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Scattering of spoof surface plasmon 
polaritons in defect-rich THz 
waveguides
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We report on the first observation of ‘Spoof’ Surface Plasmon Polariton (SPP) scattering from surface 
defects on metal-coated 3D printed, corrugated THz waveguiding surfaces. Surface defects, a result of 
the printing process, are shown to assist the direct coupling of the incident free-space radiation into a 
spoof SPP wave; removing the need to bridge the photon momentum gap using knife-edge or prism 
coupling. The free space characteristics, propagation losses and confinement of the spoof SPPs to 
the surface are measured, and the results are compared to finite-difference time domain simulations. 
Angular resolved THz spectroscopy measurements reveal the scattering patterns from surfaces and 
are compared with Mie theory, taking into account the shortened wavelength of the photons in their 
bound SPP state compared to their free space wavelength. These results confirm yet another similarity 
between the properties of THz spoof SPPs and their natural, non-spoof, counterparts at optical and 
infrared frequencies which also, unexpectedly, adds functionality to the structures.

The field of plasmonics offers the possibility for sub-wavelength manipulation of electromagnetic radiation which 
can lead to more compact and efficient optical devices or optical circuits1–3. The concept of spoof-SPPs, where a 
surface structured on a sub-wavelength scale supports modes with cut-off frequencies determined by the geome-
try, allows the mimicking of SPPs and extended plasmonics to virtually all frequencies4,5. While the study of spoof 
SPPs is a very active field of research, most of the devices demonstrated to date work at microwave frequencies as 
their dimensions are suitable for low-cost printed circuit board type fabrication6–10. Spoof-plasmonic structures 
are also appealing for many photonic applications, with advanced properties such as switching11 and beamform-
ing reported12. Given that bound quasi-particles, such as an SPP, have a non-linear dispersion relation that lies to 
the right of the light line, additional momentum is required for a photon to couple from free space to the surface 
to form the SPP. This momentum gap is usually bridged with either prism coupling or scattering. However, the 
structures presented here do not require any additional means to couple radiation from free space, which we 
suggest is due to the high defect density on the surface offering a multitude of scattering opportunities. This effect 
is well known for classic, optical SPPs13, but has not been reported for spoof SPP structures. This is reasonable 
because, for operation in the microwave region, spoof SPP structures which possess feature sizes of the order of 
centimeters, are unlikely to include defects on the same scale. At higher (THz) frequencies, where wavelengths are 
of the order of tens of microns, semiconductor fabrication techniques are commonly used to produce the spoof 
SPP structures and are thus also usually free from defects comparable in scale to the used wavelengths. But 3D 
printing, which has been reported for millimeter wave14 but not for spoof plasmonic THz structures before, does 
exhibit a high defect density as the feature sizes are pushing the limits of the fabrication technique. 3D printing 
has high commercial potential where it competes with other serial techniques, such as milling, and can produce 
low cost and lightweight objects. One example is in the production of waveguides for high-frequency applica-
tions. Metalized, low-density 3D printed parts can replace commonly used materials such as brass. For example, 
3D printed, metal-pipe rectangular waveguides capable of operating up to 1.1 THz have recently been reported15. 
In the following we present a detailed characterization of the 3D printed THz spoof plasmonic waveguide which 
demonstrates the scattering of the bound spoof plasmons at the defects and an explanation with the classic Mie 
theory and FDTD simulations.
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Results
Four 3D printed spoof SPP structures with different geometric properties and defect densities are investigated. 
The geometrical and plasmonic properties, i.e. the propagation length and confinement, are summarized in 
Table 1 and compared with other spoof plasmonic structures from literature. The geometry of the samples inves-
tigated here are discussed in detail in the Supplementary Materials, including the relationship between the dif-
ferent geometric parameters and the transmission curve obtained. For the later discussion of the performance 
of the samples, literature values of different THz SPP structures are included as well. The structures were first 
characterized to obtain their plasmonic properties, i.e. the transmission spectrum, which shows the geometry 
dependent cut-off, and knife-edge scattering experiments to determinate the propagation length and confinement 
of the spoof plasmons to the surface. This was followed by the determination of the defect density with scanning 
electron microscopy and an optical surface profilometer. Finally, the scattering of the THz spoof plasmons at the 
defects was measured with angular resolved THz spectroscopy.

THz characterization. The non-linear dispersion relation of SPP results in an increased momentum of the 
quasi-particle, in comparison to a free space photon, near the cut-off frequency. There are two common ways to 
bridge the momentum gap: high refractive index prisms, and scattering13. The latter technique, called knife-edge 
scattering in experimental setups, is favorable for broadband SPP structures because a wider range of frequencies 
can be addressed simultaneously as the scattering offers a wide range of momenta. The 3D printed structures 
investigated here, however, do not require any such coupling techniques in contrast to previously reported THz 
spoof SPP structures. We assume that this property arises from the defect-rich surface. The Fourier decomposi-
tion of a rough surface contains many different wave vector components, enabling the excitation of many different 
SPPs over a wide range of angles simultaneously. The wide range of momenta available directly after the scattering 
at wavelength-sized defects results in the potential launch of SPPs at every defect. The coupling efficiency can be 
qualitatively evaluated by the attenuation at the cut-off frequency which lies in the order of 20–30 dB, which is 
comparable to values of knife-edge scattering on defect-free samples fabricated with photolithography. Although 
surface roughness as a means to launch SPPs is well known for optical frequencies, it has not previously been 
reported for spoof SPPs16–19.

The transmission spectra in Fig. 1 were recorded with the samples placed in the collimated part of the THz 
beam with a diameter of 10 mm. The key characteristics of SPPs are the propagation length and the confinement 
of the SPP to the surface20. Both characteristic lengths can be obtained by variations of the knife-edge scattering 
arrangement (see methods and Supplementary Materials) and the results can be found in Table 1.

Defect density. The high defect density of the 3D printed samples is apparent when looking at the micro-
graphs in Fig. 2, where various types of defects visible. For example, there are deformations to the surface along 
the ridges, probably originating from the stepwise printing process; defects where the grooves are damaged or 
incomplete; and debris, most likely originating from excess resin that forms irregularly shaped objects, on the 
surface. The surface profiles allow the average power spectral density (PSD) to be calculated which, in turn, gives 
access to the statistics of the surface roughness. The detailed results of the PSD and SEM micrographs can be 
found in the Supplementary Materials.

The PSD spectra can be used to quantify both the quality of the periodic SPP structure and the defect density. 
The periodicities of sample 1–3 are in good agreement with the target parameters listed in Table 1, with 150 µm 
for sample 1 and 2 and 166 µm for sample 3 but structure 4 shows no periodicity. The Full Width Half Maximum 
values for the first three samples are 8, 7.4 and 9.4 µm respectively, meaning that the periodicity has a deviation of 
±3%. Furthermore, the PSDs of all structures have an above zero amplitude at most other wavelengths, indicat-
ing a broad range of defects. Besides the prominent peak at the wavelength of the periodicity, there is a very well 
defined feature at shorter wavelengths and some small peaks scattered over the spectrum. The 3D maps show that 
this part of the PSD is indeed caused by the defects on the surface. The maximum of the defect peaks is between 
15 and 20 µm and they all have a FWHM of ~8 µm. While the PSD can provide information on a surface, e.g. the 
surface roughness, it is not possible to extract a defect density. It is, however, possible to obtain a quantity that 
gives a good impression on the number of defects on the surface by comparing the ratio between the contribution 

Sample

Geometrical Parameters
[µm]

Propagation Length
Lx

Confinement
Lz Defect PSD 

signal ratio
Unassisted free 
space couplingp d h µm λ µm λ

1 150 50 30 706 ± 181 ~2.4 75 ± 4 0.25 2.1 Yes
2 150 50 35 384 ± 23 ~1.3 119 ± 5 0.4 6.8 Yes
3 165 50 30 478 ± 32 ~1.5 75 ± 4 0.23 7.3 Yes
4 75 30 15 590 ± 36 ~2 69 ± 2 0.23 NA Yes
ref.26 Slots in metal film @ 0.28 THZ ~80000 ~75 ~1690 ~1.6 No
ref.27 Metamaterial array @ ~1 THz ~50000 ~176 ~600 ~2 No

Table 1. Geometric parameters and characteristic lengths of the 3D printed SPP structures in comparison with 
literature values. It is apparent that while the SPPs are highly confined, the propagation length of the 3D printed 
structures is strongly reduced compared to the literature values from structures with good surface quality. p: 
pitch, d: grove thickness, h: height as indicated in Supplementary Materials. Defect Power Spectral Density 
(PSD) signal ratio: Ratio between defect peak and corrugation peak.



3SCIENTIFIC REPORTS |          (2019) 9:6288  | https://doi.org/10.1038/s41598-019-42412-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

of the defect signal and the corrugation signal of the PSD. This ratio varies from 2.1 for sample 1, which therefore 
is the defect poorest, up to 7.3 for sample 3, which is the defect richest. Sample 4 could not be evaluated this way; 
the PSD as a method of evaluation struggles with the smaller sizes and becomes meaningless when the surface 
roughness is of the same length scale as the feature height. Even the autocorrelation function in the PSD process 
cannot discriminate between the periodic signal and the noise when the defects are dominant.

Figure 1. Transmission spectra of 3D printed spoof SPP structures with a triangular cross-section measured 
without additional means of coupling. A schematic of the measurement setup is shown in the inset. The THz beam 
originating at the horn antennas is collimated by a parabolic mirror, propagates across the surfaces and is then 
focused at the receiving horn antenna by a second parabolic mirror. The spectra agree very well with the results of 
the FDTD simulations (see Supplementary Material). FDTD simulation of sample 4 shown in has simulated a cut-
off frequency around 1.5 THz and, therefore the sample exhibits a flat spectrum in the measured range.

Figure 2. (a–c) 3D maps from the optical profilometer measurements. (a) shows the alternating height on 
sample 3. (b) shows the surface roughness on the top of the ridges. (c) while the presence of grooves on sample 
4 is visible, the defects are in the same size order as the periodicity. (d) The micrograph of sample 4 on the other 
hand, gives the impression that there is a periodicity that could support the measured spoof THz SPPs.
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Angular resolved THz measurements. The scattering at defects on surfaces or rough surfaces are well 
studied for nanometer scaled defects and roughness at optical frequencies21. The properties of defect rich spoof 
plasmonic surfaces, however, have not been previously studied, as many spoof plasmonic experiments are con-
ducted at microwave frequencies where no unintended defects due to manufacturing tolerances occur and defects 
are usually well defined and intended22,23. As a first approximation, the defects can be regarded as metallic spheres 
and as the THz radiation propagates in the plane of the sample surface only, the well-known case of Mie scattering 
on a metal cylinder applies24. We focused on the forward scattering properties, as these are the ones that we can 
determine experimentally, due to the geometrical constrains caused by the size of the THz transceivers. Figure 3 
shows the Mie scattering at perfect electric conducting sphere with a radius r = 20 µm for different wavelengths 
(from FDTD simulations). When the sphere is significantly smaller than the wavelengths (r < 1/5λ) the scattering 
becomes less omnidirectional than at longer wavelengths where there are no striking features in the curve. For 
wavelengths of the order of the radius, forward scattering dominates, but with pronounced side lobes. These side 
lobes are known to increase in intensity and scatter more towards the forwards direction when the particle is 
placed on a substrate25. If we apply these insights to the present situation of scattering from defects on spoof plas-
monic surfaces at THz frequencies, it can be expected that a first scattering event of a free-space photon will result 
in a nearly omnidirectional scattering, as the free space wavelength is much larger than the measured defects. The 
spoof plasmonic surface, however, has a preferred direction of propagation across its corrugation where it is able 
to support SPPs. Therefore, the omnidirectional scattering only excites an SPP in the direction across the corru-
gation. The SPP waves have smaller wavelengths than their corresponding frequency in free-space and, therefore 
will exhibit a different scattering pattern than the free-space wave for the same defects. As the samples have a high 
defect density, the effect of multiple scattering events needs to be taken into account along with the polydisper-
sity of the defects. An increasing defect density leads to a reduction in the lobe pattern which is replaced by an 
increasingly uniform field pattern21. Furthermore, the polydispersity also decreases the visibility of the lobed pat-
tern, as similar but not identically sized scatterers will have coinciding minima and maxima, as seen in Fig. 3a for 
wavelengths 10–25 µm. The results from FDTD simulations of a defect-rich SPP waveguide in Fig. 3b show that 
while the scattering intensity strongly increases with number of defects from a sparse to a defect rich surface, the 
scattering intensity saturates quickly and the weak lobe pattern that is visible for lower defect densities disappears 
into wide, uniform lobes. Additionally, the scattering lobes move towards the center with increased defect density. 
All this is in agreement with the previously described behavior at optical frequencies of multiple scattering21.

Angular measurements were obtained over a range of ±45°; a schematic of the experimental setup is shown 
in Fig. 4. The polar plot in Fig. 4 shows that all four samples have an increased acceptance angle compared to the 
bare horn antenna used as a reference. Additionally, multiple side lobes are visible, which resemble the shape of 
the previously shown Mie scattering plots. The SPP interaction area is several mm2, which will typically include 
100 s of defects. Therefore, the individual defect positions and sizes become less relevant and, instead, the defects 
can be considered as a collective. This statistical nature of the scattering leads to the side lobe symmetry. The side 
lobes are most pronounced for samples with the highest defect concentration, with sample 2 and 3 showing the 
first side lobes just below the −10 dB mark, which is in good agreement with the simulations that quickly saturate 
in their side lobe intensity, which explains why the intensities are very similar despite having different defect 
densities. Additionally, the side lobes of sample 1 and 3 are nearly identical in shape and only vary in intensity, 
which again agrees with simulations where the side lobe shape is preserved for lower defect concentrations. While 

Figure 3. (a) The forward scattering of THz radiation with different wavelengths incident on a metallic sphere 
with a radius of 20 µm as predicted by the Mie theory (from FDTD simulation). (b) Simulation of the angular 
scattering pattern of a defect rich sample with different defect densities.
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sample 3 has an even higher defect concentration which is expected to result into a broadening of the side lobes, 
the broadening could be also attributed to the larger defects found in the PSD for this sample, especially since 
some additional side lobes at higher angles are visible as well.

The frequency resolved plots of the angular resolved measurements in Fig. 5a reveal Mie like scattering char-
acteristics similar to the theoretical case in Fig. 3a: When varying the frequency within the narrow band below 
the cut-off frequency of the SPP waveguide, we see that the scattering side lobes change their angle increasingly 
towards the forward direction. Despite the narrow frequency range, the scattering angles of the forward scattering 
lobes changes from ~6° for the highest frequency (0.9 THz) to ~12.5° for the lowest frequency (0.8 THz), while 
according to the Mie theory, there would be hardly any change expected for a free wave scattering from particles 
of this size.

This is an indicator that the wavelength of the scattering wave has to be significantly shorter than the free space 
wavelength, as otherwise the scattering pattern would be omnidirectional and would hardly vary with such small 
wavelength changes of less than 10% of the wavelength.

It is challenging to directly measure the bound SPP wavelength as it is impossible to directly measure the wave 
vector k ≡ 2π/λ. It is, however, possible to extract the phase constant β from S-parameters, which is proportional 
to |k| where β is the real part. As expected, the dispersion curve in Fig. 5b), shows an increasing β as the frequency 
approaches the cut-off frequency. Due the narrow frequency band (0.75 to 1.1 THz) of the THz vector network 
analyzer we cannot observe the convergence of the SPPs dispersion curve and the light line at lower frequencies. 
However, the dispersion curve does indicate that the SPP wavelength is around half the length of the wavelength 
of a freely propagating wave at the same frequency.

Figure 4. Schematic of the angular measurement setup (left) and the polar plot of the results (right). The 
angular plot shows the averaged intensity below the cut-off frequency of the individual samples. All SPP samples 
show an increased acceptance angle. Additionally, side lobes as they are known from Mie scattering are visible.

Figure 5. (a) Frequency resolved angular plots show that the scattering lobes move toward the forward 
direction with increasing frequency. Due to normalization with the bare horn antenna, the forward scattering 
lobe is removed. (b) The dispersion curve shows that the bound wavelength of the sample.
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Discussion
The most general approach to interpret the results of the angular measurements is to compare them to Mie 
theory. Whilst this comparison has to be of a qualitative nature, as Mie theory usually accounts for spherical (or 
cylindrical) uniform particles, which is not the experimental reality as the micrographs show, the shape of the 
measured polar plots still closely resemble Mie scattering. The similarities are even larger when taking multiple 
scattering events into account. The observation of the side lobes at these defect sizes is interesting in itself, as the 
majority defects are in the order of 5–10% of the free space wavelength and one would usually expect a uniform 
scattering pattern without lobes and with equal contributions to the backward and forward scattering. However, 
the observed scattering pattern shows more similarities to the scattering typically found with wavelength-sized 
defects. The most likely explanation is that we observe the scattering of the bound SPPs, which have a much 
shorter wavelength than their free space equivalent, but the THz radiation still has to couple to the surface first. 
The observed pattern, therefore, would be a convolution of the scattering of the more omnidirectional scattering 
of the free-space wave on particles much smaller than the wavelength and the scattering of the bound SPP wave 
on the same defects, but this time the wavelength is in the same order as the defect size. This fits with the observed 
changes in the different defect densities and distributions. It is worth noting that the two samples with similar 
defect size distributions (1 and 2) have the same shape of side lobes, and the two samples with the same defect 
concentration have the same amount of scattering/similar intensity of their side lobes (2 and 3), but different 
shapes of the scattering pattern.

Table 1 shows that while the SPPs are strongly confined to the surface of the 3D printed structures, the propa-
gation lengths are only of the order of the wavelength itself. The confinement is between 69 µm and 119 µm, which 
is a third to a quarter of the free-space wavelength and in good agreement with the FDTD simulations which 
show an extension of ~70–110 µm. This confinement is approximately four times higher than that for previously 
reported THz SPP structures26,27, but the propagation length is just greater than two free space wavelengths, 
which is extremely short in comparison to the order of tens26 or hundreds27 times the wavelength in literature. The 
sample with the lowest defect concentration has the longest propagation length, indicating that the short propaga-
tion length is caused by the defects. Whilst enabling unassisted free space coupling, the defects also cause constant 
decoupling of the SPPs, resulting in high radiative losses, and hence very short propagation lengths. Even if the 
unassisted coupling is very useful for interconnect applications, the attenuation is of the order of 10 dB/mm and 
which is too high for waveguides. A better control of the printing quality, or potentially some post processing, 
would circumvent this issue by having a defect free waveguide with only small sections with defects to couple in 
and out. A better control of the print quality also opens up the possibility of tailoring the receiver characteristics, 
e.g., by making forward scattering dominant or tailoring the acceptance angle of the structures to minimize 
cross-talk in highly integrated photonic circuits.

Conclusion
We have demonstrated the free space coupling of THz radiation to 3D printed defect-rich spoof SPP surfaces. 
While the SPPs are well confined to the surface, the propagation lengths are only in the order of a few free-space 
wavelengths. The scattering patterns of the structures have been investigated by comparing them to Mie theory, 
which revealed that the scattering is dominated by the bound SPPs rather than the free space waves. To the best of 
our knowledge, this is the first study on scattering of spoof SPPs.

The resulting observed unassisted free space coupling of radiation has great potential for highly integrated 
photonic circuits, as no other components to couple are necessary and the radiation patterns can be tailored to 
the applications needs, e.g. to minimizing cross-talk or for frequency selectivity. For this, improvements in the 
printing quality are necessary for a better control over the surface quality and intended “doping” with specific 
defect concertation and distributions.

Methods
The samples were produced with a Formlabs Form 2 stereolithography 3D printer using Clear Resin v2 (GPCL02) 
with a nominal resolution of better than 25 µm and subsequently coated with approximately 300 nm of gold to 
have a metal layer thickness above the skin depth which is less than 100 nm at 1 THz. The roughness measure-
ments were undertaken with a Taylor Hobson CLI-2000. As the term PSD is loosely defined and is displayed with 
different units on the x- and y-axes28, we will briefly elaborate on the specific technique employed here. We use an 
averaged PSD, which has wavelength rather than the frequency on the x-axis, and is particularly useful for surface 
metrology applications as the wavelength correlates to the feature size. To evaluate the quality of the periodicity, 
we have used an anisotropic PSD which only includes horizontal spectral components, i.e. cutting across the cor-
rugations along the direction of propagation. To identify the relationship between quality of the target feature (i.e. 
the period of the grooves) and all other features on the surface, an isotropic PSD is used which includes spectral 
components from all directions. The parameters typically extracted from the PSD, such as surface roughness, are 
of limited use for a corrugated film, as the periodicity itself is the main contributor to it, and the defects would 
only be a deviation of the ideal value. However, the histograms of the PSD do show the distribution of features 
by their size and the intensity. A PSD of an ideal structure, for example, would only exhibit one infinitely sharp 
peak at the frequency of the chosen periodicity. A broadened peak at the wavelength of the periodicity indicates 
deviation from the periodicity, amplitude at any other wavelengths are indicative of defects. The PSD spectra can 
be found in the Supplementary Materials.

For the FDTD simulation (Software: Lumerical FDTD), a workaround was used to address the issues accom-
panied by the attempt of simulating a realistic defect-rich SPP sample. It is challenging to generate a realistic 
model as it requires a significant level of computational resource for multiple reasons: To simulate Mie scattering 
a single defect has to be mapped with multiple mash points; the simulated domain has to have a certain minimum 
size to allow multiple scattering; and the area has to be large enough to be of statistical significance, so that the 
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positioning of individual defects does not significantly change to results. A simulation fulfilling all these require-
ments would require terabytes of RAM. To realize a simulation on the available workstation with 128 GB RAM a 
smaller area of the SPP waveguide with randomly distributed defects is simulated. This step is repeated multiple 
times with different random distributions of the defects until the results converge and do not show significant 
change with the next iteration. There are some considerable differences between the FDTD simulations and the 
experimental measurements: In the FDTD simulation a wave is launched at one end of the structure and then 
a far field projection of the electric fields at the other end of the structure results in the plots in Fig. 3; in the 
experiment, the source rotates around the sample and the receiver is stationary, i.e. the THz wave propagates in 
the opposite direction. Whilst Maxwell’s equations are time reversible, the order in which the scattering events 
take place might matter. Unfortunately, neither an angular resolved FDTD simulation nor swapping receiver 
and transmitter in the measurements is feasible because of the vast computational resources required or the 
increased loss of signal respectively. All THz characterization has been conducted with a THz vector network 
analyzer (VNA) comprising a microwave VNA with a frequency range up to 42.5 GHz and two Virginia Diodes 
extenders (VNAX WR1.0) with a frequency range from 0.75–1.1 THz. The transmission spectra are measured 
by placing the 3D printed devices in the collimated part of the beam between two parabolic mirrors without any 
additional means to couple from free space. The same measurements were repeated with the antennas pointing 
at an angle of 60° to the surface normal, to exclude the possibility that the free-space coupling happens due to 
edge-firing13,20. Knife-edge scattering was used in the characterization to have defined points to couple in and out. 
These knife-edge scattering experiments were carried out by placing the transmitting and receiving horn antennas 
at a 60° angle to the sample surface normal, aiming at the gap between the sample and in-coupling (or respectively 
outcoupling) knife from a distance of less than 5 cm. A schematic of the knives’ positions relative to the sample 
is shown in Fig. 4. For the propagation length measurements, one knife is placed near the sample and kept in a 
fixed position to couple the radiation in while a second knife is placed parallel to the first one to couple out. The 
distance between the two knives is incrementally increased, and the spectra for each increment are recorded. A 
third knife was placed between the two knives to reduce transmission through the direct line of sight to ensure 
that only the contribution of the SPPs is measured. The configuration for confinement measurements was similar 
but the outer two knives used for coupling in and out are kept at a fixed position, and only the middle knife was 
moved perpendicular to the surface. Illustrations on the measurement principle and the results of the fittings can 
be found in the Supplementary Materials.

For the angular measurement, the sample was placed at the pivot point, and the collimated beam is rotated 
around it in a fixed distance, as the receiving antenna remains stationary. The angular measurement system has 
an angle range from 0–45° on both sides, which means the sample had to be rotated once and two measurements 
were stitched together to obtain the scattering plots in both directions (±45°). The collimated beam has a diam-
eter of 10 mm. The plotted intensity is the averaged intensity at this angle for all frequencies below the cut-off of 
the SPP-structure. All angular measurements are normalized to the 0° transmission of the same sample to avoid 
alignment dependent intensity differences. The frequency resolved angular plots are normalized with the bare 
antenna in the pivot point instead of the SPP waveguide, to adjust for eventual antenna characteristics.

References
 1. Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 311, 189–193 (2006).
 2. Maier, S. A. & Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. 

Phys. 98, 011101 (2005).
 3. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).
 4. Pendry, J. B., Martín-Moreno, L. & Garcia-Vidal, F. J. Mimicking Surface Plasmons with Structured Surfaces. Science 305, 847–848 

(2004).
 5. Garcia-Vidal, F. J., Martiın-Moreno, L. & Pendry, J. B. Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A 7(2), 

S97–S101 (2005).
 6. Zhao, S., Chi Zhang, H., Zhao, J. & Tang, W. X. An ultra-compact rejection filter based on spoof surface plasmon polaritons. Sci. Rep. 

7 (2017).
 7. Gao, Z., Gao, F. K., Shastri, K. & Zhang, B. Frequency-selective propagation of localized spoof surface plasmons in a graded 

plasmonic resonator chain. Sci. Rep. 6 (2016).
 8. Gao, Z., Gao, F. & Zhang, B. High-order spoof localized surface plasmons supported on a complementary metallic spiral structure. 

Sci. Rep 6 (2016).
 9. Zhang, D., Zhang, K., Wu, Q., Yang, G. & Sha, X. High-efficiency broadband excitation and propagation of second-mode spoof 

surface plasmon polaritons by a complementary structure. Opt. Lett. 42, 2766–2769 (2017).
 10. Zhang, D., Zhang, K., Wu, Q., Ding, X. & Sha, X. High-efficiency surface plasmonic polariton waveguides with enhanced low-

frequency performance in microwave frequencies. Opt. Exp. 25, 2121–2129 (2017).
 11. Zhou, Y. J., Zhang, C., Yang L. & Xiao, Q. X. Electronically switchable and tunable bandpass filters based on spoof localized surface 

plasmons. J. Opt. Soc. Am. B 34 (2017).
 12. Yu, N. et al. Designer spoof surface plasmon structures collimate terahertz laser beams. Nat. Mater. 9, 730–735 (2010).
 13. Sarid, D. & Challener, W. Modern Introduction to Surface Plasmons (2010).
 14. Pandey, S. Gupta, B. & Nahata, A. Terahertz plasmonic waveguides created via 3D printing. Opt. Exp. 21 (2019).
 15. Otter, W. J. et al. 3D printed 1.1 THz waveguides. Electron. Lett. 53 (2017).
 16. Stern, E. A. Plasma radiation by rough surfaces. Phys. Rev. Lett. 19, 1321 (1967).
 17. Kretschmann, E. The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness. Opt. 

Commun. 5 (1972).
 18. Kretschmann, E. Die Bestimmung der Oberflachenrauhigkeit duenner Schichten durch Messung der Winkelabhangigkeit der 

Streustrahlung von Oberflachenplasmaschwingungen. Opt. Commun. 10 (1974).
 19. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (1988).
 20. Maradudin, A. A., Sambles, J. R. & Barnes, W. L. Modern Plasmonics (2014).
 21. Maradudin, A.A. Light Scattering and Nanoscale Surface Roughness (2007).
 22. Ourir, A., Maurel, A., Félix, S., Mercier, J.-F. & Fink, M. Manipulating light at subwavelength scale by exploiting defect-guided spoof 

plasmon modes. Phys. Rev. B 96 (2017).
 23. Wu, H.-W. et al. Trapped spoof surface plasmons with structured defects in textured closed surfaces. Optics Letters 42 (2017).



8SCIENTIFIC REPORTS |          (2019) 9:6288  | https://doi.org/10.1038/s41598-019-42412-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

 24. van de Hulst, H. C. Light Scattering by Small Particles (1981).
 25. Schmid, M., Andrae, P. & Manley, P. Plasmonic and photonic scattering and near fields of nanoparticles. Nanoscale Res. Lett. (2014).
 26. Zhu, W., Agrawal, A. & Nahata, A. Planar plasmonic terahertz guided-wave devices. Opt. Exp. 16(9), 6216–6226 (2008).
 27. Williams, C. R. et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nat. Photon. 2, 

175–179 (2008).
 28. Jacobs, T. D. B., Junge, T. & Pastewka, L. Quantitative characterization of surface topography using spectral analysis. Surf. Topogr 5 

(2017).

Acknowledgements
This work has been funded by the European Union under the 7th Framework Program (Project No. 607521, 
NOTEDEV) and by Durham University’s EPSRC supported research impact fund (EP/R511523/1).

Author Contributions
The concept of printing 3D THz components was conceived by J.G. and A.G. A.K.K. designed the devices, 
performed the simulations, designed the experiments and undertook the THz measurements. The angular 
resolved THz measurement system was developed by A.K.K. and J.H. A.B. and L.T. printed the components, M.C. 
gold coated the samples and took the Scanning Electron Micrographs, D.Z. and C.B. are supervisors of A.K.K.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-42412-6.
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019


