regions) and
modelling (blue regions). The change in the temperature, pressure and density due to
the redistribution of heat by DM can be quite large — as long as the cross section is
large enough to saturate the capture rate and hit the Knudsen transition. Figure 6 also
shows the effect of three models which are allowed by DD constraints, along with one
which is not (SI, ¢*, solid magenta line), but which illustrates the strong effect DM can
have. We also show in figures 16 and 17 the goodness of fit of each of our models to
the sound speed profile from helioseismology observations with SOHO and BiSON [89],
using a chi-squared with 5 equally-spaced points between R = 0.1Rs and 0.67Rq,
where helioseismic errors are minimal. Given the large modelling errors, however, and
the fact that ¢, is highly correlated with the more precise frequency separation ratios,
we do not include the sound speed in our total x2.

Frequency separation ratios: It is possible to remove a large fraction of the systematic
errors that enter sound speed inversions near the core by directly using specific com-
bination of frequencies. Two most commonly used quantities are the so-called small
frequency separation ratios [90]:

. dlg(n)
o A()(n + 1)’

7"02(71)2 0 s 7“13(11) (4.1)
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Figure 6. Deviation of radial sound speed profile from values inferred from combined SoHO and
BiSON helioseismology data [89] using our SSM. We show the best fit for a constant cross section in
black, and the two best fits that are also allowed by CDMSlite data, the spin-dependent v? and ¢
models (indicated by daggers in table 1). We finally show the best overall fit, a spin-independent ¢* DM
model. However, this model is ruled out by direct detection data by many orders of magnitude. The
dark and light blue bands represent the 1 and 20 errors on modelling, estimated from error propagation
of uncertainties in SSM inputs; the green bands represent the 1 and 20 errors on helioseismological
inversions.

where Aj(n) = vy — vp—1,; and

A(n
dij+2(n) = vpg — Un—1042 ~ —(41 + 6)—l( ) /
0

Am2uy,

Ro deg dr

dr r’

(4.2)

These have the additional advantage of being insensitive to details in the structure
of the external layers of the Sun, which are not properly modeled in SSMs. The 1/r
dependence ensures sensitivity to the properties of the solar core, and the modeling and
observational uncertainties on rgs and ri3 are much smaller than for Solar neutrinos.
These frequency separation ratios are shown in figure 7 for the SSM (red), and several
models including energy transport by ADM.

4.1 Combined constraints

We define a combined chi-squared, including all of the quantities listed above except the
sound speed profile:

o (1= e/08)° N (1 = P obs/ Phe)” n (rcz — rcz.obs)? N (Ys — Y5 obs)?

X = 2 2 2 2
0B OBe 0cz Ovq
2 2
TXrgo T X (4.3)
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Figure 7. Small frequency separations ro2 (left) and r13 (right) as defined in eq. (4.1), for various
dark matter models. DM models correspond to the best-fit parameters for two couplings returning
the best overall p-values (see table 1), without being excluded by CDMSlite, along with the best
constant case (black), and the overall best fit case (pink). The latter two are however excluded
by direct detection. Predictions are compared with helioseismological observations from the BiSON
experiment [91]. Inner black error bars correspond to observational error, whereas outer (green) bars
also include modelling error. Below each figure we show the residuals with respect to BiSON data, in
units of the total error. Though the v? model with m, = 5 GeV yields substantial improvement in r;3
for all frequencies, it does less well at low frequencies (< 2500 Hz) with respect to the measured 7gs.

where ¢f; and ¢f, correspond to the boron-8 and beryllium-7 neutrino fluxes, r¢yz is the depth
of the convection zone, Yy is the surface helium abundance, and 7;; are the small frequency
separation ratios. The sound speed profiles are strongly correlated with the small separations,
and less precise, so we do not use them. The subscript “obs” indicates the observed value.
The errors o; include both modelling and observational error, added in quadrature.

The results of these combined constraints are given in figure 8 for spin-independent
couplings, and figure 9 in the spin-dependent case. The thick magenta lines in these figures
are the constraints that we obtained above from the latest CDMSIlite data. There is very
little parameter space in which DM is unconstrained by direct detection, yet has a strong
enough effect on the Sun to change the fit.

The best-fit points for each model are given in table 1. In all cases, the SI direct
detection limits are too strong to allow any of our best-fit points. In only two spin-dependent
cases (v? and v*) are the best-fit points below the CDMSLite limits. In one other case (SD
q~2), there is a region that is almost as good as the best fit; we list this point instead. These
allowed models are labelled with a dagger (1) in table 1.

Despite the low p-values, each of the allowed models still represents a remarkable im-
provement over the SSM. This improvement is driven by the much better fits to the small
frequency separations, assisted by a drop in the base of the convection zone. The former
observation tells us that the main improvement comes from better modelling of the region
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Model (M, 00)b.1. x ®he Rcz/Ro Y, X2 P
SSM - 495 471 0722 02356  275.9 <1010
const. | (15,10737) 3.48 4.37  0.721  0.2348  122.2 < 10710
q 2 (3,107%%) 3.9 438 0.719  0.2336  35.17 0.508
¢ (3,1073%) 3.93 4.38 0.719 02334 31.02 0.704
ost | ¢* (3,10732) 3.92 436 0.718  0.2331  27.52 0.844
v2 (5,1073%) 3.82 441  0.72 02345 7554 1.26 x10~*
v? (5,10738) 347 428  0.72 0234  96.48 1.99x1077
v (3,10737) 431 451  0.72 02343 85.38 6.84x107F
const. | (5,10733) 3.36 427  0.72  0.2341 1002  5.8x107®
q 2 t(3,107%%) 322 4.16  0.718  0.2333 119.48 <1010
q? (5,10733)  3.85 4.42  0.721  0.2346  80.7 2.82x107°
osp | ¢* (3,10731)  4.69 4.64 0.721  0.2352 194 < 10710
v2 (3,1073) 411 448  0.72 02346 8215 1.83x107°
v? T(5,107%%) 3.88 443  0.721  0.2346 83.44 1.24x107°
vt t(3,10737) 439 454 072  0.2346 110.6 1.63x107°
Obs. —~ 500 4.82 0713  0.2485 — —
Obs. error - 3% 5% 0.001 0.0034 - -
Model error - 14% ™% 0.004 0.0035 - -

Table 1. Standard Solar Model (SSM) and best fit (b.f.) values for each of the models we consider,
along with observable quantities. Neutrino fluxes are from ref. [92] while inferred helioseismological

quantities are from ref. [87] and references therein. The DM mass and cross-sections are in GeV and

cm?, respectively. The ®B neutrino flux ¢4 is in units of 107 cm™2s™! and the "Be neutrino flux

?he is expressed in 1072 em~2 571, The full x2 is defined in eq. (4.3) and includes the neutrino

fluxes, surface helium abundance Ys, depth of the convection zone and small frequency separations.
A dagger (1) denotes models that are not ruled out by CDMSlite.

near the solar core. However, the increased tension with measured neutrino fluxes suggests
that the decrease in core temperature predicted by models of ADM in the Sun may be too
strong. A full DM solution to the solar abundance problem must therefore strike a delicate
balance between softer thermal gradients and a lower core temperature.

We end this section by noting that we also provide as supplementary material online
a complete table of the boron and beryllium neutrino fluxes, surface helium, radius of the
convection zone and small frequency separations for all of our models, in addition to the
partial and total chi-squared values defined in eq. (4.3). This table can be used for quick
lookup and interpolation, e.g. for global fits of DM models.

5 Conclusions

We have presented new limits on momentum and velocity-dependent dark matter from direct
detection, and an updated study of their effects on state of the art simulations of the Sun.
A correction of the LTE conduction formalism (eq. (2.12)), has shifted the best fits in the
parameter space, and the very strong limits from the low-threshold analysis of CDMSlite
have ruled out all but a small part of the parameter space of models that can improve the
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Figure 8. Composite likelihood (eq. (4.3)) including 8B and “Be neutrino flux measurements, surface
helium abundance Yg, depth of the convection zone and small frequency separations. Cross-sections
are normalised such that o = oq(v/v)*" or o = 0¢(q/q0)*", with vy = 220kms~! and gy = 40 MeV.
Best fits are shown as pink stars and pink lines on colour bars. 3¢ deviations from the best fits are
marked in black, and red lines show the x? value of the SSM. Magenta lines correspond to the CDM-
Slite 90% upper limits shown in figure 5. Panels in which the CDMS line is not seen are completely
ruled out. Simulations carried out in the masked regions did not converge, due to the significant heat
conduction by the DM particles, leading in extreme cases to density inversions in the core.
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Figure 9. As per figure 8, but for spin-dependent couplings.

SSM. Our solver could not find solutions for certain values in the parameter space, ostensibly
because they led to changes in the solar structure that were too large with respect to the SSM
(which it was originally designed to compute). This is not to say that these models are ruled
out, however. We note that in some cases (notably spin-dependent v—2), the non-convergence
region lies on top of the region that is probed by direct detection. A better exploration of
this parameter space could be very interesting indeed.
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Of the models that we have found that provide a good fit, only some can be ob-
tained from the current paradigm of simplified models of dark matter. For instance, a
spin-dependent v* cross section does not occur in such setups. A fermion DM candidate
interacting via a vector mediator can give rise to an SD, v? cross section, however. This
requires a purely vector coupling to the DM, and an axial coupling at the quark level. How-
ever, this setup also gives a similar contribution proportional to ¢? (see e.g. [93]), which
would be three orders of magnitude larger using our normalisations of gy and vy, and thus
excluded by experiment. This is not to say that this model cannot be obtained, only that it
is not straightforward using current tools. A ¢~2 cross section, on the other hand, is closer
to a long-range force, which is again not covered in the simplified model approach. A model
that can yield a similar type of behaviour would be an electromagnetic dipole or anapole
interaction. These models actually couple with mixed powers of v and ¢, and thus require
explicit recalculation of the molecular diffusion and conduction coefficients o and x, and are
the subject of a dedicated study [94].

Finally, we note that the effects of evaporation have not been included here, as the full
evaporation formalism must be generalised to the form factor case from scratch. Because
the relevant DM masses are so close to the evaporation limit for constant cross-sections
(Mevap ~ 4GeV), this may have a an important impact on the remaining parameter space.
Full evaporation rates for momentum- and velocity-dependent interactions will be computed
in detail in an upcoming publication [82].

It is clear from the fits we present here that the addition of heat transport by dark
matter in the Sun can improve the SSM significantly. The improvement is well beyond what
one would naively expect from adding just two degrees of freedom. Even if DM is not the
solution, the fact that the true solution can be accurately mimicked by DM would seem to
indicate something fundamental about the physical processes behind the solution. Given the
types of DM interactions that work, it is clear that if DM is to explain the solar composition
problem, then a strong model-building effort is required to connect our results with a more
robust model of dark matter that can be embedded in a UV-complete theory.
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A Contour plots of solar observables

In this appendix we show contour plots for individual quantities impacted by the presence
of dark matter in the Sun. In order, we show the boron-8 and beryllium-7 neutrino fluxes,
the depth of the convection zone and the goodness of fit (x?) computed for the sound speed
profile and for the small frequency separations rgo and r13.
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Figure 10. The ratio of the predicted ®B neutrino flux to the measured value ¢f .. = 5.00 x
10°cm=2s71 [92], for each type of spin-independent dark matter coupling defined in eq. (2.1). In
every case the white and green lines show the isocontours where the flux is respectively 1 and 20
lower than the observed values, based on observational (3%) and modelling (14%) errors, added in
quadrature. The cross-sections are normalized such that o = oo(v/v)*" or o = 0¢(q/q0)*", with
vo = 220kms~! and gy = 40 MeV. Simulations carried out in the masked regions did not converge,
due to the significant heat conduction by the DM particles, leading in extreme cases to density
inversions in the core.
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Figure 11. As per figure 10, but for spin-dependent couplings.
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Figure 12. The ratio of the predicted "Be neutrino flux to the measured value Pheobs = 4.82 X
102 cm =251 [92], for each type of spin-independent dark matter coupling defined in eq. (2.1). In every
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did not converge.
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Figure 14. Ratio between the modelled and measured location of the bottom of the convection
zone Ty, for spin-independent couplings. Darker regions represent a better fit to the observed value
than the SSM. The white and green lines represent the contours at which the predicted value falls
within 1o and 20 of the measured value, respectively. The theoretical uncertainty on rcz (0.004 Rg)
is much larger than the experimental error (0.001 R ), so the former dominates when we add them
in quadrature. Regions masked in light blue correspond to parameter combinations where models did
not converge.
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Figure 15. As per figure 14, but for spin-dependent couplings.
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Figure 16. Sound speed x2. Darker regions represent a better fit to the observed value than the
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fits are marked in black, and red lines show the x2? value of the SSM. Regions masked in light blue
correspond to parameter combinations where models did not converge.
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than the SSM. Best fits are shown as pink stars and pink lines on colour bars. 30 deviations from the
best fits are marked in black, and red lines show the x? value of the SSM. Regions masked in light
blue correspond to parameter combinations where models did not converge.
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