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Abstract  20 

Background/Objectives: Dual-energy x-ray absorptiometry (DXA) is becoming a method of 21 

choice for the assessment of visceral adipose tissue (VAT) but the lack of robust reference 22 

ranges presents a challenge to the interpretation of VAT in clinical practice, research 23 

settings, and the athletic environment. The objective of this study was to develop age- and 24 

sex-specific reference intervals for DXA-derived VAT mass. 25 

Subjects/Methods: The reference group comprised 3219 adults (1886 general population, 26 

42% women; 1333 athletes, 11% women) in the United Kingdom, aged 18 to 83 years. Total 27 

body scans were performed using a GE Lunar iDXA and VAT analyses were enabled 28 

through Corescan software (Encore version 15.0). Age-specific reference ranges were 29 

derived in samples stratified by sex and general population/ athlete status. We modelled the 30 

mean and SD of Box-Cox transformed VAT mass as a function of age with a generalised 31 

least squares method using fractional polynomials (Stata® -xrigls- program). Centile values 32 

were then back-transformed to provide reference intervals on the original scale.  33 

Results: In general population samples, average VAT mass increases with age up until 34 

around 65-70 years, and then begins to decline at older ages, though data are relatively 35 

sparse at the upper end of the age range. In athletes, on average, VAT mass increases with 36 

advancing age in men and women. Both 95% and 98% reference ranges are presented in 5-37 

year increments in all samples, and we provide equations to enable the calculation of any 38 

centile, for any age within the range.  39 

Conclusion: These reference data can aid the interpretation of VAT mass specific to an 40 

individual’s sex, age, and athletic status, increasing the utility and applicability of DXA-41 

derived VAT assessments. Additional research is needed in adults over 65 years and female 42 

athletes, with different DXA devices, across different ethnic groups and specific sports. 43 

 44 
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Introduction 46 

Visceral adiposity is implicated in the development of chronic low grade inflammation (1) and 47 

with medical conditions including insulin resistance, diabetes, and cardiovascular disease 48 

(2,3), and has been associated recently with vertebral fracture in women (4). Visceral 49 

adipose tissue (VAT) is also an important predictor of all-cause mortality (5).  Magnetic 50 

resonance imaging (MRI) and computed tomography (CT) imaging are the gold-standard 51 

techniques for the measurement of VAT. However, MRI is time-consuming, CT brings a high 52 

dose of radiation, and both are costly. Advances in dual energy X-ray absorptiometry (DXA) 53 

technology include the development of VAT assessment capabilities that have been 54 

validated using CT (6). The advantages of DXA over CT and MRI are that it provides a more 55 

accessible and rapid assessment of abdominal VAT, with good precision (7–9), at a lower 56 

cost, and with considerably lower radiation than CT and, as such, is appropriate for 57 

longitudinal investigations.                                  58 

 59 

Over the last six years, DXA-derived VAT using the GE Corescan (GE Healthcare, Madison, 60 

WI) software has been associated with cardio-metabolic risk factors, such as insulin 61 

resistance, across different body mass index classifications (10–12). Such associations have 62 

also been observed using VAT mass measures derived from the Hologic DXA models and 63 

their associated software (13,14). However, in practice, the utility of DXA-VAT 64 

measurements is currently limited due to the lack of appropriate reference ranges (12,15), 65 

presenting a challenge when interpreting results and when providing feedback to patients, 66 

research participants, and athletes. The characterisation of individuals based on visceral fat 67 

levels has clinical utility for obesity specialists in a variety of fields including endocrinology, 68 

epidemiology, sports medicine and dietetics. 69 

 70 

The purpose of this study therefore was to develop age- and sex-specific reference intervals 71 

for DXA-derived VAT mass in heterogeneous samples of general population and athletic 72 

adults in the United Kingdom. 73 
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 74 

Materials and Methods  75 

Reference groups 76 

The reference data groups included adults who were residing in the United Kingdom and 77 

had taken part in various research studies approved by the Leeds Beckett University ethics 78 

committee between 2007 and 2017, providing their signed informed consent prior to their 79 

DXA scans. The inclusion criterion was age 18 years or above. Included adults were 80 

deemed generally healthy, as there were no specific patient groups recruited. The exclusion 81 

criteria applied to women who were pregnant and individuals who were not able to fit within 82 

the DXA scan table boundaries, or those who had a body mass greater than 204 kg, due to 83 

the DXA table weight limit. The total reference group comprised of 2286 men and 933 84 

women, aged 18 to 83 years. The group were sub-divided to a general population sample 85 

(n=1886, aged 18-83y, 42% women) and athletes (n=1333, aged 18-61y, 11% women). 86 

Individuals in the general population sample did not take part in any competitive sport at the 87 

time of their DXA scan. Athletes were individuals who took part in competitive sport at the 88 

time of their DXA scan, including athletes from club to world class performance levels across 89 

a variety of team and individual sports. 90 

 91 

Procedures 92 

Participants were asked to refrain from vigorous exercise during the preceding 12 h and, for 93 

all physical measurements, were tested in minimal clothing with shoes and jewellery 94 

removed. Body mass was measured to the nearest 0.1 kg using calibrated electronic scales 95 

(SECA, Birmingham, UK) and standing height was measured to the nearest 0.1 cm using a 96 

stadiometer (SECA, Birmingham, UK). Body mass index (BMI; kg/m2) was subsequently 97 

calculated [weight (kg)/height(m)2]. Narrow fan beam DXA (Lunar iDXA, GE Healthcare, 98 

Madison, WI) was used to evaluate total and regional fat and lean mass, and the advanced 99 

CoreScan software (EnCore version 15.0) estimated VAT mass (g). For all scans, the 100 
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correct region of interest placement and analyses were verified by the same clinical 101 

densitometrist certified by the International Society for Clinical Densitometry.  102 

 103 

Participants were placed in the supine position on the scanning table, aligning with the 104 

central vertical axis. The arms were positioned parallel to - but not touching - the body, with 105 

a 1-cm space in between the thigh and the hand to enable the estimation of VAT. The 106 

forearms were pronated with the hands face down in accordance with the National Health 107 

and Nutrition Examination Survey protocol (16). For broader participants, the hands were 108 

placed mid-prone so that the whole body could fit within the scan boundaries. The legs were 109 

fully extended, and feet were secured with a canvas and Velcro support to avoid foot 110 

movement during the scan acquisition. Scans were conducted using standard (153 mm/sec) 111 

or thick (80 mm/sec) mode depending on body stature, and the DXA software automatically 112 

determined the mode. The regions of interest (ROI) for the total body cut-offs were manually 113 

adjusted according to the manufacturer’s instructions. The ROI over the android region for 114 

the assessment of VAT mass was automated by the CoreScan software (EnCore version 115 

15.0). The iDXA CoreScan application uses a validated model derived from DXA and CT 116 

images, which computes VAT by subtracting subcutaneous abdominal fat from total 117 

abdominal fat (6). As well as being validated against CT, iDXA VAT is highly correlated with 118 

criterion MRI measurements of VAT (17), and robust associations with cardiometabolic risk 119 

(11) and glucose intolerance (18) have been demonstrated. Daily calibration and quality 120 

control observations were recorded according to manufacturer’s guidelines throughout the 121 

duration of the data collection and no equipment drifts or faults were reported during the 122 

study period. Short-term precision estimates for iDXA measurements on the DXA scanner 123 

used in this study are 0.8% CV for total fat mass and 0.5% CV for VAT mass in individuals 124 

with a BMI between 25.5 and 42.4 kg/m2 (8). 125 

 126 

 127 

 128 



6 
 

Statistical Analysis  129 

All analyses were conducted using Stata® software (v. 14.2; Stata Corp. College Station, 130 

Texas). We derived age-related reference intervals by modelling the mean and standard 131 

deviation (SD) for VAT (g) as a function of age (19). Data were first transformed using a Box-132 

Cox power function and then back-transformed to provide reference intervals in the original 133 

scale. Appropriate powers for the fractional polynomials to model the mean and SD were 134 

determined from the data using the Stata® -xrigls- program (20), from a selection of -2, -1,  135 

-0.5, 0, 0.5, 1, 2, 3 (0 = log). In this program, the best model (fractional polynomial, linear, 136 

constant fits) for both mean and SD is chosen via likelihood-ratio tests. We specified 137 

maximum degrees of freedom for the best-fitting model of 4 for the mean and 3 for the SD 138 

and a significance level (alpha) of 5%. The specification of the alpha for comparison of two 139 

nested models via a likelihood ratio test is arbitrary to an extent. We chose an alpha of 0.05 140 

as it approximates a difference of 2 for Akaike’s Information Criterion for models that differ 141 

by one parameter (21), and is therefore a sensible default. Sensitivity analyses using model 142 

deviance (-2*Log-Likelihood) showed that a 5% alpha provided a good relative fit in all 143 

samples versus models derived with substantially more stringent or lenient alpha.  144 

Outliers in the solution were defined as values that would occur only rarely (<5% of the 145 

time), using sample size-dependent model Z-score thresholds (22), and were removed prior 146 

to final analysis (one iteration). If any outliers were removed, then the Box-Cox 147 

transformation was re-determined on the remaining data prior to modelling. We estimated 148 

the 1st, 2.5th, 97.5th and 99th centiles, providing 95% and 98% reference intervals. 149 

Confidence intervals (90%) for these centiles across the age range were derived from the 150 

obtained standard errors. In this generalised least squares model, the transformed variable 151 

is assumed to be normally distributed conditional on age. The distribution of model Z scores 152 

was inspected visually to check that the model was adequately specified, with the 153 

assumption of N(0,1) in a symmetrical distribution.  154 
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We derived a rough estimate of the precision of estimation of the reference limits afforded by 155 

the sample sizes available to us, using the relative margin of error (23). The relative margin 156 

of error is defined as the ratio of the width of the confidence interval of the reference limit 157 

(e.g. 2.5th or 97.5th centile) to the width of the reference interval at any value of age, 158 

assuming a uniform distribution of the covariate. It is desirable for the width of the confidence 159 

interval for the centile limits to be a small proportion of the width of the reference interval. 160 

The width of the 90% confidence interval for the 95% reference limits (on the Box-Cox 161 

transformed data analysed in the model) was approximately 6% of the 95% reference 162 

interval width in both samples of men and 7% for the general population sample of women, 163 

representing acceptable precision. For the small sample of female athletes, the relative 164 

margin of error was approximately 17%, which is relatively imprecise.  165 

 166 

Results  167 

Summary data for each of the four samples are presented in Table 1. Tables 2-5 present the 168 

age- and sex-specific centiles. In the general population groups, average VAT mass 169 

increases with age up until around 65-70 years, and then begins to decline at older ages. 170 

However, caution is warranted, as the data are relatively sparse at the upper end of the age 171 

range. In athletes, on average, VAT mass increases with advancing age in both men and 172 

women across the age range. The distribution of model Z scores was acceptable in all 173 

samples, with negligible skewness and kurtosis (Table 6). Table 6 also shows the fractional 174 

polynomial powers determined from the data and used to construct the reference intervals. 175 

The derived equations, plus a worked example of how the centiles are calculated, are 176 

provided in the supplementary information (S1). Readers may use the equations to derive 177 

any centile for any age within the distribution; for example, for ages in-between those 178 

presented in the Tables. In men, 6 outliers were removed in the general population sample, 179 

with one outlier removed for athletes. In women, there were no outliers in either of the two 180 

samples. 181 
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 182 

It should be noted that some practitioners might prefer to use VAT volume (cm3) rather than 183 

mass, so the reference data provided can be easily converted as 1 g = 1.06 cm3 (GE, 184 

Europe). 185 

 186 

Discussion 187 

In this study, we have derived the first age- and sex-specific reference intervals for iDXA-188 

derived VAT mass in UK adults, in both the general population and athletes. The derived 189 

centiles show that on average men have greater VAT mass than women across the age 190 

range, regardless of athletic status. Also, for both men and women, VAT mass increases 191 

with advancing age across the range in athletes, and in the general population sample up to 192 

around 65-70 years.  193 

 194 

Neither of these findings are surprising, as men typically accumulate more body fat around 195 

the abdomen, hence the “apple” shape phenotype that has been associated with cardio-196 

metabolic diseases (2,3,24). In addition to menopause-related hormonal changes, there is a 197 

well-documented age-related shift of fat distribution from the periphery and subcutaneous 198 

level to the central abdominal region contributing to higher visceral fat as we age in both 199 

sexes (25). This shift is accepted as one of the key physiological changes that increases 200 

disease risk over time, so the development of VAT mass reference intervals from 18 years 201 

across all groups provides valuable information for disease prevention and management.  202 

 203 

In the general population sample, average VAT mass increases with age up to around 65-70 204 

years and then appears to begin to decline. Caution is warranted, however, as data become 205 

more sparse at the upper end of the age range. These are, however, the first reference data 206 

for DXA-derived VAT in older adults and act as a robust starting point.  Future work should 207 

focus on enhancing the reference data for men and women ≥65 years, as their use may be 208 

of interest to those researching and diagnosing obesity-related conditions including 209 
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osteosarcopenic obesity. The current diagnostic criteria for this condition utilises obesity cut-210 

points based on percentage of body fat (26) and there is a need for more specific criteria. 211 

Visceral fat influences inflammatory processes (1), which contribute to osteoporosis and 212 

sarcopenia (27), so these VAT reference intervals could provide a more accurate diagnosis 213 

and help identify VAT-reduction targets with patients.                              214 

 215 

It is well understood that athlete populations generally have lower levels of total body fat in 216 

comparison to their general population counterparts; however, little is known about visceral 217 

fat levels in athletes. Anecdotal evidence demonstrated very low, almost undetectable, VAT 218 

mass in some athletes, and these are the first robust reference data produced to provide a 219 

useful guide for athletes, trainers, and coaches. Although the information was available to 220 

categorise the athlete group according to individual sports or sport types that align with the 221 

Task Force Classification of Sports (28), this would have created multiple groups of a small 222 

size, especially for women.  Therefore, we consider the influence of sport type to be outside 223 

the scope of the current study, but it could be a focus of future work. 224 

 225 

When DXA can be accessed, it provides a more efficient and less-invasive tool than MRI 226 

and CT to determine VAT with high accuracy and precision across a range of ages and body 227 

sizes. These new data will provide clinicians, researchers, and practitioners with more 228 

confidence when utilising DXA for VAT assessment, by enabling the identification of more or 229 

less favourable VAT mass values for an individual. This process will allow links to be made 230 

in relation to clinical markers, and potentially help quantify disease risk, but also provide a 231 

tool for monitoring and interpreting change during and after lifestyle interventions. In the 232 

context of athletic populations, the data will allow coaches and sport scientists to provide 233 

comparisons and act as a monitoring tool. 234 

 235 

An example of the application of the reference ranges to individuals is instructive here. 236 

Consider a new individual aged 40 years, drawn from the male general population group, 237 



10 
 

presenting with a VAT mass of 1800 g. Note from Table 3 that this value is above the 50th 238 

centile and below the 97.5th centile – the upper limit of the 95% reference interval. It is a 239 

straightforward matter to derive this individual’s centile position using the equations 240 

presented in the supplementary file (S1) and the standard normal distribution, after 241 

transformation of the 1800 g value using the Box-Cox power applied to the data in this 242 

sample. This 40-year old male is at the 85th centile for VAT mass. This result could be 243 

presented as him being 85th in a queue of 100 people like him (male general population, 244 

aged 40 years) with 15 men behind, where being nearer to the front of the line is more 245 

desirable. This type of simple presentation might facilitate discussion of cardio-metabolic 246 

disease risk in the context of other clinical data and behavioural risk factors.  247 

 248 

To date, there has only been one prior study that has published VAT reference values, using 249 

percentiles in 421 healthy Polish adults aged 20-30 years (15). The reference intervals were 250 

not age-specific, and the age-range of 10 years renders comparisons with our age-related 251 

reference data essentially irrelevant. Katzmarzyk et al. (12) determined DXA-derived VAT for 252 

2317 white and African American adults using a Hologic scanner, with a focus on identifying 253 

clinical thresholds associated with the  presence of cardiovascular risk factors. Although this 254 

approach has relevant and important clinical utility, the authors did not specifically identify 255 

VAT reference data. In the current study, due to wider age ranges and the derivation of 256 

equations to predict VAT mass (S1), practitioners can calculate VAT mass centiles for any 257 

age, so our study offers the opportunity for greater generalisability and utility in practice.  258 

 259 

An interesting question is how our derived centiles compare with crude reference ranges that 260 

may be derived from published mean (SD) VAT mass data measured using a GE iDXA 261 

scanner. Sasai et al. (29), for example, presented VAT mass data in 81 men and 113 262 

women (general population). In men, the mean (SD) VAT mass (g) was 1440 (1170), with a 263 

range of 70 to 4890 g. Note that the fact that the mean is smaller than twice the SD indicates 264 

a substantially skewed distribution (30), as is typical with visceral fat measures. We 265 
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assumed a log-normal distribution and derived the 2.5th and 97.5th centiles to produce a 95% 266 

reference range using Parameter Solver software (v3.0, University of Texas MD Anderson 267 

Cancer Center, Department of Biostatistics: 268 

http://biostatistics.mdanderson.org/SoftwareDownload/). The 95% reference range was 277 269 

to 4512 g, in a sample with a mean (SD) age of 41.8 (14.1); range 18-67 years. Table 2 270 

shows that our derived 95% age-related reference interval for a 40-year old man 271 

(approximating the mean age in the Sasai et al. sample) was 107 to 3869 g. The 95% 272 

reference intervals for an 18-year old and a 65-year old (approximating the sample range in 273 

that study) were 56-772 g, and 430-5960 g, respectively. The men’s data from the Sasai et 274 

al. study is therefore broadly consistent with our reference intervals. Nevertheless, it is very 275 

clear from this example that the method we have applied is superior to this crude approach 276 

in that it enables us to derive age-specific reference intervals, rather than a single interval 277 

applying to a very wide age range. In as much as VAT mass is substantially age-related, we 278 

believe that deriving a single reference interval based on a sample heterogeneous for age 279 

would be inappropriate. The sample of women in Sasai et al. had a mean (SD) VAT mass of 280 

950 (680) g and a mean (SD) age of 42.4 (12.3), ranging from 19 to 69 years. Again, 281 

assuming a log-normal distribution, the 95% reference interval is 219 to 2725 g. Table 4 282 

shows that our derived 95% reference interval for a 40-year old was 10 to 1810 g.  The 95% 283 

reference intervals for an 18-year old and a 70-year old were 0-716 g and 56-2941 g, 284 

respectively. The Sasai et al. data are consistent with our reference intervals, though it 285 

appears as though the women in their sample had somewhat higher levels of visceral fat 286 

across a similar age range. Again, however, the fact that their sample was heterogeneous 287 

for age precludes a rigorous comparison, and age-related reference intervals are clearly 288 

more informative than a single interval.  289 

 290 

We must acknowledge several limitations. First, although we collected data from different 291 

ethnic groups it was only a very small proportion, and we could only use the data from white 292 

participants to develop robust reference intervals. Future work should look to develop 293 



12 
 

reference intervals in different ethnic groups. This research is particularly important for 294 

Asian, especially South-Asian, populations as they have a greater risk of developing type 2 295 

diabetes, and an evidence-based mechanistic link exists between visceral fat accumulation 296 

and poor glycaemic control (31,32). There will also be a need for the US and other countries 297 

to generate their own reference intervals, but they should find those developed as part of our 298 

study useful until country-specific data is available. 299 

 300 

Secondly, in the female general population sample, we were unable to back-transform (Box-301 

Cox) the derived 1st centile for ages 18-25 years, and the 2.5th centile for 18-year-olds, 302 

because the values were too small, and the back transformation cannot be negative. This 303 

issue can arise because the normal distribution has an infinite lower tail of negative values, 304 

so it might be something of a compromise model when dealing with an intrinsically positive 305 

outcome variable like VAT mass, especially when combined with the generally low levels of 306 

VAT in young women. This issue is of no practical consequence, however, because we have 307 

set the values to ‘essentially zero’ for these centiles for those few instances. 308 

 309 

Thirdly, precision of the centiles was assessed using confidence intervals derived from the 310 

model standard errors. This approach relies on a normal distribution, and this assumption 311 

was satisfied for all four models. Bootstrap resampling with replacement might provide even 312 

more robust confidence bands with respect to accurate coverage (33). However, bootstrap-313 

derived confidence bands for the centiles is impossible within Stata® software. Although a 314 

user-written custom program is possible theoretically, the –xrigls- program does not store the 315 

requisite regression coefficients and fractional polynomial-related quantities defining the 316 

mean and SD curves for construction of bootstrap confidence bands. For the male general 317 

population sample only, we repeated the analysis in Medcalc® software (version 18.10.2; 318 

Ostend, Belgium; http://www.medcalc.org; 2018), which permits bootstrapping. (Medcalc® 319 

software does not allow a constant SD, so we could not re-run the analyses in the other 320 
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three samples). The derived confidence bands were not materially different to those 321 

presented in Table 3, underscoring the fact that the data are adequately normally distributed. 322 

As detailed in the Methods, precision of estimation of the reference limits was inadequate for 323 

the small female athlete sample. We urge caution in interpreting these intervals and further 324 

research is required with substantially larger samples of female athletes.  325 

 326 

Fourthly, we used a fractional polynomial mean and SD model to derive the reference 327 

intervals. Other methods are available, including smooth crude centiles and the lambda-mu-328 

sigma (LMS) method (34). Silverwood and Cole (34) stated that the LMS method is superior, 329 

due to its flexibility and applicability, and the production of curves that summarise the 330 

distribution of the measurement fully across the age range. However, as Wright and Royston 331 

(33) highlighted, the approach we adopted herein allows estimation of the centile rank for 332 

any individual, which is impossible with the LMS method (34). The limitation of the fractional 333 

polynomial mean and SD method is that the approach is parametric and relies on the 334 

assumption that the data at each age are drawn from a normally distributed population. We 335 

used a single Box-Cox transformation in each of the four samples to normalise the data. 336 

Although this transformation does not address kurtosis, the model Z-scores displayed 337 

negligible kurtosis (Table 6).  We are confident, therefore, that the reference intervals 338 

derived herein are robust.  339 

 340 

Finally, it is important to highlight that VAT mass differences do exist between the two main 341 

DXA devices (GE and Hologic), but VAT determined by Hologic has been reported to be 342 

highly correlated (r=0.93) and cross-calibration equations have been proposed (35). There is 343 

also a strong correlation (r=0.98) between the GE Lunar Prodigy and the GE Lunar iDXA 344 

(36) supporting the wider usability of our reference intervals. Both studies used healthy 345 

adults with a similar mean age to our current study, but it is worth noting that device 346 

comparison studies are still limited in relation to VAT. The results generated by other devices 347 
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can still utilise these GE Lunar iDXA based reference data, but it would be worthwhile 348 

developing device-specific reference data to ensure greater accuracy. 349 

 350 

In conclusion, this is the first set of comprehensive and robustly determined age- and sex-351 

specific reference intervals for DXA-derived VAT mass in UK adults, using the GE CoreScan 352 

software in both the general population and in athletes. These intervals can be used in both 353 

clinical and athletic environments to help clinicians, health practitioners, and coaches 354 

interpret an individual’s VAT mass.  Future work should further refine reference data in those 355 

over 65 years and in female athletes, in different ethnic groups especially Asian populations, 356 

and across specific sports classifications. In addition, these reference intervals can be used 357 

to create sex and age-specific targets for fat loss interventions from a stratified medicine 358 

perspective.  359 
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Table 1. Sample characteristics

Men (n=1096) Women (n=790) Men (n=1190) Women (n=143)

Age (years) 40.6 (17.8) 50.0 (18.0) 24.2 (5.1) 25.8 (7.5)
Body Mass (kg) 85.2 (15.2) 67.9 (13.7) 91.5 (15.2) 64.6 (12.1)
Height (cm) 177.6 (6.8) 162.7 (8.2) 182.3 (7.4) 166.8 (6.4)

BMI (kg/m2)a             26.9 (4.3)         
(17.8, 44.2)

25.6 (5.0)          
(15.0, 47.6)

27.4 (3.5)          
(16.2, 42.9) 

23.1 (3.5)          
(16.7, 34.9)

VAT mass (g)b 570 (273 to 1651) 440 (132 to 1006) 337 (212 to 528) 77 (29 to 164)

Key: BMI – Body Mass Index, VAT – Visceral Adipose TissueaBMI is presented as mean (SD) (range)Data presented as mean (SD) except bVAT mass is presented as median (interquartile range)

AthletesGeneralPopulation 
sample





Table 2. Visceral adipose tissue centiles (g) for adult men (N=1090).

2.5th 50th 97.5th 99th

Age

18 56 (47 to 68) 222 772 (664 to 895) 963 (811 to 1139)

20 54 (47 to 63) 244 948 (840 to 1070) 1205 (1051 to 1380)

25 55 (50 to 62) 316 1487 (1363 to 1621) 1950 (1770 to 2146)

30 64 (57 to 72) 417 2167 (1988 to 2361) 2889 (2623 to 3179)

35 81 (72 to 91) 552 2976 (2709 to 3267) 3991 (3591 to 4431)

40 107 (95 to 122) 724 3869 (3504 to 4268) 5181 (4639 to 5781)

45 146 (129 to 166) 931 4765 (4315 to 5258) 6337 (5678 to 7066)

50 199 (176 to 225) 1161 5549 (5043 to 6101) 7296 (6570 to 8097)

55 267 (238 to 299) 1392 6084 (5556 to 6659) 7884 (7138 to 8702)

60 347 (310 to 387) 1586 6246 (5704 to 6834) 7955 (7196 to 8787)

65 430 (379 to 486) 1703 5960 (5377 to 6603) 7443 (6629 to 8350)

70 502 (428 to 587) 1704 5241 (4582 to 5987) 6403 (5502 to 7440)

75 546 (440 to 675) 1572 4200 (3486 to 5047) 5009 (4065 to 6154)

Age range = 18 to 83 years, but data are sparse >70 years. 

The 50th centile is shown as a point estimate only, as a reference point. 

327 (283 to 377)

394 (327 to 474)

444 (346 to 567)

55 (47 to 63)

73 (63 to 85)

100 (87 to 116)

140 (121 to 160)

192 (168 to 218)

256 (225 to 291)

44 (39 to 50)

Centile (90% confidence interval)

1st

43 (35 to 53)

40 (34 to 48)

39 (34 to 44)



Table 4. Visceral adipose tissue centiles (g) for adult women (N=790).

2.5th 50th 97.5th 99th

Age

18 0 (0 to 0) 61 716 (619 to 824) 983 (854 to 1126)

20 0 (0 to 0) 72 778 (680 to 886) 1061 (931 to 1204)

25 0 (0 to 0) 109 967 (865 to 1077) 1295 (1160 to 1440)

30 1 (0 to 2) 162 1205 (1096 to 1321) 1586 (1442 to 1741)

35 4 (2 to 6) 233 1489 (1365 to 1621) 1930 (1767 to 2104)

40 10 (6 to 14) 323 1810 (1662 to 1966) 2314 (2123 to 2518)

45 19 (14 to 26) 425 2148 (1974 to 2333) 2717 (2494 to 2953)

50 32 (24 to 42) 531 2477 (2281 to 2685) 3104 (2855 to 3368)

55 46 (36 to 59) 627 2760 (2554 to 2977) 3436 (3175 to 3711)

60 57 (46 to 71) 696 2956 (2755 to 3167) 3665 (3408 to 3935)

65 62 (50 to 75) 721 3027 (2830 to 3233) 3747 (3494 to 4013)

70 56 (44 to 72) 691 2941 (2709 to 3187) 3647 (3357 to 3955)

75 42 (28 to 62) 602 2686 (2367 to 3036) 3350 (2963 to 3772)

80 24 (11 to 46) 466 2276 (1854 to 2762) 2867 (2361 to 3447)

Age range = 18 to 80 years.  

The 50th centile is shown as a point estimate only, as a reference point. 

Centile (90% confidence interval)

0 (0 to 0)

0 (0 to 0)

0 (0 to 0)

2 (1 to 4)

1st

18 (10 to 30)

9 (3 to 21)

0 (0 to 0)

1 (0 to 1)

13 (9 to 19)

7 (4 to 10)

21 (15 to 28)

27 (20 to 36)

29 (22 to 38)

26 (19 to 36)



Table 3. Visceral adipose tissue centiles (g) for male athletes (N=1189).

2.5th 50th 97.5th 99th

Age

18 41 (35 to 47) 227 771 (719 to 825) 936 (871 to 1003)

20 53 (48 to 59) 273 885 (840 to 932) 1067 (1010 to 1128)

25 82 (75 to 89) 368 1111 (1059 to 1164) 1327 (1261 to 1396)

30 109 (100 to 120) 451 1301 (1236 to 1368) 1545 (1464 to 1629)

35 140 (126 to 156) 540 1497 (1409 to 1590) 1768 (1662 to 1880)

40 180 (155 to 208) 648 1730 (1585 to 1886) 2032 (1863 to 2213)

Age range = 18 to 61 years, but data are sparse >35 years. 

The 50th centile is shown as a point estimate only, as a reference point. 

58 (52 to 64)

79 (71 to 88)

103 (91 to 116)

135 (114 to 158)

Centile (90% confidence interval)

1st

27 (23 to 31)

36 (32 to 41)



Table 5. Visceral adipose tissue centiles (g) for female athletes (N=143).

2.5th 50th 97.5th 99th

Age

18 2 (1 to 3) 54 501 (381 to 651) 707 (532 to 929)

20 2 (1 to 4) 59 532 (413 to 680) 749 (573 to 969)

25 3 (2 to 5) 72 617 (492 to 769) 863 (676 to 1092)

30 4 (2 to 7) 88 714 (566 to 895) 991 (773 to 1259)

35 6 (3 to 9) 107 824 (632 to 1064) 1135 (861 to 1480)

40 7 (4 to 14) 129 947 (691 to 1280) 1297 (942 to 1759)

Age range = 18 to 59 years, but data are sparse >35 years. 

The 50th centile is shown as a point estimate only, as a reference point. 

1st

Centile (90% confidence interval)

4 (2 to 8)

1 (0 to 2)

1 (0 to 2)

1 (1 to 2)

2 (1 to 3)

3 (1 to 5)



Table 6. Derived powers for regression of visceral adipose tissue mass on age, with distribution of model Z-scores. 

Powers Powers

for mean for SD

Adult men 2, 3 0.5, 1 0.00 (1.00) -0.2 0.22

Male athletes -2, 3 Constant 0.00 (1.02) -0.11 0.28

Adult women 2, 3 Constant 0.00 (0.98) -0.02 -0.33

Female athletes 1 Constant 0.00 (0.99) -0.05 0.05

*Data presented as mean (SD)

Sample Model Z-scores*
Z-score 

Skewness
Z-score Kurtosis
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