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Abstract

Interbanking rates were, until recently, based on judgmental estimates of borrowing

costs. We interpret this as a cheap talk game that allowed banks to communicate non

verifiable information about their opportunity cost to potential counterparties. Under

normal market conditions there is a welfare maximizing equilibrium where banks truthfully

disclose their borrowing cost, but, in times of financial stress, only “coarse” equilibria

survive. We take this prediction to the data and show that banks round more frequently

if the risk of the bank increases. Rounding is also more frequent for the more liquid short

term rates and certain benchmark maturities.
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1 Introduction

Interest rate benchmarks play a key role in financial markets. The most widely used, the

London Interbank Offered Rate (Libor), served as a reference in contracts with notional values

estimated to amount to up to ✩800 trillion (Wheatley, 2012). Surprisingly, Libor, before its

reform in 2013, was determined with a mechanism resembling an informal daily opinion poll:

The British Banker’s Association (BBA) asked a panel of banks to submit the rate at which

they could potentially borrow in the interbank market and the Libor rate was calculated as

the interquartile mean of these submissions. In this mechanism, the banks seem to have had a

high level of discretion.1

In this paper, we demonstrate that, even if misrepresentation is not penalized, banks will

have incentives to honestly report their borrowing rates if certain conditions hold.2 This not

only explains why this surprisingly informal mechanism largely performed well and allowed

Libor to become a widely followed benchmark, but also shows why it failed when these con-

ditions did not hold any more in the unfolding of the financial crisis between 2008 and 2011.

Our model also predicts a number of patterns in the precision of the banks’ submissions that

can be identified in the data and seem difficult to explain otherwise.

We exploit a specific feature of the Libor mechanism: Until April 2013, the BBA not only

published the benchmark rate, i.e. the interquartile mean, but also each bank’s individual

submissions (see ICE Benchmark Administration, 2016). These individual submissions seem to

1Concretely banks in the Libor panel were asked the question: “At what rate could you borrow funds,

were you to do so by asking for and then accepting inter-bank offers in a reasonable market size just prior

to 11am London time?” (Duffie and Stein, 2015). Note that there is no definition of “reasonable market
size” and that banks can submit estimates even if they have not “asked for” or accepted interbank offers.
The BBA further specifies in its provisions that: “Therefore, submissions are based upon the lowest perceived

rate at which it could go into the London interbank market and obtain funding in reasonable market size, for

a given maturity and currency. BBA Libor is not necessarily based on actual transactions.” (UK House of
Commons, 2012) Not surprisingly, in the recent lawsuits, it has turned out to be very difficult to prove that
banks were providing wrong answers to this question. Instead, courts based their convictions on seized in-
ternal communication that demonstrated that banks were conspiring to manipulate the outcome of the rate
setting mechanism.

2Our findings can also be rationalized in a setting with verifiable reports if the cost of lying is sufficiently
small. We explain why in Footnote 14.
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have conveyed crucial information3 about a bank’s borrowing cost to potential counterparties

in the opaque, phone-brokered interbank market.4

Building on Kim and Kircher (2015), we model this setting as a search market where indi-

vidual cheap talk reports emitted by banks guide counterparties seeking to lend to one of these

banks. Under normal conditions, truthful reporting is an equilibrium. When a bank under-

states its true borrowing costs, potential counterparties expect lower gains from trade and thus

submit fewer offers to this bank, which, not surprisingly, reduces its profits. On the contrary,

overstating true borrowing costs attracts more offers, but in the model of Kim and Kircher

(2015), these additional offers turn out to be at rates that are too high to be attractive for the

bank. This truth revealing equilibrium also maximizes welfare, as the increased transparency

leads to a better matching of borrowers and lenders.

Unfortunately, this equilibrium is upset when there is uncertainty about the bank’s financial

health such as in the financial crisis between 2008 and 2011. In this case, high individual

borrowing costs may not only reflect short term liquidity needs but also indicate a possible

risk of failure.5 This creates incentives to understate the true borrowing cost.6 As in the

canonical cheap talk model of Crawford and Sobel (1982), these incentives to misstate the

truth limit the precision of information that can be transmitted in equilibrium. The reason for

this result is straightforward: Banks can no longer credibly disclose their precise borrowing costs

because in any truth revealing equilibrium they would have incentives to slightly understate

3Ridley and Jones (2012) cite a banking official “recalling the intense scrutiny as soon as Libor rates were
published at 11 a.m. ‘Trading rooms would be watching and dissecting what rates people had been putting in
each day, looking for a major change in behavior.’ ”

4See MacKenzie (2008) for a description of the functioning of the market.
5For instance, the specialized press writes: “The Libor setting process is public and closely watched, so

a bank that put in relatively high rate estimates could spark investor concern about its strength.” Financial
Times, Feb. 9, 2012 (Probe Reveals Scale of Libor Abuse). The Wheatley Review states that “While individ-
ual submissions reflect elements other than solely idiosyncratic counterparty credit risk, changes in a particu-
lar bank’s submission may be interpreted by some observers as an implicit signal as to the creditworthiness of
that contributor.”(Wheatley, 2012)

6Again, we have direct evidence for the existence of these incentives. For example, in a recorded elec-
tronic chat on September 26, 2008 an HBOS submitter wrote to an employee of another financial institu-
tion “youll like this ive been pressured by senior management to bring my rates down into line with everyone
else.”(CFTC, 2014). For more evidence see also CFTC (2012), page 19 ff.
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their true costs. However, if the signal space is partitioned into sufficiently large intervals, a

small deviation from the truth is not possible. As large deviations remain unprofitable, with a

coarse signal space there exists an equilibrium where banks truthfully indicate the interval in

which their borrowing costs are situated.

In our model, the coarseness of the signal space, i.e. the size of these intervals, will depend

on two factors. One is uncertainty about the bank’s default probability: The more a bank

needs to demonstrate that it is healthy, the stronger are its incentives to understate its true

borrowing cost and thus the less precise is the information that can be credibly transmitted in

the cheap talk equilibrium. A second, less straightforward and more surprising factor is market

liquidity: If there are many potential lenders, they compete more fiercely and thus submit, on

average, lower quotes. Thus, a deviation that sheds away the high quotes is less costly for the

bank. Finally, note that the two effects reinforce each other: In the absence of uncertainty,

there is a fully revealing equilibrium independently of the liquidity of the interbank market

and hence no liquidity effect, but with increasing risk, liquidity will have a stronger effect on

coarseness.

We take these hypotheses to the data and show that our model can explain a number of

so far undocumented patterns in the precision of the Libor submissions. Similar to Backus,

Blake, and Tadelis (2019) we interpret rounding as a natural way to partition the signal space

into intervals of a certain size and implement the coarse equilibria predicted by the cheap talk

model. An increase in the frequency of rounded numbers during times of uncertainty then

corresponds to a lower informational content of the reports. We use the banks’ 1-year Credit

Default Swap (CDS) spreads7 as measure of the banks’ financial health and demonstrate that

the banks’ use of rounding increases with this measure of risk. The data also confirm our second

and third prediction: Rounding increases with liquidity and this effect becomes stronger with

higher risk. In particular, rounding is more common for the shorter, more liquid maturities as

7A CDS is an insurance contract against default risk. A company’s CDS spread corresponds to the annual
per dollar price of insuring this company’s debt.
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well as for certain frequently traded reference tenors. If rounding was simply the consequence

of uncertainty about market conditions, we would expect to see less, not more, rounding for

liquid maturities.

Note, that our paper entirely focuses on the banks’ “signaling” (Gandhi, Golez, Jackwerth,

and Plazzi, 2019) or “reputational” (Youle, 2014) concerns, i.e. their incentives to underreport

their borrowing costs to appear less risky. The alleged “Libor suppression” (Libor I, 2013)

resulting from these incentives was the original source of concerns about the Libor (Mollenkamp

and Whitehouse, 2008).

In contrast, almost all of the Libor related lawsuits as well as much of the academic literature

focus on a second, different issue. They analyze the banks’ incentives to manipulate the final

Libor benchmark in order to benefit the bank’s trading portfolio. The legal literature refers

to this as “trader-based manipulations” (Libor VI, 2016), motivated by “cash flow” (Gandhi,

Golez, Jackwerth, and Plazzi, 2019) or “portfolio” incentives (Youle, 2014).

We argue that “trader-base manipulations” are orthogonal to our findings and can be treated

as noise in our empirical analysis: First, the communications between traders and submitters

seized during the different investigations only mention longer maturities such as the 1 month, 3

month or 6 month tenors, which are used as reference rates for loan and derivative contracts, but

not the short rates such as the overnight and one week rates for which rounding is particularly

strong.8 Note also that when traders and submitters discuss numbers, these are almost never

rounded.9 In addition, while “trader-based manipulations” were relatively common, overall only

a comparatively low fraction of the total submissions seems to have been affected. For example,

8To the best of our knowledge, there are no financial contracts that are directly indexed to the very short
term Libor rates. The only derivatives that depend on overnight rates are Overnight Index Swaps (OIS), but
the standard reference rate used in these contracts is the fed funds rate not the overnight Libor. We therefore
think that it is unlikely that banks’ trading portfolios have a strong exposure to the overnight and one week
Libor rates.

9For example in March 16, 2006, a Barclays submitter replies to a swaps trader’s request for a high one-
month and low three-month US Dollar Libor as follows “For you ... anything. I am going to go 78 and 92.5
[basis points]. It is difficult to go lower than that in threes looking at where cash is trading. In fact, if you
did not want a low one I would have gone 93 at least.” (CFTC, 2012)
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the Financial Services Authority (2012) reports that at Barclays, one of the most notorious

manipulators, “between January 2005 and May 2009, at least 173 requests for US dollar Libor

submissions were made to Barclays Submitters“.10 This corresponds to only 1% of the total

number of submissions made during this period.11 Finally, “reputational manipulation” and

“trader-based manipulations” seem to have happened at different periods. Snider and Youle

(2014) demonstrate that “trader-based manipulations” will result in the bunching of quotes

around the first and third quartiles. They find evidence for “bunching” but show that this

behavior disappears in times of high stress, exactly when the rounding behavior documented

in this paper is strongest.

The shortcomings of Libor have given rise to a recent literature on benchmark setting

mechanisms and their design: Abrantes-Metz and Evans (2012), Duffie, Skeie, and Vickery

(2013), Chen (2013), Diehl (2013), Duffie and Dworczak (2014), Duffie and Dworczak (2014),

Hou and Skeie (2014), Duffie and Stein (2015), Coulter, Shapiro, and Zimmerman (2018), Eisl,

Jankowitsch, and Subrahmanyam (2017), Duffie, Dworczak, and Zhu (2017) and Gandhi, Golez,

Jackwerth, and Plazzi (2019). This literature largely focuses on mechanisms that would prevent

future “trader-based manipulation”. The gist of this literature is that incentives to manipulate

a benchmark can only be countered by tying submissions closely to verifiable transactions and

introducing explicit incentives to tell the truth.12

In contrast to these papers, our paper demonstrates that, under certain circumstances, even

a benchmark based on non-verifiable, judgmental submissions can generate a reliable indicator

of market conditions. We also show that this type of benchmark will improve the functioning

10In this count a request for example for a high 3 month and low 6 month rate would be counted as two
requests and a request for high or low submissions which did not specify a particular maturity would be
counted as three requests (for one month, three month and six month submissions) unless the context of the
communication indicates otherwise.

11Banks submit daily reports for 15 different maturities, which results in 17265 submissions for the 1150
trading days between January 2005 and May 2009.

12These insights have been taken into account in the new design of the Libor mechanism which is largely
based on verifiable market information, although ICE, the current administrator of Libor has maintained
the possibility of submitting estimates that are not based on market transactions, if no other information is
available.
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of illiquid and otherwise opaque “over the counter” (OTC) search markets. In this sense, our

paper is complementary to Duffie, Dworczak, and Zhu (2017), who have first demonstrated

how benchmarks can improve the efficiency of OTC markets. The difference though is that

Duffie, Dworczak, and Zhu (2017) focus on the information conveyed by the final Libor rate,

not the individual submissions, as in our model. More generally, our paper also contributes to

a fast growing literature on the implications of search frictions in the interbank market: Ennis

and Weinberg (2013), Afonso and Lagos (2015a), Afonso and Lagos (2015b), Bech and Monnet

(2016).

Obviously, our results do not imply that the original design of the Libor mechanism is still

adequate today. In a world with large and liquid markets for bank funding, it does not make

sense to base such a benchmark on a cheap talk equilibrium, in particular if the benchmark

is used as basis for other financial contracts. However, a judgmental, “cheap talk” mechanism

might have been the only possibility to generate a benchmark in the late 1970s and early 1980s,

when interbank markets were barely developed (MacKenzie, 2008; O’Malley, 2014). Thus,

Libor’s setup was likely not flawed from the outset, but, although clearly inadequate now,

may well have contributed to the spectacular evolution of the interbank market by improving

transparency and liquidity in the early days. Similar mechanisms might be appropriate even

today to support the development of other illiquid markets.

The evidence developed in this paper might also have consequences for the ongoing Libor

lawsuits.13 Price stability is generally considered a sign of collusion and the stability of the

Libor quotes together with bunching of the quotes around certain rates has been cited as

evidence for cartelized behavior (Abrantes-Metz, Kraten, Metz, and Seow, 2012). Our paper

indicates that at least part of this price stability might rather be the result of a strategic choice

of signal precision. Note, however, that our paper does not allow us to draw conclusions about

the suppression of Libor. In cheap talk models there is no specific anchoring of the signal

13See, e.g. Worstall (2017) and Dye (2017).
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and therefore, even in a truth telling equilibrium, the signal does not need to correspond to

the underlying parameters. For example, a submission strategy that prescribes “submit your

borrowing cost minus 20 basis points” qualifies as a fully revealing equilibrium, if the receiver

of the signal is aware of this bias. In fact, this type of strategy might be a reasonably good

description of what happened during 2008-2009, when almost all panel banks are alleged to

have systematically understated their true financing costs (Binham and Thompson, 2017).14

Our empirical part is related to the growing literature analyzing the statistical properties of

Libor submissions, but our paper differs in several aspects from much of this literature. Existing

studies have largely focused on identifying specific patterns of co-movements or differences

between the Libor submissions and other measures of borrowing costs (Abrantes-Metz, Kraten,

Metz, and Seow, 2012; Kuo, Skeie, and Vickery, 2012; Monticini and Thornton, 2013; Fouquau

and Spieser, 2015; Bariviera, Guercio, and Martinez, 2015). An exception is Abrantes-Metz,

Villas-Boas, and Judge (2011) and Rauch, Goettsche, and Mouaaouy (2013) who analyze the

distribution of digits using Benford’s law and observe strong anomalies that are consistent with

our findings. They have, however, neither explained the origin of these anomalies nor uncovered

the pattern of rounding that we document in this paper.

Rounding has also been the focus of a number of papers in the accounting literature that

provide an alternative motivation (Herrmann and Thomas, 2005; Dechow and You, 2012).

These papers show that rounding can be related to a lack of information: For example financial

analysts who spend less effort produce more rounded forecasts. We don’t think that this can

explain our finding, though. In particular, this is not consistent with the fact that rounding is

more common for the shorter, and thus more liquid, maturities, for which information is more

14Our model could be modified to incorporate such predictions by including a direct cost of misreporting
as modelled by Chen (2013). In his model, as the cost of misreporting goes to zero the reports tend to mi-
nus infinity. Obviously, this is only possible because Chen does not put any restriction on the reported rates.
In reality, however, one may expect that banks cannot report arbitrarily low rates. If one adds this as a con-
straint, we expect that the only equilibrium displays pooling at the lowest feasible rate when the net incen-
tives to deviate downwards are sufficiently strong. Thus, a variation of our model that allows for small costs
of misreporting would imply the same comparative static predictions as our model and would also predict low
rates in the case of uninformative submissions.
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readily available.

Finally, our model is related to the recent game theory literature that explores how cheap

talk communication can improve the outcome of markets with search frictions (Menzio, 2007;

Kim and Kircher, 2015; Backus, Blake, and Tadelis, 2019). The difference with our theory part

is that these models do not deliver comparative statics about the informativeness of the cheap

talk reports. Our empirical test of these comparative statics may also be of more general game

theoretic interest. To the best of our knowledge this is the first paper that explicitly tests the

negative relationship between the level of disagreement and signal precision predicted by cheap

talk models. These results add to the increasing literature suggesting that cheap talk equilibria

do exist outside experimental settings (Goel and Thakor, 2015; Backus, Blake, and Tadelis,

2019) and have the properties predicted by theory.

2 The Model

We start with an informal description of the institutional features of the interbank market and

explain how we capture this setup with the three main elements of our theoretical model: The

Libor panel banks, the lenders and the stock market.

The members of the Libor panel are large banks that operate at the core of the interbank

market. They centralize most of the trades and borrow from a stable network in a frictionless

market up to the point of exhausting all their gains from trade.15 This determines for each

of these banks a (marginal) borrowing cost that we model, for simplicity, as exogenous and

assume to be the bank’s private information. It is this interest rate that the Libor mechanism

tries to elicit from each of the panel banks.

The panel banks can also borrow from non-relationship lenders that participate in a second

15These banks, sometimes called money-center banks, carry out the majority of transactions in the in-
terbank market with a limited number of counterparties with whom they have stable relationships (Cocco,
Gomes, and Martins, 2009), often formalized by contingent credit lines, see Müller (2006).
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tier of the interbank market.16 Although most of these lenders are also banks, we refer to them

as lenders and use the term banks only for the panel banks. Lenders only operate occasionally

and their trades are affected by search costs. In our model, the information disclosed by the

Libor reports can mitigate these search costs by helping the lenders to find the most profitable

lending opportunity among the banks. The formal search protocol is described below.

Finally, bank management not only wants to make profits from the interbank operations,

but is also concerned about the market’s perception of the bank’s financial health. The precise

reasons for why banks wanted to project financial health are still being discussed in the ongoing

lawsuits (Binham and Thompson, 2017), but it is intuitive that a large number of the bank’s

activities, including the interbank market operations, will be negatively affected by a perception

of high failure risk. In our model we summarize all of these effects by assuming that, in

periods of financial stress, high refinancing costs negatively affect the bank’s fundamental value.

Management is assumed to maximize the bank’s stock price, computed mechanically as the

bank’s expected fundamental value conditional on the Libor reports, plus the profits from the

interbank market.

Model Setup

To capture how search frictions interact with the Libor reports we adapt the model of Kim and

Kircher (2015). Similar to their setup, we want to abstract from strategic interaction between

banks. We therefore assume for simplicity a continuum of (panel) banks17 with a measure

normalized to be one. We also assume a continuum of lenders with measure β. Lenders are

homogeneous but banks differ in their borrowing costs in the first tier of the interbank market.

16See Craig and Von Peter (2014) for a detailed description of this two tiered structure of the interbank
market.

17The main complication of assuming a finite set of banks is that a unilateral deviation of a bank has a
nonzero effect on the distribution of quotes received by the other banks and thus on the opportunity cost
faced by lenders when making an offer to the deviating bank. Instead of assuming a continuum of banks it
is also possible to focus on a single bank and assume that instead of competing with other banks to attract
lenders it just competes with a fixed outside option. The results in this case are similar.
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Efficient bargaining in the first tier of the interbank market means that each bank’s value

of an (additional) unit of credit in the second tier is equal to its (marginal) borrowing cost

in the first tier. For simplicity, we assume the borrowing cost in the first tier, and thus the

value the bank puts on one (additional) unit of credit in the second tier, as exogenous with

a cumulative distribution F over the set V = [v, v], where F (v) denotes the fraction of banks

with a value (i.e. borrowing cost) less than v. For technical reasons we assume F to have a

density F ′ bounded above by η > 0 and below by 1
η
.

In this setup, banks and lenders make the following decisions: Banks decide about the report

m they submit to the Libor panel after having privately learned their value v. Lenders observe

these reports and use them to select with which banks to trade. For the sake of tractability, we

assume a stylized search and bargaining protocol: Each lender submits a quote, if any, to only

one bank and each bank chooses the lowest quote received, unless it is higher than its value.

Other search and bargaining protocols should lead to similar albeit less clear-cut predictions.

Strategies

We follow the description of the strategies and payoffs of Kim and Kircher (2015) simplified for

the sake of readability. A (pure) communication strategy of a Libor panel bank is described by

a function Q : V → M that maps each bank’s value v ∈ V into a report m ∈ M. The lenders’

(mixed) strategy is described by a cumulative distribution function P on M × [0, v], where

P (m, b) is the fraction of lenders that submit a quote less than b to banks that reported less

than m.18 There is no need to allow for bids above v as they are always rejected by the banks.

Public beliefs about a bank’s value conditional on a given submission can be characterized by

a distribution function µ : R+ ×M, where µ(v,m) denotes the fraction of banks whose values

are believed to be strictly below v among those banks that reported m.

18Note that we have dropped the dependence of the lender’s strategy on the observed distribution of re-
ports submitted to the Libor panel. This is without loss since our assumption that there is a continuum of
banks means that a unilateral deviation of a bank does not change the observed distribution of reports.
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As in Kim and Kircher (2015), we are interested in interval partition equilibria. These

are equilibria in which the banks’ communication strategy partitions V into intervals. Each of

these intervals is what we call a pooling interval as all banks with a value in the pooling interval

submit the same report and banks with values in different pooling intervals submit different

reports. Our main result is in terms of the size of these pooling intervals, which we refer to

as the coarseness of the equilibrium. For notational convenience, we assume that the set of

possible reports M is identical to the set of values V and assign higher reports m ∈ V to higher

pooling intervals. Thus, in an interval partition equilibrium, the communication strategy of

banks is an increasing function Q and the induced distribution of reports is characterised by

QM(m) = F (sup{v : Q(v) = m}), where QM(m) is the fraction of banks that report m or less

to the Libor panel.

Payoff Functions

To provide a more intuitive description of the payoff functions, we describe the lenders’ strategy

using the concept of “queue length” borrowed from the literature on markets with a contin-

uum of agents and search frictions. Formally, the queue length λ(·, b) is the Radon-Nikodym

derivative of βP (·, b) with respect to the distribution of reports submitted to the Libor panel

QM.19 Intuitively, λ(m, v) is the expected number of quotes weakly below a certain threshold b

received by a bank that submits a report m. Thus, integrating over the set of possible reports

19This is a function whose integral with respect to QM is equal to βP (·, b):

∫

[v,m]

λ(m̃, b)dQM(m̃) = βP (m, b), for any m ∈ V.

It combines the likelihood of the lenders making an offer to a bank with report m with the likelihood of the
bank having chosen m and the lenders’ conditional distribution of quotes after having chosen to make an offer
to a bank with report m.
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M one obtains the total mass of quotes:20

∫

M

λ(m̃, v) dQM(m̃) = β. (1)

The usefulness of λ comes from the following observation. In a version of our model with

finitely many agents, the equilibrium distribution of quotes less than b received by each bank

having reported m follows a binomial distribution. This distribution converges to a Poisson

distribution with parameter λ(m, b) as the number of agents tends to infinity.21 Thus, e−λ(m,b)

is the limit probability that a bank reporting m does not receive any quote weakly below b. We

use this limit probability below, to characterize the bank’s payoffs.

The bank chooses its report to maximize the expected fundamental value plus its profits

in the interbank market. For simplicity, we assume that the bank only borrows one additional

unit of credit in the second tier of the interbank market and thus its profits are equal to the

difference between the value v that the bank puts in this unit of credit and the lowest quote

received, if less than v. As explained above, the probability that the lowest quote is less than b is

1− e−λ(m,b). Besides, the bank’s fundamental value is computed from the public beliefs µ(v,m)

under the assumption that the bank’s fundamental value is a function w(v) differentiable and

decreasing in the bank’s value v. The bank’s expected payoff is thus:22

V (m, v;λ, µ) ≡

∫

b≤v

(v − b̃)d
(

1− e−λ(m,b̃)
)

+

∫

w(ṽ)dµ(ṽ, m). (2)

A lender offering an interest rate b to a bank reporting m is accepted if no other lender

submits a lower quote and the bank’s value is larger than b. The probability of the former event

is, again by a limit argument, e−λ(m,b) in the case in which e−λ(m,·) has no atom at b, and the

20Formally, this equation is a direct consequence of the definition of λ as a Radon-Nykodym derivative of
P , see Footnote 19.

21For a formal derivation see Kim and Kircher (2015) Footnote 16 and Section 4.
22To avoid confusion, we use a tilde on the variable of integration here and in what follows.
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probability of the latter event is 1 − µ(b,m). Since we assume that the lender’s opportunity

cost of funds is normalized to zero and that the interbank loans are risk-free,23 the lender’s

expected payoff is:

U(m, b;λ, µ) = e−λ(m,b) (1− µ(b,m)) b, (3)

if e−λ(m,·) has no atom at b. The former expression has to be modified to account for ties

if e−λ(m,·) has an atom at b. This case is less relevant for our analysis because a Bertrand

argument implies here that the distribution of quotes cannot have atoms. The formal details

can be found in Kim and Kircher (2015).

Note that the lenders’ payoff function (3) is only well-defined for reports m in the support of

QM. This is sufficient for equilibrium existence because we can always define out-of-equilibrium

beliefs that guarantee lack of incentives to deviate outside the support of QM. For instance,

we could fix the interpretation of any out-of-equilibrium messages as identical to one of the

equilibrium messages. This is a common property of games with cheap talk communication.

Besides, standard equilibrium selection arguments are not used as messages are not directly

payoff relevant, see the discussion in Banks and Sobel (1987), Section 5.

We are interested in the case in which the ratio of lenders to banks is sufficiently high to

guarantee that all banks have a positive probability of receiving a quote in equilibrium. This

is consistent with the fact the Libor panel only includes banks that are active in the interbank

market. As we show in the proof of Lemma 1, a sufficient condition for this is,

eβ >

∫

V
ṽdF (ṽ)

v
. (4)

23Assuming a probability of default increasing with the bank’s value plays a similar role as our assumption
that the bank’s fundamental value is decreasing in its value for additional credit: it gives the bank incentives
to submit a lower report. The analysis of this type of setup is, however, slightly more complex as an increas-
ing probability of default affects the equilibrium search of lenders. This is the reason we only consider the
stock market effect.

14



Equilibria

Definition: An interval partition equilibrium is a communication strategy Q, a distribution

of quotes P (with associated queue length λ) and a belief system µ such that:

❼ Bank’s Optimality: For any v ∈ V ,

V (Q(v), v;λ, µ) ≥ V (m′, v;λ, µ), ∀m′ ∈ M.

❼ Lender’s Optimality: (m, b) ∈ supp P (·, ·) implies

U(m, b;λ, µ) ≥ U(m′, b′;λ, µ), ∀(m′, b′) ∈ M× R+.

❼ Belief Consistency: For eachm ∈ M, ifQ−1(m) = {v} then µ(v,m) puts all its probability

mass at v, and if Q−1(m) = [v, v′], v′ > v, then,

µ(v̂, m) =
F (v̂)− F (v)

F (v′)− F (v)
for v̂ ∈ [v, v′]. (5)

In the next lemma, we pin down the value of λ from the lender’s optimality condition that

requires that the lender must get the same payoff, denoted by u∗(Q), in the support of its

strategy.

Lemma 1. For any given communication strategy Q and report m in the range of Q, the

lender’s optimality and (1) are satisfied if and only if λ(m, b) = 0 for b < u∗(Q) and:

λ(m, b) = sup
b̂∈[0,b]







ln





(

1− µ(b̂, m)
)

b̂

u∗(Q)











for b ≥ u∗(Q), (6)
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where

u∗(Q) ≡
e
∫
M

sup
b̂∈R+

ln((1−µ(b̂,m̃)b̂))dQM(m̃)

eβ
. (7)

The value of u∗(Q) is computed as the unique solution to the equation resulting from

substituting (6) into (1).

For v equal to the infimum of the pooling interval associated to m and δ its size, the right

hand side of (6) has a particularly simple form in two cases that we use in our next discussion:

(C1) λ(m, b) = ln
(

b
u∗(Q)

)

if b ∈ [u∗(Q), v].

(C2) The support of λ(m, ·) is equal to [u∗(Q), v] if δ ≤ v

η2
.24

The former property holds true because µ(b̂, m) = 0 for b̂ < v, and the latter because the

sup-term in (6) is decreasing in b̂, and thus λ constant, for b̂ ≥ v when δ is sufficiently small.

Property (C1) is the key insight of the work of Kim and Kircher (2015) that simplifies our

analysis. It means that our particular bargaining and search protocol has the property that the

distribution of quotes below v does not vary with a larger report. Property (C2) simplifies the

bank’s payoff description and it is consistent with our interest in equilibria with small pooling

intervals.

In what follows, we take as given the lenders’ play in Lemma 1 and study the bank’s

optimality condition. As is usually the case in cheap talk games, a necessary and sufficient

condition is that the banks with values in the extreme points of the pooling intervals do not

have incentives to deviate. In our case, this is a consequence of the supermodularity of (2) in

(m, v) when λ is as in (6). We study these incentives to deviate next.

24The condition δ ≤ v

η2 implies that −bF ′(ṽ)+F (ṽ+δ)−F (ṽ) ≤ − v

η
+δη ≤ 0 for any b ≥ v. This inequality

and (5) implies that the term between curly brackets in (6) is increasing in b̂ up to b̂ = v and then decreasing.

Hence, the supremum in (6) is achieved at b̂ = v when b ≥ v, which means that λ is constant in [b, v] and thus
puts zero measure in [b, v].
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Take the lower bounds v and v′ corresponding to the pooling intervals associated to the

reports m and m′. (C1) means that two different reports m and m′ induce the same queues at

any price b less than both v and v′. This implies that a bank with value v does not improve by

submitting a higher report m′ > m: The deviation does not change the distribution of quotes

below v but implies a lower fundamental value. (C1) also implies that submitting a lower report

m′ < m only changes the distribution of quotes above v′. Besides, if (C2) applies, the bank

does not get any quote in [v′, v] with the deviation m′. Thus, the incentive to deviate from m

to m′ is equal to:

(∫

w(ṽ)dµ(ṽ, m′)−

∫

w(ṽ)dµ(ṽ, m)

)

−

∫ v

v′
(v − b̃)d

(

1−
u∗(Q)

b̃

)

. (8)

If (C2) does not apply, the loss of quotes in a downward deviation is smaller and thus (8)

becomes a lower bound to the incentives to deviate.

The first term of (8) is the increase in the bank’s fundamental value when it deviates and

submits a lower report m′. The second term corresponds to the forgone profits in the interbank

market due to the lost quotes after the deviation. The first term is absent when the bank’s

value (i.e. cost of borrowing) is irrelevant for the fundamental value, formally when w(v) is

constant in v. In this case, there is a fully revealing equilibrium. However, there is no fully

revealing equilibrium whenever the stock market is sensitive to the bank’s value. This can be

deduced from (8): Submitting a report m′ marginally lower than m gives first order gains from

improving the fundamental value, whereas the losses in the interbank market are of second

order as only quotes close to v are lost. A variation of this argument gives a lower bound to

the size of the pooling intervals which is the basis for our empirical analysis.

Proposition 1. There is no interval partition equilibrium strategies (Q,P, µ) in which the size
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of any of the pooling intervals is less than:

inf |w′(v)| · eβ ·
v2

vη2
. (9)

A variation of the above argument also implies that there exists an equilibrium with pooling

intervals smaller than a similar bound to (9), if some additional conditions are met.

Proposition 2. If sup |w′(v)| ≤ v2

2v2η4eβ
and

∫ v′

v
w(ṽ) dF (ṽ)

F (v′)−F (v)
is concave in v,25 then there exists

some interval partition equilibrium strategies (Q,P, µ) in which the size of each of the pooling

intervals is less than:

sup |w′(v)| · eβ ·
2v2η2

v
. (10)

The particular value of the bounds is derived in the proof from approximations to the

elements of (8) using Lemma 1 and the implication of (7) that u∗(Q) must lie in
[

v

eβ
, v
eβ

]

.

The size of the pooling intervals reflects the coarseness of the information disclosed. Thus,

Propositions 1 and 2 show how the maximum equilibrium information disclosure varies with

the slope of w and the ratio of lenders to banks β. The former is intuitive. The more the

stock market is sensitive to the report, the more the bank benefits from underreporting, which

explains why the maximum equilibrium information disclosure decreases. The ratio of lenders

to banks affects coarseness through the competitiveness of the interbank market. The greater

this ratio, the greater the competition among lenders and thus the lower their expected quotes.

Thus, a deviation that sheds away high quotes is less costly for the bank.

25The first condition of Proposition 2 guarantees that the upper bound in (10) is sufficiently small for (C2)
to apply. The second is a regularity condition that it is satisfied, for instance, when w is linear and F uni-
form. The role of this regularity condition is to guarantee that the indifference condition that usually defines
the size of the pooling intervals in a cheap talk equilibrium has no more than one solution. An equivalent
condition is satisfied in Crawford and Sobel (1982) as a consequence of their assumption that a sender’s util-
ity is concave in the receiver’s action.
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Note that the two effects pointed out in the paragraph above reinforce each other. The

greater the stock market sensitivity, the greater is the effect of the ratio of lenders to banks

on the minimum coarseness of the equilibrium. To see why, notice that whereas the minimum

equilibrium coarseness varies with the ratio of lenders to banks if the stock market is sensitive

to the submission, this is not the case otherwise. The reason is that there exists a fully revealing

equilibrium when the fundamental value is not sensitive to the reports, and thus the ratio of

lenders to banks has no effect on the minimum coarseness of the equilibrium.

Proposition 2 also sheds some light on the welfare implications of the design of the Libor

panel. On the one hand, it shows that the feedback of the Libor reports on the functioning of

the interbank market can be sufficient to induce honest Libor reporting in the cases in which

the Libor reports have a negligible effect on the stock market. However, this deterrence is

not sufficient once the stock market becomes more reactive to the Libor reports which seems

plausible in periods of crisis. On the other hand, the analysis of Kim and Kircher (2015)

shows that full information disclosure in the Libor panel implies that the equilibrium queues

of Lemma 1 maximize the sum of the payoffs of banks and lenders. Together with Proposition

2, this implies that, as the effect on the fundamental value becomes negligible, the information

disclosed by the Libor reports induce the maximum social surplus that can be created in the

interbank market subject to the search costs of Lemma 1.

3 Data and Graphical Evidence

In this section, we describe the data and illustrate the pattern of rounding with a series of simple

graphs. Our data set consists of daily reports submitted by the up to 18 panel banks26 for all

26We use the Reuters Libor codes for the banks. The banks are Bank of America (BAFX), Bank of Tokyo-
Mitsubishi UFJ Ltd (BTML), Barclays Bank plc (BARL), Citibank NA (CTGL), Credit Suisse (CSBL),
Deutsche Bank AG (DBBL), HSBC (HSBL) and JP Morgan Chase (JPML) BNP Paribas (BPGL), Credit
Agricole CIB (CALL), Lloyds Banking Group (LOYL), The Norinchukin Bank (NORL), Rabobank (RABO),
Royal Bank of Canada (RBCL), The Royal Bank of Scotland Group (RBSL), Sociètè Gènèrale (SGBL),
Sumitomo Mitsui Banking Corporation (SUML) and UBS AG (UBSL). We have not included West LB and
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15 maturities obtained from Reuters.27 We complete these data with the banks’ credit default

swap (CDS) spreads (see Figure S1 in the Online supplementary material). CDS contracts

are standardized insurance contracts against credit risk, which are traded in comparatively

liquid markets. They are usually written for longer maturities, ranging from 1 to 30 years. To

maximize comparability with the short term Libor rates, we use spreads on the 1 year contract,

obtained from Markit.28

We use ten years of data from January 2005 to December 2014. The main analysis focuses on

the period between 1.1.2005 and 30.4.2013, during which CDS data are available for almost all

banks and during which the Libor setting process remained unchanged. Our panel is not fully

balanced as a number of banks entered and left the Libor panel during and after the crisis.29

After April 2013 the ICE Benchmark Administration (IBA) who had succeeded the BBA as

the administrator of Libor implemented two key changes: It eliminated eight of the less liquid

tenors out of the original 15 maturities30 to make sure that Libor submissions can be explicitly

supported by transaction data and it delayed the publication of individual submissions by three

months so that individual submissions cannot be “interpreted as signals (often erroneously) of

a change in the creditworthiness of a submitter” (ICE, 2015, p.30). As an illustration for the

submission process and the structure of the data, Table 1 presents all submissions from the US

dollar Libor panel banks to the BBA on the 10th of October 2006.

[Table 1 about here.]

HBOS which failed during the financial crisis.
27Until April 2013, Libor submissions were provided for the following maturities: Overnight (ON), one

week (SW), two weeks (2W), one to 11 months (1M, 2M,..., 11M) and one year (1Y).
28Different types of CDS contracts are used in different geographic regions. To maximize liquidity and

data availability we have used the junior contract with the MR/Modified Restructuring clause for North
American banks, the MM/Modified Modified Restructuring for European and the CR/Complete Restruc-
turing clause for Japanese banks. For 2014, we replaced these contracts with the corresponding contracts
following the new 2014 credit derivatives definitions.

29See Snider and Youle (2014) for a precise description of changes in the panel.
30The remaining tenors are the overnight (“ON”), single week (“SW”), one, two, three and six month

(“1M”“2M”,“3M”,“6M”) as well as the one year rate (“1Y”).
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Figure 1 shows the overall evolution of the Libor benchmark rates (i.e. the interquartile

means) for all 15 maturities. The two vertical lines indicate two key dates in the crisis. The

first one indicates July 31st, 2007, when Bear Stearns’ High-Grade Structured Credit Fund

collapsed. The second line indicates September 15th, 2008, when Lehman Brothers filed for

bankruptcy. The spike in refinancing rates corresponding to the crisis entering its climax in

the second half of 2008 is clearly visible. Figure 2 plots the daily standard deviation of the

submissions across different banks for each maturity. This illustrates that the crisis period was

not so much exceptional for the absolute size of the panel banks’ borrowing costs, but rather

for the strong dispersion of refinancing rates between banks.

[Figure 1 about here.]

[Figure 2 about here.]

The crisis period also corresponds to a clearly visible change in the banks’ submission

patterns. Table 2 again presents the full number of submissions by panel banks, but now

two years later, for the 10th of October 2008, roughly one month after the Lehman failure.

Compared to Table 1 the increase in rounding is obvious. Not only do most banks now submit

only two instead of three decimals, the second decimal also is rarely different from “5”.

[Table 2 about here.]

That coarseness is not caused by a lack of information becomes particularly clear when one

compares the evolution of bidding behavior before and after the 2013 reform that delayed the

publication of individual submissions. As an example for the change in the bidding behavior

we plot in Figure 3 the submissions by BNP Paribas for the seven tenors that remained after

the reform. Clearly, more information is revealed in the bids submitted after April 2013.

Interestingly, while BNP Paribas is not the only bank to change its behavior, this is not true
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for all banks.31 Explaining the heterogeneity in submission strategies after the reform is beyond

the scope of this paper as our model requires submissions to be visible, but the change in bidding

strategies as well as the differences in bidding strategies across banks strongly suggest that the

coarseness of submissions is the result of a strategic choice.32

[Figure 3 about here.]

To understand the bidding behavior in more detail, we analyze the distribution of digits

used for the second decimal of the individual submissions. A change in this decimal corresponds

to one basis point, the usual unit of measure in fixed income markets.33

Our theoretical model predicts that the coarseness of Libor submissions depends on the sen-

sitivity of the bank’s expected value to the information from the interbanking market. Keeping

other things equal, this sensitivity is expected to be high, when a bank’s CDS spread is high, as

in this case, investors are wary of additional bad news. With a series of univariate comparisons

we try to illustrate that, indeed, as predicted, CDS spreads and liquidity are related to the

coarseness of submissions and that they reinforce each other.

Figures 4 plots the distribution of digits for banks that have, on a given day, a CDS spread

in the top and bottom quartile of CDS spreads observed during 2005-2014. Note that we

adapted the y-axis to better visualize the differences. The horizontal line at 0.1 corresponds to

the frequency we would expect if the distribution was uniform across all digits.

31For example Bank of America’s rounding behavior remains unchanged by the reform (see Figure S2 in
the online supplementary material).

32Figures S5 and S6 in the online supplementary material provide some additional graphical evidence for
the change in bidding strategies. Until the 2013 reform, successive bids were strongly correlated, but this au-
tocorrelation abruptly decreases after the reform. We think that this is related to the recommendation of
the Wheatley report (Wheatley, 2012) and the new ICE submission guidelines implemented after April 2013,
which encouraged banks to rely less on “expert judgment and instead justify their submissions by document-
ing underlying market transactions. It seems that, as a consequence, banks’ submissions became less stable,
as they started to reflect not only overall market conditions, but also transaction-related idiosyncratic fac-
tors such as bid size, transaction costs and the relative bargaining power of the lender and borrower. Note,
that the heterogeneity in bidding strategies has been identified as a problem by the IBA. They state in their
first position paper that after the reform that “each benchmark submitter has developed its own methodology
for establishing LIBOR submissions. A variety of approaches now exists” and encourage banks to work on a
conversion of approaches (ICE Benchmark Administration Limited, 2014).

33As a basis point is 1/100th of a percentage point.
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As predicted, the distribution of digits strongly varies with CDS spreads. Evidence of

rounding is clearly visible in Figure 4 (b) corresponding to the most risky periods and banks,

with the digits “0” and “5” occurring roughly 50% more often than other digits. In contrast,

the distribution for periods and banks with low CDS spreads in Figure 4 (a) is closer to the

uniform distribution.

[Figure 4 about here.]

Our theoretical model also predicts that coarseness of the Libor submissions should vary

with the liquidity of the underlying interbank market. Measuring liquidity is, however, more

difficult as few detailed data about volumes in interbank markets are available. As time and

cross-bank differences in liquidity are strongly correlated with the market’s perception of credit

risk, we will exploit cross-maturity differences in transaction volumes. Afonso, Kovner, and

Schoar (2011) and Kuo, Skeie, Vickery, and Youle (2014) demonstrate that liquidity is higher

for short term rates, such as the overnight or one week rates, as well as for a number of

commonly used reference tenors, such as the 1 month, 3 month and 1 year maturities. If we

compare the distribution of digits as a function of liquidity/maturity a clear pattern emerges.

As an example we reproduce in Figure 5 the distribution of digits for the (very liquid) overnight

and the (very illiquid) eight month maturities.

[Figure 5 about here.]

To generate a simple measure of rounding across the 15 different maturities, we next con-

struct a dummy variable “Rounding in the 2nd Decimal”, indicating that a bank submitted

“0” or “5” as the second decimal and did not provide any smaller decimals. If banks submit

only two decimals and do not round, we would expect the average value of this dummy to be

0.2. With three or more decimals the dummy should always be zero. This measure captures
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coarseness in the most relevant range, but we lose some information about more extreme levels

of coarseness, as rounding may also take place in the first, third and fourth digits.34

Figures 6 (a) and (b) represent the frequency of rounding in the second decimal across

maturities for banks with CDS spreads in the top and bottom quartiles. Again, a clear pattern

can be recognized. Whereas the frequency of rounding is low and relatively stable across

maturities for quiet markets, it is much higher and decreases overall with maturity in turbulent

markets. Interestingly, certain more heavily traded reference rates such as the 3 month, 9 month

and 1 year tenors exhibit more rounding than the neighboring less liquid tenors. These patterns

fit perfectly with our predictions, but are difficult to reconcile with alternative explanations for

rounding, as explained in more detail in Section 4.3.

[Figure 6 about here.]

The evolution of rounding corroborates these patterns. Figure 7 plots a 63 day35 moving

average of rounding in the second decimal across all maturities for the different panel banks.

The change in rounding behavior at the two key dates corresponding to the failures of the

Bear Stearns fund and Lehman Brothers is clearly visible. There is also a visible difference

in the extent of rounding between banks. A similar picture can be drawn for the evolution of

rounding in the different maturities averaged out across banks (Figure 8). The high frequency

of rounding for the very short term rates between the two key events of the unfolding crisis is

particularly striking. Again this is perfectly in line with our theory: During this time, serious

concerns about bank stability had emerged, but banks did not yet rely on central banks for

liquidity provision and interbank markets still had high trading volumes. The highest frequency

of rounding is visible in the overnight rates at the crisis dates, other key rates such as the three

month or nine month rate also show a higher occurrence of rounding.

34See the online supplementary material for graphical evidence using the number of submitted decimals as
an alternative proxy for coarseness.

35This corresponds to the approximate number of trading days in three months.
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[Figure 7 about here.]

[Figure 8 about here.]

4 Multivariate Analysis

In this section, we present simple multivariate tests to complement the graphical evidence

from the previous section and assess the statistical significance of the observations made above.

Recall that Propositions 1 and 2 from our model predict that 1) the minimum coarseness of

the Libor submissions increases when the bank’s expected market value becomes more sensitive

to the information from the interbank market, 2) coarseness increases with the liquidity of the

underlying interbank market and, 3) these effects interact positively, i.e. the coarseness of the

submissions reacts stronger to the sensitivity to information from the interbank market in more

liquid markets.

As in the previous section, we focus on the banks’ one year subordinate CDS spreads as a

proxy for the sensitivity of the bank’s market value with respect to the interbank borrowing

costs and measure the coarseness of the submissions with the dummy variable “Rounding in

the 2nd Decimal” defined above. To proxy for liquidity we introduce a new indicator variable

“Liquid Maturities” that takes the value of 1 if the submission is for one of the tenors that

survived the 2013 reform.

We analyze again 10 years of data from January 2005 to December 2014 with a focus

on the period until April 2013, as from May 2013 on the Libor reform ended the immediate

disclosure of individual submissions and removed more than half of the submitted tenors. This

corresponds to a total of 530,952 individual submissions across different banks, maturities and

trading dates. For 489,158 of these observations we have CDS spreads, as for the non-listed

Norinchukin Bank and Rabobank 1 year CDS data are not available in the first years of our
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sample. Summary statistics are simple: The average CDS spread is 1.04 percent with a median

of 0.58 and a standard deviation of 1.34 percent. The highest CDS spread in our sample is

15.3% attained by Citigroup in April 2009 and the lowest 0.012% for Rabobank in May 2007.

The average frequency of rounding in the second decimal is 20.3 percent.

4.1 Baseline Specification

To test how risk and liquidity affect the coarseness of the banks’ submissions, we regress the

“Rounding” dummy on the banks’ CDS spreads together with the “Liquid Maturities” dummy

and an interaction term for these two variables. Formally, we run the following regression:

Roundingt,b,m = β·CDS spreadt,b

+ γ ·D(Liquid Maturities)m

+ λ ·D(Liquid Maturities)m×CDS spreadt,b

+ µb + µt + ǫt,b,m,

(11)

where µb and µt stand for bank fixed effects and time controls, respectively. Despite our

dependent variables being binary, we choose to use an ordinary least square estimation (OLS)

of a linear probability model rather than logit or probit. This will considerably simplify the

analysis of autocorrelated errors with no clear structure in our panel setting. Given that for our

preferred specification with annual time controls all predicted values in our sample lie in the

interval [0, 1], the potential bias of the linear probability model is likely to be small.36 Simple

OLS standard errors for this regression will be biased due to the presence of heteroskedasticity

and serial as well as cross sectional correlation. To cope with these biases, we determine robust

standard errors that are two-way clustered at the bank and time levels.

The results are presented in Table 3. In models (1) and (2) with annual time controls, all

36See Horrace and Oaxaca (2006). In the specification with daily dummies, predicted values lie outside the
interval [0, 1].
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coefficients have the predicted sign and are significant. Both, a higher CDS spread and more

liquid maturities are associated with coarser submissions i.e. a higher frequency of rounding.

The sign of the interaction term is positive, indicating that coarseness is more sensitive to

CDS spreads for more liquid maturities. In models (4) and (5), with full time fixed effects at

daily frequency, the effect of liquidity on rounding remains significant. The coefficient for the

interaction term is again positive with similar size, but only significant at the 10% level, and

the coefficient for the CDS spread still has the correct sign, but is not significant.

[Table 3 about here.]

These results imply that the relationship between CDS and rounding is mostly identified

from the time variation. Indeed, the average risk of the banking sector seems to be more relevant

than the individual CDS spreads. In model (3), we add the daily cross-bank average of CDS

spreads to the baseline regression. The results are clear: This measure of the overall banking

sector risk is highly significant, whereas individual CDS spreads become non-significant.37 This

surprising result might be caused by poor data quality. We only have quotes, not transaction

data for CDS spreads, and liquidity was likely low, especially at the height of the crisis. Possibly,

some of this noise can be reduced by taking the cross sectional mean.

However, there might also exist a more fundamental explanation. The large banks contained

in the Libor panel are affected by similar risk factors and strongly interconnected. If one or

several banks in the sample are known to be in trouble, reflected by high CDS spreads, investors

will be particularly attentive to signals that could indicate that any other bank might have a

problem as well, either because it is exposed to the same risk factors or because it is connected to

the risky bank. Clearly, in this situation, a bank that would disclose high borrowing costs (even

if its CDS spread was initially low) could suddenly raise alarm about its prospects. Possibly,

banks considered to be healthy might even be more concerned about releasing negative signals

37These results do not change if we exclude the submitting bank’s CDS spread when calculating the aver-
age.
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than banks that are known to have problems and can, in any case, be expected to face high

borrowing costs in the interbanking market. In this context, the main driver for the sensitivity

of a bank’s expected value to the information from the interbanking market might not be the

banks own CDS spread, but rather the overall perception of the riskiness of the banking sector

reflected by the average CDS spread.

In the following sections, we will for convenience mostly keep individual CDS spreads rather

than the cross sectional average as independent variable and use annual time controls. Average

CDS spreads and alternative time controls provide largely similar results, but if too many time

controls are added, the coefficient for CDS spreads becomes insignificant.38 Further evidence

confirming the robustness of our results is presented in the next section, where we analyze the

evolution of rounding pattern and demonstrate that our results remain significant for several

non-overlapping sub-periods.

We have also run the above regressions separately for each of the 18 panel banks.39 These

tests demonstrate that there is a fair level of heterogeneity. Some banks do not seem to exhibit

the rounding pattern that we have identified in the regressions above. We think that this is

not inconsistent with our theory. Our model can only provide a lower bound for the length of

signal intervals, but we cannot exclude that some banks play equilibria with larger intervals or

the “babbling equilibrium”, where submissions have no informational content.

As an additional robustness test we have replicated our baseline regressions with other

measures for coarseness of the submissions. In the online supplementary material, we provide

the results of using the number of submitted digits instead of “Rounding in the 2nd Decimal” as

the dependent variable. With this measure of coarseness our results are verified for 2005-2010,

38See Table S1 in the online supplementary material for a version of models (1) and (2) in Table 3, where
individual CDS spreads are replaced by average CDS spreads. We cannot add average CDS spreads to models
(4) and (5) since they are perfectly multicollinear with daily fixed effects. Still, the cross effect of the average
CDS spread with liquidity is positive and significant at the 5% level. For alternative time controls, see Table
S2 in the online supplementary material presenting our baseline regression with time controls according to the
different phases of the crisis as defined by Kuo, Skeie, Vickery, and Youle (2014).

39The results are in Table S5 in the online supplementary material.
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where very few banks submitted more than three decimals (See Figure S3 and S4 in the online

supplementary material), however in the later period the high number of decimals submitted

by certain banks render the coefficient on CDS spreads not significant for the full period.

4.2 Evolution of Rounding Patterns

More evidence comes from a finer analysis of how the banks’ rounding behavior changes over

time. Figures 9 and 10 depict the evolution of regression coefficients when estimating equation

(11) for moving two-year subperiods. To generate the quarterly results used for the graph, we

have run separate regressions, each with 24 month of data, covering a time window stretching

from 12 months before to 12 months after the beginning of the respective quarter.40 Note, that

in order to be able to include the years 2013 and 2014 we only use in these regressions the seven

maturities remaining after the 2013 reform. As a consequence we have to use a more restrictive

definition of liquid maturities. We know from Kuo, Skeie, Vickery, and Youle (2014) that there

exist a number of reference rates with higher liquidity, such as the overnight (“ON”), three

month (“3M”), six month (“6M”) and one year (“1Y”) tenor and we use these reference tenors

to identify more liquid markets.

[Figure 9 about here.]

[Figure 10 about here.]

The relationships between rounding, maturity and liquidity predicted by our model are

both clearly present over the crisis period from 2007 to 2009, but then fade out rapidly. This is

probably because successful liquidity injections by central banks reduced the informativeness

of lending conditions in the interbanking market as a sign of financial distress and therefore

weakened the sensitivity of a banks expected value to the interbank rates. In addition, starting

40The time windows at the beginning and the end of the period are truncated for dates below 2005 and
above 2015.
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in 2009, banks seem to have become increasingly aware of the legal risks related to suspicious

Libor submissions pattern. The trigger likely was the British Financial Services Authoritys

(FSA) inquiry into Barclays in late 2009, followed in Nov. 2009 by the BBA’s issuance of new

guidelines on setting Libor rates. At this time attention shifted from potential “Libor suppres-

sion” (Mollenkamp and Whitehouse, 2008) to the suspicion of “trader-based manipulations”

(Snider and Youle, 2014) and banks started to avoid patterns that could be interpreted as the

result of these manipulations. In particular, several banks rapidly increased the number of

reported decimals (see Figure S3 in the online supplementary material). It seems likely that

they did this to minimize legal risk rather than for reasons related to our model.

In 2013, at the time of the fundamental Libor reform, the two effects predicted by our model

had already become insignificant.41 This makes it likely that the explanation for the change in

bidding strategies after the reform that we documented with Figure 3 in Section 3 lies outside

our model.

4.3 Excluding Alternative Explanations

The results listed above are consistent with our model, but there exist alternative mechanisms

that might be able to explain our observations. For example, it is conceivable that the relation-

ship between rounding and liquidity is actually generated by a relationship between rounding

and maturity. Shorter maturities may require less precision given that the monetary conse-

quences of investing at a rounded rate are less important.42 This story, however, does not seem

consistent with the fact that the liquidity effect that we identify here fades gradually after 2009,

as shown in Figure 10, or the fact that coarseness seems to be a strategic choice, as we discuss

41Using “Number of submitted decimals” as the dependent variable confirms these patterns, see Figure S7
and Figure S8 in the online supplementary material.

42Maturity dependent rounding exists in other markets. For example, bids in government auctions for US
Treasury bills, which have a maturity of less than one year, are made in discount rates quoted in three dec-
imals with 0.005 increments. Bids in the longer term Treasury bond auctions are made in yields with 0.001
increments (Department of the Treasury, 2004). Note, that in this example rounding is in the third decimal of
the yield. This implies a much finer grid than rounding in the second decimal.
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in Section 3. More importantly, we can exploit the fact that the relationship between both

variables is not monotonous to test whether rounding is driven by maturity or liquidity. As

mentioned above, certain references rates have higher liquidity than the neighboring tenors. If

rounding is driven by maturity, the more liquid reference rates should not exhibit more rounding

than surrounding less liquid rates with, on average, the same maturity.

Table 4 presents the result of regressing rounding on liquidity and CDS spreads for different

sub-samples, each including a liquid reference rate such as the ON, 3M, 6M and 1Y tenor

together with the neighboring less frequently traded tenors.43 Only for the six month rate

the level of rounding is not significantly different from the surrounding rates, likely because

liquidity is low. In all other cases, submissions for reference rates exhibit significantly more

rounding than the surrounding less liquid maturities. In particular, the one year rate is more

frequently rounded than the submissions for the shorter, but less liquid 11 month tenor and the

three month rate is more frequently rounded than the surrounding two month and four month

rates. That the overnight rate exhibits more rounding than the less liquid and longer one week

tenor is not surprising, but still demonstrates that similar maturities with different liquidity

can exhibit different coarseness.44

[Table 4 about here.]

Another possibility is that the patterns of rounding we observe are caused by collusive

behavior. This would, however, have to be a different type of collusion than the “Trader

based manipulations”, which, as discussed in the introduction, are not likely to have caused

rounding. Abrantes-Metz and Metz (2012) argue that banks have colluded to submit identical

values. Rounding might have been a way to facilitate this coordination. To test this hypothesis

we report in Table S6 in the online supplementary material a version of our baseline regression

43We have excluded the one month rate as (Kuo, Skeie, Vickery, and Youle, 2014) document that during
and after the crisis period maturities between one week and less than a month far dominated the volume of
transactions executed at the one month tenor.

44A version of Table 4 with daily controls yields similar results for the coefficient of “Reference Tenors.”
However, the coefficient of “CDS spread” becomes non significant.
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were we have added a dummy variable “Duplicated”, indicating if another bank has made the

same submission. Our results remain significant, which suggests that the relationships we have

identified are not related to the potential coordination of submissions on the same numbers.45

Indeed, rounded numbers strongly vary across banks and rounding is particularly prevalent in

times of market turmoil. This makes it unlikely that collusion is the source of rounding.

5 Conclusion

This paper constructs a model of directed search in the interbank market and tests its empirical

implications with data from the Libor benchmark setting process. We demonstrate that in

normal market conditions “cheap talk” announcements by banks about their financing costs

can credibly convey non-verifiable information and improve the functioning of the “over the

counter” interbank markets. We think that this is a reasonably realistic model of how Libor

worked in the early days. In particular it explains why, until the advent of the crisis, the

surprisingly informal Libor setting mechanism largely produced reliable numbers.

Benchmark setting mechanisms based on cheap talk are, however, fragile. If panel members

have additional reasons to understate their borrowing costs, the truth revealing equilibrium

collapses. As is common for cheap talk models, in this case banks can only credibly convey

some information by using a coarse signalling space, i.e. a signal space that is divided into

intervals of a certain size. Our model provides a lower bound for the length of these intervals

and shows that the length increases with a bank’s default probability and the liquidity of the

interbank market. We argue that submitting rounded numbers is a simple and intuitive way

to implement cheap talk equilibria with coarse signal spaces and provide evidence for patterns

of rounding that are consistent with this explication.

We hope that beyond the insight generated about the Libor process, our model will con-

45Our results also survive if duplicated submissions are removed from the sample.
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tribute to a deeper understanding of other market benchmarks and benchmark setting mech-

anisms. Market benchmarks are used in many illiquid OTC markets and the calculation of

benchmarks in these markets is based on a bewildering range of different mechanisms involving

past transactions, binding or partially binding quotes and pure cheap talk signals. Following

the Libor investigations a number of these other market benchmarks have come under the sus-

picion of manipulation.46 Our results should help reforming these benchmarks in a way that

preserves their efficiency enhancing properties.

46In addition to interest rate benchmarks such as ISDAfix, RONIA and SONIA foreign exchange bench-
marks such as the WM/Reuters FX rates as well as commodity benchmarks such as the Gold/Silver Fixings
and energy benchmarks such as the Platts, ICIS and Argus have recently come under investigation.
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APPENDIX: Proofs

Proof of Lemma 1

Proof. Eq. (3) means that the lender’s optimality is equivalent to:

e−λ(m,b) (1− µ(b,m)) b ≤ U, ∀m ∈ M, b ≥ 0, (12)

for some U ∈ R+, with equality in the support of P . For any m in the support of QM, (m, b)

belongs to the support of P if and only if λ(m, ·) is strictly increasing at b. Thus, a simple

algebraic rearrangement of (12) implies that the lender’s optimality is equivalent to:

λ(m, b) ≥ ln
(1− µ(b,m)) b

U
, ∀m ∈ M, b ≥ 0, (13)

with equality at any point in which λ(m, ·) is strictly increasing in b. The only function λ

satisfying this condition and λ(m, 0) = 0, and that it is also non-negative, continuous and

increasing in b is:

λ(m, b) = max







0, sup
b̂∈[0,b]

ln

(

1− µ(b̂, m)
)

b̃

U







, ∀m ∈ M, b ≥ 0. (14)

We require that λ(m, 0) = 0, and that λ(m, ·) is non-negative, continuous and increasing

because it is a cumulative distribution function with support in R+ and no atoms.
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Our next argument uses that u∗(Q) < v, which is a consequence of:

u∗(Q) =
e
∫
M

sup
b̂∈R+

ln((1−µ(b̂,m̃))b̂)dQM(m̃)

eβ

≤
e
∫
M

ln(
∫
V
ṽdµ(ṽ,m̃))dQM(m̃)

eβ

≤

∫

M

∫

V
ṽ dµ(ṽ, m̃)dQM(m̃)

eβ

=

∫

V
ṽ dF (ṽ)

eβ

< v,

where the first step uses (7), the second step uses that:

(1− µ(b̂, m))b̂ ≤

∫ v

b̂

ṽ dµ(ṽ, m) ≤

∫

V

ṽ dµ(ṽ, m),

the third step uses Jensen’s inequality, the fourth step uses the law of iterated expectations,

and the fifth step uses the assumption in (4).

Next, we argue that the value of λ defined in the statement of the lemma is equal to the

value in (14) for U = u∗(Q). This is because u∗(Q) < v means that µ(u∗(Q),m) = 0, and thus,

the right hand side of (14) at U = u∗(Q) is equal to zero for b < u∗(Q) and to the right hand

side of (6) for b ≥ u∗(Q).

Finally, our last step is to note that (7) means that U = u∗(Q) solves the equation resulting

from substituting (14) into (1). Besides, u∗(Q) < v ≤ supb̃∈R+

(

1− µ(b̃, m)
)

b̃ means that there

is no other solution to this equation because its left hand side is decreasing in U , strictly if

U ≤ supb̃∈R+

(

1− µ(b̃, m)
)

b̃. �
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Proof of Proposition 1

Proof. We take a message m and a lower message m′ whose respective pooling intervals have

lower bounds v and v′ and prove the first item by contradiction: A bank with type v has strict

incentives to deviate and report m′ instead of m if the difference v − v′ lies between zero and

the proposed bound. This is a direct consequence of the observation that (8) is a lower bound

to the incentive to deviate and the following chain of inequalities and equalities:

∫

w(ṽ)dµ(ṽ, m′)−

∫

w(ṽ)dµ(ṽ, m) (15)

−

∫ v

v′
(v − b̃)d

(

1−
u∗(Q)

b̃

)

≥

∫ v

v′
(w(ṽ)− w(v))F ′(ṽ) dṽ

∫ v

v′
F ′(ṽ) dṽ

− u∗(Q)

∫ v

v′

(v − b̃)

b̃2
db̃

≥
inf |w′(x)|

η2

∫ v

v′
(v − ṽ) dṽ
∫ v

v′
dṽ

−
u∗(Q)

v2

∫ v

v′
(v − b̃)db̃

≥
u∗(Q)

v2
(v − v′)

2

(

inf |w′(x)|v2

u∗(Q)η2
− (v − v′)

)

≥
u∗(Q)

v2
(v − v′)

2

(

inf |w′(x)| · eβ ·
v2

vη2
− (v − v′)

)

.

In the first step, we use three arguments. First,
∫

w(ṽ)dµ(ṽ, m) ≤ w(v) since w is a decreasing

function and v is the lower bound of the support of µ(·,m). Second:

∫

w(ṽ)dµ(ṽ, m′) ≥

∫ v

v′
w(ṽ)F ′(ṽ) dṽ
∫ v

v′
F ′(ṽ) dṽ

,

since w(ṽ) is decreasing in ṽ and the distribution with density F ′(ṽ)
∫ θ̂

θ̂′
F ′(x̃)dx̃

in the support [v′, v]

first order stochastically dominates the distribution µ(·,m′), see (5) and note that its support

is [v′, v̂] for some v̂ ≤ v. And third, we use that the last integral can be simplified applying

standard algebra. In the second step, we use that F ′(x) ∈
(

1
η
, η
)

, the infimum of the derivative

of w and that b̃ ≥ v. In the third step, we just compute the integrals and take a common factor.

In the fourth step, we use that u∗(Q) ≤ v
eβ

that can be deduced from (7). �
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Proof of Proposition 2

Proof. We prove the proposition by showing that there exists an interval partition equilibrium

in which the range of Q has finitely many messages whose pooling intervals are of size smaller

than (2). Since sup |w′(v)| ≤ v2

2v2η4
implies that pooling intervals of size less than (2) meet

the condition in (C2) we are going to restrict attention to equilibria in which (C2) is satisfied.

The communication strategy Q can be described by the set of (decreasing) bounds of the

corresponding pooling intervals, that we denote by {vi}
n
i=0 for v0 = v and vn = v, and a

labelling convention for the messages. We shall use that a necessary and sufficient condition

for the banks’ optimality condition is that a bank with type vi is indifferent between reporting

the message corresponding to the pooling interval [vi+1, vi] and the message corresponding to

the pooling interval [vi, vi−1]. This is a consequence of the fact that the derivative of the

bank’s payoff function (2) with respect to v weakly increases with larger messages (i.e. it is

supermodular in (m, v)). Formally, our necessary and sufficient condition can be deduced from

(5) and (8) to be:

∆(vi+1, vi, vi−1) ≡

(∫ vi

vi+1
w(ṽ)F ′(ṽ)dṽ

F (vi)− F (vi+1)
−

∫ vi−1

vi
w(ṽ)F ′(ṽ)dṽ

F (vi−1)− F (vi)

)

− u∗(Q)

∫ vi

vi+1

vi − b̃

b̃2
db̃ = 0, (16)

for any i ∈ {1, . . . , n− 1}.

To show that our required solution exists, we show that ∆(vi+1, vi, vi−1) crosses zero as we

vary vi+1. First, we apply the bounds derived in (15) to conclude that:

∆(vi+1, vi, vi−1) > 0, if vi − vi+1 < δ ≡ inf |w′(x)| · eβ ·
v2

vη2
. (17)

Similarly, F ′(x) ∈
(

1
η
, η
)

and u∗(Q) ≥ v

eβ
, by (7), means that the right hand side of (16) is
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less than:

sup |w′(x)| · η2 ·

(∫ vi

vi+1
(vi − ṽ) dṽ
∫ vi

vi+1
dṽ

+

∫ vi−1

vi
(ṽ − vi) dṽ
∫ vi−1

vi
dṽ

)

−
v

v2eβ

∫ vi

vi+1

(vi − b̃) db̃

= sup |w′(x)| · η2 ·

(

vi − vi+1

2
+

vi−1 − vi

2

)

−
v

2v2eβ
(vi − vi+1)

2

To give a sign to this expression, we note that the last line has the same sign as:

κ(δi + δi−1)− δ2i ,

for δi ≡ vi − vi+1, δi−1 ≡ vi−1 − vi and κ ≡ sup |w′(x)| · eβ · v2η2

v
. The application of the formula

for the solution of a quadratic equation means that the last expression is equal to:

(

κ+
√

κ2 + 4κδi−1

2
− δi

)(

δi +

√

κ2 + 4κδi−1 − κ

2

)

.

The second term is positive and the first term is strictly less than (2κ− δi) if δi−1 < 2κ. Hence:

∆(vi+1, vi, vi−1) < 0, if vi − vi+1 > δ ≡ sup |w′(x)| · eβ ·
2v2η2

v
> vi−1 − vi. (18)

The eqs. (17) and (18) imply that ∆(vi+1, vi, vi−1) moves from a strictly negative value to

a strictly positive value as vi+1 moves from vi − δ to vi − δ if vi−1 − vi < δ. Consequently, the

continuity of ∆ means that for any value of v1 ∈ (v−δ, v], we can define recursively the functions

νi+1(v1), i = 1, 2, . . ., as a solution in vi+1 ∈ (νi(v1)−δ, νi(v1)−δ] to ∆(vi+1, νi(v1), vi−1(v1)) = 0,

and where ν1(v1) = v1 and ν0 = v. The concavity of
∫ v′

v
w(ṽ) dF (ṽ)

F (v′)−F (v)
in v implies that ∆(vi+1, vi, vi−1)

is concave in vi+1. This implies that the functions νi are uniquely defined and, thus, continuous

in v1 since ∆ is also continuous. Another useful property of the functions νi, that we call (P1),

is that νi+1(v) = νi(ν2(v)) for i = 2, 3, . . . This property can be proved recursively using that

νi+1(v1) is the unique value that solves ∆(vi+1, νi(v1), vi−1(v1)) = 0, and that ν1(v1) = v1 and
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ν0(v1) = v.

We let n∗ be the maximum index i for which νi(v) is defined. This means that:

∆(v, νn∗−1(v), νn∗−2(v)) ≤ 0, (19)

and,

∆(v, νn∗(v), νn∗−1(v)) > 0. (20)

(20) and (P1) means that ∆(v, νn∗−1(ν2(v)), νn∗−2(ν2(v))) > 0, which together with (19) and

the continuity of νi and ∆ means that there exists a v∗ ∈ (ν2(v), v] such that

∆(v, νn∗−1(v
∗), νn∗−2(v

∗)) = 0. (21)

This means that νn∗(v∗) = v. Hence, we have found, as desired, a decreasing sequence

{v0, . . . , vn∗} = {ν0(v
∗), . . . , νn∗(v∗)} that goes from v to v, that solves (16) and whose pooling

intervals vi − vi+1, i = 0, 1, . . . , n∗ − 1, are less than δ. �
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Figure 1: Evolution of the Libor benchmark rates for all maturities. The first vertical line
indicates 31st of July 2007, when Bear Stearns’ High-Grade Structured Credit Fund col-
lapsed. The second vertical line indicates September 15th 2008, when Lehman Brothers filed
for bankruptcy.
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Figure 2: Daily standard deviation of Libor quotes for each maturity. The first vertical line
indicates 31st of July 2007, when Bear Stearns’ High-Grade Structured Credit Fund col-
lapsed. The second vertical line indicates September 15th 2008, when Lehman Brothers filed
for bankruptcy.
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Figure 3: Daily submissions by BNP Paribas. The vertical line indicates April 2013, when
the Libor reform delayed the publication of individual submissions.
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(a) (b)

Figure 4: Frequencies of digits in the 2nd decimal of submissions corresponding to: CDS
spreads in the bottom quartile (a) and CDS spreads in the top quartile (b).
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(a) (b)

Figure 5: Frequency of digits in the 2nd decimal of submissions for the overnight rate (a) and
the eight month rate (b).
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(a) (b)

Figure 6: Rounding per maturity for banks with CDS spreads in the bottom quartile (a)
and CDS spread in the top quartile (b). “1Y” stands for one year loans, “ON” stands for
overnight loans, “SW” for one week loans, “2W” for two weeks loans, and “xM” for x month
loans.
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Figure 7: 3 months moving average of rounding in the 2nd decimal for different banks.
The first vertical line indicates 31st of July 2007, when Bear Stearns’ High-Grade Struc-
tured Credit Fund collapsed. The second vertical line indicates September 15th 2008, when
Lehman Brothers filed for bankruptcy.
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Figure 8: 3 months moving average of rounding in the 2nd decimal for different maturities.
The first vertical line indicates 31st of July 2007, when Bear Stearns’ High-Grade Struc-
tured Credit Fund collapsed. The second vertical line indicates September 15th 2008, when
Lehman Brothers filed for bankruptcy.

53



Note: This figure shows the evolution of the regression coefficient for the CDS spread when estimating equation
(11) for a 24 month interval surrounding the beginning of each quarter. The blue area indicates two-way
clustered standard errors at bank and day and at the 10% significance level. The regression is estimated without
interaction term and with bank fixed effects but without time controls and includes only data for maturities
that survive the 2013 reform. CDS spreads are winsorized at the 1st and 99th percentiles. “Reference Tenor”
is an indicator variable that takes the value of 1 if the submission is for the overnight (“ON”), three month
(“3M”), six month (“6M”) or one year (“1Y”) tenors and 0, otherwise. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Figure 9: Evolution of the Relationship between Risk and Rounding.

54



Note: This figure shows the evolution of regressions coefficients for liquid maturities, when estimating equation
(11) for a moving 24 month interval surrounding the beginning of each quarter. The blue area indicates two-way
clustered standard errors at bank and day and at the 10% significance level. The regression is estimated without
interaction term and with bank fixed effects but without time controls and includes only data for maturities
that survive the 2013 reform. CDS spreads are winsorized at the 1st and 99th percentiles. Liquid maturities are
measured with the indicator variable “Reference Tenor” that takes the value of 1 if the submission is for the
overnight (“ON”), three month (“3M”), six month (“6M”) or one year (“1Y”) tenors and 0, otherwise. Data
are winsorized at the 99% level to remove outliers. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Figure 10: Evolution of the Relationship between Liquidity and Rounding.
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Table 1: Submissions from US-✩ Libor panel banks on October 10th, 2006.

Banks ON SW 2W 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 1Y
BAFX 5.29 5.31 5.32 5.33 5.36 5.37 5.37 5.37 5.37 5.365 5.365 5.36 5.35 5.345 5.34
BARL 5.3 5.31 5.32 5.32 5.35 5.38 5.38 5.38 5.39 5.385 5.385 5.38 5.37 5.36 5.35
BTML 5.29 5.32 5.32 5.33 5.35 5.38 5.38 5.38 5.39 5.38 5.37 5.37 5.36 5.36 5.35
CSBL 5.29 5.29 5.3 5.32 5.35 5.37 5.375 5.38 5.385 5.38 5.375 5.37 5.36 5.35 5.345
CTGL 5.29 5.3 5.31 5.32 5.35 5.375 5.375 5.38 5.385 5.38 5.37 5.36 5.35 5.34 5.34
DBBL 5.3 5.3 5.31 5.32 5.345 5.375 5.385 5.395 5.39 5.385 5.38 5.375 5.365 5.355 5.345
HSBL 5.28 5.32 5.32 5.32 5.35 5.37 5.38 5.38 5.39 5.38 5.38 5.37 5.36 5.35 5.34
JPML 5.29 5.3 5.31 5.32 5.35 5.37 5.38 5.38 5.39 5.38 5.37 5.37 5.36 5.35 5.35
LOYL 5.27 5.3 5.31 5.32 5.35 5.37 5.38 5.38 5.39 5.38 5.38 5.37 5.36 5.36 5.35
NORL 5.31 5.31 5.32 5.33 5.35 5.37 5.38 5.39 5.395 5.395 5.39 5.38 5.37 5.36 5.35
RABO 5.31 5.31 5.31 5.32 5.35 5.375 5.38 5.395 5.385 5.385 5.38 5.38 5.37 5.36 5.35
RBCL 5.295 5.3 5.305 5.32 5.35 5.375 5.375 5.38 5.39 5.385 5.38 5.375 5.365 5.355 5.345
RBSL 5.28 5.29 5.29 5.32 5.35 5.365 5.385 5.375 5.385 5.375 5.375 5.37 5.36 5.35 5.35
UBSL 5.3 5.31 5.315 5.32 5.35 5.37 5.38 5.39 5.39 NA 5.385 5.375 5.365 5.36 5.35
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Table 2: Submissions from Libor panel banks on October 10th, 2008.

Banks ON SW 2W 1M 2M 3M 4M 5M 6M 7M 8M 9M 10M 11M 1Y
BAFX 2 5 5 4.6 4.7 4.8 4.6 4.5 4.4 4.37 4.33 4.3 4.3 4.3 4.3
BARL 3 5 5 5 5.05 5.1 4.95 4.8 4.65 4.65 4.6 4.6 4.55 4.55 4.5
BTML 2.5 4.75 4.75 4.85 4.85 5.1 4.85 4.75 4.6 4.5 4.4 4.3 4.27 4.23 4.2
CSBL 2.5 5 5 5 5 5 4.8 4.6 4.4 4.35 4.3 4.25 4.23 4.21 4.2
CTGL 1.65 4.65 4.7 4.5 4.55 4.6 4.55 4.5 4.4 4.3 4.2 4.1 4.05 4.02 4
DBBL 2.5 4.3 4.35 4.4 4.5 4.8 4.5 4.3 4.25 4.2 4.2 4.2 4.2 4.2 4.2
HSBL 3.75 4 4 4.25 4.3 4.5 4.4 4.3 4.2 4.17 4.14 4.1 4.07 4.04 4
JPML 1.5 3.75 3.75 4.2 4.2 4.3 4.1 4 3.8 3.8 3.8 3.8 3.8 3.8 3.75
LOYL 2.75 4.25 4.25 4.25 4.35 4.55 4.4 4.3 4.2 4.17 4.14 4.1 4.1 4.1 4.1
NORL 2.25 5 5 4.7 4.7 4.85 4.5 4.55 4.4 4.35 4.25 4.2 4.22 4.18 4.15
RABO 1.5 3.5 3.75 4 4 4.1 4.1 4.1 4.1 4.05 4.05 4.05 4.05 4.05 4.05
RBCL 2.25 4.8 4.8 4.55 4.7 4.8 4.65 4.5 4.4 4.37 4.34 4.32 4.32 4.41 4.3
RBSL 4.5 4.5 4.5 4.65 4.85 4.95 4.85 4.75 4.65 4.6 4.55 4.5 4.5 4.5 4.5
UBSL 2 4.75 4.7 4.65 4.73 4.85 4.66 4.55 4.45 NA 4.35 4.3 4.28 4.26 4.25
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Table 3: Risk, Liquidity and Rounding in Libor Submissions

Dependent variable: “Rounding in the 2nd Decimal”
Annual time controls Daily time controls

(1) (2) (3) (4) (5)

CDS spread 1.802∗∗ 1.521∗∗ 0.449 0.427 0.177
(0.715) (0.646) (0.696) (0.846) (0.798)

p = 0.012 p = 0.019 p = 0.520 p = 0.614 p = 0.825

Liquid Maturities 0.035∗∗∗ 0.029∗∗∗ 0.035∗∗∗ 0.037∗∗∗ 0.031∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.005)
p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

CDS spread x Liquid Maturities 0.601∗∗ 0.536∗

(0.289) (0.301)
p = 0.038 p = 0.075

Daily mean CDS spread 3.183∗∗∗

(0.733)
p = 0.000

Time controls: Annual Annual Annual Daily Daily
Bank fixed effects: Yes Yes Yes Yes Yes

Observations 489,158 489,158 489,158 489,158 489,158
R2 0.052 0.052 0.053 0.098 0.098
Adjusted R2 0.052 0.052 0.053 0.093 0.093
Residual Std. Error 0.395 (df = 489128) 0.395 (df = 489127) 0.395 (df = 489126) 0.387 (df = 486585) 0.387 (df = 486584)

Note: This table provides the results of regressing coarseness in Libor submissions on proxies for risk and
liquidity. Models (1), (2) and (3) include time controls at annual frequency. Models (4) and (5) are estimated
with full time fixed effects with daily frequency. “Rounding in the 2nd Decimal” is a dummy variable taking
the value 1 if the second and last decimal of the Libor submission is either “5” or “0”. “CDS Spread” is the
spread on the bank’s one year senior Credit Default Swap, “Daily mean CDS Spread” is the daily average of
“CDS Spread” and “Liquid Maturities” is an indicator variable that takes the value of 1 if the submission is for
one of the tenors that remained after the 2013 reform. Standard errors are two-way clustered at bank and time
level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Table 4: Liquidity and Rounding for reference rates and surrounding tenors

Dependent variable: “Rounding in the 2nd Decimal”

(1) (2) (3) (4)

ON/SW 2M/3M/4M 5M/6M/7M 11M/1Y

CDS spread 3.120∗∗∗ 1.033∗ 1.280 1.033∗

(1.031) (0.609) (0.848) (0.609)
p = 0.003 p = 0.091 p = 0.131 p = 0.091

Reference Tenors 0.045∗∗ 0.029∗∗∗ −0.003 0.029∗∗∗

(0.019) (0.009) (0.006) (0.009)
p = 0.017 p = 0.002 p = 0.655 p = 0.002

Time controls Annual Annual Annual Annual
Bank fixed effects Yes Yes Yes Yes

Observations 57,538 87,537 85,452 58,362
R2 0.205 0.160 0.126 0.132
Adjusted R2 0.175 0.139 0.103 0.099
Residual Std. Error 0.419 (df = 55419) 0.375 (df = 85418) 0.377 (df = 83333) 0.381 (df = 56243)

Note: This table provides the results of regressing rounding in Libor submissions on CDS spreads and
liquidity for subsamples including each a reference rate and the surrounding less liquid tenors. In regression
(1) we only include the overnight and single week tenor. The sample for (2) comprises the two, three and four
month rates, (3) analyzes the five, six and seven month rates and (4) the eleven month and one year rates.
“Rounding in the 2nd Decimal” is a dummy variable taking the value 1 if the second and last decimal of the Libor
submission is either “5” or “0”. “CDS Spread” is the spread on the bank’s one year senior Credit Default Swap
and “Reference Tenor” is an indicator variable that takes the value of 1 if the submission is for the overnight
(“ON”), three month (“3M”), six month (“6M”) and one year (“1Y”) tenor and 0, otherwise. Standard errors
are clustered at the bank and time level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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