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Abstract: Entanglement entropy of holographic CFTs is expected to play a crucial role

in the reconstruction of semiclassical bulk gravity. We consider the entanglement entropy

of spherical regions of vacuum, which is known to contain universal contributions. After

perturbing the CFT with a relevant scalar operator, also the first order change of this quan-

tity gives a universal term which only depends on a discrete set of basic CFT parameters.

We show that in gravity this statement corresponds to the uniqueness of the ghost-free

graviton propagator on an AdS background geometry. While the gravitational dynamics

in this context contains little information about the structure of the bulk theory, there is a

discrete set of dimensionless parameters of the theory which determines the entanglement

entropy. We argue that for every (not necessarily holographic) CFT, any reasonable gravity

model can be used to compute this particular entanglement entropy. We elucidate how this

statement is consistent with AdS/CFT and also give various generalizations. On the one

hand this illustrates the remarkable usefulness of geometric concepts for understanding en-

tanglement in general CFTs. On the other hand, it provides hints as to what entanglement

data can be expected to provide enough information to distinguish, e.g., bulk theories with

different higher curvature couplings.
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1 Introduction

It is by now well known that some conformal field theories (CFTs) admit a dual description

in terms of semiclassical gravity in one higher dimension [1]. But it is so far not clear what

are the precise CFT data that one needs to know in order to reconstruct various specific

features of the bulk theory. A full knowledge of the CFT should be exactly equivalent to

full knowledge of bulk quantum gravity, the challenge being to find the precise dictionary.

We wish to focus on the question which subset of CFT parameters one needs to have access

to in order to reconstruct just a classical bulk geometry and its linearized dynamics. Once

this question is answered in terms of fundamental CFT parameters, the practical question

is which CFT observables are sensitive to these parameters in a useful way.
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One hint is the fact that a local bulk metric should be represented in the boundary

CFT in a non-local fashion. An important CFT feature which does have non-local prop-

erties is the entangled structure of the underlying quantum state. It has therefore been

proposed that knowing enough about the entanglement structure of the CFT state is suf-

ficient to determine the gravitational dynamics of the bulk. In particular, entanglement

entropy of spatial regions in the CFT appears to be an illuminating quantity to study

in this context, cf., [2–6]. The basic rationale for this idea is that entanglement entropy

of a given spatial region A can be computed in semiclassical holography as the area of a

certain extremal surface [7–9] which, of course, encodes information about the metric. By

varying this entanglement entropy (for instance by changing A, or by varying the underly-

ing quantum state, or by deforming the CFT spectrum), the corresponding change of the

minimal surface encodes information about the dynamics of the bulk metric. Making this

idea precise and general would be significant progress towards our understanding of the

holographic nature of quantum states and gravity.

We wish to carefully distinguish differently strong versions of the expectation that en-

tanglement encodes bulk geometry. The weakest version of the “entanglement is geometry”

statement simply says that the most efficient way of calculating entanglement entropy is

by using geometric methods. For holographic CFTs the paradigmatic manifestation of this

statement is the Ryu-Takayanagi conjecture [7, 8]. But even for non-holographic CFTs

there is evidence that geometric concepts sometimes provide the most natural and efficient

way of computing entanglement entropy. The first such statement is the realization that

vacuum entanglement entropy of spherical regions can be conformally mapped to thermal

entropy which sometimes has a natural interpretation in terms of black hole thermodynam-

ics [10]. Refining this idea, Faulkner [11] revisited the problem of computing the response

of vacuum entanglement entropy of spheres to a deformation of the CFT by a relevant

scalar operator [12–17]. For this computation, nothing is assumed about the existence or

the nature of a holographic dual of the CFT. As a CFT calculation this is a formidable

problem. Intriguingly, the most convenient way of repackaging this calculation turns out to

be in terms of an auxiliary gravitational problem, where the entanglement entropy is rep-

resented as a minimal surface area in cosmological Einstein gravity responding to a scalar

field perturbation. This is a powerful result, in particular in face of the fact that entan-

glement entropy is notoriously hard to compute otherwise. One of the goals of this paper

is to elucidate from a gravitational point of view how this universality comes about and

to reconcile these statements with AdS/CFT duality (where bulk descriptions generically

have a structure which is not necessarily given by just Einstein gravity).

A stronger form of the “entanglement is geometry” conjecture is the idea that in

holographic CFTs the detailed bulk dynamics can be extracted entirely from knowledge

of entanglement entropy for a suitable set of regions A. Even in the semiclassical regime,

this is a strong assertion because the detailed bulk dynamics may involve not only Einstein

gravity, but also higher curvature corrections [18–24]. The imprint of higher curvature

corrections on equations of motion should then be reconstructible from CFT entanglement

entropies. See [4, 6, 25] for recent progress towards deriving linearized Einstein equations

from a first law of entanglement [5, 26–28]. It will be a topic of this paper to illuminate the
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way in which CFT entanglement does or does not discriminate between different higher

curvature interactions in the bulk.

Let us compare these two versions of the “entanglement is geometry” statement. If

spherical region entanglement entropy in deformations of any arbitrary CFT can be com-

puted using linearized Einstein gravity [11], it follows that this quantity is certainly not

sufficient to distinguish even CFTs with a semiclassical gravity dual from those without;

let alone distinguish a bulk theory governed by Einstein gravity from any other higher

derivative theory with the same spectrum of low energy excitations. Therefore, for com-

puting this particular type of entanglement entropy, geometry is always an excellent tool;

but in order to make sure that this geometry is actually the lowest order manifestation of a

semiclassical AdS/CFT duality, more input is required. Of course, the bulk reconstruction

from CFT data proceeds gradually: the more CFT parameters the entanglement entropies

considered are sensitive to, the more details of the bulk dynamics are a-priori expected to

be derivable from it.

In this note we wish to investigate how to find entanglement entropies which one can

expect to be sufficient to reconstruct various bulk features such as linearized dynamics,

higher curvature couplings etc. In the context of spherical region entanglement entropy

and scalar operator deformations, we will give a detailed analysis both from a CFT point

of view and from the bulk perspective. As we will see, at the first relevant order in

the perturbation, the entanglement entropy is only sensitive to few correlation functions

which have a universal form (up to normalization) thanks to conformal invariance. From

the bulk perspective the analogous statement is that the backreaction of a maximally

symmetric geometry to the presence of a scalar probe is universal for any acceptable theory

of gravity.1 A careful comparison reveals that this entanglement data is not sufficient to

conclude anything about the presence of higher curvature terms in the bulk Lagrangian.

For the purpose of bulk reconstruction we will outline how to gain sensitivity to such

features, but will also demonstrate explicitly that the existence of some higher curvature

interactions is much easier to conclude than the precise structure of the latter.

The structure of this note is as follows. In section 2 we first review the context of our

discussion and then give CFT and gravity arguments to demonstrate universal properties

of entanglement entropy of spherically symmetric regions. In section 3 we illustrate our

abstract discussion with the example of curvature squared theories of gravity and Gauss-

Bonnet theory in particular. Finally, section 4 contains a discussion and relates to recent

developments in this context. We generalize our discussion to a wider class of higher

curvature theories in section A, allowing also for fourth order equations of motion. In

section B we perform the most general background field expansion for gravity at second

order in the metric perturbation, thus uncovering the universality of Gauss-Bonnet theory

within this class of theories. Some facts about the first law of entanglement are reviewed

in section C. Various useful formulae can be found in section D.

1By an “acceptable theory of gravity” we mean any semiclassical gravitational theory with the correct

spectrum of excitations (in particular without ghosts). See however section A.
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2 Universality of entanglement entropy of spherical regions

In this section we analyze universal features both of CFTs and of gravitational theories,

which explain universal properties of entanglement entropy of ball shaped spatial regions

in CFTs deformed by a scalar operator. We will then compare these using holography and

draw conclusions for bulk reconstruction from entanglement.

2.1 Setup

Consider a holographic CFTd in the vacuum state and on Minkowski spacetime. Assume

further that the theory has a classical gravity dual described by Einstein theory and con-

sider a ball shaped spatial region A of radius R. The reduced density matrix associated

with A is obtained by tracing out the degrees of freedom outside of A:

ρA = TrAc |0〉〈0| . (2.1)

Without loss of generality, we will assume ρA is normalized, i.e., Tr ρA = 1. The entangle-

ment entropy of A is defined as the von Neumann entropy of ρA and can be computed in

the bulk as the area of the minimal surface ending on the boundary of the ball [7]:

S(0)

EE(A) = −Tr(ρA log ρA) =
Vol(Emin)

4G
N

, (2.2)

where Emin is the corresponding bulk minimal surface and G
N

denotes Newton’s constant

in d+1 dimensions. Since the region A is spherical, its causal development can be mapped

by a conformal transformation to a direct product of time with a maximally symmetric hy-

perbolic space [10]. This transformation further maps the CFT vacuum state to a thermal

state. The extremal surface is no longer anchored at the boundary but instead wraps the

horizon of a hyperbolic black hole. The computation of entanglement entropy of A thus

reduces to a calculation of the horizon entropy of a hyperbolic black hole at temperature

T = 1/(2πR):

S(0)

EE(A) = Sthermal(Hd−1) =
Vol(Hd−1)

4G
N

, (2.3)

where Hd−1 is the hyperbolic horizon slice. For notational simplicity, we will from now on

work with Planck units, i.e., ℓd−1
P = 8πG

N
.

Now let us ask what changes if the bulk gravitational theory is not just Einstein

gravity, but also contains some higher curvature corrections. For concreteness, consider a

d+ 1-dimensional bulk theory of the form

I =
1

2ℓd−1
P

∫ √−g L ≡ 1

2ℓd−1
P

∫ √−g

(

R+
d(d− 1)

ℓ2
+ Lh.d.

)

, (2.4)

where Lh.d. ≡ Lh.d.(gab, Rabcd,∇eRabcd, . . .) encodes higher curvature corrections. The cos-

mological length scale ℓ is related to the AdS scale ℓAdS; e.g., in Einstein gravity, ℓ = ℓAdS.
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The thermal entropy (and thus the entanglement entropy) is now given by the Wald en-

tropy [29] of the hyperbolic horizon [19, 30, 31]:

S(0)

EE(A) = S
Wald

(Hd−1) =
−2π

2ℓd−1
P

∫

Hd−1

√
γ

(

−2 +
δLh.d.

δRabcd
nab ncd

)

=
2π

πd/2
Γ (d/2) a∗d

Vol(Hd−1)

ℓd−1
AdS

,

(2.5)

where nab denotes the binormal to the hyperbolic horizon Hd−1 normalized as nabnab = −2

and γ is the induced metric. The constant a∗d depends on the details of the gravitational

theory. For example, in Einstein gravity Lh.d. = 0 and we find by comparison with (2.3)

(a∗d)Einstein =
πd/2

Γ(d/2)

ℓd−1
AdS

ℓd−1
P

. (2.6)

In fact, since the Wald entropy density is constant on maximally symmetric AdSd+1, we

can immediately read off the general expression for the constant a∗d:

a∗d =
πd/2

Γ(d/2)

ℓd−1
AdS

ℓd−1
P

(

1− 1

2

δLh.d.

δRabcd
nab ncd

∣

∣

∣

∣

AdS

)

= −πd/2ℓd+1
AdS

dΓ(d/2)

1

2ℓd−1
P

L|AdS . (2.7)

Here, the second step is a simple consequence of the existence of an AdSd+1 background so-

lution and the maximal symmetry of the geometry (see, e.g., [30] for a detailed derivation).2

The important feature of (2.5) is that the entanglement entropy is always proportional to

the horizon area Vol(Hd−1) (or equivalently to Vol(Emin)), irrespective of the details of the

gravitational theory. In particular, just knowing S(0)

EE(A) does not give any insight as to

what higher derivative corrections the bulk dual of the given CFT may entail: any higher

derivative corrections to Einstein gravity will only change the overall normalization but not

the volume scaling in (2.5). But any such change of a∗d due to higher curvature corrections

can be equivalently interpreted as simply a renormalization of the ratio ℓAdS/ℓP within

Einstein gravity. The precise renormalization factor is given by the bracket in (2.7). The

effect of higher derivative terms is hence not visible for its only imprint is to renormalize a

dimensionless parameter of the theory.

Note that the above expressions are divergent and the matchings performed should

hence be done more carefully. For example, the volume factor in (2.3) should be regulated

such that its leading divergent piece scales with the area of the sphere A. This diver-

gence depends on the cut-off, but in a consistent way such that the CFT short distance

cut-off (regulating the UV divergence of entanglement entropy near the boundary of A)

matches the bulk cut-off (regulating the divergent area of Hd−1) [8]. More importantly,

the expression (2.3) also contains a universal piece which is constant in even dimensions

and logarithmically divergent in odd dimensions. For this reason, the above matching

conditions strictly speaking refer to the universal piece, which takes the form [8, 31]

S
(0)
EE,univ(A) =

{

−(−1)d/2 4 a∗d log(2R/δ) (d even)

(−1)(d−1)/2 2π a∗d (d odd)
(2.8)

2The first term in the bracket of (2.7) comes from the Einstein contribution in the action (2.4). In a

theory L = d(d− 1)/ℓ2 + Lh.d. without pure Ricci scalar, this term would disappear.
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where δ is the UV cut-off scale in the CFT. It is only for spherical regions A that our

arguments above give the correct result without explicitly dealing with these additional

subtleties, see e.g. [19].

From a CFT point of view, a∗d is a fundamental parameter. As we have just seen,

it characterizes the normalization of the universal part of vacuum entanglement entropy.

It is a remarkable fact about entanglement entropy that in even dimensions a∗d coincides

with the coefficient a of the Euler density in the conformal trace anomaly [30–32]. In odd

dimensions, a∗d is proportional to logZSd , the sphere partition function of the CFT [10].

For a detailed reconstruction of bulk dynamics from entanglement, one would like to

probe the particular structure of the gravitational action. In this note we wish to study

deformations of the above setup and ask what CFT quantities one can use in order to

gain sensitivity to features which are peculiar to higher curvature terms in the gravity

dual. Clearly the vacuum entanglement entropy of balls A will not be enough by the

above argument. Consider therefore a deformation of the CFT by some relevant scalar

operator O, uniformly coupled to the CFT with a coupling λ. Given the arguments above,

it is clear what bulk computation we should do in order to learn about the change in

SEE(A): add to the gravitational problem a scalar field dual to O with suitable boundary

conditions, solve the scalar equation of motion in the AdSd+1 background and compute

the backreaction on the minimal surface area perturbatively in λ. As we will see, the

linearized answer is still universal in a way very similar to how (2.5) was universal for the

unperturbed problem. Namely, its functional form is completely fixed such that it only

depends on a few parameters which encode the influence of higher curvature couplings.

These parameters can again be absorbed in a renormalization of dimensionless quantities

such that the answer is indistinguishable from what one would have obtained in Einstein

gravity minimally coupled to a scalar field. This is the main universality statement studied

in this section: For holographically computing entanglement entropy of spherical regions in

CFTs deformed by a relevant scalar operator, any physically acceptable theory of a spin-2

and a spin-0 field with appropriately tuned values of the couplings gives the same result

as cosmological Einstein gravity minimally coupled to a scalar. In particular, this quantity

does not distinguish between different higher curvature theories of gravity. In the rest of

this section, we will explain these statements from the CFT and from the gravity side.

2.2 CFT explanation for universality

We start by reviewing from a CFT point of view the ingredients involved in computing

entanglement entropy of spherical regions in perturbed states. Our discussion closely fol-

lows [11, 16, 17].

Consider a CFT on d-dimensional Euclidean flat space and perform the following

deformation of the CFT action I (0)

CFT by a relevant scalar operator O of dimension ∆ < d:

ICFT = I (0)

CFT + λ

∫

ddx O(x) . (2.9)

We can compute the perturbative changes of the entanglement entropy SEE(A) by writing

the reduced density matrix as a path integral. This path integral lives on a manifold which

– 6 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
9

is the Euclidean spacetime with a cut along ∂A. The matrix element corresponding to

some field configurations φ+ and φ− on the two sides of the cut is

〈φ−|ρA|φ+〉 =
∫

φ(∂A+)=φ+

φ(∂A
−
)=φ

−

[Dφ] e−ICFT (2.10)

=

∫

φ(∂A+)=φ+

φ(∂A
−
)=φ

−

[Dφ] e−I
(0)
CFT

(

1− λ

∫

ddxO(x) +
λ2

2

∫∫

ddx ddyO(x)O(y) + . . .

)

.

Now define a modular Hamiltonian HA via ρA = e−HA . We can then use the identity

SEE(A) = Tr(ρAHA) to compute the change in the entanglement to any desired order in λ:3

SEE(A) = S(0)

EE(A) + λ

[

∂SEE(A)

∂λ

]

λ=0

+
λ2

2

[

∂2SEE(A)

∂λ2

]

λ=0

+ . . . (2.11)

= S(0)

EE(A) + λ

[

−〈OHA〉+ 〈∂HA

∂λ
〉
]

λ=0

+
λ2

2

[

〈OOHA〉 − 〈O∂HA

∂λ
〉+ 〈∂

2HA

∂2λ
〉
]

λ=0

+ . . .

= S(0)

EE(A)− λ〈OH (0)

A
〉+ λ2

2

(

〈OOH (0)

A
〉 − 〈O∂HA

∂λ
〉
)

+ . . .

where S(0)

EE(A) is universal up to an overall normalization a∗d as explained in section 2.1,

and similarly H (0)

A
is the unperturbed modular Hamiltonian. In the last step we used the

fact that ρA is normalized which implies 〈∂HA

∂λ 〉 = 0. We can now use that A is a spherical

region, which brings about another important simplification: the modular Hamiltonian can

be traded for an integrated stress tensor, since for spherical A with radius R centered at

the origin, one finds

HA = 2π

∫

A

dd−1x
R2 − ~x 2

2R
T00(x) , (2.12)

for A lying on the x0 = 0 slice. In our problem, correlation functions involving the modu-

lar Hamiltonian can therefore be regarded as correlation functions involving the conformal

stress tensor. But for stress tensor correlation functions, we can use well-known features of

CFTs: on general grounds, two-point correlations between a stress tensor and a primary

operator are constrained by conformal invariance and conformal Ward identities [33]. In

fact, independent of the details of our problem, conformal invariance of a theory in a flat

spacetime enforces 〈OTµν〉 = 0. Therefore the O(λ) perturbation in (2.11) vanishes.4

Furthermore, the perturbation of Tµν is uniform in O and we have
∂Tµν

∂λ = −δµν O. To

see this, recall that for a Euclidean flat boundary, we have

Tµν(x) =
2√
g

δICFT

δgµν(x)
= T (0)

µν (x)− δµν λO(x) . (2.13)

The entanglement entropy in the deformed theory, (2.11), hence takes a generic form [17]:

SEE(A) = S(0)

EE(A) +
λ2

2

(

〈OOH (0)

A
〉 − 〈OO〉

)

+ . . . (2.14)

3Operators without argument are understood to be integrated, e.g., O ≡
∫
ddx O(x).

4We will use indices a, b, . . . for bulk coordinates, µ, ν, . . . for boundary directions, and α, β, . . . for

intrinsic coordinates on the minimal surface Emin.
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As we can see, this is only sensitive to the correlators 〈OOTµν〉 and 〈OO〉. These, however,
are known to be universal functions in any conformal field theory which only depend on

one overall normalization constant:

〈O(x1)O(x2)〉 =
CO

(x1 − x2)2∆
(2.15)

and a similar universal function for 〈O(x1)O(x2)Tµν(x3)〉 whose normalization is also deter-

mined solely by CO [33, 34]. The entanglement entropy of A is hence completely universal

up to O(λ2), only depending on the fundamental constants {a∗d , CO} and the operator

dimension ∆.

The divergent structure of the expression (2.14) has been computed in [17] just using

standard Euclidean CFT techniques. However, we must now face an additional subtlety:

the analysis of [11], which treats the problem at hand using the replica trick and carefully

analyzes the analytic structure of the resulting partition functions, leads to a different result

which involves a non-trivial finite piece. Nevertheless the basic lesson of this more involved

analysis using the replica trick turns out to be still the same; namely the O(λ2) perturbation

of entanglement entropy is determined solely by correlators 〈OO〉 and 〈OOTµν〉. To be

precise, the finite contribution to the correction at O(λ2) reads [11, 14, 15]:5

SEE(A) = S(0)

EE(A)− λ2R2(d−∆) π
d+1
2 (d−∆)Γ(1 + d

2 −∆)

2Γ(32 + d−∆)
+ . . . , (2.16)

where R is the radius of the ball A. In this expression the normalization CO has been

fixed in a way that will prove convenient when comparing with holographic calculations.

However, we will not need the explicit form of SEE(A) for the following analysis.

2.3 Gravitational explanation for universality

Having seen that the second order computation of perturbed entanglement entropy of

spherical regions is only sensitive to 〈OO〉 and 〈OOTµν〉 correlators (which are universal

up to one normalization constant), we now want to explain what this means in gravity.

2.3.1 Holographic parameter matching

A major hint for understanding the entanglement universality from a holographic point of

view is the result of [11], where it is shown that for the CFT deformation characterized by

a coupling λ and an operator dimension ∆ as described in section 2.2, one can calculate

the entanglement entropy at O(λ2) by solving an auxiliary gravitational problem described

by the action

Iaux =
1

2ℓd−1
P

∫ √−g

[

R+
d(d− 1)

ℓ2
− λφ

2

(

(∇φ)2 +m2 φ2
)

]

. (2.17)

The AdSd+1 background geometry ḡab has a scale which coincides with the cosmological

scale: ℓ2AdS = ℓ2. Further, λφ parametrizes the normalization of the scalar action. The

5This is assuming that O is a relevant operator with ∆ 6= d/2. See [14, 15] for a discussion of the case

∆ = d/2 in holographic theories.
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prescription is to solve first the scalar wave equation in the background ḡab and then

compute its backreaction on the metric at next order in perturbation theory to get the

change of the area of the Ryu-Takayanagi minimal surface. For this task we are therefore

not interested in the full action (2.17), but only in the linearized equations of motion due

to a scalar probe in AdSd+1 background. In the following all objects with a bar (e.g., ∇̄a)

refer to the background metric ḡab.

We will now comment on the number of free parameters in this problem and how

to determine them, given that they should induce the CFT parameters at the bound-

ary in a way consistent with AdS/CFT. A priori there are three dimensionless quan-

tities {(ℓAdS/ℓP) , ℓ
2
AdSm

2, λφ} in the action (2.17). The scalar wave equation in AdS,

(�̄−m2)φ = 0, has two asymptotic solutions with respective falloff behavior z∆+ and z∆− ,

where the boundary is at z = 0 (in Poincaré coordinates such as (C.4)) and

∆± ≡ d

2
±
√

d2

4
+ ℓ2AdSm

2 . (2.18)

The boundary condition for the scalar is required to be such that it sources an operator with

given dimension ∆ and coupling λ. By standard AdS/CFT techniques [1], we therefore

assume6 ∆ ≥ d/2, tune the scalar mass such that ∆+ = ∆ and fix the dominant asymptotics

as φ(z → 0) ∼ λ z∆− . The mass of the scalar is also immediately fixed by demanding

that it sources an operator with dimension ∆; the usual prescription for this is to take

−d2/4 < ℓ2AdSm
2 < 0 such that

ℓ2AdSm
2 = ∆(∆− d) . (2.19)

The remaining two parameters of the theory also need to be fixed by matching with

the CFT. On the one hand, ℓAdS/ℓP makes an appearance in the normalization of the

universal scaling of entanglement in the CFT in terms of the generalization of a-central

charge, cf., (2.5) and can hence be fixed by demanding (2.6). On the other hand, λφ

parametrizes rescalings of the bulk field φ in the same sense in which the dual boundary

two-point function 〈OO〉 depends on an overall normalization CO as in (2.15). Since φ has

already been equipped with boundary conditions which lead to the correct coupling λ for

O, we can follow standard techniques to work out the normalization λφ in terms of CO.

This involves computing the bulk to boundary propagator for φ and matching its boundary

two-point function with the CFT correlator 〈OO〉. The result is [1, 13]

CO =
∆− d/2

πd/2

Γ(∆)

Γ(∆− d/2)

ℓd−1
AdS

ℓd−1
P

λφ . (2.20)

We stress that, as shown in [11], the auxiliary gravitational problem just described

can be used for computing perturbed entanglement entropy of ball shaped regions in any

CFT. Given the universality of the correlators 〈OO〉 and 〈OOTµν〉 in all CFTs (including

6The assumption ∆ ≥ d/2 corresponds to performing so-called standard quantization. Note that (d −

2)/2 ≤ ∆ ≤ d/2 would still be compatible with field theory unitarity. The latter regime can be treated by

choosing ∆− = ∆. See [13] for a discussion of this case.

– 9 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
9

those which are dual to cosmological Einstein gravity), this result is not very surprising.

It is, however, quite remarkable that the most natural way of rewriting the CFT problem

is in terms of the auxiliary gravitational system (2.17). As we shall see, there are many

other (higher curvature) models of gravity which could equally well serve as the auxiliary

system for this problem. Turning this logic around, all these different gravitational theories

are indistinguishable if only perturbed entanglement data of spheres is measured. We now

turn to illuminating this point from the gravity side.

2.3.2 Construction of the most general gravitational model

We now want to make more precise the statement that all physically acceptable gravity

models are equivalent for the computation at hand. Our approach is to construct a large

class of auxiliary gravitational systems which make the same predictions as (2.17) in this

respect. Let us take the CFT data as given and try to construct a holographic description

in terms of semiclassical gravity ‘bottom up’. The first step of such a program could be

the question: what are the minimal bulk ingredients if they are supposed to compute

entanglement entropy of spheres in vacuum and after turning on the perturbation? We

will now answer this question by building general linearized bulk actions which satisfy the

following conditions:

• The field content is a symmetric spin-2 tensor (the metric) and a scalar field, which

source the boundary operators Tµν and O, respectively. The model gives dynamics

to these fields and defines a coupling between them which allows to compute the

linearized backreaction hab on an AdSd+1 background ḡab after perturbing the latter

with the scalar probe φ.

• There are no ghost degrees of freedom; in particular the linearized equations of motion

on AdSd+1 are second order in derivatives. (See below for a justification of this

assumption and section A for generalizations in the case where the higher curvature

terms are perturbatively small and this assumption can be dropped.)

• The action is diffeomorphism invariant (cf., [35, 36]).

We will find that these conditions specify the linearized action uniquely up to normalization

constants; see (2.21) for the final result.

Let us briefly explain why the equations of motion should be second order. It is well

known that equations of motion which are higher than second order lead to pathological

behaviour which we want to exclude from our discussion of theories which are dual to uni-

tary CFTs. In particular, higher order equations of motion generically give rise to further

propagating degrees of freedom with negative energy [37–41].7 The presence of ghosts in

7There are special circumstances where the additional degrees of freedom can be dealt with by using

appropriate field redefinitions. For instance, f(R) theories of gravity naively have higher order equations of

motion, but are known to be equivalent under field redefinitions to Einstein gravity coupled to a (positive

energy) scalar field such that the boundary theory is unitary [42]. The graviton in this case couples not

only to the boundary stress tensor, but in addition to some scalar operator. The CFT therefore has some

more specific features than we assumed in the beginning. For validating our conclusions in the most general
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such theories thus leads to classical instabilities [43] (which would lead to negative norm

states and therefore non-unitary quantum theories upon quantization). These features

would also be visible in the dual CFT as operators with complex conformal dimension or

negative norm. Indeed, via holography the problem of perturbed entanglement entropy is

described in the CFT by correlation functions of the stress tensor Tµν and a relevant scalar

operator O. This setup should be described in gravity by nothing more than a spin-2 gravi-

ton which sources Tµν and a scalar field to source O.8 If the graviton equations of motion

were higher than second order in derivatives, then the additional unwanted ghost modes

would couple to other (non-unitary) operators. Therefore, whatever the full gravitational

theory is, after linearization of the action around AdSd+1 the excitation hab is bound to

appear in such a way as to yield second order equations of motion.

Despite these arguments in favour of two-derivative equations of motion, higher deriva-

tive models with higher order equations of motion are regularly studied as toy models for

semiclassical corrections to Einstein gravity induced by some consistent truncation of full

unitary quantum gravity (which is assumed to be UV complete). Such models can be

justified as sensible toy models in a perturbative framework as long as the ghost modes

are very heavy and do not go on-shell (which turns out to be the case whenever the higher

derivative couplings are small). We explore this setup in section A, where we show that in

this context our arguments concerning entanglement entropy still hold. The reason for the

latter is that at low energies the ghosts can be ignored and the sector of physical modes is

exactly the same as for ghost-free models which we are now going to analyze.

Let us now construct the minimal ingredients for a linearized action for hab and φ,

which leads to second order equations of motion. We will argue that the most general

action of this type is the same as the linearization of Einstein-scalar theory (2.17) up

to various normalizations. For illustration, we can hence start by expanding the metric

around an AdSd+1 background solution ḡab as gab = ḡab + hab and linearizing the Einstein

action (2.17). Including some convenient normalization factors, this procedure leads to9

I =
1

2ℓd−1
P

∫ √−ḡ

{

− 2d

ℓ2AdS

Γ(d/2)

πd/2

ℓd−1
P

ℓd−1
AdS

a∗d +
λh

2
hab Gabcd hcd + λφ

[

−1

2

(

(∇̄φ)2 +m2φ2
)

]

+
λφ

2
hab
(

−1

2

[

(∇̄φ)2 +m2φ2
]

ḡab + ∇̄aφ ∇̄bφ

)

+ O(h3, h2φ2)

}

, (2.21)

circumstances, it would be interesting to explore the most general requirements for a bulk theory to admit

a unitary dual CFT. A first step in this direction might be a gauge-fixed analysis where the scalar part of

the graviton is set to zero, cf., the transverse traceless gauge employed in section A. This would at least

take care of f(R) theories.
8Of course, it would be possible for O to be some other scalar operator, e.g., one corresponding to the

square of a scalar field. Since such scenarios would not change our analysis qualitatively, we will assume

that O is simply sourced by φ with appropriate boundary condition.
9To verify this by hand, the identities in section D are helpful.
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where Gabcd is the graviton kinetic operator

Gabcd =
1

2

(

ḡa(cḡd)b − ḡabḡcd
)

�̄− ∇̄(cḡd)(a∇̄b) +
1

2

(

ḡab∇̄c∇̄d + ḡcd∇̄a∇̄b

)

+
d

ℓ2AdS

(

1

2
ḡabḡcd − ḡa(cḡd)b

)

.
(2.22)

A few explanations are in order concerning the way we wrote (2.21):

i) In writing (2.21) we introduced a normalization λh in the graviton kinetic term for

later convenience. By expanding the Einstein-scalar action (2.17), one finds simply

(λh)Einstein = 1, but we will shortly encounter other (higher derivative) theories with

other values of λh.

ii) Similarly, we wrote a constant term proportional to a∗d. This is also using the benefit

of hindsight (in particular (2.7)) to already implement the correct generalization

for higher derivative theories. For the present case of Einstein gravity, (a∗d)Einstein
is just given by (2.6). For more general theories, notice that the constant term

in (2.21) is determined by the requirement that switching off hab and φ in the action

is equivalent to evaluating the full non-linear Lagrangian on the AdS background.

By means of (2.7) we know that the constant thus obtained needs to be a∗d (with

appropriate pre-factors).

iii) Note also that we did not write the O(h) term of the action. This term would just

define the equations of motion for the AdSd+1 background geometry ḡab. By assuming

an expansion of the form gab = ḡab + hab, such terms vanish automatically.

The graviton-scalar action (2.21) was obtained by linearizing the Einstein-scalar sys-

tem (2.17) around a given AdS background with scale ℓAdS. However, we will now argue

that any theory which satisfies the basic conditions listed at the beginning of this subsec-

tion, takes this form. As we will see, the only freedom is parameterized by the normaliza-

tions {a∗d, λh, λφ,m
2}. Of these, a∗d has already been fixed manifestly by using (2.7). Also

λφ and ℓ2AdSm
2 could be fixed in terms of field theory quantities via (2.19) and (2.20).

The graviton normalization, λh, will be discussed shortly. This will then demonstrate

the universality of the dynamics of perturbing an AdS geometry with a scalar field up to

normalizations.

Graviton propagator on AdSd+1. Clearly, the field content in the bulk should involve

a spin-0 field φ to probe the geometry, whose boundary condition φ(z → 0) ∼ λ zd−∆

sources the relevant deformation O. But before specifying the matter probe in this much

detail, let us discuss the general gravitational response to any small perturbation. This

is described by a spin-2 field propagating on the background ḡab. We will write this as

gab = ḡab + hab, where hab is the linearized perturbation.

We now want to establish the most general physically acceptable equations of motion

for hab, as described above. It is straightforward to write the most general (up to to-

tal derivatives) action at O(h2) of the symmetric spin-2 field which involves at most two
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derivatives. We can parametrize it as (see, e.g., [44])

I(h2) =
1

2ℓd−1
P

∫ √−ḡ

{

− λh

4
∇̄ahbc∇̄ahbc +

b1
2
∇̄bh

ac∇̄ah
b
c −

b2
2
∇̄ah∇̄bhab

+
b3
4
∇̄ah∇̄ah+

M2

2

(

h2 − b4 habh
ab
)

}

,

(2.23)

where h ≡ habḡab. All raising and lowering of indices as well as covariant derivatives

with a bar refer to ḡab.
10 We can already see that compared to the infinite number of

possible higher derivative theories of gravity, the above linearized action is quite restrictive,

having only six free parameters {λh,M
2, b1, b2, b3, b4}. In fact the action will be even more

constrained once we impose that the full theory should exhibit diffeomorphism invariance.

It is a classic result that demanding a diffeomorphism invariant theory beyond the linearized

level singles out a unique graviton propagator [45]. In our explicit notation, we can give

a simple justification of this statement by considering a spin-2 gauge transformation (aka

linearized diffeomorphism) hab → hab + 2∂(aξb). The O(h2) action transforms nontrivially:

δI(h2) =
1

2ℓd−1
P

∫ √−ḡ ξa
{

(b1 − λh)∇̄b
�̄hab + (b1 − b2)∇̄a∇̄c∇̄dh

cd + (b3 − b2)∇̄a�̄h

−
(

2M2 − d b2
ℓ2AdS

)

∇̄ah+

(

2b4M
2 − 2 d b1

ℓ2AdS

)

∇̄bh
b
a

}

, (2.24)

where we used partial integration and (D.2). In order for the action to be diffeomor-

phism invariant, the above expression has to vanish for arbitrary ξa. Since all terms are

independent, this condition forces upon us five relations among the six parameters:

b1 = b2 = b3 = λh , M2 =
d

2ℓ2AdS

λh , b4 = 2 . (2.25)

Any other choice of parameters would not correspond to the linearization of a diffeomor-

phism invariant theory. The only free parameter which is left undetermined is the overall

scale λh of the graviton action. In a full non-linear theory of gravity this is, of course, fixed

by the normalization of the action and we will compute some examples in section 3 to illus-

trate this. For instance, we have already seen that the graviton action (2.23) is exactly the

same as the second order term in a perturbative expansion of the Einstein-Hilbert action

with cosmological constant scale ℓ = ℓAdS and overall normalization λh = 1.

This construction shows that by just looking at the linearized graviton propagator on

AdS of any reasonable diffeomorphism invariant theory of gravity, we will never be able to

distinguish the theory from cosmological Einstein gravity. The underlying reason for this

is the universality of spin-2 propagation on maximally symmetric backgrounds.

10Note that the coefficient λh of the first term in (2.23) cannot be vanishing as this would mean that no

spin-2 degrees of freedom propagate at all. By this we ensure that no gauge choice can eliminate the spin-2

mode. For instance, we could choose to work in a transverse traceless gauge (∇̄ah
ab = 0 = h), but the first

term would still survive as it is the source of the spin-2 component. On a similar note, we need λh > 0 in

order for the spin-2 graviton not to be ghost.

– 13 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
9

Coupling to scalar matter. Having constructed the most general quadratic action for

the metric perturbation, we should now in a similar fashion argue that (2.21) couples hab
to the scalar field in the most general way at this order. There are several possible Yukawa

couplings and self-interaction terms. However, for consistency of our perturbative scheme,

the only terms we are interested in at this order are φφ self-interactions and hφφ couplings.

We will now describe the most general actions of these kinds:

• Scalar field kinetic and mass term: at lowest order in perturbation theory (the

probe limit), we are only concerned with couplings of φφ to the background geom-

etry. Up to total derivatives, the most general such action with at most two time

derivatives may be parametrized in terms of a mass parameter m2 and an overall

dimensionless normalization λφ:

I(φ2) =
1

2ℓd−1
P

∫ √−ḡ λφ

{

−1

2

(

(∇̄φ)2 +m2φ2
)

}

. (2.26)

This action defines the background dynamics of φ as (�̄−m2)φ = 0.

• Backreaction on the geometry: there are several possible couplings of the type

hφφ, which are inequivalent upon integration by parts. We can parametrize them as

follows:

I(hφ2) =
1

2ℓd−1
P

∫ √−ḡ

{

− h

4

(

c1(∇̄φ)2 + c2m
2φ2
)

+
c3
2
hab∇̄aφ∇̄bφ

+ c4 h
abφ∇̄a∇̄bφ+ c5 hφ�̄φ

}

,

(2.27)

Clearly the coefficients c2 and c5 are on-shell equivalent. We will thus set c5 = 0 in

what follows. Now demanding diffeomorphism invariance, an argument completely

analogous to the one we gave for (2.23) implies the following conditions for the re-

maining parameters:11

c1 = c2 = c3 , c4 = 0 . (2.28)

which leaves us with only one free parameter c1. However, it is immediately clear

that the overall normalization has to be the same as in (2.26), i.e.,

c1 = λφ . (2.29)

If this normalization was any different, hab would not be the response to a scalar

with mass m2 and normalization λφ. Taking into account these constraints, we can

rewrite (2.27) as

I(hφ2) =
1

2ℓd−1
P

∫ √−ḡ
λφ

2
hab T

(φ)
ab ,

with T
(φ)
ab ≡ −1

2

[

(∇̄φ)2 +m2φ2
]

ḡab + ∇̄aφ ∇̄bφ ,

(2.30)

11Alternatively, one can determine the coefficients by demanding conservation of the matter stress tensor,

∇̄bT
(φ)
ab = 0.

– 14 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
9

Summarizing these two points, we recognize the most general scalar-graviton couplings

which are consistent with the perturbative scheme and diffeomorphism invariance as being

exactly the same as the expansion of the following action up to O(h):

Imatter = I(φ2) + I(hφ2) + O(h2)

=
1

2ℓd−1
P

∫ √−g λφ

[

−1

2

(

(∇φ)2 +m2φ2
)

]

+ O(h2) ,
(2.31)

where gab = ḡab + hab. Of course, this result is not too surprising as this is the standard

action for a massive scalar minimally coupled to gravity.

Most general second order action. We can summarize the above discussion as fol-

lows. The most general way of coupling hab to a scalar φ in a way that is consistent

with our perturbative scheme and respects diffeomorphism invariance and some very basic

constraints coming from the particular CFT computation we are interested in, is given

by (2.21). This action has only four dimensionless parameters {ℓAdS/ℓP , m2ℓ2AdS , λφ , λh}.
We already explained in section 2.3.1 how for our problem the first three of these have to

be determined holographically in terms of the dimensionless CFT quantities {a∗d , ∆ , CO}.
We will argue shortly that the fourth parameter λh does not enter the computation of in-

terest and therefore its value is irrelevant for computing perturbed entanglement entropy.

In addition, there is, of course, the boundary coupling λ which enters the gravitational

setup by prescribing the boundary condition for φ.

As a consequence, any covariant theory of gravity whose linearization takes the

form (2.21), provides a good auxiliary system for computing SEE(A) at second order in

perturbation theory. For instance, the action (2.21) with λh = 1 is precisely the same

as the linearization of the cosmological Einstein-scalar action (2.17) via gab = ḡab + hab.

There are, of course, many other non-linear actions whose linearization on maximally sym-

metric backgrounds also takes the form (2.21) with a different value of λh, e.g., those of

Lovelock type [46] or quasi-topological gravity [47]. Indeed, even if the CFT in question

is actually dual to some particular higher derivative theory; for the purpose of calculating

the perturbed entanglement entropy, one can always work with the Einstein action (2.17)

after suitably matching the parameters {ℓAdS/ℓP , m2ℓ2AdS , λφ} with the CFT boundary

conditions. The different linearized actions will then only differ by their value of λh. We

will see examples of this in section 3.

Since the normalization λh is the only ingredient in (2.21) which would genuinely

distinguish bulk theories with higher derivative couplings from those without, we now need

to understand why the linearized computation of perturbed entanglement entropy of a ball

is not sensitive to this.

Holographic interpretation of λh. Before we continue with the gravitational analysis,

it is instructive to elaborate on the meaning of λh, which has a very natural interpretation

from the CFT point of view. The graviton normalization λh corresponds to the normal-

ization of the CFT stress tensor two-point function, usually denoted by C
T
. It sets the
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strength of the leading divergence in the two-point function of CFT stress tensors:

〈Tµν(x)Tρσ(0)〉 =
C

T

x2d
Iµν,ρσ(x) , (2.32)

with some well known universal function Iµν,ρσ(x) [33, 34]. In d = 2, the normalization

agrees with the usual c-central charge, C
T
= c. Similarly, in d = 4 one finds C

T
= (40/π2)c.

Once a holographic description of the CFT has been given, usual AdS/CFT methods can

be used to compute the left hand side of (2.32) as a bulk graviton correlator. Since λh sets

the normalization of the graviton propagator in the presence of matter sources (cf., (2.38)),

it is rather clear that C
T
will be proportional to λh. Doing the holographic calculation in

detail leads to the standard result [48]

C
T
=

fd
2

ℓd−1
AdS

ℓd−1
P

λh , where fd ≡ 2d(d+ 1)

d− 1

Γ(d)

πd/2Γ(d/2)
. (2.33)

It is now obvious that once ℓAdS/ℓP has been fixed such as to reproduce the other central

charge a∗d via matching (2.7), there is no free parameter left in (2.33) which could absorb

the normalization λh. In our setup, gravity theories with different λh will hence describe

CFTs with different C
T
. Conversely, a CFT measurement of C

T
would allow to for a

distinction between different bulk models. However, we will now argue that the perturbed

entanglement entropy of spheres is agnostic about this.

2.3.3 Second order Wald entropy is independent of graviton normalization

As we have seen, any gravity theory whose action linearized around AdSd+1 takes the

form (2.21) can be used to compute second order perturbations of entanglement entropy

of spheres. However, we identified one parameter λh in the action (2.21) which sets the

graviton normalization and turns out to be sensitive to more detailed bulk structures such

as higher curvature terms. We will now argue that this parameter does not enter the second

order entanglement entropy.12 This is the gravity version of the statement that (2.16) is

independent of C
T
.

We recall that due to the spherical symmetry of A, extrinsic curvatures on the minimal

surface Emin vanish and the entanglement entropy functional to be evaluated on Emin is

just the Wald functional. In vacuum this reduces to just the area of Emin multiplied by a

normalization which is basically determined by a∗d as in (2.5). The perturbation can then

be computed in holography as

δSEE(A) = δSWald(Emin) = δ

(

−2π

∫

Emin

√
γ

δL
δRabcd

nab ncd

)

. (2.34)

Clearly δSWald(Emin) can be expanded perturbatively by considering different powers of

hab and φ. From the structure of the gravitational backreaction it follows that there is no

contribution at O(λ). At O(λ2) (i.e., at first order in hab) the variation in (2.34) acts on the

12See section C for related observations based on the entanglement first law.
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objects inside the integral, but it does not change the surface Emin itself.13 Since the surface

Emin is maximally symmetric, we anticipate that this variation of the Wald functional is

just a variation of the area form (up to normalization). That is, the evaluation of (2.34)

should yield precisely the same answer as in Einstein gravity up to normalization. Let us

make this slightly more explicit to figure out the correct normalization.

To evaluate (2.34) at O(λ2), we should expand the integrand linearly in the perturba-

tion:

δSWald(Emin) = −2π

∫

Emin

[√
γ

δL
δRabcd

nab ncd

]

O(h)

. (2.35)

The obvious way to evaluate this is to start with the full non-linear Lagrangian, expand

the Wald entropy density around the AdS background, and then identify the O(h) term

in (2.35). However, even without knowledge of the full theory it is clear that ultimately

the integrand can only be sensitive to the part of L which is at most quadratic in hab,

i.e., we should be able to predict the answer just based on the most general second order

Lagrangian (2.21). Moreover, only the purely gravitational sector of (2.21) is relevant for

Wald entropy at O(λ2). This is quite clear from the observations that a minimally coupled

scalar field in gravity does not couple to curvature and the action (2.21) agrees with that

of a minimally coupled scalar at the order we are interested in.

From these observations, we are led to conclude that the integrand in (2.35) formally

has the same structure in any allowed theory of gravity up to the normalization λh. There-

fore, without loss of generality, we can compute the integral as if it came from Einstein’s

theory and multiply by λh. But in that case, the answer for δSWald(Emin) is well known: it

is just the variation of the area functional. Therefore, (2.35) can be rewritten in general as

a variation of area, multiplied by the normalization λh that encodes the higher derivative

dependence:

δSWald(Emin) = 2π

(

ℓd−1
AdS

ℓd−1
P

λh

)
∫

Emin

√
γ̄ (12 γ̄

αβhαβ)

ℓd−1
AdS

+ O(h2) . (2.36)

where γ̄αβ is the background metric induced on Emin by ḡab and hαβ is the induced metric

perturbation.14 Note that the arguments just given were heuristic and we are discard-

ing boundary terms which would be important to regulate the divergences. A detailed

derivation of (2.36) can be found in section B.

The integral (2.36) can now be used to derive the independence of δSWald(Emin) on

λh. We just need to find the on-shell dependence of hαβ on λh and combine it with the

13Variations of the bifurcation surface only affect the Wald entropy at the next order, which is beyond our

discussion. To see this, note that the surface Emin extremizes the Wald entropy functional upon variation

with respect to the metric. First order variations of the metric (which are O(λ2) in our conventions) hence

leave Emin unchanged.
14Explicitly, if ξα(x) denotes the coordinates of Emin embedded in AdSd+1, we have

γ̄αβ =
∂xa

∂ξα
∂xb

∂ξβ
ḡab , hαβ =

∂xa

∂ξα
∂xb

∂ξβ
hab . (2.37)

For more conventions see section B.
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prefactor in (2.36). To this end, consider the linearized equations of motion implied by the

general action (2.21):

λh Gab
cd hcd = −λφ

2
T
(φ)
ab . (2.38)

From this equation it is clear how to go from the universality of graviton propagation to

the universality of perturbed Wald entropy: apart from the overall λh every dimensionless

parameter in (2.38) has been fixed by the boundary input {a∗d,∆, CO}. The combination

λhhcd therefore satisfies a universal equation of motion which is independent of the non-

linear details of the bulk theory. Since the perturbed Wald entropy (2.36) depends on

precisely this particular combination it is clear that δSWald(Emin) will be the same in all

theories we consider. Said differently, the function hab which satisfies the backreaction

equation (2.38) is proportional to 1/λh such that the λh dependence in (2.36) cancels. We

conclude that δSEE(A) = δSWald(Emin) is independent of λh. This is consistent with the

field theory result (2.16) being independent of C
T
.

This concludes our analysis of the role which various dimensionless parameters play.

Having verified the cancellation of λh, the explicit solution of (2.38) and evaluation

of (2.36) can be done without loss of generality at λh = 1, i.e., Einstein gravity. We

refrain from repeating this calculation. See, for example, [14, 15] for an explicit evaluation

of (2.36) in the case of a scalar field source. The result of their computation perfectly

matches the CFT answer (2.16).

3 Example: Gauss-Bonnet theory

In this section we wish to illustrate the general argument, using the example of gravity theo-

ries with Lagrangians quadratic in curvature. This discussion will make contact with a num-

ber of previous higher derivative computations of entanglement entropy. In particular we

will show that various results for perturbations of entanglement entropy of spherical regions

dual to higher derivative theories can be equally well reproduced from a calculation in cos-

mological Einstein gravity by renormalizing the discrete set of free parameters which play

a role at second order in perturbation theory, i.e., {ℓAdS/ℓP , m2ℓ2AdS , λφ}. We will also see

the appearance of the additional parameter λh which drops out of the formula for entropy.

3.1 Two gravity models

The basic gravitational model that we want to take as the reference system is just the

auxiliary Einstein-Hilbert theory described by

I =
1

2ℓd−1
P

∫ √−g

[

R+
d(d− 1)

ℓ2
− λφ

2

(

(∇φ)2 +m2 φ2
)

]

, (3.1)

with asymptotic boundary condition φ(z → 0) ≃ λ zd−∆ such that φ sources a scalar

operator with dimension ∆ and coupling λ in the CFT. We parametrize the lowest order

backreaction of the scalar probe on the geometry as gab = ḡab+hab, where ḡab is AdSd+1 with

scale ℓ2AdS = ℓ2. The independent dimensionless parameters in the gravitational problem

can therefore be taken as {(ℓAdS/ℓP) , m
2ℓ2AdS , λφ}, while λh = 1 for Einstein gravity.
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In this section we wish to reproduce predictions of four-derivative theories by using

the above Einstein theory with renormalized parameters. The only four-derivative theory

which passes the consistency condition of yielding second order equations of motion is

Gauss-Bonnet theory, which we will discuss here. Nevertheless, in section A.1 we explore

the most general four-derivative theory of gravity and come to very similar conclusions in

the case where the higher derivative terms are small perturbative corrections to (3.1).

With this motivation in mind, let us take the following action as the theory to

compare with:

Ĩ =
1

2ℓd−1
P

∫ √−g

[

R+
d(d− 1)

ℓ̃2
+ ℓ̃2 Lh.d. −

λ̃φ

2

(

(∇φ)2 + m̃2 φ2
)

]

where Lh.d. = γ
(

R2 − 4RabR
ab +RabcdR

abcd
)

(3.2)

again with a fixed boundary condition φ(z → 0) ≃ λ zd−∆. The AdSd+1 background

solution of this theory will have some other scale ℓ̃AdS which is a function of ℓ̃ and γ. In

the context of both theories I and Ĩ, we will use ḡab to refer to the AdSd+1 background.

From the context it should be clear whether ḡab is the background with ℓAdS or with ℓ̃AdS.

Our basic aim is to show that for the purpose of carrying out the perturbed entan-

glement entropy computation of spherical regions, the actions (3.1) and (3.2) are indistin-

guishable if the dimensionless parameters {(ℓAdS/ℓP) , m
2ℓ2AdS , λφ} are suitably expressed

as functions of {(ℓ̃AdS/ℓP) , m̃
2ℓ̃2AdS , λ̃φ , γ} such that they are consistent with the CFT

boundary conditions. In order to show this, we will now derive the relevant ingredients

for such a computation order by order in λ from both I and Ĩ. We will demonstrate

that the parameters of Einstein gravity can always be chosen such that the two pertur-

bative expansions match. The higher derivative coupling γ can be absorbed entirely into

renormalizations of the other dimensionless quantities.

3.2 Parameter matching

We will now determine the relation between the dimensionless parameters of the models I

and Ĩ such that both make identical predictions for vacuum and perturbed entanglement

entropy of spheres.

Finding the AdSd+1 background solution. Before turning on the scalar perturba-

tion, we need to determine the maximally symmetric AdSd+1 background solutions of the

two theories (3.1) and (3.2). It is well known that such solutions exist in both theories and

are ghost-free [49] if we choose the respective AdS scales

ℓ2AdS = ℓ2 ,

ℓ̃2AdS =
ℓ̃2

2

(

1 +
√

1− 4(d− 2)(d− 3) γ
)

.
(3.3)

We will henceforth expand around the AdSd+1 background and thus treat ℓAdS and ℓ as

equivalent (and similarly with tildes).
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Matching of Wald entropy (or a
∗

d
). Let us remind the reader of the result of section 1

that Wald entropy of maximally symmetric spaces is always proportional to area. We

can thus compute the unperturbed entanglement entropy of A as the Wald entropy of

hyperbolic black holes corresponding to the two AdS radii (3.3) of Einstein and Gauss-

Bonnet gravity, respectively. By integrating (2.5) for the two gravity models, one finds

SWald =
2π

πd/2
Γ (d/2) a∗d

Vol(Hd−1)

ℓd−1
AdS

, a∗d =
πd/2

Γ(d/2)

ℓd−1
AdS

ℓd−1
P

, (3.4)

S̃Wald =
2π

πd/2
Γ (d/2) ã∗d

Vol(Hd−1)

ℓ̃d−1
AdS

, ã∗d =
πd/2

Γ(d/2)

ℓ̃d−1
AdS

ℓd−1
P

(

1− 2(d− 1)(d− 2) γ
ℓ̃2

ℓ̃2AdS

)

.

Given the entanglement entropy S(0)

EE(A) with fixed normalization in the CFT, it can be

reproduced by the computation of Wald entropy in either of the gravity models by requiring

a∗d = ã∗d, i.e.,

ℓd−1
AdS

ℓd−1
P

=
ℓ̃d−1
AdS

ℓd−1
P

(

1− 2(d− 1)(d− 2) γ
ℓ̃2

ℓ̃2AdS

)

. (3.5)

This determines the dimensionless ratio ℓAdS/ℓP in Einstein gravity in terms of

{ℓ̃AdS/ℓP , γ} in Gauss-Bonnet theory such that both theories make the same predictions

for Wald entropy of the maximally symmetric horizon. From the CFT point of view, this

matching is the condition that a∗d is a fixed fundamental parameter of the CFT which

should be reproduced by either candidate of a gravity dual.

Matching of scalar coupling (or CO). Perturbing the CFT with O means introducing

a massive scalar in the gravitational action. The mass of the scalar is constrained by the

requirement that the boundary value of the scalar sources the operator O with given

dimension ∆. This fixes

ℓ2AdSm
2 = ∆(∆− d) = ℓ̃2AdS m̃

2 . (3.6)

The dynamics of the scalar field is derived at lowest order from the propagation on AdSd+1

vacuum:
(

�̄−m2
)

φ = 0 , φ(z → 0) ∼ λ zd−∆ , (3.7)

and similarly with tildes. Once the boundary condition is imposed in this way, standard

holographic techniques lead to the matching between the normalization CO of the relevant

CFT correlators and the normalization of the scalar field action via (2.20): the two gravity

theories I and Ĩ lead to the same CO provided that

λφ
ℓd−1
AdS

ℓd−1
P

= λ̃φ
ℓ̃d−1
AdS

ℓd−1
P

, (3.8)

so the ratio λφ/λ̃φ should be fixed to be the same as in (3.5).

Computation of perturbed entanglement entropy. We finally want to check ex-

plicitly the arguments of section 2.3.3 and verify that after the matching conditions above

have been implemented, second order entanglement entropy is automatically the same for
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I and Ĩ. We will also verify that the difference between λh = 1 and λ̃h cannot be absorbed

in any further free parameters. This will lead to the conclusion that the central charge C
T

is genuinely different in the CFTs dual to I compared to those dual to Ĩ after the above

matchings have been performed.

Our perturbative scheme in the CFT demands that we consider the linearized equa-

tions of motion in the bulk. The linearized equations of motion can be obtained from the

actions (3.1), (3.2) by linearizing around ḡµν = gµν − hµν . We find for I and Ĩ, respec-

tively [50]:

λh Gab
cdhcd = −λφ

2
T
(φ)
ab ,

λ̃h G̃ab
cdhcd = − λ̃φ

2
T̃
(φ)
ab ,

(3.9)

where T
(φ)
ab and T̃

(φ)
ab are the source terms (2.30) for scalar matter with mass m2 and m̃2,

respectively propagating on AdSd+1 with scale ℓAdS and ℓ̃AdS. The kinetic operators Gabcd

and G̃abcd are defined as in (2.22), but, of course, also refer to backgrounds with respective

scales ℓAdS and ℓ̃AdS. The coefficients λh and λ̃h in (3.9) can be computed for I and Ĩ

theories and turn out to be

λh = 1 , λ̃h =

(

1− 2(d− 2)(d− 3) γ
ℓ̃2

ℓ̃2AdS

)

. (3.10)

Clearly there is no free parameter left in (3.9) which could be renormalized to absorb these

normalizations. From (2.33) it is hence clear that the C
T
charges of the dual CFTs will

differ by the ratio λh/λ̃h. At this stage, any CFT observable which did depend on C
T

would therefore genuinely distinguish between the two gravity models. As shown before,

δSEE(A) does not depend on C
T
, though.

Our matching prescriptions (3.3), (3.5) and the graviton kinetic term scaling (3.10)

have, of course, appeared in the literature before. For example, see [20] for a computation of

perturbed sphere entanglement entropy in Gauss-Bonnet theory. One can easily verify that

their computation gives an answer which takes the form of perturbed entanglement entropy

in Einstein gravity with dimensionless parameters rescaled as predicted by our general

analysis.15 At this order the entanglement entropy computation for spherical regions is

therefore not sensitive to the Gauss-Bonnet coupling.

4 Discussion

Let us summarize our arguments and comment on implications for the program of bulk

reconstruction.

15See, e.g., eq. (7.7) of [20] with the understanding that their Gauss-Bonnet coupling λ equals 2γ in our

notation.
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Summary. We considered the second order perturbation of CFT vacuum entanglement

entropy of spheres due to scalar operator deformations. This quantity exhibits a universal

functional form which only depends on a small number of fundamental CFT parameters

to set various normalizations. We explored a similar universality statement about gravity,

which explains why the corresponding holographic computation can always be recast in

terms of one universal gravitational system, viz., linearized Einstein gravity coupled to a

free massive scalar field. We argued that any ghost-free gravitational theory other than

Einstein gravity can be used to make identical predictions due to the uniqueness of dif-

feomorphism invariant spin-2 propagation on AdS. For instance, we demonstrated how in

Gauss-Bonnet theory both the vacuum and the perturbed sphere entanglement entropy

(obtained by computing Wald entropy of a minimal surface) can be reproduced from just

Einstein gravity by suitably renormalizing the dimensionless parameters of the theory. In

this sense, knowledge of this entanglement data does not allow to distinguish between

Gauss-Bonnet theory and Einstein gravity.

More precisely, the perturbed sphere entanglement only depends on the dimension ∆

of the deforming operator O, the generalized a-central charge a∗d (in vacuum) and the nor-

malization CO of the 〈OO〉 correlator (at second order in the perturbation). We saw that

any viable gravity model has enough dimensionless parameters to account for these depen-

dencies (the scalar mass ℓ2AdSm
2, the normalization of the gravitational action, ℓAdS/ℓP,

and the normalization of the scalar field, λφ, respectively). In particular, no higher cur-

vature terms in the bulk are required in order to obtain a sufficient number of couplings

for consistently performing the holographic matching. In this problem, the only signature

of higher curvature couplings would be a renormalization of the parameters of cosmologi-

cal Einstein gravity. This implies that perturbed entanglement entropy of spheres can be

computed using any ghost-free gravitational model as an auxiliary system, even for CFTs

without any simple gravity dual at all [11].

In face of this, it is clear that for the derivation of bulk dynamics from entanglement

in the sense of AdS/CFT it is desirable to reconstruct bulk features which are not entirely

universal in the above sense. The obvious question arises which quantities one should

consider instead of or in addition to entanglement entropy of spheres in order to achieve a

dependence on bulk features which are not the same for all CFTs. We will come back to

this question below.

Generalizations. There are some modifications of our analysis which would be interest-

ing to explore. For instance, one could compute the perturbation to higher order in λ. By

extending the perturbation theory of section 2.2, it is clear that entanglement entropy will

then be sensitive to higher point correlation functions which would probe bulk dynamics

beyond the linear approximation. While this would be very interesting to see explicitly, the

major complication in the bulk would be a backreaction not just on the Wald entropy den-

sity, but on the minimal surface itself. Once the minimal surface has non-vanishing extrinsic

curvatures, ambiguities in the entanglement entropy functional need to be addressed [21–

24]. By resolving this issue, one may hope to derive bulk dynamics beyond linear order.
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We mainly focused on perturbations of entanglement due to deformations of the CFT

by a relevant scalar operator. As another generalization, one can imagine deformations

by operators of other spin. As long as the deformation does not involve a stress tensor,

our conclusions are expected to hold since the new operator comes at least with an overall

normalization which is all that is required to account for the renormalization of ℓAdS/ℓP.

Consider, however, the case where the CFT is deformed by a stress tensor insertion. In that

case, the first interesting perturbation of the entanglement entropy occurs at O(λ) instead

of O(λ2), where one gets a contribution ∼ 〈TT 〉 with normalization set by C
T
. In the

bulk the problem of gravitational backreaction changes in a similar way and the extremal

surface will feel a perturbation at O(λ). It would be interesting to explore this case in detail

and consider the dependence on C
T
to draw similar conclusions about the effect of higher

curvature couplings. The dependence on C
T
is expected to lead to a way of distinguishing

Einstein gravity duals from higher curvature ones. In fact it has been argued before (as we

review in section C) that generic perturbations of spherical region entanglement entropy

can be used to derive linearized bulk equations including their normalization set by C
T
[6].

Further generalizations could involve perturbations of the CFT other than operator

deformations. For instance, a small geometric perturbation of the spatial sphere should lead

to similar conclusions as those just mentioned. Similarly, 1/N corrections have recently

been explored in order to improve on the entanglement first law [51]. It would be interesting

to pursue this further and explore ways to reconstruct bulk dynamics at a level where

one can distinguish between different higher curvature theories. Instead of considering

individual approaches in detail, let us now outline in general how a good choice of CFT

observables can be made which are sensitive to interesting bulk features in a controlled way.

How to “bootstrap” bulk theories. As we have just seen, there are, of course, simple

ways to circumvent the problem of perturbed sphere entanglement being insensitive to the

desired detailed bulk information. Roughly speaking, one needs to consider more detailed

CFT structures in order to distinguish between different bulk models. In general one could

imagine bootstrapping the bulk theory using the CFT input. Clearly it is hard to derive

bulk dynamics directly from fundamental CFT parameters such as two-point functions and

OPE coefficients. But entanglement entropy seems to provide a physically meaningful quan-

tity with well-understood universal properties on both sides of the duality, which depends

on these fundamental building blocks of the CFT in a useful way. At lowest order, the vac-

uum entanglement entropy of spheres can be used to measure the generalized a-charge a∗d.

In our particular context we used this to fix the normalization ℓAdS/ℓP of any possible bulk

dual (whose dynamics is uniquely fixed in the same way as the functional form of entan-

glement entropy is universal). As we have seen, a small perturbation of this entanglement

entropy does not affect the dynamics enough to determine if there are any higher curvature

terms present in the bulk theory. To answer this question, one would have to measure some

other entanglement entropy which is sensitive to further details of the bulk dynamics.

One natural CFT parameter that we have only encountered briefly so far is the stress

tensor central charge. Let us elaborate how any quantity which is sensitive to C
T
will also

be sensitive to bulk higher derivative couplings and hence will not be reproducible by just
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Einstein gravity once ℓAdS/ℓP has been fixed by matching vacuum entanglement entropy of

spheres as outlined in this note. In our context, the ratio a∗d/CT
computed holographically

is independent of ℓAdS/ℓP and genuinely takes different values in the presence of higher

curvature terms. In fact it is clear from (2.7) and (2.33) that higher curvature terms in the

bulk are necessary whenever a∗d/CT
= 2πd/2/Γ(d/2)fd does not hold. This is, of course,

just a generalization of the well-known statement that higher curvature terms in the bulk

theory are required whenever the a- and c-central charges parametrizing the boundary

conformal anomaly differ [52–54].

Any set of CFT observables which depends on both a∗d and C
T
can hence be used to

detect if higher curvature terms in the bulk are necessary. The problem of genuine bulk

reconstruction is therefore not at all the restriction to quantities which are universal in the

sense that they only depend on an overall normalization. But it is now clear that one has

to consider enough such quantities in order to see a necessity to account for their values in

terms of higher curvature interactions.

There are many examples of entanglement-related CFT quantities which one may en-

visage to compute in this context. For instance, the entanglement entropies of other surfaces

such as infinite strips or cylinders are sensitive to both a∗d and C
T
[19, 20, 55]. Further, the

presence of corners and kinks in the spatial region of interest leads to divergences which

exhibit a universal dependence on the opening angle and (at least in holographic CFTs) de-

pend on a∗d and C
T
in an interesting way [56–63]. Other interesting quantities with universal

features and dependence on C
T
are Rényi entropies of spherical regions (e.g., in the entan-

glement entropy limit q → 1) [64–66]. All these quantities have in common a contribution

with a universal functional form and a dependence on few CFT parameters (in particular

a∗d and C
T
). They could hence be used to distinguish between CFTs with a dual description

in terms of Einstein gravity and CFTs which require higher curvature terms in the bulk.

However, note that even if some CFT measurement of a∗d and C
T
leads to the conclusion

that there can exist a semiclassical bulk theory only if contains higher curvature interactions

are present, it is usually not possible to determine precisely what higher curvature terms

are required. Indeed, the signature of, say, a Gauss-Bonnet term on a∗d/CT
can equally

well be reproduced by some other higher derivative term. For illustration of this statement

see also section B, where it is shown how any higher curvature theory simplifies to the

background field expansion of Gauss-Bonnet form if one is only concerned with linearized

equations of motion. In this sense Gauss-Bonnet theory is the most general theory which

can account for arbitrary values of a∗d and C
T
in the CFT. In order to further bootstrap

the precise bulk dynamics, one needs again access to more CFT data (e.g., entanglement

data which depends on further 2-point functions or OPE coefficients). The reason is, again,

that gravitons propagating on AdS have very universal dynamics. This is a manifestation

of the familiar problem that entanglement entropies which are computable tend to be very

universal and contain only discrete information about the actual bulk dynamics.

It would be interesting to use this philosophy to derive more detailed (non-linear)

bulk dynamics for some simple CFT with known holographic dual from first principles.

Generalizing this approach may then ultimately lead to a genuine reconstruction of the

bulk geometry and its dynamics by using a suitable set of entanglement entropies.
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A Generalization to bulk theories with higher order equations of motion

In the main text, we considered the case where the equations of motion for the metric

perturbation in the bulk were strictly second order. The motivation for doing so was to

exclude ghost modes which would occur if the graviton equations were higher than second

order. However, if the higher curvature contributions to gravity are parametrically small,

they can be interpreted, e.g., as toy models for perturbative string theory corrections to

Einstein gravity. The ghost modes are then an artefact of the low energy truncation and

can be ignored, which allows for a considerable increases of the number of acceptable

gravitational models covered by our analysis. In order to illustrate this, we first generalize

in section A.1 the Gauss-Bonnet theory of section 3 to the case of all Lagrangians which

are quadratic in curvature. In section A.2 we then give a more abstract argument to show

that this example actually illustrates the general case.

A.1 Example: general curvature squared theories

In this section we generalize the analysis of section 3 to theories where the gravitational

sector is described by

Ĩ =
1

2ℓd−1
P

∫ √−g

[

R+
d(d− 1)

ℓ̃2
+ ℓ̃2 Lh.d. −

λ̃φ

2

(

(∇φ)2 + m̃2 φ2
)

]

where Lh.d. = αR2 + β RabR
ab + γ

(

R2 − 4RabR
ab +RabcdR

abcd
)

(A.1)

We do this to explicitly demonstrate that such theories — despite the presence of massive

ghost modes — are acceptable in a perturbative sense. Indeed, we will see how the ghost

degrees of freedom are suppressed and hence can be neglected for the computations we

want to perform.

We want to model the theory (A.1) with the cosmological Einstein-scalar theory (3.1).

That is, we will give the matching conditions which express the parameters of the lat-

ter theory, {(ℓAdS/ℓP) ,m
2ℓ2AdS , λφ}, in terms of {(ℓ̃AdS/ℓP) , m̃

2ℓ̃2AdS , λ̃h , λ̃φ, α, β, γ} such

that the theories make the same predictions for entanglement entropy of spheres in vacuum

even after deforming the theory with a scalar operator. The main new ingredient is the

presence of four-derivative terms in the equations of motion.

Before discussing the linearized equations of motion, let us give the analogue of the

matching conditions (3.3), (3.5). The stable AdSd+1 background solutions in the two
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theories have the following scales in terms of the cosmological constant:

ℓ2AdS = ℓ2 ,

ℓ̃2AdS =
ℓ̃2

2

(

1 +

√

1− 4(d− 3)

(d− 1)

(

d(d+ 1)α+ d β + (d− 1)(d− 2) γ
)

)

.
(A.2)

The generalization of the a∗d matching condition (3.5) then becomes

ℓd−1
AdS

ℓd−1
P

=
ℓ̃d−1
AdS

ℓd−1
P

(

1− 2
(

d(d+ 1)α+ d β + (d− 1)(d− 2) γ
) ℓ̃2

ℓ̃2AdS

)

. (A.3)

Exactly as in section 3.2, the previous equation also immediately fixes the ratio of scalar

couplings, i.e., λ̃φ/λφ is given by the value bracket on the right hand side of (A.3). This

guarantees that holographic computations of 〈OO〉 yield a unique normalization CO.

Consider now the linearized graviton equations in the two theories. For this, we find it

convenient to gauge fix the metric. In the transverse traceless gauge (∇̄ah
ab = 0 = h) the

universal linearized equations of motion (3.9) now generalize to the following two equations

for Einstein and curvature squared theories, respectively [50]:

λh

(

�̄+
2

ℓ2AdS

)

hab = −λφ T
(φ)
ab ,

λ̃h

(

�̄+
2

ℓ̃2AdS

)

hab + β ℓ2

(

�̄+
2

ℓ̃2AdS

)2

hab = −λ̃φ T̃
(φ)
ab ,

(A.4)

where the coefficients λh and λ̃h in (A.4) are now given as

λh = 1 , λ̃h =

(

1− 2
(

d(d+ 1)α+ d β + (d− 2)(d− 3) γ
) ℓ̃2

ℓ̃2AdS

)

. (A.5)

We now want to argue that the second term in the second line of (A.4) can be neglected for

our computation of entanglement entropy. Indeed, this term is obviously suppressed if β

is treated as a small parameter and in the physical on-shell limit (�̄+2/ℓ̃2AdS)hab → 0 (see

also [61]). Further, we can also rewrite the second line of (A.4) in the following factorized

form:

β ℓ2

(

�̄+
2

ℓ̃2AdS

)(

�̄+
2

ℓ̃2AdS

+
λ̃h

β ℓ2

)

hab = −λ̃φ T
(φ)
ab . (A.6)

From this expression one can anticipate the two poles of the graviton propagator. The

Fierz-Pauli type mass term ∼ 2/ℓ̃2AdS corresponds to the physical graviton mode. The

other mass term ∼ (2/ℓ̃2AdS + λ̃h/βℓ
2) schematically leads to the ghost which is very heavy

for small β and hence does not go on-shell at low energies. It can be seen as an artefact of

truncating some well-behaved theory at four-derivative order.
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A.2 General argument

Despite the previous subsection appearing to be restricted to the specific case of curva-

ture squared theories, the conclusion is actually more general. If higher curvature terms,

which appear in the gravitational action with some dimensionless coupling α, lead to ghosts

modes, then the latter generically have a mass which scales with 1/α. If these modes are

interpreted as due to consistently truncating perturbative quantum gravity (i.e., |α| ≪ 1),

the ghosts are unphysical and indeed never go on-shell at low energies. In such a perturba-

tive framework the presence of ghosts is hence not due to an instability of the theory (the

underlying full theory is assumed to be unitary), but it is just a rather harmless consequence

of neglecting certain sectors of the theory which are not being probed at low energies.

To illustrate these statements, consider, for example, a gravity sector of the form

Lgrav = Lgrav(gab, Rabcd) such that the equations of motion are fourth order in derivatives.

The most general four-derivative gravitational equations of motion linearized around AdS

are precisely the same as those captured by the curvature squared theories in (A.1). This

can be shown using the method of background field expansion; see, e.g., [67], where it was

indeed argued that the linearized action of any higher derivative theory of this type is

the same as that of the most general curvature squared theory.16 Concretely, given some

such higher curvature theory, the action expanded to second order around AdS takes the

form (A.1) with parameters {α, β, γ} determined as linear combinations of the original

higher derivative couplings. We can therefore ignore the ghosts of these theories as long

as the higher derivative couplings are viewed as a semiclassical truncation stemming from

some unitary UV-complete theory.

B Perturbations of Wald entropy: background field expansion

This appendix complements the analysis of section 2.3.3 by computing the expansion of the

Wald entropy density at O(hab), derived from the general second order Lagrangian (2.21).

This analysis will also serve to illuminate how the universality of graviton propagation

on AdS simplifies the method of background field expansion, thus demonstrating a more

general universality statement about quantities which depend on both a∗d and C
T
. Indeed,

we will show in what sense Einstein-Gauss-Bonnet theory is the most general theory at

O(h2). Any other physically acceptable higher curvature theory has the same background

field expansion at this order.

It is straightforward that we can focus on the pure gravity part of the general La-

grangian (2.21) since the minimally coupled matter sector does not couple to curvature.

We wish to give a similar argument for the constant term. Ignoring the matter sector puts

us in the realm of [68] (see also [6]), where a detailed analysis of perturbed Wald entropy

on a maximally symmetric AdS background has been performed. The best strategy to

compute the perturbative expansion of Wald entropy is to rewrite the expansion in hab as

a background field expansion of curvatures Rabcd around − 1
ℓ2AdS

(gacgbd − gadgbc). More ex-

plicitly, instead of writing explicit metric perturbations hab we write the Lagrangian solely

16In this context, see also section B.
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in terms of

∆Rabcd = Rabcd −
[

− 1

ℓ2AdS

(gacgbd − gadgbc)

]

= (1)Rabcd +
1

ℓ2AdS

(ḡachbd + ḡbdhac − ḡadhbc − ḡbchad) +O(h2) ,

(B.1)

where gab = ḡab + hab is the full metric and indices of expressions like this are raised with

the full metric. This way, the pure gravity part of our general quadratic Lagrangian (2.21)

can be interpreted as an expansion in ∆Rabcd and its contractions and derivatives. To wit,

we can always write the pure gravitational couplings of (2.21) as a linear combination of

all possible combinations of ∆Rabcd which contain terms relevant at O(h2). Clearly such

combinations contain at most two factors of ∆Rabcd, but they may contain any number of

derivatives in general:

Igrav =
1

2ℓd−1
P

∫ √−ḡ

(

− 2d

ℓ2AdS

Γ(d/2)

πd/2

ℓd−1
P

ℓd−1
AdS

a∗d +
λh

2
hab Gabcd hcd + O(h3)

)

=
1

2ℓd−1
P

∫ √−g
(

L(I)
∆R + L(II)

∆R

)

, (B.2)

with

{

L(I)
∆R≡a0 + a2∆R

L(II)
∆R ≡b1 ℓ

2
AdS (∆R)2+b2 ℓ

2
AdS∆Rab∆Rab+b3 ℓ

2
AdS∆Rabcd∆Rabcd+. . .+O(h3)

Let us explain this way of parameterizing the action piece by piece. First observe that

from the form of (B.2) it follows that a0 is just

a0 = − 2d

ℓ2AdS

Γ(d/2)

πd/2

ℓd−1
P

ℓd−1
AdS

a∗d . (B.3)

Similarly, one can easily verify that the vanishing of the linearized Lagrangian (i.e. the

equation of motion for the background solution ḡab) demands a0 = −(2d/ℓ2AdS)a2. This

fixes the form of L(I)
∆R and shows that the latter is all that would ever show up in the case of

Einstein gravity (with an overall pre-factor a2). Therefore, L(II)
∆R is the term which param-

eterizes contributions to the graviton propagator which only come from higher curvature

terms. More tensor structures involving derivatives and contractions of ∆Rabcd∆Refgh

could be written in (B.2) in order to match the expansion of an arbitrary theory of gravity

at higher orders in hab. However, this is not needed to reproduce the first line, i.e., the

universal parts up to O(h2). To wit, the two lines of (B.2) match if we choose

b1 = −b2
4

= b3 =
1

4(d− 2)

(

λh −
Γ(d/2)

πd/2

ℓd−1
P

ℓd−1
AdS

a∗d

)

. (B.4)

Note that this choice is schematically of the Gauss-Bonnet form. We can interpret this as

the statement that a Gauss-Bonnet term is all that is needed to reproduce the linearized

graviton action with arbitrary graviton normalization. This is a generalization of the

results of the main text: in CFT language, a quantity which is sensitive to both a∗d and C
T
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may undeniably detect the presence of higher curvature terms, but it does not distinguish

between Gauss-Bonnet theory and any other higher curvature theory in the same way that

quantities only knowing about a∗d can always be computed using Einstein gravity. The

reason is that linearized actions up to O(h2) only require a small number of terms in the

background field expansion.

As a consistency check, we can make the relation between parameters {a0, a2, b1, b2, b3}
and C

T
manifest by referring to the results of [68] (see also [6]). There it was shown that

an action of the form (B.2) leads to λh = a2 + 4(d − 2)b3 which is proportional to C
T

via (2.33). This is in perfect agreement with the above statements.

Since (B.2) is manifestly written as both a perturbative expansion in the metric fluctu-

ation and as a functional of curvatures, we can easily compute the associated perturbative

expansion of Wald entropy density by taking derivatives with respect to Rabcd. Note that

the way the expansion is written makes it explicit that any variation with respect to Rabcd

reduces the order in hab by precisely one and the number of derivatives by two. The un-

perturbed Wald entropy is hence only sensitive to L(I)
∆R and is readily checked to agree

with (2.5):

S(0)

Wald(Emin) = −2π
1

2ℓd−1
P

∫

Emin

√
γ̄

[

δL(I)
∆R

δRabcd
nabncd

]

AdS

=
2π

πd/2
Γ (d/2) a∗d

∫

Emin

√
γ̄

ℓd−1
AdS

,

(B.5)

where the subscript ‘AdS’ refers to evaluation on the background ḡab.

Similarly, the perturbation of Wald entropy is now computable via the two contribu-

tions

δSWald(Emin) = −2π
1

2ℓd−1
P

∫

Emin

[

√
γ
δ(L(I)

∆R + L(II)
∆R )

δRabcd
nabncd

]

O(h)

, (B.6)

where ‘O(h)’ picks out the term proportional to hab. We find the following contribution

from L(I)
∆R:

δSWald, (I)(Emin) = −2π
1

2ℓd−1
P

∫

Emin

[
√
γ (−2a2)]O(h) =

2π

πd/2
Γ (d/2) a∗d

∫

Emin

√
γ̄ (12 γ̄

αβhαβ)

ℓd−1
AdS

,

(B.7)

which could also be obtained by simply perturbing the volume form in (B.5). Similarly,

one can compute the higher curvature contributions from L(II)
∆R at O(h) as follows:17

δSWald, (II)(Emin) =

= −2π
1

2ℓd−1
P

∫

Emin

√
γ̄ 2b1 ℓ

2
AdS

[

∆Rgc[agb]d − 4∆Ref g
e[bga][cgd]f +∆Rabcd

]

nabncd

= 4π b1 ℓ
2
AdS

1

ℓd−1
P

∫

Emin

√
γ̄

[

R+ 2Rab nacnb
c − 1

2
Rabcd nabncd

]

O(h)

+ O(h2)

= 4π b1 ℓ
2
AdS

1

ℓd−1
P

∫

Emin

√
γ̄ (1)R+ O(h2) , (B.8)

17Our conventions are as follows: the embedded version of the intrinsic metric γαβ is γab = gab+tatb−nanb

where ta and na are normal to the minimal surface such that t2 = −1, n2 = 1, tana = 0 and the binormal

nab ≡ natb − tanb.
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where (1)R is the linearized intrinsic Ricci scalar on Emin in units of ℓAdS (i.e., (B.8) is

essentially the first order perturbation of Wald entropy in pure Gauss-Bonnet theory). In

the last step we used the fact that extrinsic curvatures vanish on Emin, so the projected

Ricci scalar in the penultimate line coincides with the intrinsic one. We can further simplify

the expression using

(1)R = −R̄αβ δγαβ + ∇̄α(. . .) =
(d− 2)

ℓ2AdS

γ̄αβhαβ + ∇̄α(. . .) , (B.9)

where R̄αβ is the unperturbed intrinsic Ricci scalar and ∇̄α is the intrinsic covariant deriva-

tive compatible with γ̄αβ and hence only yields boundary terms which we are not keeping

track of.18 Hence (B.8) becomes

δSWald, (II)(Emin) = 2π

(

λh −
Γ(d/2)

πd/2

ℓd−1
P

ℓd−1
AdS

a∗d

)
∫

Emin

√
γ̄ (12 γ̄

αβhαβ)

ℓd−1
P

(B.10)

Finally adding the two contributions to perturbed Wald entropy, (B.7) and (B.10), we

conclude that (B.6) reads

δSWald(Emin) = 2π

(

ℓd−1
AdS

ℓd−1
P

λh

)
∫

Emin

√
γ̄ (12 γ̄

αβhαβ)

ℓd−1
AdS

. (B.11)

C First law of entanglement

In the main text we have focused on perturbations of entanglement entropy due to scalar

deformations. Let us now drop such particular assumptions and consider a slightly more

general setup which has been argued to serve as a quantitative derivation of bulk dynamics

from entanglement. For theories in which the Ryu-Takayanagi proposal is valid, a first law

of entanglement entropy has been shown to be equivalent to linearized bulk equations of

motion [4–6, 25, 27, 28].

The entanglement first law

δSEE(A) = Tr(δρAHA) ≡ δ〈HA〉 (C.1)

is purely a CFT statement which says that any change of SEE(A) due to some small

perturbation δρA of the density matrix is given by the change of modular energy associated

with the spatial sphere A. (This statement can easily be derived from the formalism of

section 2.2.) For CFTs with a semiclassical gravity dual, this statement has a natural analog

in gravity: the left hand side of (C.1) corresponds to a perturbation of Wald entropy as

in (2.34). Similarly the right hand side of (C.1) translates to a change of gravitational

energy Egrav(A) of the Rindler patch of AdSd+1 associated with the causal diamond of A.

That is, the CFT entanglement first law (C.1) is equivalent to the gravitational first law

δSWald(Emin) = δEgrav(A) . (C.2)

18Boundary terms are important to get a finite result as in (2.16). Since we are only interested in

identifying the fate of the dimensionless parameters, we are being implicit about these subtleties and

assume that there always exist suitable Gibbons-Hawking-York boundary terms.
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The gravitational energy Egrav(A) is defined as an integral of the holographic stress tensor

T grav
ab over a spatial bulk surface of bulk codimension two, which lies inside the Rindler

patch of A and ends on ∂A. Without loss of generality, we push this bulk surface to the

boundary, so the gravitational energy can be computed as a boundary integral over A:

Egrav(A) =

∫

A

dΣµ T grav
µν ζνA , (C.3)

where dΣµ is the volume form on the (d − 1)-dimensional surface A and ζν
A

is the con-

formal Killing vector generating the Rindler flow inside the causal development of A. In

holographic CFTs the CFT stress tensor Tµν of (2.13) agrees with the holographic stress

tensor T grav
µν . One can easily verify that the gravitational energy (C.3) then agrees with

the definition of modular energy in the CFT, (2.12).

The holographic stress tensor is determined by the dominant asymptotics of the gravi-

ton fluctuation on AdSd+1. Let us work in Poincaré coordinates

ds2 =
ℓ2AdS

z2
(

dz2 + ηµν dx
µdxν

)

+ hab dx
adxb . (C.4)

Then the relevant graviton falloff near the boundary is given by the following piece of the

Fefferman-Graham expansion:

hab(x
ρ, z) dxadxb = ℓ2AdS z

d−2 h(d)µν (x
ρ) dxµdxν + . . . . (C.5)

The power of z is chosen such that the induced boundary stress tensor δT grav
µν is finite (i.e.,

z-independent). It was shown in [6, 68] that for a wide class of theories the holographic

stress tensor associated with this bulk perturbation evaluates to

δT grav
µν =

dC
T

fd
h(d)µν , (C.6)

where fd is the number defined in (2.33). Note that this form of δT grav
µν is consistent with

our considerations in section 2.3.3. Indeed, δSWald(Emin) in the present context can be

obtained from the gravitational energy integral over the combination (C.6):

δSWald(Emin) =
dC

T

fd

∫

A

dΣµ h(d)µν ζνA . (C.7)

This has the same structure as (2.36), i.e., an integral over a quantity (C
T
or λh times a

metric perturbation) which satisfies a universal equation of motion.

The linearized equations of motion can be derived from the first law statements above.

Indeed, assuming the Ryu-Takayanagi conjecture, it was shown in [6, 68] that (C.2) for

small spherical regions A is equivalent to linearized gravitational equations of motion for

any higher derivative Lagrangian Lgrav = Lgrav(gab, Rabcd,∇eRabcd, . . .). As argued in sec-

tion 2.3, on an AdS background these equations are the same for any theory of gravity with

second order equations of motion, up to overall normalizations which encode the higher cur-

vature contributions. Depending on the precise setup, even these normalizations may be ab-

sorbed into renormalizations of dimensionless quantities. In particular the normalization λh

inside C
T
always multiplies (ℓAdS/ℓP)

d−1, cf., (2.33). Unless ℓAdS/ℓP has already been fixed

(e.g., by a condition such as (2.7)), this ratio can serve to account for any λh dependence.
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D Second order gravitational perturbation theory

In this appendix we list some relevant formulae for gravitational perturbation theory up

to second order in the graviton. We take the ansatz

gab = ḡab + hab (D.1)

and are interested in perturbations up to O(h2). The background solution ḡab is AdSd+1

with curvature −1/ℓ2AdS, so the following simplifications apply for the background

curvature tensors:

R̄abcd = − 1

ℓ2AdS

(ḡacḡbd − ḡadḡbc) , R̄ab = − d

ℓ2AdS

ḡab , R̄ = −d(d+ 1)

ℓ2AdS

. (D.2)

Let us evaluate and define various quantities, where superscript numbers refer to the

order in perturbation theory:

gab = ḡab − hab + hachbc + O(h3) ,

Γρ
ab = Γ̄ρ

ab +
(1)Γc

ab − hcd
(1)Γd

ab + O(h3) ,

Ra
bcd = R̄a

bcd +
(1)Ra

bcd

−
[

hae
(1)Re

bcd + ḡaeḡfg

(

(1)Γg
ce

(1)Γf
db − (1)Γg

de
(1)Γf

cb

)]

+ O(h3) ,

Rab = R̄ab +
(1)Rab −

[

hcd
(1)Rd

acb + ḡceḡfg

(

(1)Γg
ce

(1)Γf
ba − (1)Γg

ce
(1)Γf

ca

)]

+ O(h3) ,

R = R̄+ (1)R+

{

hachbc R̄ab − hab (1)Rab

− ḡab
[

hcd
(1)Rd

acb + ḡceḡfg

(

(1)Γg
ce

(1)Γf
ba − (1)Γg

be
(1)Γf

ca

)]

}

+ O(h3) .

(D.3)

In these expressions the linearized objects are given in terms of hab by

(1)Γc
ab ≡

1

2
ḡcd
(

∇̄ahbd + ∇̄bhad − ∇̄dhab
)

,

(1)Ra
bcd = ∇̄[c∇̄d]h

a
b + ∇̄[c∇̄bh

a
d] − ∇̄[c∇̄ahd]b ,

(1)Rab = ∇̄c∇̄(ah
c
b) −

1

2
�̄hab −

1

2
∇̄a∇̄bh ,

(1)R = (1)Rab ḡ
ab − R̄ab hab = ∇̄a∇̄bh

ab − �̄h− R̄ab hab ,

(D.4)

where h ≡ haa = ḡabhab.

For the expansion of actions it is also useful to note the following identity:

√−g =
√−ḡ

(

1 +
1

2
h+

1

8
(h2 − 2hab h

b
a) + O(h3)

)

. (D.5)
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JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

[65] D.A. Galante and R.C. Myers, Holographic Rényi entropies at finite coupling,
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